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Monotonicity Preserving Weighted Essentially
Non-oscillatory Schemes with Increasingly
High Order of Accuracy

Dinshaw S. Balsarfaand Chi-Wang Shut

*N.C.S.A., University of lllinois at Urbana-Champaign 605 E. Springfield Avenue, Champaign, lllinois 6182
and {Division of Applied Mathematics, Brown University Providence, Rhode Island 02912
E-mail: *dbalsara@ncsa.uiuc.edshu@cfm.brown.edu

In this paper we design a class of numerical schemes that are higher-order exten-
sions of the weighted essentially non-oscillatory (WENO) schemes of G.-S. Jiangand
C.-W. Shu (1996) and X.-D. Liu, S. Osher, and T. Chan (1994). Used by themselves,
the schemes may not always be monotonicity preserving but coupled with the mono-
tonicity preserving bounds of A. Suresh and H. T. Huynh (1997) they perform very
well. The resulting monotonicity preserving weighted essentially non-oscillatory
(MPWENO) schemes have high phase accuracy and high order of accuracy. The
higher-order members of this family are almost spectrally accurate for smooth prob-
lems. Nevertheless, they, have robust shock capturing ability. The schemes are stable
under normal CFL numbers. They are also efficient and do not have a computational
complexity that is substantially greater than that of the lower-order members of this
same family of schemes. The higher accuracy that these schemes offer coupled with
their relatively low computational complexity makes them viable competitors to
lower-order schemes, such as the older total variation diminishing schemes, for prob-
lems containing both discontinuities and rich smooth region structure. We describe
the MPWENO schemes here as well as show their ability to reach their designed ac-
curacies for smooth flow. We also examine the role of steepening algorithms such as
the artificial compression method in the design of very high order schemes. Several
test problems in one and two dimensions are presented. For multidimensional prob-
lems where the flow is not aligned with any of the grid directions it is shown that the
present schemes have a substantial advantage over lower-order schemes. It is argued
that the methods designed here have great utility for direct numerical simulations
and large eddy simulations of compressible turbulence. The methodology developed
here is applicable to other hyperbolic systems, which is demonstrated by showing
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thatthe MPWENO schemesalsowork very well on magnetohydrodynamicagst
problems.

Key Words:conservation law; ENO; weighted ENO; monotonicity preserving;
convergence.

I. INTRODUCTION

Ever since the introduction of higher-order Godunov schemes by vanLeer [48] the fl
dynamics community has realized that it is beneficial to strive for schemes of high or
of accuracy while retaining the robustness that is common to Godunov-type methods.
especially pertains to spatial accuracy but extends also to temporal accuracy. VanLeer
showed that monotonicity preserving versions of the original Godunov [16] scheme 1
were second-order accurate in space and time could be designed. Colellaand Woodwar
used third-order-accurate interpolants but their scheme was still total variation diminist
(TVD) and, therefore, restricted to being second-order accurate ih thmerm even for
smooth problems with extrema. Chakravarthy and Osher [11] designed an entire cla
TVD schemes with increasing order of accuracy for smooth monotone solutions but tf
are again only second order for smooth problems with extrema. The monotonicity enforc
limiters in TVD schemes are highly non-linear, making it difficult to remove their deleterio
effects on gost factdbasis. The introduction of essentially non-oscillatory (ENO) schem
by Hartenet al. [20] showed that (essentially) non-oscillatory schemes of higher th:
second-order accuracy could be constructed. This initiated a substantial body of rese
by several authors in the construction of non-oscillatory schemes of higher than sec
order, one of the more recent being the fifth-order weighted ENO (WENO) scheme of Ji
and Shu [23]. This paper builds on Jiang and Shu [23] and develops an entire class of W
finite difference schemes with increasing order of accuracy, without a substantial incre
in computational complexity.

The early ENO scheme of Hartehal.[20] relied on finite volume interpolation. Its mul-
tidimensional extension was carried out by Casper [9]. The central idea in these sche
consisted of using the smoothest stencil out of several possible stencils that could co
given zone in the computational domain and interpolate the solution in that zone with
desired order of accuracy. The stencil was designed to adapt in the vicinity of disconti
ities to yield a one-sided interpolation if that became necessary. This gave an essen
non-oscillatory shock transition while maintaining a uniform formal high order of accurax
High-order (higher than two) finite volume ENO schemes suffered from the fact that
number of stencils that needed to be evaluated grew as the second or third power of the
of interpolation in two and three dimensions, respectively. Also a high-order quadratur
needed to compute the numerical fluxes along cell boundaries. Thus the computational
of using finite volume ENO schemes in multiple dimensions is quite high. Shu and Os
[38, 39] constructed finite difference ENO schemes based on point values and nume
fluxes. This reduced the number of stencils needed to evaluate so that the number of ste
was only proportional to the order of accuracy of the scheme even in multiple dimensic
it also avoided the need for numerical quadratures for the fluxes. Hence their ENO sche
were more economical than the finite volume versions in multiple dimensions. Time ¢
cretization was performed by a class of high-order Runge—Kutta methods that mainta
TVD or other stability properties of the spatial operator; see Shuand Osher [38] and Shul|
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There are many applications of ENO and WEBIbemes; see, for example, [41]. Higher-
order ENO and WENO schemes are especially suitable for problems containing both sh
and a large number of complex smooth structures, such as compressible hydrodyn
turbulence; see Shat al.[42]. On the other hand, second-order TVD schemes are optima
suited for flow calculations where a small number of isolated shock structures dominate
fluid dynamics.

Liu et al.[27] showed that the multiplicity of stencils utilized in an ENO scheme coul
be used to advantage when all the stencils are smooth to obtain an increase in the
of accuracy of the interpolation. They showed that when the solution was locally smc
enough one could make a convex combination of the stencils iffamder ENO scheme
to obtain an 4+ 1)"-order WENO scheme. The weights were designed so that nea
discontinuity the scheme is close to ENO, namely stencils crossing discontinuities
nearly zero weights. Jiang and Shu [23] realized that the interpolation methodology h
greater level of freedom than had been realized byet al.[27]. Anr-order ENO scheme
hasr possible stencils that can cover a given cell. It is, therefore, possible to have suit
constant weights for thesestencils so that the resulting linear scheme is<2.)"-order
accurate when the solution is smooth. Jiang and Shu [23] used these constast2fand
r =3, constructed nonlinear weights to achieve the WENO property, and proved that
nonlinearWENO schemes far= 2 andr = 3 were uniformly third- and fifth-order accurate
at all points in the flow including at critical points such as smooth extrema and sonic poi
The detailed proof requires one to make analytic expansion of the weighted interpolant
nonlinear weights and has to be proved anew for each valuehdt is of interest. Using
Mathematica we have been able to show analytically that this uniform-@"-order
accuracy property remains true fot= 4 throughr = 7. The detailed Mathematica proofs
have been omitted from this paper to save space. Such accuracy is also verified numer
in Section IV of this paper. The nonlinear weights in the construction of WENO schen
involved a sophisticated measure of the local smoothness, so that when the solution
smooth enough to achieve the maximal attainable order of accuracy it would automatic
do so. When the solution was not smooth enough to attain the maximal order of accurac
smoothness measure would detect such a situation and the scheme would also automa
drop the order of accuracy (but not to lower thdhorder). The resulting =3 WENO
scheme was only two to four times as computationally costly as a TVD scheme, depen
on the version used. Thus for a complex flow problem the scheme could show its advan

Numerical experimentation showed that the 3 WENO scheme, despite its high accu-
racy, may still display a considerable dispersion error, especially for long time integrati
with very few points per wavelength. Construction of WENO schemesmwitl3 has been
carried out in this paper. These schemes, when coupled with a third-order Runge—
time discretization, are linearly stable under CFL numbers between 1.43 and 0r99 3or
to 7. Higher-order Runge—Kutta methods allow larger CFL numbers for linear stabil
For problems where the solution is smooth such schemes achieve their design accur
showing them to be potentially useful. Our numerical experiments, however, showed
for problems involving discontinuities, tme=5 WENO used with a temporally third-order
accurate Runge—Kutta scheme was non-oscillatory for a CFL number of 0.2 but was alr
slightly oscillatory for a CFL number of 0.4. The results from these numerical experime
are not shown here to save space. Similar results hold also for high-order ENO sche
namely, when a high-order spatial discretization is coupled with a lower order Runge—K
time stepping, the CFL number should be reduced to be much lower than what is require
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linear stability analysis, not only to keep accuracy but also to keep the non-oscillatory pr
erty. Application to other, more challenging hyperbolic systems with more complex we
structure (such as magnetohydrodynamics, MHD) showed thatth@ WENO scheme
with RF or LLF building blocks also had difficulty in handling discontinuities. In anothe
development, Suresh and Huynh [45]—see also the work of Le@tald25]—produced

a geometrically motivated way of showing that the construction of monotonicity prese
ing interpolation strategies permitted a greater degree of latitude than had previously |
thought possible. Earlier efforts at understanding the monotonicity constraint—see Tad
[47] or Sweby [46]—were shown to be too restrictive in that they failed to distinguish b
tween a smooth local extremum and a region in the flow with a genuine O(1) discontint
such as a shock. Suresh and Huynh [45] designed monotonicity preserving bounds o
solution that gets interpolated to the zone boundary that would distinguish between a sm
local extremum and a genuine O(1) discontinuity. The interesting feature of the work
Suresh and Huynh [45] was that their monotonicity bounds could be applied to any higt
order scheme in order to bring it within the monotonicity preserving regime. Applicatit
of the monotonicity preserving bounds to the whole class of WENO schemes enabled t
to preserve their order of accuracy in regions where it was warranted and yet display st
oscillation-free behavior for problems where the flow was not smooth. Furthermore,
monotonicity preserving weighted essentially non-oscillatory (MPWENO) schemes w
stable for standard Courant numbers. We observe significant improvements in dispel
error as we go from the=3 WENO scheme to the=6 MPWENO scheme. The=5
MPWENO member of this family of schemes is already almost spectrally accurate o
dimension-by-dimension basis; however, our implementation of this scheme on RISC
chitectures was only 35-50% more expensive tham tad WENO scheme. Thus a high
level of fidelity is obtained at only a modest increment in computational cost. For cert
complex problems the monotonicity preserving mechanism can also cause the MPWE
schemes to have lower formal accuracy than the corresponding WENO schemes. Itis sl
that the accuracy is, nevertheless, substantially higher than that of older TVD schemes.
of the goals of this paper is to catalogue this family of schemes and their performar
Suresh and Huynh [45] also conjectured that their monotonicity preserving bounds wc
not degrade the order of accuracy of a numerical scheme. Thus, another goal of this [
is to explore in some detail whether this is uniformly true.

It is well known that contact discontinuities in the linearly degenerate characteris
fields are smeared much more than shocks. The smearing becomes less serious for h
order schemes. When simple, isolated contact discontinuities are present in the flow
well-established methods of improving the solution exist. The first method is the sub
resolution method of Harten [19]. A similar idea has been extended to multiple dimensi
by Fedkiwet al.[14] but carries with it considerable computational complexity and therefo
is not explored here. The second method is the artificial compression method (ACM
Harten [17], which was developed in its refined form by Yang [50]. The ACM consisted
improving the steepness of a linearly degenerate characteristic field by adding in an ¢
piecewise linear profile with magnitude on the level of the local truncation errors of t
scheme in smooth regions to the interpolant for that field. The introduction of an ex
profile improves the visual structure of an isolated contact discontinuity. We explore
role of the ACM in preserving the order of accuracy for practical problems in this paper. T
ACM also has free parameters which control the amount of steepening introduced an
show that higher-order schemes can operate well with smaller values of those parame
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i.e., with a smaller contribution from the artificedmpression method. Based on extensiv
testing we suggest optimal values of these parameters for MPWENO schemes-vdth
We would like to stress the importance of higher-order accuracy from the point of view
scientific and engineering applications. This is especially so because the numerical sin
tion of compressible turbulent flows, perhaps using large eddy simulation (LES) techniq
is becoming increasingly important in science and engineering. For a recent review of |
simulations of compressible flow see Lesieur and Comte [26]. The methods of choice
such simulations seem to be pseudo-spectral methods. However, spectral methods car
readily extended to complex geometry, composite grids, and adaptive meshing technic
and do not degrade gracefully when the full resolution is lost. Higher-order Godunov me
ods, on the other hand, take well to adaptive mesh refinement; see Burger and Colell:
The ability of the methods developed here to take well to complex mesh geometries has
been catalogued in Caspetral. [10]. There have been several efforts to analyze the ro
of numerical accuracy in the simulation of incompressible turbulence flows; see Browr
and Kreiss [7] and Ghosal [15] and references therein. A corresponding effort to un
stand the role of numerical accuracy in the simulation of compressible turbulence fl
has not been carried out. However, an examination of the time history of direct num
cal simulations (DNS) of decaying compressible hydrodynamical turbulence—see Pc
et al. [30]—shows that they go through an initial phase where the simulations are do
nated by the formation and dissipation of shocks. Once this initial phase is over, the re
the time history in these simulations is dominated by the formation and evolution of v
tical structures, which is quantitatively similar to simulations of decaying incompressi
hydrodynamical turbulence. Balsagtal. [5] have shown the existence of a similar time
history in DNS simulations of compressible MHD turbulence. Thus the results of Browni
and Kreiss [7] and Ghosal [15] are also expected to have great relevance to simulatio
compressible turbulence. Basing their work on the previous work of Henshaiv[21],
Browning and Kreiss [7] carried out a comparative study of the same DNS simulatit
of time-evolving turbulence using a second-order finite difference scheme, a fourth-o
finite difference scheme, and a pseudo-spectral scheme. They found that for a short p
in the time evolution all three simulations agreed with one another. However, for longer ti
evolution only the results from the fourth-order finite difference scheme and the pset
spectral scheme agreed with each other. The errors in the simulation carried out witt
second-order scheme built up so rapidly that the results diverged from the correct re:
after a short period in the time evolution. The result of Browning and Kreiss [7] cleal
demonstrates the utility of very high order schemes in simulations of compressible tul
lent flows. Ghosal [15] took this study further by focusing on the role of finite differen
and pseudo-spectral schemes in LES modeling. The finite difference schemes that G
considered ranged from second-order accurate to eighth-order accurate when viewec
dimension-by-dimension basis. The power of using higher-order schemes was convinci
demonstrated by Ghosal [15] when he showed that by using an eighth-order accurate
difference scheme with an LES filter length that was twice as large as the grid scale
numerical errors could be made much smaller than the subgrid force terms on all lel
scales that were represented in the computation. To achieve a comparable effect fr
second-order-accurate finite difference scheme one would have had to set the LES
length to be eight times as large as the grid scale. A good implementation of the ninth-o
accurate =5 MPWENO scheme reported here is about three times slower than a tr:
tional second-order-accurate TVD scheme. Thus for three-dimensional time-explicit L
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calculations of compressible turbulence, savings by a factof (&4 85.3 are suggested
when ther =5 MPWENO scheme is used instead of a TVD scheme.

In Section Il we give some general background information on WENO schemes with
intent of establishing some basic notation. In Section Il we give the details of MPWEN
interpolation. In Section IV we catalogue the higher-order properties of MPWENO scher
by showing their performance on well-known convergence tests. In Section V we expl
the performance of MPWENO schemes when the ACM is used. In Section VI we show
results from several one-dimensional tests. In Section VIl we show the results from sev
multidimensional tests. In Section VIl we draw some conclusions.

I. GENERAL BACKGROUND ON WENO SCHEMES

Consider the hyperbolic system in conservation form given by

Ui+divFU) =0. (2.1)

HereU = (uy, ..., un) is the vector of conserved variableS(U) = (Fy, ..., Fq) is a
collection of vectors of fluxes, and we work indadimensional space with coordinates
(X1, - .., Xg). The problem is specified on a mesh at0 and is to be solved fdr> 0. The
temporal discretization is carried out by casting the system in Eqg. (2.1) in the form

du

— =L(), 2.2

= LW (2:2)

whereL (U) is the high-order discrete representation-afiv F (u). We then use the TVD
Range—Kutta-type methods developed in Shu and Osher [38] to integrate the syste
Eq. (2.2) forward in time. Because the temporal update consists of a sum of the discret
derivatives of the fluxes in each direction we restrict our attention to variations in ¢
direction, taken to be the-direction here. Thus let us discretize the space into zones of si
AXx. Let j be an integer, and leg denote zone centers argl, 1,» denote zone boundaries.
Then one has

1 . A
L)) = —B(Fjﬂ/z —Fj_12), (2.3)

whereF j+1,2 is @ higher-order numerical flux at thg,1,» zone boundary. Shu and Osher
[39] give details on how to use a generating functional approach to produce such a flux
we will not repeat the details here.

The fact that the system is hyperbolic implies that for variations in each coordin
direction there exist am-dimensional basis of right eigenvectors for the Jacobian in th
direction, denoted byr{, ..., rny), onto which the solution vector or the flux vector in
that direction can be projected. The corresponding left eigenvettors.(, |,) are assumed
to be orthonormal to the right eigenvectors and help us make this projection. The sys
admits a set of eigenvalues which we denoteXy (.., Am). All of the LF, LLF, and RF
fluxes can be written as projections of different combinations of the fluxes and conser
variables onto the right eigenvectors at the zone bounxiary,. The linearized Riemann
solver of Roe [33] can be used with andU ;. as the left and right states, respectively, tc
obtain eigenvalues and right and left eigenvectors at the zone bouxdayy. We denote
the 5th right and left eigenvectors at the zone boundagy > by rs j11/2 andls;ji1/2,
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respectively. We also denote tbth eigenvalue at the zone boundagy.1,> by As;j+1/2.
Then we write the numerical flux at that zone boundary as

m
Fiyi2= Z( fS_Q'_j+1/2 + fs;_j +1/2) I'sij+1/2- (2.4)
s=1

Here fs;*j +12 and fg; .4, are flux components that are evaluated for each characteris
field s. The flux components assume different values based on the form of the low-ol
numerical flux that one wishes to employ as a building block for the higher-order El
or WENO flux. They also depend on the order of accuracy of the interpolation. As shc
by Shu and Osher [38, 39], construction of a higher-order ENO scheme entails mal
a higher-order reconstruction of the flux components obtained from a particular ch
of low order numerical flux. In this paper we restrict ourselves to using the LLF or t
RF numerical fluxes as the low-order fluxes used as building blocks for the previot
mentioned higher-order reconstruction.

In this paragraph we focus on the LLF and RF fluxes that are used as low-order builc
blocks for pointwise ENO schemes. The first-order LLF flux that one may use as a low-ol
building block for a higher-order scheme is given by

+ 1 3
foiva2 = lsiivaz - 5(Fj + Asija2U)):

_ 1 -
fs;j+1/2 = |s:j+1/2' E(Fj+l - )xs;j+1/2Uj+1)§ (2-5)
Asjr12 = x MaxX (s 112l [Asijl, s jsal)-

Herey istypicallyinthe range of 1.1 to 1.3 and controls the amount of dissipation introduc
into the numerical scheme. Harten [18] has shown the intimate connection betweer
numerical flux and the dissipation matrix. Because the dissipation introduced by €
characteristic field is proportional to the local eigenvalues that belong to that character
field the LLF flux is not very dissipative. Besides, as shown by Shu and Osher [39],
higher-order extensions of the ENO schemes built by using the LLF flux as a building bl
are only marginally more dissipative than the corresponding ENO schemes that use th
flux as a building block. The first-order RF flux that we have found useful in time-depend
problems as a low-order building block for a higher-order scheme is given by

if Asj >0 and Asj+1 >0 then fsj;Lj+l/2 = |3;j+1/2- Fi; fs?j+l/2 =0;

if Asij <0 and Asj+1 <0 then fs_!_j+l/2 =0; fs?j+1/2 = |s;j+1/2' Fit1 (2.62)
.oa
if Aj <0 and Asj41>0 then use Eq.2.5);

if Asj >0 and Asj41 <0 then use Eq.2.5).
It is also worthwhile to catalogue the original choice of RF flux in Shu and Osher [3
which was given by

if As;j <0 and Agjy1 >0 then use Eq.2.5);

else ifis 112> 0 thenfi 1o =lsjs1/2° Fii fgj2=0;  (2.6b)

else ifj\sgj+1/2 <0 then fsj;Lj+l/2 =0; fs;j+1/2 = |s;j+1/2' Fit1.
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Equation (2.6a) introduces an additional dissipation when characteristic fields are flov
into a shock and thus spreads out a shock profile so that it occupies two or three zones.
is a very desirable feature in time-dependent problems. In time-steady problems Eq. (Z
has the advantage that it permits the representation of a standing shock with the ste
possible profile. We see that the RF flux simply utilizes the LLF flux when an entropy
is desired and reduces to a Roe [33] flux when an entropy fix is not needed. Notice
Egs. (2.5) and (2.6) produce flux components for the flux computation in Eq. (2.4)
each characteristic field of the hyperbolic system. Roe [34] has pointed out that it may
valuable to use different forms of the flux components for different characteristic fiel
Based on numerical experiments involving the Euler and MHD systems we have four
valuable to use the LLF flux for linearly degenerate characteristic fields and the RF flux
the genuinely nonlinear characteristic fields. We must remind the reader that Egs. (2.5)
(2.6) only apply to the construction of first-order-accurate numerical fluxes. In the ensu
paragraphs we will show how they can be used as building blocks for building higher or
numerical fluxes.

From Egs. (2.5) and (2.6) we see that in order to carry out the evaluati()sfﬁjgp{/2 in
Eq. (2.4) we necessarily need to utilize the values in the zone that is centexedTdrere
arer candidate stencils that cover this zone each of which can be used to make an
order-accurate interpolating function for that zone. We denote these stengiig byhere
k=0,...,r —1labels the stencils from the leftmost stencil to the rightmost stencil in th
order. One can also graphically illustrate the stencil support by listing the zone centers
are covered by that stencil. Thus for tki stencil S;.x which interpolates over the zone
that is centered or; we have

Sjik = Xjpker 415 Xjpkor42s - - - » Xj4k)- (2.7)

Each of the stencil§;. can provide an"-order-accurate interpolation at the right boundar
ofthe zone that has; as its zone center. Thus if we want t& order-accurate interpolation
of fg;,1,, that can be obtained from the sten§jlx we need to evaluate the values of the
flux components

+ + +
{ fs:i+kfr+1;j+1/2’ fS;j+k7r+2;j+l/2’ cee fs;j+k;j+1/2} (2'8)

and use them in the interpolation process. Should we want to use the LLF flux we de
the flux components in Eq. (2.8) by

1 -
fejksjrae = Isi+12- 5 (Fisct Asija/2Uj 401
. (2.9)
Asij+172 = x MaX(|sj+1/2l, [As;j—r+als -« -5 [Asjr—1l)-

The second equality in Eq. (2.9) is a little different framy; 11,2 = xmax(ls||, |Asj+1l),

which was the choice for that formula that was catalogued in Shu and Osher [39]. Our ch
in Eq. (2.9) has a little better dependence on the particular stencil being used and pro\
the numerical scheme with much more robustness at reflecting boundaries. Should we
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to use the RF flux we define the flammponents in Eq. (2.8) in analogy with Eqg. (2.6a) by

if )\s;j >0 and ks;j+1 >0 then fs;+j+k;j+l/2 = ls;j+1/2 . Fj+k§

if Asj <0 and Asj41 <0 then fs;+j+k;j+l/2 =0;

_ (2.10a)
if As:j <0 and Agj41>0 then use EQq.2.9);
if Asj >0 and Asj41 <0 then use Eq.2.9);
The variant of Eq. (2.10a) which is analogous to Eq. (2.6b) is given by
if Asj <0 and Asj+1>0  thenuse Eq.29);
else ifis 112 > 0 then i wii12 =Isj+12- Fia:  (2.10b)

else ifis 112 <0 then S i 112 ="0.

When each of the stencil§,x has a smooth solution we can make a convex combinatic
of the interpolated values that we obtain from each ofrtlstencils in order to obtain a
(2r — 1)""-order-accurate evaluation of the interpolated value of the flux components at
PoINt Xj 41,2

We now give the details of the interpolation process. Specifically, we are intereste
making a(2r — 1)"-order-accurate evaluation of the interpolated value at the gint,,
which constitutes the right boundary of the interpolated zone that is centened dhe
r-order-accurate value that can be obtained by the reconstruction uskiystencil S;.x
is denoted byyd . (foiik ri1ji1/2 fojikorizjiaz - fofjikjr1/2)- It caN be written
as a linear combination of the values in Eq. (2.8). We write it explicitly as

r
s + + _ rog
Os ok fsjkrnjrnz TSz - Ty = Zak:i o ki vz
i=1

(2.11)

The constant coefficientg; for r =4 throughr =7 will be tabulated in the next section.
Sincek=0,...,r —1in Eq. (2.11) there arepossible stencils and, thereforepossible
interpolated values that we may obtain from Eq. (2.11). When the solution is smooth
(2r — 1)""-order-accurate evaluation of the interpolated value at the gpjaj. is obtained
by making a convex combination of thpossible values that we may obtain from Eq. (2.11)
This can be written as

r—1

+ _ § : I + + +

fS;j+1/2 - Ck qS;j;k( fS;j+k7r+l;j+1/27 fs;j+k7r+2;j+l/2’ tee fS;j+k;j+l/2) (212)
k=0

Thus for each value afthere exist positive coefficient€} which can be used to improve
the local accuracy at a selected point. We refer to these coefficients as the optimal wei
Equation (2.12) is still not suitable for use in Eq. (2.4) for the following reason. When t
solution is adequately smooth we want the interpolation to achieve its maximal 12"-
order accuracy. When this is not the case we wish to automatically put the burdel
interpolation on the one or more smoothest stencils out of hassible stencils. Thus we
need an estimator for the smoothness of a stencil. We denote this smoothness estil
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by | S;. Details about the design of these smoothness indicators have been given in J
and Shu [23]. They can be constructed for all values ahd we have carried out such a
construction for =4 throughr =7. Using these smoothness estimators we can write «
equation that is analogous to Eq. (2.12), which is what we use in Eq. (2.4). Thus we h¢

r-1
foirre = 2 ok Ol rinisn fojkorizisz - fojkjiy2)s  (2:13)
k=0
where the coefficients; depend on the smoothness measuigs The coefficients are
designed so that they approxim&teto within (Ax)" ~1 when all the stencils have a smooth
solution. This ensures that we can achieve the maximak(2)™" order of accuracy when
it is warranted. The actual construction of the weights goes as follows

r

r Oy
of = ——K 2.14
KTl tal (2.14)
where
Cc!
of = —K 2.15
T (e+18)° (2.15)

Here we set = 10719 to avoid division by zero. We also find that= 2 works well. This
completes the discussion of the WENO interpolation process.

IIl. MPWENO INTERPOLATION

The discussion in the previous section shows that we need a tabulation of the coeffici
a; in Eq. (2.11), the smoothness estimatb&, and the optimal weight€; in order
to design MPWENO schemes of increasingly high order of accuracy. We tabulate tf
coefficients here for =4 throughr =6. The corresponding information for=2 and
r =3 was given in Jiang and Shu [23]. The indices in Egs. (2.11) and (2.13) are rat
complicated and thus are difficult to carry around in all the expressions in this secti
Thus, in this section, we give the details of interpolating a scalar quantitythe right
boundary of a zone centered ®pand we denote this interpolated valueuﬁsu'j-ﬂ/z.

In some circumstances and for some hyperbolic systems, like incompressible flow,
flow may be very smooth. In these cases the computation of the smoothness estimator
be bypassed entirely. It may then become computationally efficient to evaﬁurqyg using
just the optimal weights in Eq. (2.12). When this is done, simple closed form expressi
for u']--H/2 in terms of the values on an2- 1) point stencil can be easily obtained. In what
follows we also give such expressions.

When the smoothness indicators are evaluated, carrying out the WENO interpola
for a givenr requiresr® + 4r2 + 2r float point operations. Thus the=5 WENO scheme
interpolation requires about thrice as many float point operations as the WENO
scheme. In practice, there are other steps such as eigenvector construction and charact
projection which depend on the hyperbolic system being solved and determine the real
of the scheme. Furthermore, on RISC processors, the interpolation step for larger valu:
r provides many more opportunities for cache reuse than the interpolation step for lo
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TABLE |

a;; values =1 i=2 i=3 i=4
k=0 —1/4 1312  -23/12  25/12
k=1 /12 -5/12 13/12 1/4
k=2 -1/12 7/12 7/12 -1/12
k=3 1/4 13/12 -5/12 1/12

values of . For such reasons the= 5 WENO/MPWENO scheme takes only 35-50% mor¢
time than the =3 WENO scheme in our implementation.

Ill.a. Coefficients and Smoothness Estimators fer4

Table | gives the coefficients for tlie= 4 case. The smoothness estimators are given |

|3 = Uj_3(547u;_3 — 3882 _, + 4642y _1 — 1854y + U;_»(7043y_, — 17246y _;
+7042y) + uj_1(11003y_; — 9402y) + 21074

IS} = uj_2(267u;_» — 1642y _1 + 1602y — 494y ;1) + u;_1(2843y _1 — 59664
+1922u. 1) + U;(3443y — 25224 ,1) + 547,

IS} = uj_1(547u;_1 — 2522y + 1922y ;1 — 494U, ;) + U;j(3443y — 5966 11
+ 1602y ) + Uj11(2843Y 1 — 16424 ,2) + 26707,

I'S] = uj(2107y — 94024 11 + 7042y 2 — 18544 ,3) + U 1(11003Y 41 — 17246y ;,
+ 46424 .3) + U} 2(7043U ,» — 38824 43) + 547U 5.

The optimal weights are given by
C¢=1/35; C}=12/35; C;=18/35; C3=4/35
EvaluatinguJLH/2 using just the optimal weights we get

ub, 1 = —(1/140)u_3+ (5/84)uj_ — (101/420)y_y + (319/420)y
+(107/210)y1 — (19/210)y o + (1/105)y 5.

lIl.b. Coefficients and Smoothness Estimators fer5s

Table Il gives the coefficients for the=5 case. The smoothness estimators are given |

IS5 = Uj_4(22658Y_4 — 208501y_3 + 364863y _, — 288007y_1 + 86329y
+Uj_3(482963y_3 — 1704396y _, + 1358458y _; — 411487y)
+U;j_»(1521393y_, — 2462076y_, + 758823Y)
+Uj_1(1020563y_; — 649501y) + 107918
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TABLE Il

afzivalues i=1 i=2 i=3 i=4 i=5
k=0 1/5 —21/20  137/60 —163/60  137/60
k=1 -1/20  17/60 —43/60 77/60 1/5
k=2 1/30 -13/60 47/60 9/20 —1/20
k=3 -1/20 9/20 47/60  —13/60 1/30
k=4 1/5 77/60  —43/60 17/60  —1/20

ISP = uj_3(6908y_3 — 60871y_, + 99213y_; — 70237y + 18079y1)
+Uj_»(138563Y_, — 464976y _; + 337018y — 88297y 1)
+U;j_1(406293y_; — 611976y + 165153y 1)
+U;j(242723y — 140251y, 1) + 22658

IS} = uj_»(6908y _» — 51001y _; + 67923y — 38947y 1 + 8209y ,)
+Uj_1(104963y_; — 299076y + 179098y 1 — 38947y,)
+Uuj(231153y — 299076y + 67923y 2)

+ Uj;1(104963y,1 — 51001y ) + 69084, ,

ISy = uj_1(22658y_; — 140251y + 165153y, — 88297y, + 18079y3)
+U;j(242723y — 611976y + 337018y, — 70237y.3)
+Uj41(406293y 1 — 464976y, + 99213y, 3)

+ Uj42(138563Y ., — 60871y 43) + 6908

|S§ = uj(107918y — 649501y, + 758823y, — 411487y, 3 + 86329y .4)
+U;,1(1020563y, 1 — 2462076, » + 1358458y 3 — 288007y ,4)
+Uj42(1521393y, , — 1704396, 3 + 364863y _4)

+ Uj;3(482963y 3 — 208501y .4) + 22658(f ;.
The optimal weights are given by
Cs=1/126; C?=10/63; C3=10/21; C3=20/63; C;=5/126.
Evaluatingujhrl/2 using just the optimal weights we get
U1/, = (1/630)4_4 — (41/2520)y_5 + (199/2520)y_, — (641/2520)y_;

+ (1879/2520)y + (275/504)y1 — (61/504)y.»
+ (11/504)y 43 — (1/504)4 4.
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TABLE Il

ag; values i=1 i=2 i=3 i=4 i=5 i=6
k=0 -1/6 3130 -163/60  79/20 —71/20  49/20
k=1 1/30 —13/60 37/60 —21/20  29/20 1/6
k=2 ~1/60 7/60 —23/60  19/20  11/30 —1/30
k=3 1/60  —2/15 37/60  37/60 —2/15 1/60
k=4 ~1/30  11/30 19/20 —23/60 7/60 —1/60
k=5 1/6 2920 -21/20  37/60 —13/60 1/30

Ill.c. Coefficients and Smoothness Estimators fer6

Table 11l gives the coefficients for the= 6 case. The smoothness estimators are give

by

| S5 = uj_5(1152561y_5 — 12950184y_4 + 29442256y_3 — 33918804y,

+19834350y_; — 4712740y) + U;_4(36480687y_4 — 166461044y 5
+192596472y , — 113206788 1 + 27060170y)

+Uj_3(190757572y 5 — 4440039044 , + 262901672y 1 — 63394124y)
+Uj_2(260445372y , — 311771244y ; + 76206736y)
+Uj_1(94851237y_y) — 47460464y) + 61502118

Uj_4(271779y_4 — 3015728Y_5 + 6694608y_, — 7408908y_; -+ 4067018y
— 880548y 1) + Uj_3(8449957y_5 — 37913324y_, + 42405032y,

— 23510468y + 5134574y.1) + U;_»(43093692y_, — 97838784y_;
+55053752y — 121836361.1) + U;_1(56662212y_1 — 65224244y
+14742480y.1) + u; (19365967y — 9117992y, 1) + 11525614,

= Uj_3(139633y_3 — 1429976y_, + 2863984y_; — 2792660y + 1325006y ;

— 245620y ,,) + Uj_2(3824847y_, — 15880404y_; + 15929912y
— 77279881 + 1458762y ) + U;j_1(17195652y_; — 35817664y
+179050324 1 — 3462252y.,) + u;(19510972y — 20427884y,
+4086352y.12) + Uj41(5653317y.1 — 2380800y.2) + 2717794,

Uj_2(271779y_, — 2380800y_; + 4086352y — 3462252y, + 1458762y,
— 2456200.,3) + Uj_1(5653317y_; — 20427884y + 17905032y,

— 7727988y, + 1325006y, 3) + U; (19510972y — 358176644,
+15929912y,, — 2792660y, 3) + Uj1(17195652y, 1 — 15880404y ,
+28630984Y.,3) + Uj42(3824847y., — 1429976y.3) + 139633, 5
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ISP = u;_1(1152561y_; — 9117992y + 14742480y, 1 — 12183636y,
+5134574y., 3 — 880548Y.4) + U; (19365967y — 65224244y,
+ 55053752, , — 2351046845 + 4067018Y.,4)
+U;11(56662212y, 1 — 97838784y, 5 + 42405032y, 3 — 7408908y .4)
+Uj2(43093692y, , — 379133244, 5 + 6694608y, 4)
+U43(8449957y. 3 — 3015728Y..4) + 2717794, ,

|2 = uj(6150211y — 4746046441+ 762067364» — 63394124y, 5+ 27060170y, 4
— 4712740y,5) + Uj,1(94851237y, 1 — 311771244y, , + 262901672y, 3
— 11320678844 + 19834350y, 5) + Uj,2(260445372y,, — 44400390441, 5
+ 192596472y, 4 — 33918804y.5) + U ,3(190757572y, 3 — 166461044y,
+294422561,5) + U 4(36480687y.. 4 — 12950184y,5) + 11525614 5.

The optimal weights are given by

Cé=1/462; C®=5/77; C$=25/77; C§=100/231;
Co =25/154; CE=1/77.

Evaluatingu'j-H/2 using just the optimal weights we get

ub, 1, = —(1/2772)y _s + (61/13860)y_4 — (703/27720)y_3 + (371/3960)y_,
— (7303/27720)y_; + (20417/27720)y+ (15797/27720)4;4
— (4003/27720)y, 5 + (947/27720)y,3 — (17/3080)Y., 4 + (1/2310)y 5.

lll.d. Monotonicity Preserving Bounds

Suresh and Huynh [45] found a general way of bounding the va#gg/z so that the
bounded value is monotonicity preserving. The key idea in that work was that one must
tinguish between smooth local extrema and a genuine O(1) discontinuity. Like Chakrava
and Osher [11] and Harteat al.[20] before them, Suresh and Huynh [45] realized that i
was essentially the clipping of local extrema that causes a loss of order of accuracy
must, therefore, be avoided in the design of higher-order schemes. Local extrema are
tinguished by analyzing the local curvature in the weights for a particular characteri:
field. Should a local extremum be detected enough space was created to allow for the
extremum to be accommodated in the evaluationJLgfl /2 We catalogue the formulae for
bringing u]LH/2 within the monotonicity preserving bounds here for three reasons: (1) \
have found it valuable to use values somewhat different from those in Suresh and HL
[45]. (2) There is a slightly greater latitude of freedom in the design of these monotonic
preserving bounds which we have found useful in the treatment of certain types of hy,
bolic systems and we wish to catalogue it here. (3) In the following section we wish
evaluate the effect of different types of monotonicity bounds that can be designed on
order property of MPWENO schemes.
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Following Suresh and Huynh [45] we focas local measures of curvature here. In orde
to utilize them in a numerical code we need to define the minmod and median functions

. 1 .
minmod, y) = E(sgnoo + sgndy)) min(|x|, |y]) (3.1)

mediang, y, 2) = X+ minmod{y — X, Z— X). 3.2)
It then becomes useful to define the curvature measures at the zone centers as
dj = Uj41 —2uj +Uj_1. (3.3)

The expressions in Eq. (3.3) can be used to define the curvature at the zone boundary
is where a variety of definitions become possible. The definition of the curvature at the z
boundary which is least restrictive in that it provides maximal space for local extreme
develop is given by

d , = minmod(d. d;1) (3.4)
The superscript MM in Eq. (3.4) indicates the use of the minmod function. Suresh
Huynh [45] recommend using a measure of the curvature at the zone boundary th
somewhat more restrictive in that it reduces the space for local extrema to develop v
the ratiod;1/d; is larger than 4 or smaller thary4 (hence the use of the superscript M4
in the ensuing equation). It is given by

dM? , = minmod(4d — dj;1, 4dj1 — dj, dj, dj;). (3.5)

The choice of the range [4, 4] in Eq. (3.5) is one of the heuristic features in the desig
of monotonicity preserving schemes. In the next section we will show that the result
schemes are not sensitively dependent on this choice. Itis interesting to notice that Eqgs.
and (3.5) would admit any situation where two zones had the same curvature as beir
acceptable extremum. For certain hyperbolic systems, MHD being a case in point,
presence of small scale extrema where the wiggles in the solution are spread over jus
zones can damage the quality of the solution. In this case it becomes useful to admit
those extrema where the profile of the extremal solution has a slightly larger domait
support. Thus without damaging the monotonicity preserving character of the interpola
strategy we can write this measure of the curvature with extended (denoted by supers
M4X) domain of support as

dj!vfi(/z = minmod(4d — dj;+1, 4dj11 — d;, dj, dj;1, dj_1, dj42) (3.6)

In the following section we will demonstrate that Eq. (3.6) performs almost as well
Eq. (3.5).

Following Suresh and Huynh [45] we wish to define minimum and maximum bounc
denoted byu}}7, anduj{}7s, within which the solutiont , , has to lie. The left-sided

upper limit (denoted by superscript UL) to the solutiorxat; > is given by

uﬁﬂ';l/zzuj +a(uj —uj_1). (3.7



16

The value ofx determines the CFL number that can be used with the scheme. In the
the CFL number is required to be less thaiill+ «). In practice we have found that= 2
allows us to safely use a CFL number of 0.6 in a large number of test problems that
have tried. For superlative treatment of advected pulses a CFL number closer to 0.3
however, recommended. The median (denoted by superscript MD) value of the solutic
Xj+1/2 IS given by

1 1
U'}A_El/z = E(Uj + Uj+1) - éd}\/l+|3:|_/2. (38)

The left-sided value with allowance made for a large curvature (denoted by superscript
in the solution ak; 1,2 is given by

1 B

The value of8 determines the amount of freedom available from utilizing a large value f
the local curvature. We have found thiat= 4 works well for the schemes presented here
We have also found thgt =2 does not degrade the order property so that the MPWEN
schemes presented here are not sensitively dependent on the vglu€hi$ is very sat-
isfying because the value gfis one of the heuristic factors in the design of monotonicity
preserving schemes. For all the tests reported here we havegusdd\We find that set-
ting df ,=dt%; ,=dMY , provides the maximal space for local extrema to develof
Settingd? ,=d<, ,=dM} ,, which is also the choice that was made in Suresh ar
Huynh [45], somewhat limits the space available for local extrema to develop. Sett
dM5 o =i, , = dMA, filters out extremal features that have a very small domain of su
port but leaves extremal features with larger support intact. Expressiom%'i@}2 and

L,max :
Uj'y12 can now be given by

uFT1o = maxmin(uj, uj iz, Uiy ) min(uj, ufy o, U5Ss )] (3.10)
uiys = minfmax(u;, uj.g, il o), max(uy, uh; 5 utS )] (3.11)

The monotonicity preserving value fu|j=+1/2 can now be obtained by using the equation
L oL Lmin L,
Ujj1/2 = mediar(uy, . Ui, Uji)5). (3.12)

IV. NUMERICAL VERIFICATION OF THE HIGH-ORDER
ACCURACY OF MPWENO SCHEMES

In this section we study numerically how the MPWENO schemes fare when it come:
achieving their designed accuracy. In the first subsection we study one-dimensional s
problems. In the second subsection we study multidimensional problems, both scalar
systems of equations.

IV.a. One Dimensional Problems

Table IV shows several convergence studies for the advection equatien, = 0, with
initial conditionsug(x) = sin(xx), defined on {1, 1] with periodic boundary conditions.
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TABLE IV

Method Number of zones L, error L, order L. error L., order

r=>5 10 3.5827E-04 5.5930E-04
WENO 20 6.1123E-07 9.20 1.1927E-06 8.87
40 9.7166E-10 9.30 2.2653E-09 9.04
80 1.6306E-12 9.22 4.1460E-12 9.09

r=>5 10 4.8003E-04 8.6886E-04
MPWENO 20 6.1123E-07 9.62 1.1927E-06 9.51
diMfl/z = deflx/z 40 9.7166E-10 9.30 2.2653E-09 9.04
dlLfl/z = df”flx/z 80 1.6306E-12 9.22 4.1460E-12 9.09

r=3 10 1.6694E-02 3.0224E-02
MPWENO 20 7.5962E-04 4.46 1.4569E-03 4.37
di“"fl/z = d}‘ﬁff/z 40 2.2698E-05 5.06 4.5939E-05 4.99
diC, , =dM¥X 80 6.9830E-07 5.02 1.4783E-06 4.96

j+1/2 7 Hj+1/2

The error was measuredtat 1. For this linear problem, LF, LLF, and RF building blocks
all become the same. We used linear Runge—Kutta methods of the same order as the «
operators with a CFL number 0.8.

The initial conditions for this problem are very smooth. We see that ta& WENO
scheme reaches its designed accuracy very rapidly and with a very small number of z
In Table IV we also show results from=5 MPWENO with the most restrictive mono-
tonicity preserving bounds given oy , =dr-¢; , = dM*,. Ther =5 MPWENO scheme
converges at the same rate and has almost the same errors asSMFENO scheme when
20 or more zones are used. This shows that the monotonicity restriction operator is hg
no effect in this case. This is a very desirable feature and it is also significant that it cal
demonstrated for schemes with an order of accuracy as high as nine here. To enable
compare and contrast with a lower-order scheme we also show the convergence stuc
r =3 MPWENO withdM§ , =d$, ,=dM,. Two very interesting insights can be gainec
from Table IV. First, we see that for small numbers of zones the higher-order scheme
a considerably smaller error than the lower-order scheme. Thus when the problem is
well resolved on a given computational grid the higher-order scheme nevertheless ¢
us a substantially smaller error than the lower-order scheme. Second, we see that
the problem is well resolved the substantially better convergence rate of the higher-c
scheme allows it to obtain a significantly smaller error than the lower-order scheme.
have also carried out similar convergence studies for MPWENO schemes with 6,
and 7, and the general trends noted here far5 MPWENO are repeated for these othel
schemes.

We have also performed a similar convergence study with the initial conditiging =
exp(sin(rrx)) and found that it produces the same trends that were reported above for
Uo(X) = sin(srx) initial condition. For this reason, we do not tabulate that convergence stt
here.

Table V shows several convergence studies for the advection equatipuo, = 0, with
initial conditionsug(x) = sin*(zx). It is important to point out that the initial conditions
used here are very flat at each of the two maxima,; that is, the first three derivatives are
there. For this reason, Rogerson and Meiburg [32] found that the unbiased ENO sche
performed poorly for this problem. We see thatthe 5 WENO scheme in Table V suffers
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TABLE V

Method Number of zones L, error L, order L., error L., order

r=5 40 2.7674E-04 1.0711E-03
WENO 80 9.1766E-07 8.24 7.4607E-06 7.17
160 2.2566E-09 8.67 2.8738E-08 8.02
320 6.5289E-12 8.43 1.2815E-10 7.81

r=5 40 4.8962E-04 2.4370E-03
MPWENO 80 1.9091E-05 4.68 1.7941E-04 3.76
dj“"fl/z = deﬂ/z 160 1.2575E-06 3.92 2.1792E-05 3.04
dJLfl/z = dm/z 320 5.9172E-08 4.41 1.8768E-06 3.54

r=5 40 7.2627E-04 2.3674E-03
MPWENO 80 4.0853E-05 4.15 2.7778E-04 3.09
de+D1/z = dj“"flx/z 160 2.2955E-06 4.15 2.5640E-05 3.44
dijl/z = dj“"jlx/z 160 1.3622E-07 4.07 2.8514E-06 3.17

r=3 40 3.6564E-03 8.9043E-03
MPWENO 80 5.0389E-04 2.86 1.8086E-03 2.30
dj“"fl/z = dj“"ﬂ/z 160 2.8389E-05 4.15 1.7678E-04 3.35
dijl/z = de+M1/z 320 1.4393E-06 4.30 1.6388E-05 3.43

less from this problem, almost reaching its designed convergence rate at about 80 poin
Table V we also show the results fram=5 MPWENO schemes with the least restrictive
monotonicity preserving bounds given 8yl , =di¢; , = dM , and the most restrictive
monotonicity preserving bounds given 85 ,=d}¢; , = dM&,. This allows us to see
the effect of imposing different kinds of monotonicity preserving bounds. We see clee
that even the imposition of the least restrictive monotonicity preserving bounds stror
degrades the order of accuracy of the scheme for this problem. An inspection of the 1
history of the buildup of the error shows that much of the error builds up very rapidly, i.
within a time of 0.1 or less. We therefore see that the monotonicity preserving bound:
not live up to the full extent of the claim made in Suresh and Huynh [45] that they do r
damage the order property of smooth solutions at all. The convergence rates in Table V s
that they do, however, permit the scheme to achieve a fairly high order of accuracy.
serves to distinguish them from the older TVD limiters. By comparing the effect of the le:
and most restrictive monotonicity preserving bounds on the convergence rate in Tabl
we conclude that the effect of changing the monotonicity preserving bounds on the errc
its convergence rate is not very significant. This leads us to the rather satisfying conclu
that most such monotonicity preserving bounds act similarly when imposed on MPWE
schemes withr = 5. This conclusion is also verified numerically for MPWENO scheme
with other values of . Table V also permits us to compare=3 MPWENO withr =5
MPWENO when both use}? ,=d}¢; , = dMY ,. We see that the convergence rates fo
both schemes are determined by the fact that the monotonicity preserving constraint:
used. However, we observe that the 5 MPWENO scheme has errors that are almost a
order of magnitude smaller than those of the 3 MPWENO scheme when both schemes
use the same number of grid points. Thus it indeed proves quite beneficial to go fron
r =3 MPWENO scheme to an=5 MPWENO scheme. This trend, however, does nc
extend tor =6 andr =7 MPWENO schemes, which have errors that are comparable
those of the =5 MPWENO scheme for this test problem. This is an indication that for su
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TABLE VI
Method Number of zones L, error L, order L. error L., order
r=>5 20 1.1313E-03 8.4858E-03
MPWENO 40 6.9382E-06 7.35 7.6824E-05 6.79
dlel/z = dJMfl/z 80 2.7680E-08 7.97 4.6426E-07 7.37
diLfl/z = defl/z 160 7.5166E-11 8.52 1.2535E-09 8.53

type of problems the =5 MPWENO is an optimal scheme and it may not be beneficial 1
use MPWENO schemes with> 5.

Table VI shows a convergence study for the Burgers equation,(u?/2), =0, with
initial conditionsug(x) = 0.25+ 0.5 sin(nx). We used a third-order-accurate Runge—Kutt:
time-stepping strategy for this nonlinear problem as well as for the nonlinear
Euler equations in the next section. To hold down the errors from temporal discret
tion the time stepAt on successively refined grids was made to vary with the zone si
AX as At o< (Ax)@ D73 We carry out a convergence study fo=5 MPWENO with
dM? ,=dbg; , = dMy , at a time of ¥, before the shock forms. We use the LLF flux
here. Table VI shows clearly that the scheme is operating close to its designed accu
The trends shown in Table VI for=5 MPWENO also extend to MPWENO with=4, 6,
and 7.

The results from Tables IV and VI taken together allow us to conclude that the MPWEI
schemes achieve their designed accuracy in one dimension for both linear and nonl
hyperbolic equations when the solution is smooth and does not have a very flat extren
When the solution does have a flat extremum the MPWENO schemes do show a degrad
oftheir order property, as shown in Table V. The order of accuracy of the MPWENO schel
nevertheless remains quite high, especially when compared to the older TVD scheme
such situations the=5 MPWENO scheme seems to be an optimal scheme when compa
with the other higher-order schemes designed in this paper.

IV.b. Multidimensional Problems

Table VIl shows several convergence studies for the two-dimensional advection equa
Ut 4+ Ux 4+ uy = 0, with initial conditionug(x) = sint(rx) sirf(rry). The problem was run on
thearea[—1, 1k [—1, 1] with periodic boundaries and the result at 1 is shown. We show

TABLE VI

Method Number of zones L, error L, order L. error L., order

r=>5 40 x 40 2.0434E-04 1.1146E-03
WENO 80x 80 6.7552E-07 8.24 7.5314E-06 7.21
160x 160 1.6650E-09 8.66 2.8819E-08 8.03
320x 320 4.8120E-12 8.43 1.2817E-10 7.81

r=5 40 x 40 5.3034E-04 2.3487E-03
MPWENO 80x 80 3.0493E-05 4.12 2.7559E-04 3.09
di"'fl/z = d}mflx/z 160x 160 1.7532E-06 412 2.6314E-05 3.39

d:—fl/z = dJMff/z 320x 320 1.0509E-07 4.06 2.9132E-06 3.18
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ther =5 WENO scheme and cross compare it withithe 5 MPWENO scheme with the
most restrictive monotonicity preserving bounds giverd} , =di<, , = dM%,. The
results are very similar to those of the one-dimensional case shown in Table V, indica
that our schemes are as accurate in 2D as in 1D.

Porteret al.[30] have shown through DNS simulations that the evolution of compressit
hydrodynamic turbulence is dominated by the evolution of structures of high vorticity or
the initial phase of shock-dominated dissipation is over. To pick a test problem thatis q
close to the target applications for the schemes designed here, we analyze the propag
of a strong vortex at a supersonic Mach number. The vortex propagatestatthe grid
lines, which gives ample opportunity for the effects of multidimensional propagation
manifest themselves in this test problem. The problem is initialized on the two-dimensic
domain given by [-5, 5k [-5, 5]. An unperturbed flow of the Euler equations with
(0, P,ux,vy)=(1, 1, 1, 1) and a ratio of specific heats given py=1.4 is initialized
on the computational domain. The temperature and entropy are defiflee-& o and
S=P/p”. The vortex is defined as a fluctuation to this mean flow given by

(Bvx. Bvy) = o5 -y, )

4.1)
_ (v = 1)e? ed-r?).

8T =
8y m?

8S=0,
wherer?=x? + y? and the vortex strength=5. We utilize periodic boundary condi-
tions.

In Table VIl we show the errors from the= 5 MPWENO withd¥?, ,=d¢, , = d¥f, ,
at a time of 10.0. By this time the vortex has travelled the entire length of the diagona
the computational domain and is centered back again at the origin. We also show the re
fromr =3 WENO. For both the =5 MPWENO and =3 WENO calculations we used
a third-order-accurate Runge—Kutta scheme for the temporal. In order to help the re
to appreciate the effects of dimensional sweeping on higher-order Godunov scheme
also show the results of this same test problem run with the PPMDE variant of the P
scheme in Colella and Woodward [13]. The results are shown for the PPM scheme
without either the PPM steepener or the PPM flattener. Another set of runs was catr

TABLE VI

Method Number of zones L, error L, order L, error L., order

r=5 25 x 25 1.3518E-02 1.4072E-01
MPWENO 50x 50 1.9875E-04 6.09 4.6708E-03 491
dj“"fl/z = dJMjl/z 75x 75 3.7569E-05 4.11 1.4146E-03 2.95
d}fl/zzdf”jl/z 100x 100 1.0725E-05 4.36 4.1951E-04 4.23

r=3 25x 25 5.6303E-02 8.1172E-01
WENO 50x 50 4.8654E-03 3.53 8.3836E-02 3.28
75x 75 9.0182E-04 4.16 1.7957E-02 3.80
100x 100 2.4801E-04 4.49 5.9807E-03 3.82

PPM 25x 25 4.4533E-02 7.5762E-01
50 x 50 1.2806E-02 1.80 1.6085E-01 2.24
75x 75 7.7270E-03 1.25 8.5558E-02 1.56

100x 100 3.7955E-03 2.47 5.0517E-02 1.83
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out with the PPM steepener and the results werend to be almost identical to those
shown in Table VIII. Symmetrized interleaving of sweeps inxh@ndy-directions were
used for the temporal update of the PPM scheme. This directional splitting of the E
equations was proposed by Strang [44] and is expected to result in a temporal update
is second-order accurate in space and time. In the previous subsection we showed th
CFL number needs to be decreased with increasing mesh resolution in order to er
the scheme to reach its design accuracy. Most realistic simulations are done at a
CFL number that is held fixed as the resolution of the simulation is increased. It is &
computationally impracticable to do a convergence study in multiple dimensions wit
CFL number that decreases with increasing resolution. For both these reasons we hay
the WENO and MPWENO convergence studies with a fixed CFL number of 0.2. For
PPMDE calculations we used a CFL number of 0.2 for each individual sweep. We
from Table VIII that ther =5 MPWENO scheme is the most accurate scheme among |
schemes considered. If a fixed resolution is to be used, th& MPWENO is at least an
order of magnitude more accurate thanithe3 WENO scheme. At fixed resolution, both
schemes are substantially more accurate than the PPMDE scheme. We see from Tabl
that ther =5 MPWENO can obtain about the same accuracy on a grid of 50 zones
that ther =3 WENO achieves on a grid of 160100 zones. We also see that even on |
grid of 100x 100 zones the PPM scheme only produces a solution with accuracy the
roughly comparable with the=3 WENO scheme’s accuracy on a grid of 530 zones.

Further insight can be gained by paying attention to the quantitative values in Table \
Ghosal [15] has shown that the subgrid force terms in the typical situations considere
him are not much larger than 10% of the total force terms. THus being able to model
subgrid force terms in an LES calculation with a nominal 10% accuracy requires that
be able to simulate features in the flow with at least 1% accuracy. For this problem
density, vortex velocity, and radius of the vortex are all of the order of unity, implying tr
the total force is of the order of unity in the vortex. We see that even whenZ%zones
are used the =5 MPWENO scheme has an error in the norm that is at the 1% level.
The PPM scheme, on the other hand, achieves an error ih{tim®rm that is at the 1%
level on a grid of 50< 50 zones. To model the subgrid forces in an LES simulation one
more likely to be interested in the error measured inlthenorm. Ther =5 MPWENO
scheme achieves an error in thg, norm that is better than 1% with a mere 5®0 zones.
The PPM scheme does not achieve a comparable error ingherm even on a 108 100
zone grid. This provides a quantitative demonstration of the claim made in Ghosal [15]
second-order schemes do not reduce the error fast enough on any of the scales repre
in the computation to permit accurate LES sibgrid modeling to be done for the scales
are not represented in the computation.

V. ACM AND THE HIGHER-ORDER PROPERTIES OF MPWENO
SCHEMES THAT USE ACM

When isolated discontinuities in linearly degenerate characteristic fields are presel
the flow it is customary to want to improve their profile so as to endow them with as sh
a profile as possible. This is usually done by using the ACM strategy, where one add
extra linear profile to the interpolant in a given zone. This profile is only added when"
addition of such a profile does not destroy the TVD property. The addition of this line
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profile is intended to steepen the interpolated profile in the zone. There are two quest
which must be addressed in this procedure: (1) What is the right amount of steepenir
add to schemes of high order such as the ones designed here? (2) What are the conseq
of the ACM on the order property of numerical schemes, especially the schemes with \
high order of accuracy designed here? Yang [50] has designed an ACM scheme tha
proven particularly popular. We seek to answer these two questions within the conte»
Yang’'s ACM.

As in Section Il we focus on the interpolation of a scalar quantity the zone boundary
Xj+1/2. The interpolated values on the left and right of the zone boundary are denotec
U'j'+1/2 and UJR+1/2a respectively. These interpolated values are to be obtained by using
MPWENQO interpolation strategy. Since the scheme designed here operates on charactt
variables the extension to hyperbolic systems can be trivially made by steepening the we
in Eqg. (2.4) for any characteristic field that needs to be steepened using ACM. The sl
modifier for the interpolated profile in zorjeis then given by

C_ omi i R L R L
suj = 2minmod o minmod(uf ; , — UF 1,5, UT 15— US,q ),

_ ) . (5.1)
miNMod(U;+1 — U /5. U1 /2 — Uj-1)]
so that the value aiijLH/2 is modified as follows:
ut = Ut + Lsu, (5.2)
j+1/2 j+1/2 T 5045 :

The coefficient of the slope modifier; in Eq. (5.1) can be written as the product of a
discontinuity detector; and a balance factar; as

o) = Cujyj, (5-3)
where we have
2
Uiz1—2U; +Uj_1
wi= (am st ) 5
|Uj1 — Uyl + Juj — Uyl
and
) . b((xj At/Ax)—0.5sgn(%))
YT hen(u: — U o u) =0
Vi = when(uj — Uj_1)(Uj41 — Uj) >
Uj+1 — Uj
. (5.5)
=0 otherwise.

The variable. ; in Eq. (5.5) denotes the signal speed at which the variaislbeing advected
in zonej. For a hyperbolic system it refers to the characteristic speed of the character;
field in zonej that is being treated by the ACM technique. Equations (5.3) and (5.5) sh
clearly that the variables andb are variables whose values have to be set in the ACN
The variableb affects the way the scheme introduces a balance between ascending
descending profiles and needs to be set to 4.3 for all the schemes used here. The va
¢ may be set to different values for schemes of different orders and determines the am
of steepening introduced by the ACM. It needs to be set by trial and error.
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TABLE IX
Method Number of zones L, error L, order L., error L., order
r=5,ACM, 10 4.6231E-04 8.1426E-04
MPWENO 20 5.1904E-07 9.80 1.0259E-06 9.63
diMfl/z = d}‘ﬁff/z 40 2.3023E-09 7.82 7.8494E-09 7.03
diC, , =dM¥X 80 6.2205E-12 8.53 2.9266E-11 8.07

j+1/2 j+1/2

Through extensive trial and error we have found that when the variahl&q. (5.3) is
given a large value and used in very high order schemes it actually damages the structt
discontinuities. Thus higher-order schemes need smaller valeeBlwfher-order schemes
can, however, capture discontinuities in linearly degenerate characteristic fields and pi
gate them without much degradation even when the ACM is not used. Hence with increa
order of accuracy there is a diminishing need to rely on the ACM. We have experimer
with several hyperbolic systems including scalar advection, the Euler equations, anc
equations of ideal MHD. The value ofto be used for optimal capturing of discontinuities
belonging to linearly degenerate characteristic fields does not seem to depend sensi
on the particular hyperbolic system being solved when the order of the MPWENO sch
is held fixed. This is a very desirable result because it shows that the optimal valte of
be used does not vary from one hyperbolic system to another. Thus-f8iMPWENO we
recommend that the maximal valueabec = 20.0, thougtt = 25 is permissible on occa-
sion. For =4 MPWENO the maximal value @fis given byc = 20.0. For =5 MPWENO
we suggest using a maximal valueogfiven byc = 15.0, thouglec = 20.0 might sometimes
be acceptable. For=6 MPWENO we suggest using= 15.0 and for =7 MPWENO we
recommend not using ACM at all. In general we find that MPWENO schemes with e\
values ofr do not take as well to the use of ACM as MPWENO schemes with odd valt
of r. It is also worth pointing out that schemes with- 5 can propagate discontinuities
with about seven zones in them without any degradation in the discontinuity’s profile ¢
so do not necessarily need to rely on the use of steepening techniques such as ACN
will show this numerically in the next section. To view this in a different way, in certai
problems where very accurate propagation of discontinuities is strongly desired it ma
more acceptable to allow discontinuities to propagate with a natural width of seven zc
and high phase accuracy than to make them propagate with an artificially steepened \
of three zones and risk a degradation in phase accuracy. The previous comment has s
relevance to turbulence calculations, where very accurate propagation of flow structure
a great deal of bearing on the accuracy of the results.

In Table IX we show the convergence study fo=5 MPWENO with c=20.0 for
the advection problem with initial conditions given by(x) = sin(rx). By comparing the
results in Table IX with the reuslts in Table IV we see clearly that the accuracy and
order of the scheme are not affected significantly by the use of ACM.

VI. ONE DIMENSIONAL TESTS

Vl.a. Scalar Advection

Ouir first test problem consists of testing the behavior of the scheme on a rather strin
scalar advection test problem. This is the same test problem that was catalogued in .
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and Shu [23]. Thus we solve the problem

U +uy =20 —1l<x<l1
(6.1)
u(x, 0) = ug(x) periodic
with
1
Ug(X) = é[G(x, B,z—68)+G(X,B,z+68) +4G(x,8,2] -08=<x=<-06
=1 —-04 <x<-02
=1-|10x —0.1)| 0.0<x<0.2 (6.2)
1
= é[F(x, a,a—38)+ F(X,a,a+68) + 4F (X, a, @)] 04<x<06
=0 otherwise
G(x. B.2) = PO’
(6.3)
F(X, a, @) = vVmax(1l— a?(x — a)2, 0).
The constants in Egs. (6.2) and (6.3) are given by
a=05 z=-07. 5=0005 «=10. p=192 (64
= 0.9; = & =0. ; o= ; = 368 .

The problem has several shapes that are difficult to advect with fidelity. The shapes co
of: (1) a combination of Gaussians, (2) a square wave, (3) a sharply peaked triangle,
(4) ahalf-ellipse arranged initially from left to right. This is a stringent test problem becaus
has a combination of functions that are not smooth and functions that are smooth but sh:
peaked. The Gaussians differ from the triangle in that the Gaussians’ profile actually ha
inflection in the second derivative. A good numerical method that can advect informat
with a high level of fidelity must be able to preserve the specific features of the problem
we have catalogued above. The problem was initialized on a mesh of 200 zones. It wa:
for a simulation time of 20, which corresponds to 10 traversals around the mesh. In dc
so the features catalogued in Egs. (6.2) and (6.3) were advected over 2000 mesh points
problem was run with a CFL number of 0.4.
In Fig. 1a we show the results from= 5 MPWENO withdM5 , = df¢; , = dM4, .

In Fig. 1a the ACM steepener was not used. To aid comparison with the exact solution
exact solution is also shown in the figure with a solid line. We see that the different sha
have been accurately advected so that one can readily pick out the differences bet
the different shapes even after 10 traversals around the computational mesh. The pe:
the Gaussians and the triangle have been preserved without any substantial flattening
points at their maxima. The fact that the Gaussians have an inflection in the second deriv
while the triangle does not can also be seen. The square pulse has retained its flat top. /
seven points have been put in by the scheme to represent the rising and falling parts c
square pulse. This is the motivation for our claim in Section V that these very high or
schemes can advect profiles well without smearing them over much more than seven z
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FIG. 1. The scalar advection test problem catalogued in Egs. (6.2), (6.3), and (6.4). The iniitial profile \
allowed to propagate 10 times around the computational domain with CFL number 0.4. (a) The resgi&for
MPWENO without ACM. (b) The same as (a) but with ACM. (c) The result from the PPM scheme without t
steepener. (d) The result from the PPM scheme with the steepener.

They are able to do this without needing to rely on the ACM steepener. The rounded to
the parabolic profile is accurately captured and stands out in contradistinction to the flatte
top of the square wave. Notice, too, that the profiles of all the pulses are fully symmetr
about their peaks, which is a very desirable feature in a numerical algorithm. Figure
shows the same scheme with the ACM also being used. We used the same sugg
values for the coefficients in the ACM steepener that we catalogued in Section V. We
that the square wave profile has become sharper. The other strongly peaked shape:
not been damaged. The parabolic profile has not had any numerically induced change
curvature. We observe a slight asymmetrical aspect in the profiles in Fig. 1b when comp
to those in Fig. 1a. But the balancing factor in Eq. (5.5) has ensured that the profiles
for the most part, very symmetrical. Thus the ACM step has been mostly beneficial for
square wave pulse where it was most needed and unobtrusive for the elliptical wave f
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where it was not needed. Thus Yang's ACM behaved very well on this rather stringent
problem.

In Figs. 1c and 1d we show the performance of the PPM method of Colella and Woodw
[13] on this test problem. Figure 1c was produced by a run without the contact discontin
steepener. Figure 1d was obtained from a run with the contact discontinuity steep
that is described in Colella and Woodward [13]. We used the Lagrange-remap versio
PPM, which has a slightly higher accuracy than the direct-Eulerian version of PPM
this type of problem. Because piecewise parabolic profiles can be exactly integrated fo
scalar advection equation, the test problem was done without any errors emanating fror
temporal discretization. We used a CFL number of 0.4 as in the previous case. Itis bene
to be able to compare and contrast the performance of the higher-order schemes des
here with the traditional TVD schemes. We see from Fig. 1c that PPM has flattened
tops of all the pulses in the problem. This has resulted in considerable degradation o
Gaussians’ profile and the triangle’s profile. The rising and falling parts of the square w
have about eight to nine zones across them. We also see that the profiles of all the «
pulses have the same number of zones in their rising and falling parts along with flat tc
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Thus the PPM scheme has effectivilyned all the different pulse shapes into profiles the
are equivalent to a square pulse. This indicates that the PPM scheme, because it is a
scheme and relies on TVD limiters, has suffered a genuine loss of phase accuracy. Figu
shows the effect of the steepener catalogued in Colella and Woodward [13]. We see
most of the pulses have been turned into square wave pulses with sharp edges. The le
edge of the Gaussians’ pulse is asymmetrical when compared to its trailing edge. Th
a clear consequence of the steepener in PPM not having a balancing factor like the /
algorithm of Yang [50]. From Figs. 1c and 1d we see that all the phase accuracy has |
lost in the solutions that were computed with the PPM algorithm.

VI.b. Hydrodynamical Interacting Blast Wave Problem

We have run the interacting blast wave problem from Woodward and Colella [49] us
exactly the same parameters used by those authors. The problem was run withGhe
MPWENO scheme withd , = di¢; , = dM} ,. The RF version of the scheme was
used. The ACM method was used with the parameters suggested in Section \fet the
MPWENO scheme. A CFL number of 0.6 was used. In Fig. 2 we show the density variz
from a 400-zone simulation with open circles. The solid line shows the converged der
obtained from a 1000-zone simulation. We see that the left-going contact discontinuit
captured very well even in the 400 zone simulation. We also see that the density pr

from the 400-zone simulation is very close to the converged density profile.

gne10 '

en-10 L2 -

i

3510 :|

T IS TI R 5

X mm ——

Fa=1dT -

ET I

L T U N, =

Ahein d

e -

Ay

Lo :

7 N i L :i

& -

= 100 : ! i :
- 1

sein v ' -
o e ————— !
3 A 4 i 1 & .l H 3 1 ]
X

FIG. 2. The density profile at a time of 0.038 for the interacting blast waves problenrt. #H&@MPWENO
scheme was used with ACM. The problem was run with a CFL number of 0.6. The open circles show the re
of a 400-zone simulation. The solid line is a converged density profile obtained from a 1000-zone simulatior
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Itis also worth noting that we have run the classical shock tube test problems by Sod
and Lax [24] with the schemes designed here and obtained good results.

VI.c. MHD Shock Tube Problems

In order to illustrate the versatility of the methods developed here and their applicabi
to other hyperbolic systems we apply them to a couple of Riemann problems that are dr
from MHD. The eigenstructure of MHD has been thoroughly explored in Roe and Bals
[36], alinearized Riemann solver was developed in Balsara[1], and TVD schemes for M
were developed in Balsara [2]. Balsara and Spicer [4] have constructed a divergence
formulation of MHD. Because such formulations use both the zone-centered and the f
centered values of the magnetic field the MPWENO methodology has to be extende
accommodate such a staggering of variables. This extension, which is specific to nume
MHD, has been carried out by Balsara and will be reported by him in a later publication. |
one-dimensional MHD problems this extension is unessential and the methods devel
here are perfectly adequate for treating such problems. Therefore we report on a coug
one-dimensional MHD Riemann problems here. Both were run with thds MPWENO
scheme witllM5 , = di¢; , = dM¥,. The RF version of the algorithm was used here. Th
ACM method was used with the parameters that are suggested in Section V foetbe
MPWENO scheme. The ACM was applied to all the linearly degenerate characteristic fie
in the problem. A CFL number of 0.6 was used. For MHD it was found useful tp set.3
in Eqg. (2.5).

Figures 3a to 3e show the density, pressureelocity, y-velocity, andy-component of
the magnetic field, respectively, for the Brio—Wu [6] test problem. The problem is specif
on a 400-zone mesh that covers the regie.p, 0.5]. The 400 mesh points are showr
as open circles. The solid line corresponds to the exact solution. The initial conditions
given by

(pLs PL, vk, vy, v20, By, Bz = (1,1,0,0, 0, 1.0(47)Y2, 0.0) X <0
(PR, PR, Ux.R, VyRs UzR Byrs Bzr) = (0.125,0.1,0,0,0, -1.0(47)?,0.00 x>0

B, = 0.75(4n)"2.
(6.5)

The problem was run up to a simulation time of 0.1. The ratio of specific heats was se
2.0. The ACM was used in Figs. 3a to 3e. Figure 3f shows the density from the same
problem when the ACM was not used. The problem generates a right-going fast rarefac
wave, a right-going slow shock, a contact discontinuity, a left-going slow compound wa
and a left-going fast rarefaction wave. Alfven waves are not generated since the proble
coplanar. We see that all the shocks are captured with sharp, oscillation-free profiles.
contact discontinuity is also represented with a sharp profile having just a few zones ac
it. We see that the representation of the contact discontinuity without ACM is almost as g
as its representation with ACM. This bears out the claim we made in Section V that th
very high order schemes do not need to rely much on ACM-type steepening technique
achieve good representation of linearly degenerate characteristic fields. It is significant
this claim is as true for the MHD equations, which have a richer wave structure, as i
for the Euler equations. We conclude from the above discussion thatthe MPWENO

scheme has been able to capture all the features in the problem very well. Because t
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a very high order scheme it was able to achieve very good definition of the features in
flow by using a computational grid with just 400 zones.

Figures 4a to 4g show the density, presswegelocity, y-velocity, z-velocity, and
y-component, and-component of the magnetic field, respectively, for one of the te
problems in Ryu and Jones [37]. The problem is specified on a 400-zone mesh that
ers the region+0.5, 0.5]. The 400 mesh points are shown as open circles. The solid |
corresponds to the exact solution. The initial conditions are given by

(pL. PL. Uyl Uy vz, By, Byl) = (1.08,0.95,1.2,0.01,0.5,3.6,2.0) X <0
(pR» Pr. Ux.R: Vy.R Vzrs Byr. B2r) = (1.0,1.0,0,0,0,4.0, 2.0) x>0
B, = 2.0
(6.6)

This was run to a simulation time of 0.2. The ratio of specific heats was sg3t&lgures 4a
to 4g show the results when ACM was used. Figures 4h and 4i show the density
y-component of the magnetic field in the same problem when ACM was not used. T
is a non-coplanar problem. It, therefore, generates seven waves, the waves being a
going fast shock, a right-going rotational discontinuity, a right-going slow shock, a cont
discontinuity, a left-going slow shock, a left-going rotational discontinuity, and a left-goir
fast shock. We see that all the shocks are properly captured with only a few zones ac
the shock profile. Itis also significant that this very high order scheme captures slow sh
with just a few zones. It was found in the study of TVD schemes for MHD—see Bals:
[2]—that the profiles of slow shocks sometimes have a few more zones across them
might be deemed optimal. This trend is exacerbated when one studies TVD scheme
relativistic MHD; see Balsara [4]. By observing Fig. 4 we notice tharteke5 MPWENO
scheme represents slow shocks with a crisp profile. Thus using the very high order sche
designed here improves the representation of slow magnetosonic shocks. We also r
from Fig. 4 that the contact discontinuity and the rotational discontinuities are captu
properly with just a few zones across their profiles. This is as true when the ACM algorit
is used as when itis not used, showing once again that the very high order schemes des
here do not need to rely much on ACM-type steepeners. From Figs. 4e and 4f we see
there are only a few zones between the rotational discontinuities and the corresponding
shocks. The ability of the scheme to represent all discontinuities with sharp profiles is \
for keeping the rotational discontinuities distinct from the slow shocks and represent
their profiles with a high degree of accuracy. This has allowed us to carry out the pre:
simulation on a grid of 400 zones. To obtain a comparable quality in the solution fron
TVD scheme would have required doing the problem on a grid of 800 zones. This illustre
the considerable advantages of the very high order MPWENO schemes designed her

VI.d. Shock—Entropy Wave Interaction

In Section IV, where we did a fair bit of convergence testing, we showed that it w
advantageous to go to higher order. It is interesting to ask whether these advantage
realized in a realistic test problem. Shu and Osher [39] presented a problem where a N
3 shock wave interacts with a density disturbance and generates a flow field that h
combination of smooth structures and discontinuities. This problem is a good model
the kinds of interactions that occur in simulations of compressible turbulence. It repres
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the amplification of entropy fluctuations as they pass through a strong shock. As mentic
in the Introduction, accurate capturing of isolated discontinuities, such as shocks, doe!
pose a problem for second-order-accurate TVD schemes. It is the interaction of sm
structures with shocks that poses a problem because that is where the damaging €
of TVD limiters are maximal. Jiang and Shu [23] have carried out a detailed compara
study showing that the performance of the 3 WENO scheme is far superior to that of
a well-designed TVD scheme. Jiang and Shu [23] came to the important conclusion
ther =3 WENO scheme with 800 zones outperformed the TVD scheme with 2000 zo
by a substantial margin. To examine the role of increasing order of accuracy we mal
comparison between thre=3 WENO scheme and tlre=5 MPWENO scheme designed
here. Ther =5 MPWENO scheme was run with"®, ,=d}¢; ,=d ,. Both schemes
were run with a CFL number of 0.6. The RF version of the numerical flux was used
both schemes. We did not use the ACM for either of the schemes. The problem was ru
a grid of 200 zones in the interval [-1, 1]. The initial conditions are specified by

(pL. PL, vy ) = (3.85714310.33332.629369) x <—0.8

6.7
(pr» Pr, vx.r) = (14 0.2 sin(5nx), 1, 0) x > —0.8. ©6.7)

The problem was run upto a simulation time of 0.47.

The points in Fig. 5a show the density from the:5 MPWENO scheme run on a grid
with 200 zones. We also ran the=5 MPWENO scheme on a grid of 800 zones in orde
to generate a reference calculation. The density from the reference calculation is st
as the solid line in Fig. 5a. The points in Fig. 5b show the density fromn ta8 WENO
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FIG. 5. The densities from the shock—entropy wave test problem. (ay Eh&8 MPWENO scheme run on
a grid with 200 zones. We also ran the=5 MPWENO scheme on a grid of 800 zones in order to generate
reference calculation. The density from the reference calculation is shown as a solid line. (b) A similar plot
ther =3 WENO scheme run on a grid with 200 zones. The ACM was not used. The problem was run with a (
number of 0.6.

scheme run on a grid with 200 zones. As before, the solid line is the density from
reference calculation. Velocity and pressure variables are not shown because they al
as illustrative as the density variable. We see that the density from=the MPWENO
scheme has converged to the reference calculation. Each of the extrema in the 200
calculation that was carried out with the=5 MPWENO scheme matches those in the
reference calculation. On observing the extrema in Fig. 5a we see that there are no more
11 points between the density extrema that immediately follow the shock. Thus the sch
has not just converged to the reference calculation but has done so with a very small nul
of points between extrema. In Section IV we pointed out not only that higher-order schei
converge faster than lower-order schemes but also that when the number of available p
is kept fixed the higher-order scheme produces a smaller error. The ability of=tise
MPWENO scheme to converge to the reference calculation with just 11 points betw
extrema gives us a validation of the results in Section IV on a real-world problem. Figure
shows that the = 3 WENO scheme has not converged to the reference calculation. In f
the extrema in Fig. 5b fall well short of those in the reference calculation. This clea
demonstrates that the theoretical results from the convergence tests that were carried
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Section IV have a genuine bearing @al-world calculations. This also shows that there i
a utility in using a scheme with very high order of accuracy. Tee3 WENO scheme does
converge to the reference calculation when run on a 400-zone grid. But this calculat
even though itis a one-dimensional calculation, is much more than twice as computatior
expensive as a calculation that uses5 MPWENO on a grid of 200 zones. With increasing
dimensionality the computational costs favor the 5 MPWENO scheme even more. This
clearly shows that in going from=3 WENO tor =5 MPWENO we have not reached
a point of diminishing returns. This also shows that when the calculation is starvec
resolution or when complex flow structures develop on all scales (both of which occu
several turbulence calculations) the higher-order schemes do indeed give us a subst
advantage.

VIl. MULTIDIMENSIONAL TESTS

Vlil.a. Mach 3 Wind Tunnel with a Forward Facing Step

This test problem was initially proposed and discussed in some detail by Woodward
Colella [49]. More recently it has been simulated at very high resolution by Cockburn
Shu [12]. Their simulation captured fine details in the solution, such as the vortex st
rollup, which appear when the resolution and the accuracy of the numerical scheme
simultaneously increased. Our purpose is not to make such a resolution study but ratt
validate the robust and accurate behavior of the schemes proposed here. For this reas
have simulated this test problem at the same resolution as Woodward and Colella [49].
problem consists of awind tunnel that is initialized on a two-dimensional grid with22(@
zones that span the region [0,53]0, 1]. A forward facing step is set up with the corner of
the step at (0.6, 0.2). The left boundary is initialized as an inflow boundary that has a M
3 gas with density of 1.4 and unit pressure flowing in. The gas has a ratio of specific h
given by 1.4. The right boundary is taken to be an outflow boundary. Reflective bounc
conditions are applied to the walls of the tunnel. We treated the singularity at the col
with the same technique suggested in Woodward and Colella [49]. The problem was
until a simulation time of 4.0.

Figures 6a and 6b show the density and entropy at the final time. The problem was
with ther =5 MPWENO scheme withl¥D ,=d¢; ,=dM ,. A CFL number of 0.6
was used. The RF version of the numerical flux was used. Since we wanted to test the |
scheme’s ability to handle contact discontinuities in multiple dimensions without adc
embellishments we did not use the ACM. We see that all the shocks have sharp prc
which are properly captured on the computing grid. The vortex sheet that emanates f
the Mach stem is properly resolved with just a few zones across the vortex sheet. Th
made most evident in Fig. 6b for the entropy. It is significant that this scheme shows li
or no spreading of the vortex sheet over the length of the computational domain despit:
fact tha no ACM steepening was used.

VIl.b. Double Mach Reflection of a Strong Shock

This test problem was also initially proposed and discussed in some detail by Woodv
and Colella [49]. More recently it has been simulated at very high resolution by Cockb
and Shu [12]. Their simulation captured fine details in the solution, such as the rolluy
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FIG. 6. (a) and (b) The density and entropy for the Mach 3 wind tunnel test problem. We used-the
MPWENO scheme with the RF strategy for the fluxes. The ACM was not used. The problem was run with a (
number of 0.6 and the results are shown at a simulation time of 4. The grid resolution wa8@4®nes. Some
of the contours on the top boundary of the step show corruption of the contour lines; this is entirely an artifa
the plotting routines.

the contact discontinuity that emanates from the stronger of the two Mach stems, wi
appear when the resolution is increased. Our purpose is not to make such a resolution:
but rather to validate the accuracy and robustness of the schemes proposed here. F
reason we have simulated this test problem at the same resolution as Woodward and C
[49]. The problem is initialized on a two-dimensional grid with 48220 zones that span
the region [0, 4}x [0, 1]. Only the region [0, 3k [0, 1] is displayed in the figures. A right-
moving Mach 10 shock is set up such that the shock front makes an angle witB@he
x-axis and intersects theaxis atx = 1/6. The boundary witk > 1/6 on thex-axis is taken

to be a reflecting boundary. The ratio of specific heats was taken to be 1.4. The unsho
fluid has a density of 1.4 and a pressure of unity. The problem was run till a simulation ti
of 0.2 was reached.

Figures 7a and 7b show the density, pressure, entropy, and Mach number at the final
The problem was run with the=5 MPWENO scheme witldM5 , =d:, ,=dM} ,. A
CFL number of 0.6 was used. The LLF version of the numerical flux was used. As shc
by Cockburn and Shu [12] and Burger and Colella [8] this problem is genuinely und
resolved at the resolutions being used here. This is a situation where the ACM can |
capture phenomena with the minimal number of zones possible. Thus to demonstrate
the ACM strategy works well in multiple dimensions we used the ACM technique for tt
problem. We see that both Mach stems are properly captured and all the shocks ir
problem have crisp profiles. The boundaries of the dense jet that forms at the wall
properly captured. The rollup of the slip lines that emanate from the head of the je
well captured in this simulation and is consistent with the higher-resolution simulatic
of Cockburn and Shu [12] and Burger and Colella [8]. This rollup of the slip lines sho.
through most clearly in the entropy plot; see Fig. 7b. This same problem has been c
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FIG. 7. (a) and (b) The density and entropy for the double Mach reflection test problem. We used 5he
MPWENO scheme with the LLF strategy for the fluxes. The ACM was used. The problem was run with a C
number of 0.6 and the results are shown at a simulation time of 0.2. The grid resolution wad28@ones.

with ther =3 WENO scheme in Jiang and Shu [23] using the same resolution as was
here. By comparing with that work we can see clearly that our use of the higherrerder
MPWENO scheme here has had a positive effect on the quality of the solution.

A note needs to be added about the use of the RF numerical flux for this test problem
using the RF version of the numerical flux we found a mild “carbuncle effect” at the po
where the right-going normal shock meets the wall. The carbuncle effect—and causes
give rise to it—has been thoroughly discussed by Quirk [31]. Quirk found that this eff
was essentially a consequence of poor coupling of the postshock entropy in the zones b
a shock when the shock is aligned with the grid. By comparing Eq. (2.5) with Eq. (2.6
is easy to see that the LLF numerical flux gives better coupling between zones than thi
numerical flux. Thus the use of the LLF numerical flux in regions that are flagged to be
the immediate vicinity of shocks was seen to cure this carbuncle effect and restore ¢
and stable behavior to the RF version of this scheme. As a result we were able to re
this same test problem with the= 5 MPWENO scheme without the carbuncle effect whel
the LLF flux was used in the vicinity of shocks but the RF flux was used everywhere e
It is also worthwhile to point out that, unlike other strategies that have been proposec
removing the carbuncle effect, this strategy does not degrade in any way the high-c
accuracy of the scheme.

VIl.c. Shock—Vortex Interaction Problem

In this third multidimensional test problem we study the interaction of a vortex with
shock. This test problem was first presented in Pao and Salas [29]. It was later carrie
using a TVD scheme by Meadowes al. [28] and anr =3 WENO scheme by Jiang and
Shu [23]. The latter used exact expressions for the vortex while earlier authors had |
approximate expressions for the vortex. We have used the same parameters for the -



42

and the vortex as Jiang and Shu [23] with an important difference. All the previous autt
have simulated this test problem with the flow aligned with one of the principal directio
of the grid. We have chosen to have the shock normal make an anglée tf #ie x-axis.
We also choose to have the vortex flow into the shock with a mean flow that makes
angle of 45 to thex-axis. Done this way it has a greater correspondence with real-wol
problems where one scarcely has the luxury of choosing grids that are aligned with
flow. The present test problem is a good model for sound waves that are generated \
turbulence interacts with shock structures in a jet plume resulting in broadband noise.
more detailed interaction of shock waves with turbulence has also been studied in Jal
et al.[22] and so it is to be expected that the test problem described here plays a rol
those simulations, too. The problem was initialized on a two-dimensional domain spant
[0, 1.5]x [0, 1.5] using a uniform grid of 15& 150 zones. A standing Mach 1.1 shock
was initialized along the ling = —x + 1 with the preshocked gas flowing into the shock
from the left-bottom corner. The zones with< —x + 1, including the boundary zones that
satisfy this condition, were initialized with preshocked gas. The zonesywith-x + 1,
including the boundary zones that satisfy this condition, were initialized with postshocl
gas. The imposition of these somewhat more complicated boundary conditions prodt
a slight corruption of the interior flow due to the boundaries but the effect was not v«
strong. We wanted to prevent strong startup transients from developing at the shock fi
As a result, the primitive variables in the zones that were within a distancef the
line y=—x+ 1 were given a linear variation that went from the preshock values to t
postshock values. The gas had a ratio of specific heats given by 1.4. The preshocke
had its density and pressure set to unity. A vortex centerég.aty.) = (0.25, 0.25) was
initialized so that its velocity, temperature, and entropy fluctuations to the mean flow in
fluid that was flowing into the shock were given by

(Svx, Svy) = 7€) (sinG, —cosh)

1
5T =~ V€, yg_g,
day

(7.1)

wherer =r /rcandr? = (x — Xo)? + (Y — Y¢)2. Herer¢ denotes the core radius for the vortex,
a controls the length scale over which the vortex decaysgatahotes the vortex’s strength
so that we have; = 0.05, «=0.204, and = 0.3. The temperature and entropy are define
here asT = P/p andS= P/p”. The problem was run until a simulation time of 0.8.

We used the =5 MPWENO scheme with, , =di¢; , =dM , to simulate this test
problem. The LLF version of the numerical fluxes was used. The ACM was not us
The problem was run with a CFL number of 0.6. Figures 8a and 8b show the density
Mach number, respectively, for the shock—vortex interaction test problem at a simula
time of 0.28. The vortex is halfway through the shock so that the vortex core is stron
interacting with the shock. Two distinct pressure regions are seen to develop in the posts
region. The region above the vortex center has higher pressure than the region belov
vortex center. Figures 8c and 8d show the same two variables at a simulation tim
0.5. The vortex core has passed through the shock. A wave front that is centered or
vortex core has developed and is still strongly interacting with the shock. Figures 8e
8f show the same two variables at a simulation time of 0.8. By this point the wave frc
emanating from the vortex core has reached the top boundary of the computational don
The times 0.28, 0.5, and 0.8 in our simulation correspond approximately to times (
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FIG. 8. (a)and (b) The density and Mach number, respectively, for the shock vortex interaction test prok
at a simulation time of 0.28. (c) and (d) The density and Mach number in the same simulation at a time of
(e) and (f) The same two variables at a simulation time of 0.8. We used-=tfie MPWENO scheme with the
LLF strategy for the fluxes. The ACM was not used. The problem was run with a CFL number of 0.6. The
resolution was 156 150 zones. The same simulation was run again using a PPMDE scheme again with a |
number of 0.6 on a 158 150 zone grid. (g) and (h) The same two variables as (a) and (b) for the PPM scheme
and (j) show the same two variables as (c) and (d) for the PPM scheme. (k) and (I) show the same two vari
as (e) and (f) for the PPM scheme.
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FIG. 8—Continued
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0.35, and 0.6 in the simulation of Jiang aBtiu [23]. We see that despite the modes
resolution in the simulation that we have carried out here, the vortex still has a w
defined circular shape, thus showing that our scheme has accurately represented the s
vortex interaction. We also see that despite the fact that the obliquely positioned shock
undergone strong interaction with the vortex, its structure has been properly preservec
also wish to make a comparison with older, dimensionally split TVD schemes. For t
reason, the problem was initialized on a similar grid of ¥5060 zones and simulated with

the PPMDE scheme of Colella and Woodward [13]. A Lapidus viscosity with the val
suggested in Colella and Woodward [13] was used to provide multidimensional coupl
The steepener was not used. The flattening algorithm described in Colella and Wood
[13] was also not used because the shock described here is not very strong. The u
the flattening algorithm is only recommended for simulations with strong shocks. Its |
here would only have degraded the order of accuracy with which the PPM scheme wi
have simulated this test problem. Figures 8g to 8l correspond to Figs. 8a to 8f, respecti
We see that there is considerable corruption of the density variable when the vortex

reaches the shock in Figs. 8g and 8h. Also when the wave front reaches the shock in Fi
and 8j the multidimensional interaction of two waves produces considerable small s
fluctuation in the region where the shock and the wave front interact. We see, therefore
on strongly multidimensional problems where the mean flow is not aligned with any of
grid directions the schemes presented here do indeed outperform the older, dimensic
split TVD schemes.

VIIl. CONCLUSIONS

Based on the work presented in this paper we offer the following conclusions:

(1) We have designed a class of numerical schemes with increasingly high orde
accuracy.

(2) The higher-order WENO schemes may not always preserve monotonicity. H
ever, the monotonicity preserving bounds of Suresh and Huynh [45] restore monoton
preserving behavior to these schemes. We call such schemes MPWENO schemes.

(38) The resulting schemes are robust and efficient, and can run with a reason
large CFL number. To give an estimate of the efficiencyrtees MPWENO scheme has
a computational complexity that is only greater thanrtke3 WENO scheme by a factor
of 1.35 to 1.5 on all problems that we have tried. The3 WENO scheme, in turn, has a
computational complexity that is only a factor of two larger than that of a TVD scheme

(4) The higher-order members of the MPWENO family of schemes are almost sf
trally accurate. We verify that this is so for MPWENO schemes with5 by presenting
several one- and two-dimensional convergence tests.

(5) We have examined the role of steepening algorithms such as the ACM algori
of Yang [50]. We have documented suitable values for the parameters that are to be
in the ACM method with MPWENO schemes of increasingly high order. We were able
show that such algorithms do not damage the order property of the numerical method
also show that higher-order schemes need to rely much less, or perhaps not at all, on
steepening algorithms.

(6) We have presented an extensive body of tests in one and two dimensions. T
tests have shown conclusively that the higher-order schemes designed here have subs
advantages over lower-order schemes such as TVD schemes.
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(7) We have shown that the methods developed here extend very well to other hy
bolic systems such as MHD.

(8) Itis argued that the methods designed here have great utility in situations wt
the flow has complex structures on all scales. Applications that have this property ma
found in DNS and LES simulations of compressible turbulence.

(9) We have carried out several multidimensional test problems on grids where
flow is not aligned with one of the grid directions and compared them with problems wh
the flow is aligned with one of the grid directions. This has led us to the conclusion t
it is very advantageous to design and use test problems for higher-order schemes v
the flow is not aligned with any of the grid directions. In particular, the difference betwe
earlier, dimensionally split TVD schemes and the schemes designed here becomes glat
apparent when the flow and the grid are not aligned.
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