
Lecture 1: an introduction to CUDA

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 1 – p. 1

Overview

hardware view

software view

CUDA programming

Lecture 1 – p. 2

Hardware view

At the top-level, a PCIe graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR4
GDDR5
or HBM

motherboard graphics card

Lecture 1 – p. 3

Hardware view

Currently, 4 generations of hardware cards in use:

Kepler (compute capability 3.x):

first released in 2012, including HPC cards with
excellent DP

our practicals will use K40s and K80s

Maxwell (compute capability 5.x):

first released in 2014; only gaming cards, so poor DP

Pascal (compute capability 6.x):

first released in 2016

many gaming cards and several HPC cards in Oxford

Volta (compute capability 7.x):

first released in 2018; only HPC cards so far Lecture 1 – p. 4

Hardware view

The Pascal generation has cards for both gaming/VR and
HPC

Consumer graphics cards (GeForce):

GTX 1060: 1280 cores, 6GB (£230)

GTX 1070: 1920 cores, 8GB (£380)

GTX 1080: 2560 cores, 8GB (£480)

GTX 1080 Ti: 3584 cores, 11GB (£650)

HPC (Tesla):

P100 (PCIe): 3584 cores, 12GB HBM2 (£5k)

P100 (PCIe): 3584 cores, 16GB HBM2 (£6k)

P100 (NVlink): 3584 cores, 16GB HBM2 (£8k?) Lecture 1 – p. 5

Hardware view

building block is a “streaming multiprocessor” (SM):

128 cores (64 in P100) and 64k registers

96KB (64KB in P100) of shared memory

48KB (24KB in P100) L1 cache

8-16KB (?) cache for constants

up to 2K threads per SM

different chips have different numbers of these SMs:

product SMs bandwidth memory power

GTX 1060 10 192 GB/s 6 GB 120W

GTX 1070 16 256 GB/s 8 GB 150W

GTX 1080 20 320 GB/s 8 GB 180W

GTX Titan X 28 480 GB/s 12 GB 250W

P100 56 720 GB/s 16 GB HBM2 300W

Lecture 1 – p. 6

Hardware View

Pascal GPU

SM SM SM SM

L2 cache

SM SM SM SM

shared memory

L1 cache

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 7

Hardware view

There were multiple products in the Kepler generation

Consumer graphics cards (GeForce):

GTX Titan Black: 2880 cores, 6GB

GTX Titan Z: 2×2880 cores, 2×6GB

HPC cards (Tesla):

K20: 2496 cores, 5GB

K40: 2880 cores, 12GB

K80: 2×2496 cores, 2×12GB

Lecture 1 – p. 8

Hardware view

building block is a “streaming multiprocessor” (SM):

192 cores and 64k registers

64KB of shared memory / L1 cache

8KB cache for constants

48KB texture cache for read-only arrays

up to 2K threads per SM

different chips have different numbers of these SMs:

product SMs bandwidth memory power

GTX Titan Z 2×15 2×336 GB/s 2×6 GB 375W

K40 15 288 GB/s 12 GB 245W

K80 2×14 2×240 GB/s 2×12 GB 300W

Lecture 1 – p. 9

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 10

Multithreading

Key hardware feature is that the cores in a SM are SIMT
(Single Instruction Multiple Threads) cores:

groups of 32 cores execute the same instructions
simultaneously, but with different data

similar to vector computing on CRAY supercomputers

32 threads all doing the same thing at the same time

natural for graphics processing and much scientific
computing

SIMT is also a natural choice for many-core chips to
simplify each core

Lecture 1 – p. 11

Multithreading

Lots of active threads is the key to high performance:

no “context switching”; each thread has its own
registers, which limits the number of active threads

threads on each SM execute in groups of 32 called
“warps” – execution alternates between “active” warps,
with warps becoming temporarily “inactive” when
waiting for data

Lecture 1 – p. 12

Multithreading

originally, each thread completed one operation before
the next started to avoid complexity of pipeline overlaps

✲

time1 2 3 4 5✲
✲ ✲

1 2 3 4 5✲
✲ ✲

1 2 3 4 5✲
✲ ✲

however, NVIDIA have now relaxed this, so each thread
can have multiple independent instructions overlapping

memory access from device memory has a delay of
200-400 cycles; with 40 active warps this is equivalent
to 5-10 operations, so enough to hide the latency?

Lecture 1 – p. 13

Software view

At the top level, we have a master process which runs on
the CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device

3. copies data from host to device memory

4. launches multiple instances of execution “kernel” on
device

5. copies data from device memory to host

6. repeats 3-5 as needed

7. de-allocates all memory and terminates

Lecture 1 – p. 14

Software view

At a lower level, within the GPU:

each instance of the execution kernel executes on a SM

if the number of instances exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue and execute later

all threads within one instance can access local shared
memory but can’t see what the other instances are
doing (even if they are on the same SM)

there are no guarantees on the order in which the
instances execute

Lecture 1 – p. 15

CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s
program development environment:

based on C/C++ with some extensions

FORTRAN support provided by compiler from PGI
(owned by NVIDIA) and also in IBM XL compiler

lots of example code and good documentation
– fairly short learning curve for those with experience of
OpenMP and MPI programming

large user community on NVIDIA forums

Lecture 1 – p. 16

CUDA Components

Installing CUDA on a system, there are 3 components:

driver

low-level software that controls the graphics card

toolkit

nvcc CUDA compiler

Nsight IDE plugin for Eclipse or Visual Studio

profiling and debugging tools

several libraries

SDK

lots of demonstration examples

some error-checking utilities

not officially supported by NVIDIA

almost no documentation
Lecture 1 – p. 17

CUDA programming

Already explained that a CUDA program has two pieces:

host code on the CPU which interfaces to the GPU

kernel code which runs on the GPU

At the host level, there is a choice of 2 APIs
(Application Programming Interfaces):

runtime

simpler, more convenient

driver

much more verbose, more flexible (e.g. allows
run-time compilation), closer to OpenCL

We will only use the runtime API in this course, and that is
all I use in my own research.

Lecture 1 – p. 18

CUDA programming

At the host code level, there are library routines for:

memory allocation on graphics card

data transfer to/from device memory

constants

ordinary data

error-checking

timing

There is also a special syntax for launching multiple
instances of the kernel process on the GPU.

Lecture 1 – p. 19

CUDA programming

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>>(args);

gridDim is the number of instances of the kernel
(the “grid” size)

blockDim is the number of threads within each
instance
(the “block” size)

args is a limited number of arguments, usually mainly
pointers to arrays in graphics memory, and some
constants which get copied by value

The more general form allows gridDim and blockDim to
be 2D or 3D to simplify application programs

Lecture 1 – p. 20

CUDA programming

At the lower level, when one instance of the kernel is started
on a SM it is executed by a number of threads,
each of which knows about:

some variables passed as arguments

pointers to arrays in device memory (also arguments)

global constants in device memory

shared memory and private registers/local variables

some special variables:

gridDim size (or dimensions) of grid of blocks

blockDim size (or dimensions) of each block

blockIdx index (or 2D/3D indices) of block

threadIdx index (or 2D/3D indices) of thread

warpSize always 32 so far, but could change
Lecture 1 – p. 21

CUDA programming

1D grid with 4 blocks, each with 64 threads:

gridDim = 4

blockDim = 64

blockIdx ranges from 0 to 3

threadIdx ranges from 0 to 63

r

❄

blockIdx.x=1, threadIdx.x=44

Lecture 1 – p. 22

CUDA programming

The kernel code looks fairly normal once you get used to
two things:

code is written from the point of view of a single thread

quite different to OpenMP multithreading

similar to MPI, where you use the MPI “rank” to
identify the MPI process

all local variables are private to that thread

need to think about where each variable lives (more on
this in the next lecture)

any operation involving data in the device memory
forces its transfer to/from registers in the GPU

often better to copy the value into a local register
variable

Lecture 1 – p. 23

Host code
int main(int argc, char **argv) {

float *h_x, *d_x; // h=host, d=device

int nblocks=2, nthreads=8, nsize=2*8;

h_x = (float *)malloc(nsize*sizeof(float));

cudaMalloc((void **)&d_x,nsize*sizeof(float));

my_first_kernel<<<nblocks,nthreads>>>(d_x);

cudaMemcpy(h_x,d_x,nsize*sizeof(float),

cudaMemcpyDeviceToHost);

for (int n=0; n<nsize; n++)

printf(" n, x = %d %f \n",n,h_x[n]);

cudaFree(d_x); free(h_x);

}
Lecture 1 – p. 24

Kernel code

#include <helper_cuda.h>

__global__ void my_first_kernel(float *x)

{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = (float) threadIdx.x;

}

global identifier says it’s a kernel function

each thread sets one element of x array

within each block of threads, threadIdx.x ranges
from 0 to blockDim.x-1, so each thread has a unique
value for tid

Lecture 1 – p. 25

CUDA programming

Suppose we have 1000 blocks, and each one has 128
threads – how does it get executed?

On Kepler hardware, would probably get 8-12 blocks
running at the same time on each SM, and each block
has 4 warps =⇒ 32-48 warps running on each SM

Each clock tick, SM warp scheduler decides which warps
to execute next, choosing from those not waiting for

data coming from device memory (memory latency)

completion of earlier instructions (pipeline delay)

Programmer doesn’t have to worry about this level of detail,
just make sure there are lots of threads / warps

Lecture 1 – p. 26

CUDA programming

Queue of waiting blocks:

Multiple blocks running on each SM:

SM SM SM SM

❄ ❄ ❄ ❄

Lecture 1 – p. 27

CUDA programming

In this simple case, we had a 1D grid of blocks, and a 1D
set of threads within each block.

If we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like

dim3 nthreads(16,4);

my_new_kernel<<<nblocks,nthreads>>>(d_x);

where dim3 is a special CUDA datatype with 3 components
.x,.y,.z each initialised to 1.

Lecture 1 – p. 28

CUDA programming

A similar approach is used for 3D threads and 2D / 3D grids;
can be very useful in 2D / 3D finite difference applications.

How do 2D / 3D threads get divided into warps?

1D thread ID defined by

threadIdx.x +

threadIdx.y * blockDim.x +

threadIdx.z * blockDim.x * blockDim.y

and this is then broken up into warps of size 32.

Lecture 1 – p. 29

Practical 1

start from code shown above (but with comments)

learn how to compile / run code within Nsight IDE
(integrated into Visual Studio for Windows,
or Eclipse for Linux)

test error-checking and printing from kernel functions

modify code to add two vectors together (including
sending them over from the host to the device)

if time permits, look at CUDA SDK examples

Lecture 1 – p. 30

Practical 1

Things to note:

memory allocation
cudaMalloc((void **)&d x, nbytes);

data copying
cudaMemcpy(h x,d x,nbytes,

cudaMemcpyDeviceToHost);

reminder: prefix h and d to distinguish between
arrays on the host and on the device is not mandatory,
just helpful labelling

kernel routine is declared by global prefix, and is
written from point of view of a single thread

Lecture 1 – p. 31

Practical 1

Second version of the code is very similar to first, but uses
an SDK header file for various safety checks – gives useful
feedback in the event of errors.

check for error return codes:
checkCudaErrors(...);

check for kernel failure messages:
getLastCudaError(...);

Lecture 1 – p. 32

Practical 1

One thing to experiment with is the use of printf within
a CUDA kernel function:

essentially the same as standard printf; minor
difference in integer return code

each thread generates its own output; use conditional
code if you want output from only one thread

output goes into an output buffer which is transferred
to the host and printed later (possibly much later?)

buffer has limited size (1MB by default), so could lose
some output if there’s too much

need to use either cudaDeviceSynchronize(); or
cudaDeviceReset(); at the end of the main code to
make sure the buffer is flushed before termination

Lecture 1 – p. 33

Practical 1

The practical also has a third version of the code which
uses “managed memory” based on Unified Memory.

In this version

there is only one array / pointer, not one for CPU and
another for GPU

the programmer is not responsible for moving the data
to/from the GPU

everything is handled automatically by the CUDA
run-time system

Lecture 1 – p. 34

Practical 1

This leads to simpler code, but it’s important to understand
what is happening because it may hurt performance:

if the CPU initialises an array x, and then a kernel uses
it, this forces a copy from CPU to GPU

if the GPU modifies x and the CPU later tries to read
from it, that triggers a copy back from GPU to CPU

Personally, I prefer to keep complete control over data
movement, so that I know what is happening and I can
maximise performance.

Lecture 1 – p. 35

ARCUS-B cluster

G G G G GG G G G G

gnode1101 gnode1102 gnode1103 gnode1104 gnode1105

arcus-b

external network

arcus-b.arc.ox.ac.uk is the head node

the GPU compute nodes have two K80 cards with a
total of 4 GPUs, numbered 0 – 3

read the Arcus notes before starting the practical Lecture 1 – p. 36

Key reading

CUDA Programming Guide, version 8.0:

Chapter 1: Introduction

Chapter 2: Programming Model

Section 5.4: performance of different GPUs

Appendix A: CUDA-enabled GPUs

Appendix B, sections B.1 – B.4: C language extensions

Appendix B, section B.17: printf output

Appendix G, section G.1: features of different GPUs

Wikipedia (clearest overview of NVIDIA products):

en.wikipedia.org/wiki/Nvidia Tesla

en.wikipedia.org/wiki/GeForce 10 series
Lecture 1 – p. 37

Nsight

General view:

Lecture 1 – p. 38

Nsight

Importing the practicals: select General – Existing Projects

Lecture 1 – p. 39

Nsight

Lecture 1 – p. 40

	Overview
	Hardware view
	Hardware view
	Hardware view
	Hardware view
	Hardware View
	Hardware view
	Hardware view
	Hardware View
	Multithreading
	Multithreading
	Multithreading
	Software view
	Software view
	CUDA
	CUDA Components
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA programming
	Host code
	Kernel code
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA programming
	Practical 1
	Practical 1
	Practical 1
	Practical 1
	Practical 1
	Practical 1
	ARCUS-B cluster
	Key reading
	Nsight
	Nsight
	Nsight

