A Parallel Distributed Processing Algorithm for
Image Feature Extraction

Alexander Belousov and Joel Ratsaby'

Electrical and Electronics Engineering Department
Ariel University, ISRAEL

Abstract. We present a new parallel algorithm for image feature ex-
traction. which uses a distance function based on the LZ-complexity of
the string representation of the two images. An input image is repre-
sented by a feature vector whose components are the distance values
between its parts (sub-images) and a set of prototypes. The algorithm is
highly scalable and computes these values in parallel. It is implemented
on a massively parallel graphics processing unit (GPU) with several thou-
sands of cores which yields a three order of magnitude reduction in time
for processing the images. Given a corpus of input images the algorithm
produces labeled cases that can be used by any supervised or unsuper-
vised learning algorithm to learn image classification or image clustering.
A main advantage is the lack of need for any image processing or image
analysis; the user only once defines image-features through a simple basic
process of choosing a few small images that serve as prototypes. Results
for several image classification problems are presented.

1 Introduction

Image classification research aims at finding representations of images that
can be automatically used to categorize images into a finite set of classes. Typi-
cally, algorithms that classify images require some form of pre-processing of an
image prior to classification. This process may involve extracting relevant fea-
tures and segmenting images into sub-components based on some prior knowl-
edge about their context [1,2]. In [3] we introduced a new distance function,
called Universal Image Distance (UID), for measuring the distance between two
images. The UID first transforms each of the two images into a string of char-
acters from a finite alphabet and then uses the string distance of [4] to give
the distance value between the images. According to [4] the distance between
two strings x and y is a normalized difference between the complexity of the
concatenation zy of the strings and the minimal complexity of each of z and y.
By complexity of a string we mean the Lempel-Ziv complexity [5]. In [6] we
presented a serial algorithm to convert images into feature vectors where the i*"
dimension is a feature that measures the UID distance between the image and
the i feature category. One of the advantages of the UID is that it can compare
the distance between two images of different sizes and thus the prototypes which

fCorresponding author: ratsaby@ariel.ac.il

are representative of the different feature categories may be relatively small. For
instance, a prototype of airplane category can be a small image of an airplane
over a simple background such as blue sky.

In this paper we introduce a parallel distributed algorithm which is based on
the serial algorithm of [6]. Compared to [6] the current version of the algorithm
offers a very large acceleration in processing speed which allows us to test the
algorithm on more challenging image classification tasks. On a standard graph-
ics processing unit (GPU) it improves the execution speeds relative to [6] by
more than three orders of magnitude. The algorithm converts an input image
into a labeled case and doing this for the corpus of images, each labeled by its
class, yields a data set that can be used to train any ’off-the-shelf’ supervised
or unsupervised learning algorithm. After describing our method in details we
report on the speed and accuracy that are achieved by this method.

It is noteworthy that our process for converting an image into a finite dimen-
sional feature vector is very straightforward and does not involve any domain
knowledge or image analysis expertise. Compared to other image classification
algorithms that extract features based on sophisticated mathematical analysis,
for instance, analyzing the texture, or checking for special properties of an im-
age, our approach is very basic and universal. It is based on the complexity of
the 'raw’ string-representation of an image. Our approach is to extract features
automatically just by computing distances from a set of prototypes images that
are selected once at the first stage.

The algorithm that we present here is designed with the main aim of scalable
distributed computations. Building on recent ideas [7], we designed it to take ad-
vantage of relatively cheap and massively-parallel processors that are ubiquitous
in today’s technology. Our method extracts image features that are unbiased
in the sense that they do not employ any heuristics in contrast to other com-
mon image-processing techniques [1,2]. The features that we extract are based
on information implicit in the image and obtained via a complexity-based UID
distance which is an information-theoretic measure.

2 Distance

The UID distance function [3] is based on the LZ- complexity of a string. The
definition of this complexity follows [4,5]: let S,Q and R be strings of characters
that are defined over the alphabet A. Denote by I(S) the length of S, and S(7)
denotes the i'" element of S. We denote by S(i,j) the substring of S which
consists of characters of S between position ¢ and j (inclusive). An extension
R = SQ of S is reproducible from S (denoted as S — S) if there exists an
integer p < I(S) such that Q(k) = R(p+k—1) for k=1,...,1(Q). For example,
aacgt — aacgtcgtcg with p = 3 and aacgt — aacgtac with p = 2. R is obtained
from S (the seed) by first copying all of S and then copying in a sequential
manner [(Q) elements starting at the p'” location of S in order to obtain the Q
part of R.

A string S is producible from its prefix S(1,j) (denoted S(1,j) = 9), if
S(1,7) — S(1,1(S) — 1). For example, aacgt = aacgtac and aacgt = aacgtacc

both with pointers p = 2. The production adds an extra ’different’ character at
the end of the copying process which is not permitted in a reproduction.

Any string S can be built using a production process where at its i*" step we
have the production S(1, h;—1) = S(1, h;) where h; is the location of a character
at the i step. (Note that S(1,0) = S(1,1)). An m-step production process of S
results in parsing of S in which H(S) = S(1,h1)-S(hi+1,ha) - S(hm-1+1, hp)
is called the history of S and H;(S) = S(h;_1+1, h;) is called the i*" component
of H(S). For example for S = aacgtacc we have H(S) = a-ac-g-t-acc as the
history of S. If S(1, h;) is not reproducible from S(1,h;—_1) then the component
H;(95) is called exhaustive meaning that the copying process cannot be continued
and the component should be halted with a single character innovation. A history
is called exhaustive if each of its components is exhaustive. Every string S has a
unique exhaustive history [5]. Let us denote by ¢y (S) the number of components
in a history of S. The LZ complexity of S is ¢(S) = min{cy(S)} where the
minimum is over all histories of S. It can be shown that ¢(S) = cg(S) where
cg(S) is the number of components in the exhaustive history of S.

A distance for strings based on the LZ-complexity was introduced in [4] and
is defined as follows: given two strings X and Y of any finite alphabet, denote
by XY their concatenation then define

d(X,Y) :=max {c(XY) — ¢(X),ce(YX) —e(Y)}

(see several normalized versions of d in [4]). In [3,6] we have found that the
following normalized distance

¢(XY) — min{c¢(X),c(Y)}
max {¢(X),c(Y)}

Ad(X,Y) := (1)
is useful for image classification.

In [7] we introduced a parallel distributed processing algorithm (LZMP) for
computing the complexity ¢(X) of a string X. Let us denote by dp(X,Y") the
distance between X and Y where the complexity c is computed by the LZMP
algorithm. Thus (1) is now represented by its parallel counterpart

_ LZMP(XY) —min{a, b}

dp(X, ¥, a,b) : max {a, b}

(2)

where a, b are the LZ-complexity values of the string X, Y, respectively, and for
efficiency they are pre-computed as seen for instance in Procedure DMat, step
2(IV), on page 6.

3 The algorithm

We describe the parallel algorithm for image feature extraction, starting with
a listing of several procedures followed by the main part which is split into
several sub-algorithms. Procedure LZMP on the next page computes the LZ-
complexity of a given string. It runs in parallel over the symbols that comprise
the string. The procedure appears in [7] and we enclose it here for completeness.

Procedure LZMP: computes LZ complexity of a string (parallel processing
over all symbols of string)
1. Input: string S = {S[¢]}]_,
2. Initialize:
1. H history buffer
II. m = 0, length of history buffer
III. d := 0 number of components in exhaustive history
IV. SM shared memory variable common to all threads
V. @ number of computing threads
VL {Tq}l?:1 , Ty is a single computing thread

3. Launch threads 7, , 1 < ¢ < @, in parallel, each executes the code below
I. while(m < n)
A. SM =0
B. for(l =0 to |m/Q])
i. initialize variable ;@ = g+1-Q
ii. if(j2 < m)
a. Initialize variable i () =0
b. initialize variable k) = 5@
c. initialize variable h) =m — 3@
d. While(H[kj(q)} = S[m + ij(q)])
L) =t +1
. kj(q) = kj(tz) +1
- hi@) =Ry -1
if(hj(q) =0or m+ ij(q) = TL)
1. break;
5. end if
e. end while;
f. if(h]-(q) =0 and m+ ij(q) < n)
1. initialize z;(q) =m
2. while(S[zj<q)] = S[m + ’ij(q)])
L Zj(a) = Zj(a) +1
II. ij(q) = i]-(q) +1
II1. lf(m + ij(q) = n)
A. break;
IV. end ifj
3. end while;
g. end if;
h. if (ij(q) > SM)
1. SM =i 4, // winner thread overrides

B =

i. end if}
iii. end if}
end for;
synchronize all threads Ty, 1 < ¢ < Q
if(g = 1)
i. H := H + substring(S[m], S[m + SM + 1])
. d=d+1
iii. m=m+SM +1
F. end ifj
G. synchronize all threads Ty, 1 < ¢ < Q
II. end while;
4. Output: LZM P(S) = d, the LZ-complexity of string S

=0 A

Procedure VLZMP (on the following page) computes the LZ-complexity of a
set of input strings in parallel. Procedure DMat on the next page computes the
UID distance of every pair of strings from two given input lists, in parallel. The
variable ip, ; denotes an index variable of the computing block B, ; (each block
has its own local memory and set of variables). The main algorithm is split into
sub-algorithms (as done in [6]) which are numbered from 2 to 4 and the letter
P denotes that it is a parallel computing algorithm. Algorithm 2P on this page
selects the prototype images (its serial version is Algorithms 1 and 2 of [6]).

Algorithm 2P: Prototypes selection

1. Input: M image feature categories, and a corpus Cn of N unlabeled colored (RGB)
images {I]’};\;l .
2. for (i:=1to M) do
I. Based on any of the images I; in Cn, let the user select L; prototype images
0y Li
{P,il) }kzl and set them as feature category i. Each prototype is contained by

some image, P,E” C I;, and the size of P,ii) can vary, in particular it can be
much smaller than the size of the images I;, 1 <j < N.
II. Transform each of the images of feature category ¢ into grayscale. Each pixel
is now a single numeric value in the range of 0 to 255 . We refer to this set of
values as the alphabet and denote it by A.
III. Scan each of the grayscale images from top left to bottom right and form a
string of symbols from A. Denote the the string of grayscale image I as XD,
3. end for;
4. Enumerate all the prototypes into a single unlabeled set {Pk}ﬁzl, where L =

Zi]\il L.
5. Vector of strings that corresponds to the set of all prototypes be, v = [X(Pk)]

6. Calculate the distance matrix H = DMat (v, v)

7. Run hierarchical clustering on H and obtain the associated dendrogram (note: H
does not contain any ’labeled’ information about feature-categories, as it is based
on the unlabeled set).

8. If there are M clusters with the " cluster consisting of the prototypes {P,ii)}

then terminate and go to step 10.
9. Else go to step 2.

L

k:l.

L’l,

k=1

N L; 1M
10. Output: the set of labeled prototypes Pr := {{PIS)} } where L is the
k=1},_,
number of prototypes.

Algorithm 3P, displayed on page 7 and on page 8, computes the set of cases
(feature vectors) for images in the input corpus. The algorithm utilizes a number
of computing blocks which begin to run in parallel in step 12. Steps 6 to 11
which run in serial are responsible for converting the input images into strings
of symbols.

Procedure VLZMP: computes a vector of LZ complexities for multiple input
strings in parallel

1. Input: vector v := {v[i]}*_, = [S1, S2, S5, ..., Sk] where S; is a string
2. Initialize:
Lou={ull}e,
II. n number of parallel computing blocks
III. {Bg},_, , Bq is block of multiple computing cores (threads)
3. Launch blocks B, , 1 < g < n, in parallel, each executes the code below
I. for(l=0 to |k/n])
A. initialize index vector ¢ = [i1,...,i,] where ig =q¢+1-n
B. if (i < k)
i. ufiq] = LZMP(vl[iq))
C. end if;
II. end for;
4. Output: VLZMP(v) =u

Procedure DMat: computes dp distance for all pairs of input strings in parallel

1. Input:
L v:={v[i]}]2, =[S1,52,..., Sm], where S; is a string

IL. w:= {ulj] le = (51,55, ..., 5], where S} is a string
2. Initialize:
di1 diz diz .., din
da1 da2 dos .., don

I D matrix of mxn elements, D := {D[i, j]};2 ,_, = | ds1 ds2 dss ..., dsn

RS RS LRSI A R
dml dm2 de PRES dmn
II. M - N number of parallel computing blocks
III. {Bp,q};w’N By.q is a block of multiple computing cores (threads)

=1,q=1 >
IV. a = {ali]};~, = VLZMP(v), b := {b[i]}_, = VLZMP(u), LZ-complexity
vectors
3. Launch blocks B, 4, 1 < p < M, 1< g < N, in parallel, each executes the code
below

I. for (zx =0 to [n/N])
A. initialize index ipq =g+ 2z - N
B. for (y =0 to |[m/M])
i. initialize index jpq =p+y- M
a. if (ip,q <m and jpq < n)
L. Dlip.q,Jp.a) = P (v [ip.q) s u [p.a] s @ [ip.a] , [ip.al)
b. end if;
C. end for;
II. end for;
4. Output: DMat(v,u) = D

Algorithm 3P: produces a set of cases from input images (in parallel)
L 1M)
1. Input set P := {{P,E”} } of labeled prototype images, where P,EZ) is kth
k=1) =1

prototype of feature category i (obtained from Algorithm , on page 5).
Let L := |P| be the total number of prototypes
Input the set of all images 7 := {Il}l]il to be represented as cases of feature vectors
Q is number of parallel computing blocks
{Bq}q(‘?:1 , By is a block of multiple computing cores (threads)
Let W be a rectangle of size equal to the maximum prototype size
for (i:=1to N)

I. Scan a window W across I; from top-left to bottom-right in a non-overlapping
m;
Jj=

Nt w

way, and let the sequence of obtained sub-images of I be denoted by {I J(l)}

(m; is the number of windows W inside I;).
II. for (j:=1 to m;)
A. Transform I J(,“ into grayscale. Each pixel is represented by a single numeric
value in the range of 0 to 255. Denote by A the alphabet of these values
(same as A of Algorithm 2P).
B. Scan grayscale of IJ(-i) from top left to bottom right to form a string of
symbols from A.
C. Denote the string by X; ;
III. end for;
IV. Vi = [Xi,l, e 7Xi,mi]
8. end for;
9. for (I:=1to M)
I. for (k:=1 to L)

A. Transform P,il) into grayscale. Each pixel is represented by a single numeric
value in the range of 0 to 255. Denote by A the alphabet of these values
(same as A of Algorithm 2P).
B. Scan grayscale image of P,El) from top left to bottom right to form a string
of symbols from A
C. Denote the string by Y] i
II. end for;

10. end for;
11. u:= [Yl,l,YLQ,...,YVLLl ~~~,YIM,1,---Y1W,LM]

Algorithm 3P: continued...

12. Launch blocks By, 1 < g < @, in parallel, each executes the code below
1. for (zx =0 to |[N/Q])
1. initialize index vector ¢ = [i1,...,iq] where ig = ¢+ - Q
IL. if (ig < N)
A. D, =DMat (Uiq,u)
i. for (j:=1to m,,) do
a. for (I:=1to M) do
1. temp:=0
2. for (k:=1to L;) do
L temp :=temp + (D45, k])*
3. end for;
. temp = (1/L;) - temp
ri? = /temp
. end for;
. Let I5(j) := argmin1<l<Mrl(q), this is the decided feature category

for sub-image I J(i‘Z)

o 0 T

f. Increment the count, cl(g)(j) = Cz%) +1
ii. end for;
A
B. Normalize the counts, VZ(Q) =t 1SS M
Zi\/lzl Czq

C. v@ = VI(Q)7 e Vz&f)} as the feature-vector (case) representation for

image I;,
D. Wiy = V@

2. end for;

13. Output: the array W of cases corresponding to the set Z of input images

Algorithm 4, displayed on the facing page, is identical to that of [6] and
we present it for completeness. It uses the training cases that are produced in

Algorithm 3P and uses any off-the-shelf supervised learning algorithm to produce
a classifier.

Algorithm 4: Image classification learning

1. Input: (1) a target class variable T taking values in a finite set T of class categories,
(2) a set Dr of labeled cases which is based on the M-dimensional cases in array D
obtained from Algorithm 3P and labeled with target values in 7 (3) any supervised
learning algorithm £

2. Partition Dr using n-fold cross validation into Training and Testing sets of cases

3. Train and test algorithm £ and produce a classifier C' which maps the feature space
[0, 1™ into T

4. Define Image classifier as follows: given any image I the classification is F(I) :=
C(v(I)), where v(I) is the M-dimensional feature vector of I

5. Output: classifier F’

4 Results

The following hardware was used: a 2.8Ghz AMD Phenom@©II X6 1055T
Processor with number of cores n = 6 and a Tesla K20C board with a single
GK110 GPU from nVIDIA. This GPU is based on the Keppler architecture (with
compute capabilities of 3.5). The CUDA is release 6.0 and the operating system
is Ubuntu Linux 2.6.38-11-generic.

We tested the algorithm on several two-category image classification problem
obtained from the CALTECH-101 corpus [1]. Due to the lack of space, we present
one such problem which has as categories, airplane and ketch (yacht). We chose
10 prototypes of each category simply by collecting small images of airplanes and
boats. The prototypes of airplane are of size 150 x 70 pixels and the prototypes
of ketch are of size 150 x 130. Figure 1 shows a few examples of such prototypes.
The corpus of input images consist of 74 images of airplanes of size 420 x 200

Fig. 1: Three prototypes from category airplane

and 100 images of yachts of size 300 x 300. It takes 345 seconds for Algorithm
3P to produce the 174 cases starting from the image corpus. Figure 2 displays
two examples of input images, one from category airplane and one from ketch
and their corresponding divisions into sub-images of size 150 x 150 (obtained
in Algorithm 3P, step 7, on page 7). Note that the algorithm permits the size
of prototypes to differ and the size (or number) of sub-images to differ from
one feature category to another. We ran four learning algorithms, multi-layer
perceptrons, decision trees J48, naive-Bayes and lazy IB1, on a ten-fold cross
validation using the 174 input images. Table 1 presents the accuracy results
versus the baseline algorithm (rules.ZeroR) which classifies based on the prior
class probability. The configuration parameter values of the learning algorithms

Fig. 2: Input images from category airplane and ketch and their respective sub-
images

used in WEKA [8] are displayed under the accuracy result. As can be seen, the
J48 decision tree learner achieves the highest accuracy of 96.54% (relative to the
baseline accuracy of 57.52%).

Dataset (1) (2) (3) (4) (5)
airplane-ketch 57.52 83.65 0 93.82 0 96.54 o 86.75 o
o, e statistically significant improvement or degradation

(1) rules.ZeroR ” 48055541465867954

(2) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779
(3) lazy.IB1 ” -6152184127304895851

(4) trees.J48 -C 0.25 -M 2’ -217733168393644444

(5) bayes.NaiveBayesMultinomialUpdateable ” -7204398796974263186

Table 1: Classification result for airplane v.s. ketch problem

Next, we considered a more challenging problem of recognizing different im-
age textures. We obtained the 1000 images of the Texture Database [2]| which
has 25 categories of various types of real textures, for instance, glass, water,
wood, with 40 images each of size 640 x 480 per category. We chose as feature
categories the categories themselves and selected five small prototypes of size
150 x 150 from each one without using Algorithm 2P (just picking parts of im-
ages in a random way to be prototypes). It takes about 25 hours for Algorithm 3P
to produce the 1000 cases starting from the image corpus. We ran the following
classification learning algorithms: lazy IB1, decision trees J48, multi-layer per-
ceptrons, naive Bayes, random forest. Ten fold cross validation accuracy results
are displayed in Table 2 (parameter settings are displayed under the accuracy
results). As shown, the best obtained accuracy result is 70.73% which is achieved

by the random forest algorithm; this is 17.6 times better than the baseline ZeroR
classification rule.

Dataset (1) (2) (3) (4) (5) (6)
25cat-40img 4.00 63.16 o 58.59 o 66.50 o 61.92 o 70.73 o
o, e statistically significant improvement or degradation

) rules.ZeroR ” 48055541465867954

) lazy.IB1 ” -6152184127304895851

) trees.J48 ’-C 0.25 -M 2’ -217733168393644444

) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779
) bayes.NaiveBayesMultinomialUpdateable ” -7204398796974263186

) trees.RandomForest ’-I 100 -K 0 -S 1’ -2260823972777004705

Table 2: Classification result for the Texture problem

(1
(2
3
(4
5
(6

Considering how little effort and no-expertise is needed in our approach to
image feature extraction, we believe that the results are impressive and can serve
well in settings where very little domain knowledge is available, or as a starting
point from which additional analysis and specialized feature extraction can be
made.

5 Conclusions

In this paper we introduce a new parallel processing algorithm for image
feature extraction. Given an input corpus of raw RGB images the algorithm
computes feature vectors (cases) that represent the images with their associated
classification target labels. Using these cases, any standard supervised or un-
supervised learning algorithm can learn to classify or cluster the images in the
database. A main advantage in our approach is the lack of need for any kind
of image or data analysis. Aside of picking once at the start a few small image
prototypes, the procedure is automatic and applies to any set of images. It can
therefore be very useful in settings with little domain knowledge or as a starting
point for a more specialized image data analysis. Our experiments indicate that
the algorithm yields relatively high accuracies on image texture classification
problems.

Acknowledgements We acknowledge the support of the nVIDIA corporation
for their donation of GPU hardware.

References

1. L. Fei-Fei, R. Fergus, and Pietro Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object cat-
egories. 2004.

2. S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representation using local
affine regions. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1265-1278, August
2005.

3. U. Chester and J. Ratsaby. Universal distance measure for images. In Proceedings of
the 27th IEEE Convention of Electrical Electronics Engineers in Israel (IEEEI’12),
pages 1-4, Eilat, Israel, November 14-17, 2012.

4. K. Sayood and H. H. Otu. A new sequence distance measure for phylogenetic tree
construction. Bioinformatics, 19(16):2122-2130, 2003.

. J. Ziv and A. Lempel. On the complexity of finite sequences. IEEE Transactions
on Information Theory, 22(3):75-81, 1976.

. U. Chester and J. Ratsaby. Machine learning for image classification and cluster-
ing using a universal distance measure. In O. Pedreira N. Brisaboa and P. Zezula,
editors, Proceedings of the 6th International Conference on Similarity Search and
Applications (SISAP’13), volume 8199 of Springer Lecture Notes in Computer Sci-
ence, pages 59-72, 2013.

. A. Belousov and J. Ratsaby. Massively parallel computations of the LZ-complexity
of strings,. In Proc. of the 28th IEEE Convention of FElectrical and FElectronics
Engineers in Israel (IEEEI’14), pages pp. 1-5, Eilat, Dec. 3-5 2014.

. M. Hall, E. Frank, G. Holmes, B. Pfahringer P. Reutemann, and I. H. Witten. The
WEKA data mining software: An update. SIGKDD Ezplorations, 11(1):10-18, 2009.

