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In this paper we design a class of numerical schemes that are higher-order exten-
sions of the weighted essentially non-oscillatory (WENO) schemes of G.-S. Jiang and
C.-W. Shu (1996) and X.-D. Liu, S. Osher, and T. Chan (1994). Used by themselves,
the schemes may not always be monotonicity preserving but coupled with the mono-
tonicity preserving bounds of A. Suresh and H. T. Huynh (1997) they perform very
well. The resulting monotonicity preserving weighted essentially non-oscillatory
(MPWENO) schemes have high phase accuracy and high order of accuracy. The
higher-order members of this family are almost spectrally accurate for smooth prob-
lems. Nevertheless, they, have robust shock capturing ability. The schemes are stable
under normal CFL numbers. They are also efficient and do not have a computational
complexity that is substantially greater than that of the lower-order members of this
same family of schemes. The higher accuracy that these schemes offer coupled with
their relatively low computational complexity makes them viable competitors to
lower-order schemes, such as the older total variation diminishing schemes, for prob-
lems containing both discontinuities and rich smooth region structure. We describe
the MPWENO schemes here as well as show their ability to reach their designed ac-
curacies for smooth flow. We also examine the role of steepening algorithms such as
the artificial compression method in the design of very high order schemes. Several
test problems in one and two dimensions are presented. For multidimensional prob-
lems where the flow is not aligned with any of the grid directions it is shown that the
present schemes have a substantial advantage over lower-order schemes. It is argued
that the methods designed here have great utility for direct numerical simulations
and large eddy simulations of compressible turbulence. The methodology developed
here is applicable to other hyperbolic systems, which is demonstrated by showing
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that the MPWENO schemes also work very well on magnetohydrodynamical test 
problems. 

Key Words:conservation law; ENO; weighted ENO; monotonicity preserving;
convergence.

I. INTRODUCTION

Ever since the introduction of higher-order Godunov schemes by vanLeer [48] the fluid
dynamics community has realized that it is beneficial to strive for schemes of high order
of accuracy while retaining the robustness that is common to Godunov-type methods. This
especially pertains to spatial accuracy but extends also to temporal accuracy. VanLeer [48]
showed that monotonicity preserving versions of the original Godunov [16] scheme that
were second-order accurate in space and time could be designed. Colella and Woodward [13]
used third-order-accurate interpolants but their scheme was still total variation diminishing
(TVD) and, therefore, restricted to being second-order accurate in theL1 norm even for
smooth problems with extrema. Chakravarthy and Osher [11] designed an entire class of
TVD schemes with increasing order of accuracy for smooth monotone solutions but these
are again only second order for smooth problems with extrema. The monotonicity enforcing
limiters in TVD schemes are highly non-linear, making it difficult to remove their deleterious
effects on apost factobasis. The introduction of essentially non-oscillatory (ENO) schemes
by Hartenet al. [20] showed that (essentially) non-oscillatory schemes of higher than
second-order accuracy could be constructed. This initiated a substantial body of research
by several authors in the construction of non-oscillatory schemes of higher than second
order, one of the more recent being the fifth-order weighted ENO (WENO) scheme of Jiang
and Shu [23]. This paper builds on Jiang and Shu [23] and develops an entire class of WENO
finite difference schemes with increasing order of accuracy, without a substantial increase
in computational complexity.

The early ENO scheme of Hartenet al.[20] relied on finite volume interpolation. Its mul-
tidimensional extension was carried out by Casper [9]. The central idea in these schemes
consisted of using the smoothest stencil out of several possible stencils that could cover a
given zone in the computational domain and interpolate the solution in that zone with the
desired order of accuracy. The stencil was designed to adapt in the vicinity of discontinu-
ities to yield a one-sided interpolation if that became necessary. This gave an essentially
non-oscillatory shock transition while maintaining a uniform formal high order of accuracy.
High-order (higher than two) finite volume ENO schemes suffered from the fact that the
number of stencils that needed to be evaluated grew as the second or third power of the order
of interpolation in two and three dimensions, respectively. Also a high-order quadrature is
needed to compute the numerical fluxes along cell boundaries. Thus the computational cost
of using finite volume ENO schemes in multiple dimensions is quite high. Shu and Osher
[38, 39] constructed finite difference ENO schemes based on point values and numerical
fluxes. This reduced the number of stencils needed to evaluate so that the number of stencils
was only proportional to the order of accuracy of the scheme even in multiple dimensions;
it also avoided the need for numerical quadratures for the fluxes. Hence their ENO schemes
were more economical than the finite volume versions in multiple dimensions. Time dis-
cretization was performed by a class of high-order Runge–Kutta methods that maintained
TVD or other stability properties of the spatial operator; see Shu and Osher [38] and Shu [40].
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There are many applications of ENO and WENOschemes; see, for example, [41]. Higher-
order ENO and WENO schemes are especially suitable for problems containing both shocks
and a large number of complex smooth structures, such as compressible hydrodynamic
turbulence; see Shuet al.[42]. On the other hand, second-order TVD schemes are optimally
suited for flow calculations where a small number of isolated shock structures dominate the
fluid dynamics.

Liu et al. [27] showed that the multiplicity of stencils utilized in an ENO scheme could
be used to advantage when all the stencils are smooth to obtain an increase in the order
of accuracy of the interpolation. They showed that when the solution was locally smooth
enough one could make a convex combination of the stencils in anr th-order ENO scheme
to obtain an (r + 1)th-order WENO scheme. The weights were designed so that near a
discontinuity the scheme is close to ENO, namely stencils crossing discontinuities had
nearly zero weights. Jiang and Shu [23] realized that the interpolation methodology had a
greater level of freedom than had been realized by Liuet al.[27]. An r th-order ENO scheme
hasr possible stencils that can cover a given cell. It is, therefore, possible to have suitable
constant weights for theser stencils so that the resulting linear scheme is (2r − 1)th-order
accurate when the solution is smooth. Jiang and Shu [23] used these constants forr = 2 and
r = 3, constructed nonlinear weights to achieve the WENO property, and proved that the
nonlinearWENO schemes forr = 2 andr = 3 were uniformly third- and fifth-order accurate
at all points in the flow including at critical points such as smooth extrema and sonic points.
The detailed proof requires one to make analytic expansion of the weighted interpolant with
nonlinear weights and has to be proved anew for each value ofr that is of interest. Using
Mathematica we have been able to show analytically that this uniform (2r − 1)th-order
accuracy property remains true forr = 4 throughr = 7. The detailed Mathematica proofs
have been omitted from this paper to save space. Such accuracy is also verified numerically
in Section IV of this paper. The nonlinear weights in the construction of WENO schemes
involved a sophisticated measure of the local smoothness, so that when the solution was
smooth enough to achieve the maximal attainable order of accuracy it would automatically
do so. When the solution was not smooth enough to attain the maximal order of accuracy the
smoothness measure would detect such a situation and the scheme would also automatically
drop the order of accuracy (but not to lower thanr th order). The resultingr = 3 WENO
scheme was only two to four times as computationally costly as a TVD scheme, depending
on the version used. Thus for a complex flow problem the scheme could show its advantage.

Numerical experimentation showed that ther = 3 WENO scheme, despite its high accu-
racy, may still display a considerable dispersion error, especially for long time integrations
with very few points per wavelength. Construction of WENO schemes withr > 3 has been
carried out in this paper. These schemes, when coupled with a third-order Runge–Kutta
time discretization, are linearly stable under CFL numbers between 1.43 and 0.99 forr = 3
to 7. Higher-order Runge–Kutta methods allow larger CFL numbers for linear stability.
For problems where the solution is smooth such schemes achieve their design accuracies,
showing them to be potentially useful. Our numerical experiments, however, showed that
for problems involving discontinuities, ther = 5 WENO used with a temporally third-order
accurate Runge–Kutta scheme was non-oscillatory for a CFL number of 0.2 but was already
slightly oscillatory for a CFL number of 0.4. The results from these numerical experiments
are not shown here to save space. Similar results hold also for high-order ENO schemes,
namely, when a high-order spatial discretization is coupled with a lower order Runge–Kutta
time stepping, the CFL number should be reduced to be much lower than what is required by
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linear stability analysis, not only to keep accuracy but also to keep the non-oscillatory prop-
erty. Application to other, more challenging hyperbolic systems with more complex wave
structure (such as magnetohydrodynamics, MHD) showed that ther = 3 WENO scheme
with RF or LLF building blocks also had difficulty in handling discontinuities. In another
development, Suresh and Huynh [45]—see also the work of Leonardet al.[25]—produced
a geometrically motivated way of showing that the construction of monotonicity preserv-
ing interpolation strategies permitted a greater degree of latitude than had previously been
thought possible. Earlier efforts at understanding the monotonicity constraint—see Tadmor
[47] or Sweby [46]—were shown to be too restrictive in that they failed to distinguish be-
tween a smooth local extremum and a region in the flow with a genuine O(1) discontinuity
such as a shock. Suresh and Huynh [45] designed monotonicity preserving bounds on the
solution that gets interpolated to the zone boundary that would distinguish between a smooth
local extremum and a genuine O(1) discontinuity. The interesting feature of the work of
Suresh and Huynh [45] was that their monotonicity bounds could be applied to any higher-
order scheme in order to bring it within the monotonicity preserving regime. Application
of the monotonicity preserving bounds to the whole class of WENO schemes enabled them
to preserve their order of accuracy in regions where it was warranted and yet display stable,
oscillation-free behavior for problems where the flow was not smooth. Furthermore, the
monotonicity preserving weighted essentially non-oscillatory (MPWENO) schemes were
stable for standard Courant numbers. We observe significant improvements in dispersion
error as we go from ther = 3 WENO scheme to ther = 6 MPWENO scheme. Ther = 5
MPWENO member of this family of schemes is already almost spectrally accurate on a
dimension-by-dimension basis; however, our implementation of this scheme on RISC ar-
chitectures was only 35–50% more expensive than ther = 3 WENO scheme. Thus a high
level of fidelity is obtained at only a modest increment in computational cost. For certain
complex problems the monotonicity preserving mechanism can also cause the MPWENO
schemes to have lower formal accuracy than the corresponding WENO schemes. It is shown
that the accuracy is, nevertheless, substantially higher than that of older TVD schemes. One
of the goals of this paper is to catalogue this family of schemes and their performance.
Suresh and Huynh [45] also conjectured that their monotonicity preserving bounds would
not degrade the order of accuracy of a numerical scheme. Thus, another goal of this paper
is to explore in some detail whether this is uniformly true.

It is well known that contact discontinuities in the linearly degenerate characteristic
fields are smeared much more than shocks. The smearing becomes less serious for higher-
order schemes. When simple, isolated contact discontinuities are present in the flow two
well-established methods of improving the solution exist. The first method is the subcell
resolution method of Harten [19]. A similar idea has been extended to multiple dimensions
by Fedkiwet al.[14] but carries with it considerable computational complexity and therefore
is not explored here. The second method is the artificial compression method (ACM) of
Harten [17], which was developed in its refined form by Yang [50]. The ACM consisted of
improving the steepness of a linearly degenerate characteristic field by adding in an extra
piecewise linear profile with magnitude on the level of the local truncation errors of the
scheme in smooth regions to the interpolant for that field. The introduction of an extra
profile improves the visual structure of an isolated contact discontinuity. We explore the
role of the ACM in preserving the order of accuracy for practical problems in this paper. The
ACM also has free parameters which control the amount of steepening introduced and we
show that higher-order schemes can operate well with smaller values of those parameters,
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i.e., with a smaller contribution from the artificialcompression method. Based on extensive
testing we suggest optimal values of these parameters for MPWENO schemes withr > 3.

We would like to stress the importance of higher-order accuracy from the point of view of
scientific and engineering applications. This is especially so because the numerical simula-
tion of compressible turbulent flows, perhaps using large eddy simulation (LES) techniques,
is becoming increasingly important in science and engineering. For a recent review of LES
simulations of compressible flow see Lesieur and Comte [26]. The methods of choice for
such simulations seem to be pseudo-spectral methods. However, spectral methods cannot be
readily extended to complex geometry, composite grids, and adaptive meshing techniques,
and do not degrade gracefully when the full resolution is lost. Higher-order Godunov meth-
ods, on the other hand, take well to adaptive mesh refinement; see Burger and Colella [8].
The ability of the methods developed here to take well to complex mesh geometries has also
been catalogued in Casperet al. [10]. There have been several efforts to analyze the role
of numerical accuracy in the simulation of incompressible turbulence flows; see Browning
and Kreiss [7] and Ghosal [15] and references therein. A corresponding effort to under-
stand the role of numerical accuracy in the simulation of compressible turbulence flows
has not been carried out. However, an examination of the time history of direct numeri-
cal simulations (DNS) of decaying compressible hydrodynamical turbulence—see Porter
et al. [30]—shows that they go through an initial phase where the simulations are domi-
nated by the formation and dissipation of shocks. Once this initial phase is over, the rest of
the time history in these simulations is dominated by the formation and evolution of vor-
tical structures, which is quantitatively similar to simulations of decaying incompressible
hydrodynamical turbulence. Balsaraet al. [5] have shown the existence of a similar time
history in DNS simulations of compressible MHD turbulence. Thus the results of Browning
and Kreiss [7] and Ghosal [15] are also expected to have great relevance to simulations of
compressible turbulence. Basing their work on the previous work of Henshawet al. [21],
Browning and Kreiss [7] carried out a comparative study of the same DNS simulations
of time-evolving turbulence using a second-order finite difference scheme, a fourth-order
finite difference scheme, and a pseudo-spectral scheme. They found that for a short period
in the time evolution all three simulations agreed with one another. However, for longer time
evolution only the results from the fourth-order finite difference scheme and the pseudo-
spectral scheme agreed with each other. The errors in the simulation carried out with the
second-order scheme built up so rapidly that the results diverged from the correct results
after a short period in the time evolution. The result of Browning and Kreiss [7] clearly
demonstrates the utility of very high order schemes in simulations of compressible turbu-
lent flows. Ghosal [15] took this study further by focusing on the role of finite difference
and pseudo-spectral schemes in LES modeling. The finite difference schemes that Ghosal
considered ranged from second-order accurate to eighth-order accurate when viewed on a
dimension-by-dimension basis. The power of using higher-order schemes was convincingly
demonstrated by Ghosal [15] when he showed that by using an eighth-order accurate finite
difference scheme with an LES filter length that was twice as large as the grid scale the
numerical errors could be made much smaller than the subgrid force terms on all length
scales that were represented in the computation. To achieve a comparable effect from a
second-order-accurate finite difference scheme one would have had to set the LES filter
length to be eight times as large as the grid scale. A good implementation of the ninth-order
accurater = 5 MPWENO scheme reported here is about three times slower than a tradi-
tional second-order-accurate TVD scheme. Thus for three-dimensional time-explicit LES
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calculations of compressible turbulence, savings by a factor of 44/3= 85.3 are suggested
when ther = 5 MPWENO scheme is used instead of a TVD scheme.

In Section II we give some general background information on WENO schemes with the
intent of establishing some basic notation. In Section III we give the details of MPWENO
interpolation. In Section IV we catalogue the higher-order properties of MPWENO schemes
by showing their performance on well-known convergence tests. In Section V we explore
the performance of MPWENO schemes when the ACM is used. In Section VI we show the
results from several one-dimensional tests. In Section VII we show the results from several
multidimensional tests. In Section VIII we draw some conclusions.

II. GENERAL BACKGROUND ON WENO SCHEMES

Consider the hyperbolic system in conservation form given by

Ut + div F(U ) = 0. (2.1)

Here U = (u1, . . . ,um) is the vector of conserved variables,F(U )= (F1, . . . , Fd) is a
collection of vectors of fluxes, and we work in ad-dimensional space with coordinates
(x1, . . . , xd). The problem is specified on a mesh att = 0 and is to be solved fort > 0. The
temporal discretization is carried out by casting the system in Eq. (2.1) in the form

dU

dt
= L(U ), (2.2)

whereL(U ) is the high-order discrete representation of−div F(u). We then use the TVD
Range–Kutta-type methods developed in Shu and Osher [38] to integrate the system in
Eq. (2.2) forward in time. Because the temporal update consists of a sum of the discretized
derivatives of the fluxes in each direction we restrict our attention to variations in one
direction, taken to be thex-direction here. Thus let us discretize the space into zones of size
1x. Let j be an integer, and letxj denote zone centers andxj+1/2 denote zone boundaries.
Then one has

L(U j ) = − 1

1x
(F̂ j+1/2− F̂ j−1/2), (2.3)

whereF̂ j+1/2 is a higher-order numerical flux at thexj+1/2 zone boundary. Shu and Osher
[39] give details on how to use a generating functional approach to produce such a flux and
we will not repeat the details here.

The fact that the system is hyperbolic implies that for variations in each coordinate
direction there exist anm-dimensional basis of right eigenvectors for the Jacobian in that
direction, denoted by (r1, . . . , rm), onto which the solution vector or the flux vector in
that direction can be projected. The corresponding left eigenvectors (l1, . . . , lm) are assumed
to be orthonormal to the right eigenvectors and help us make this projection. The system
admits a set of eigenvalues which we denote by (λ1, . . . , λm). All of the LF, LLF, and RF
fluxes can be written as projections of different combinations of the fluxes and conserved
variables onto the right eigenvectors at the zone boundaryxj+1/2. The linearized Riemann
solver of Roe [33] can be used withU j andU j+1 as the left and right states, respectively, to
obtain eigenvalues and right and left eigenvectors at the zone boundaryxj+1/2. We denote
the 5th right and left eigenvectors at the zone boundaryxj+1/2 by rs; j+1/2 and ls; j+1/2,
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respectively. We also denote the5th eigenvalue at the zone boundaryxj+1/2 by λs; j+1/2.
Then we write the numerical flux at that zone boundary as

F̂ j+1/2 =
m∑

s=1

( f +s; j+1/2+ f −s; j+1/2) rs; j+1/2. (2.4)

Here f +s; j+1/2 and f −s; j+1/2 are flux components that are evaluated for each characteristic
field s. The flux components assume different values based on the form of the low-order
numerical flux that one wishes to employ as a building block for the higher-order ENO
or WENO flux. They also depend on the order of accuracy of the interpolation. As shown
by Shu and Osher [38, 39], construction of a higher-order ENO scheme entails making
a higher-order reconstruction of the flux components obtained from a particular choice
of low order numerical flux. In this paper we restrict ourselves to using the LLF or the
RF numerical fluxes as the low-order fluxes used as building blocks for the previously
mentioned higher-order reconstruction.

In this paragraph we focus on the LLF and RF fluxes that are used as low-order building
blocks for pointwise ENO schemes. The first-order LLF flux that one may use as a low-order
building block for a higher-order scheme is given by

f +s; j+1/2 = ls; j+1/2 · 1
2
(Fj + λ̂s; j+1/2U j );

f −s; j+1/2 = ls; j+1/2 · 1
2
(Fj+1− λ̂s; j+1/2U j+1); (2.5)

λ̂s; j+1/2 = χ max(|λs; j+1/2|, |λs; j |, |λs; j+1|).

Hereχ is typically in the range of 1.1 to 1.3 and controls the amount of dissipation introduced
into the numerical scheme. Harten [18] has shown the intimate connection between the
numerical flux and the dissipation matrix. Because the dissipation introduced by each
characteristic field is proportional to the local eigenvalues that belong to that characteristic
field the LLF flux is not very dissipative. Besides, as shown by Shu and Osher [39], the
higher-order extensions of the ENO schemes built by using the LLF flux as a building block
are only marginally more dissipative than the corresponding ENO schemes that use the RF
flux as a building block. The first-order RF flux that we have found useful in time-dependent
problems as a low-order building block for a higher-order scheme is given by

if λs; j > 0 and λs; j+1 > 0 then f +s; j+1/2 = ls; j+1/2 · Fj ; f −s; j+1/2 = 0;
if λs; j < 0 and λs; j+1 < 0 then f +s; j+1/2 = 0; f −s; j+1/2 = ls; j+1/2 · Fj+1;

(2.6a)
if λs; j ≤ 0 and λs; j+1 ≥ 0 then use Eq. (2.5);
if λs; j ≥ 0 and λs; j+1 ≤ 0 then use Eq. (2.5).

It is also worthwhile to catalogue the original choice of RF flux in Shu and Osher [39],
which was given by

if λs; j ≤ 0 and λs; j+1 ≥ 0 then use Eq. (2.5);
else ifλ̂s; j+1/2 > 0 then f +s; j+1/2 = ls; j+1/2 · Fj ; f −s; j+1/2 = 0; (2.6b)

else ifλ̂s; j+1/2 < 0 then f +s; j+1/2 = 0; f −s; j+1/2 = ls; j+1/2 · Fj+1.
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Equation (2.6a) introduces an additional dissipation when characteristic fields are flowing
into a shock and thus spreads out a shock profile so that it occupies two or three zones. This
is a very desirable feature in time-dependent problems. In time-steady problems Eq. (2.6b)
has the advantage that it permits the representation of a standing shock with the steepest
possible profile. We see that the RF flux simply utilizes the LLF flux when an entropy fix
is desired and reduces to a Roe [33] flux when an entropy fix is not needed. Notice that
Eqs. (2.5) and (2.6) produce flux components for the flux computation in Eq. (2.4) for
each characteristic field of the hyperbolic system. Roe [34] has pointed out that it may be
valuable to use different forms of the flux components for different characteristic fields.
Based on numerical experiments involving the Euler and MHD systems we have found it
valuable to use the LLF flux for linearly degenerate characteristic fields and the RF flux for
the genuinely nonlinear characteristic fields. We must remind the reader that Eqs. (2.5) and
(2.6) only apply to the construction of first-order-accurate numerical fluxes. In the ensuing
paragraphs we will show how they can be used as building blocks for building higher order
numerical fluxes.

From Eqs. (2.5) and (2.6) we see that in order to carry out the evaluation off +s; j+1/2 in
Eq. (2.4) we necessarily need to utilize the values in the zone that is centered onxj . There
are r candidate stencils that cover this zone each of which can be used to make anr th-
order-accurate interpolating function for that zone. We denote these stencils bySj ;k, where
k= 0, . . . ,r − 1 labels the stencils from the leftmost stencil to the rightmost stencil in that
order. One can also graphically illustrate the stencil support by listing the zone centers that
are covered by that stencil. Thus for thekth stencilSj ;k which interpolates over the zone
that is centered onxj we have

Sj ;k = (xj+k−r+1, xj+k−r+2, . . . , xj+k). (2.7)

Each of the stencilsSj ;k can provide anr th-order-accurate interpolation at the right boundary
of the zone that hasxj as its zone center. Thus if we want ther th-order-accurate interpolation
of f +s; j+1/2 that can be obtained from the stencilSj ;k we need to evaluate the values of the
flux components

{ f +s; j+k−r+1; j+1/2, f +s; j+k−r+2; j+1/2, . . . , f +s; j+k; j+1/2} (2.8)

and use them in the interpolation process. Should we want to use the LLF flux we define
the flux components in Eq. (2.8) by

f +s; j+k; j+1/2 = ls; j+1/2 · 1
2
(Fj+k + λ̂s; j+1/2U j+k);

(2.9)
λ̂s; j+1/2 = χ max(|λs; j+1/2|, |λs; j−r+1|, . . . , |λs; j+r−1|).

The second equality in Eq. (2.9) is a little different fromλ̂s; j+1/2 = χmax(|λs; j |, |λs; j+1|),
which was the choice for that formula that was catalogued in Shu and Osher [39]. Our choice
in Eq. (2.9) has a little better dependence on the particular stencil being used and provides
the numerical scheme with much more robustness at reflecting boundaries. Should we want
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to use the RF flux we define the fluxcomponents in Eq. (2.8) in analogy with Eq. (2.6a) by

if λs; j > 0 and λs; j+1 > 0 then f +s; j+k; j+1/2 = ls; j+1/2 · Fj+k;
if λs; j < 0 and λs; j+1 < 0 then f +s; j+k; j+1/2 = 0;

(2.10a)
if λs; j ≤ 0 and λs; j+1 ≥ 0 then use Eq. (2.9);
if λs; j ≥ 0 and λs; j+1 ≤ 0 then use Eq. (2.9);

The variant of Eq. (2.10a) which is analogous to Eq. (2.6b) is given by

if λs; j ≤ 0 and λs; j+1 ≥ 0 then use Eq. (2.9);
else ifλ̂s; j+1/2 > 0 then f +s; j+k; j+1/2 = ls; j+1/2 · Fj+k; (2.10b)

else ifλ̂s; j+1/2 < 0 then f +s; j+k; j+1/2 = 0.

When each of the stencilsSj ;k has a smooth solution we can make a convex combination
of the interpolated values that we obtain from each of ther stencils in order to obtain a
(2r − 1)th-order-accurate evaluation of the interpolated value of the flux components at the
point xj+1/2.

We now give the details of the interpolation process. Specifically, we are interested in
making a(2r − 1)th-order-accurate evaluation of the interpolated value at the pointxj+1/2,
which constitutes the right boundary of the interpolated zone that is centered onxj . The
r th-order-accurate value that can be obtained by the reconstruction using thekth stencilSj ;k
is denoted byq+r

s; j ;k ( f +s; j+k−r+1; j+1/2, f +s; j+k−r+2; j+1/2, . . . , f +s; j+k; j+1/2). It can be written
as a linear combination of the values in Eq. (2.8). We write it explicitly as

q+r
s; j ;k( f +s; j+k−r+1; j+1/2, f +s; j+k−r+2; j+1/2, . . . , f +s; j+k; j+1/2) =

r∑
i=1

ar
k;i f +s; j+k−r+i ; j+1/2.

(2.11)

The constant coefficientsar
k;i for r = 4 throughr = 7 will be tabulated in the next section.

Sincek= 0, . . . ,r − 1 in Eq. (2.11) there arer possible stencils and, therefore,r possible
interpolated values that we may obtain from Eq. (2.11). When the solution is smooth the
(2r −1)th-order-accurate evaluation of the interpolated value at the pointxj+1/2 is obtained
by making a convex combination of ther possible values that we may obtain from Eq. (2.11).
This can be written as

f +s; j+1/2 =
r−1∑
k=0

Cr
k q+r

s; j ;k( f +s; j+k−r+1; j+1/2, f +s; j+k−r+2; j+1/2, . . . , f +s; j+k; j+1/2) (2.12)

Thus for each value ofr there existr positive coefficientsCr
k which can be used to improve

the local accuracy at a selected point. We refer to these coefficients as the optimal weights.
Equation (2.12) is still not suitable for use in Eq. (2.4) for the following reason. When the
solution is adequately smooth we want the interpolation to achieve its maximal (2r − 1)th-
order accuracy. When this is not the case we wish to automatically put the burden of
interpolation on the one or more smoothest stencils out of ther possible stencils. Thus we
need an estimator for the smoothness of a stencil. We denote this smoothness estimator
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by I Sr
k . Details about the design of these smoothness indicators have been given in Jiang

and Shu [23]. They can be constructed for all values ofr and we have carried out such a
construction forr = 4 throughr = 7. Using these smoothness estimators we can write an
equation that is analogous to Eq. (2.12), which is what we use in Eq. (2.4). Thus we have

f +s; j+1/2 =
r−1∑
k=0

ωr
k q+r

s; j ;k( f +s; j+k−r+1; j+1/2, f +s; j+k−r+2; j+1/2, . . . , f +s; j+k; j+1/2), (2.13)

where the coefficientsωr
k depend on the smoothness measuresI Sr

k . The coefficientsωr
k are

designed so that they approximateCr
k to within (1x)r−1 when all the stencils have a smooth

solution. This ensures that we can achieve the maximal (2r − 1)th order of accuracy when
it is warranted. The actual construction of the weights goes as follows

ωr
k =

αr
k

αr
0 + · · · + αr

r−1
, (2.14)

where

αr
k =

Cr
k(

ε + I Sr
k

)p . (2.15)

Here we setε= 10−10 to avoid division by zero. We also find thatp= 2 works well. This
completes the discussion of the WENO interpolation process.

III. MPWENO INTERPOLATION

The discussion in the previous section shows that we need a tabulation of the coefficients
ar

k;i in Eq. (2.11), the smoothness estimatorsI Sr
k , and the optimal weightsCr

k in order
to design MPWENO schemes of increasingly high order of accuracy. We tabulate these
coefficients here forr = 4 throughr = 6. The corresponding information forr = 2 and
r = 3 was given in Jiang and Shu [23]. The indices in Eqs. (2.11) and (2.13) are rather
complicated and thus are difficult to carry around in all the expressions in this section.
Thus, in this section, we give the details of interpolating a scalar quantityu to the right
boundary of a zone centered onxj and we denote this interpolated value ofu asuL

j+1/2.
In some circumstances and for some hyperbolic systems, like incompressible flow, the

flow may be very smooth. In these cases the computation of the smoothness estimators can
be bypassed entirely. It may then become computationally efficient to evaluateuL

j+1/2 using
just the optimal weights in Eq. (2.12). When this is done, simple closed form expressions
for uL

j+1/2 in terms of the values on a (2r − 1) point stencil can be easily obtained. In what
follows we also give such expressions.

When the smoothness indicators are evaluated, carrying out the WENO interpolation
for a givenr requiresr 3+ 4r 2+ 2r float point operations. Thus ther = 5 WENO scheme
interpolation requires about thrice as many float point operations as ther = 3 WENO
scheme. In practice, there are other steps such as eigenvector construction and characteristic
projection which depend on the hyperbolic system being solved and determine the real cost
of the scheme. Furthermore, on RISC processors, the interpolation step for larger values of
r provides many more opportunities for cache reuse than the interpolation step for lower

10



TABLE I

a4
k;i values i = 1 i = 2 i = 3 i = 4

k= 0 −1/4 13/12 −23/12 25/12
k= 1 1/12 −5/12 13/12 1/4
k= 2 −1/12 7/12 7/12 −1/12
k= 3 1/4 13/12 −5/12 1/12

values ofr . For such reasons ther = 5 WENO/MPWENO scheme takes only 35–50% more
time than ther = 3 WENO scheme in our implementation.

III.a. Coefficients and Smoothness Estimators for r= 4

Table I gives the coefficients for ther = 4 case. The smoothness estimators are given by

I S4
0 = u j−3(547uj−3− 3882uj−2+ 4642uj−1− 1854uj )+ u j−2(7043uj−2− 17246uj−1

+ 7042uj )+ u j−1(11003uj−1− 9402uj )+ 2107u2
j

I S4
1 = u j−2(267uj−2− 1642uj−1+ 1602uj − 494uj+1)+ u j−1(2843uj−1− 5966uj

+ 1922uj+1)+ u j (3443uj − 2522uj+1)+ 547u2
j+1

I S4
2 = u j−1(547uj−1− 2522uj + 1922uj+1− 494uj+2)+ u j (3443uj − 5966uj+1

+ 1602uj+2)+ u j+1(2843uj+1− 1642uj+2)+ 267u2
j+2

I S4
3 = u j (2107uj − 9402uj+1+ 7042uj+2− 1854uj+3)+ u j+1(11003uj+1− 17246uj+2

+ 4642uj+3)+ u j+2(7043uj+2− 3882uj+3)+ 547u2
j+3.

The optimal weights are given by

C4
0 = 1/35; C4

1 = 12/35; C4
2 = 18/35; C4

3 = 4/35

EvaluatinguL
j+1/2 using just the optimal weights we get

uL
j+1/2 = −(1/140)uj−3+ (5/84)uj−2− (101/420)uj−1+ (319/420)uj

+ (107/210)uj+1− (19/210)uj+2+ (1/105)uj+3.

III.b. Coefficients and Smoothness Estimators for r= 5

Table II gives the coefficients for ther = 5 case. The smoothness estimators are given by

I S5
0 = u j−4(22658uj−4− 208501uj−3+ 364863uj−2− 288007uj−1+ 86329uj )

+ u j−3(482963uj−3− 1704396uj−2+ 1358458uj−1− 411487uj )

+ u j−2(1521393uj−2− 2462076uj−1+ 758823uj )

+ u j−1(1020563uj−1− 649501uj )+ 107918u2j

11



TABLE II

a5
k;i values i = 1 i = 2 i = 3 i = 4 i = 5

k= 0 1/5 −21/20 137/60 −163/60 137/60
k= 1 −1/20 17/60 −43/60 77/60 1/5
k= 2 1/30 −13/60 47/60 9/20 −1/20
k= 3 −1/20 9/20 47/60 −13/60 1/30
k= 4 1/5 77/60 −43/60 17/60 −1/20

I S5
1 = u j−3(6908uj−3− 60871uj−2+ 99213uj−1− 70237uj + 18079uj+1)

+ u j−2(138563uj−2− 464976uj−1+ 337018uj − 88297uj+1)

+ u j−1(406293uj−1− 611976uj + 165153uj+1)

+ u j (242723uj − 140251uj+1)+ 22658u2j+1

I S5
2 = u j−2(6908uj−2− 51001uj−1+ 67923uj − 38947uj+1+ 8209uj+2)

+ u j−1(104963uj−1− 299076uj + 179098uj+1− 38947uj+2)

+ u j (231153uj − 299076uj+1+ 67923uj+2)

+ u j+1(104963uj+1− 51001uj+2)+ 6908u2
j+2

I S5
3 = u j−1(22658uj−1− 140251uj + 165153uj+1− 88297uj+2+ 18079uj+3)

+ u j (242723uj − 611976uj+1+ 337018uj+2− 70237uj+3)

+ u j+1(406293uj+1− 464976uj+2+ 99213uj+3)

+ u j+2(138563uj+2− 60871uj+3)+ 6908u2
j+3

I S5
4 = u j (107918uj − 649501uj+1+ 758823uj+2− 411487uj+3+ 86329uj+4)

+ u j+1(1020563uj+1− 2462076uj+2+ 1358458uj+3− 288007uj+4)

+ u j+2(1521393uj+2− 1704396uj+3+ 364863uj+4)

+ u j+3(482963uj+3− 208501uj+4)+ 22658u2j+4.

The optimal weights are given by

C5
0 = 1/126; C5

1 = 10/63; C5
2 = 10/21; C5

3 = 20/63; C5
4 = 5/126.

EvaluatinguL
j+1/2 using just the optimal weights we get

uL
j+1/2 = (1/630)uj−4− (41/2520)uj−3+ (199/2520)uj−2− (641/2520)uj−1

+ (1879/2520)uj + (275/504)uj+1− (61/504)uj+2

+ (11/504)uj+3− (1/504)uj+4.
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TABLE III

a6
k;i values i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

k= 0 −1/6 31/30 −163/60 79/20 −71/20 49/20
k= 1 1/30 −13/60 37/60 −21/20 29/20 1/6
k= 2 −1/60 7/60 −23/60 19/20 11/30 −1/30
k= 3 1/60 −2/15 37/60 37/60 −2/15 1/60
k= 4 −1/30 11/30 19/20 −23/60 7/60 −1/60
k= 5 1/6 29/20 −21/20 37/60 −13/60 1/30

III.c. Coefficients and Smoothness Estimators for r= 6

Table III gives the coefficients for ther = 6 case. The smoothness estimators are given
by

I S6
0 = u j−5(1152561uj−5− 12950184uj−4+ 29442256uj−3− 33918804uj−2

+ 19834350uj−1− 4712740uj )+ u j−4(36480687uj−4− 166461044uj−3

+ 192596472uj−2− 113206788uj−1+ 27060170uj )

+ u j−3(190757572uj−3− 444003904uj−2+ 262901672uj−1− 63394124uj )

+ u j−2(260445372uj−2− 311771244uj−1+ 76206736uj )

+ u j−1(94851237uj−1)− 47460464uj )+ 6150211u2j

I S6
1 = u j−4(271779uj−4− 3015728uj−3+ 6694608uj−2− 7408908uj−1+ 4067018uj

− 880548uj+1)+ u j−3(8449957uj−3− 37913324uj−2+ 42405032uj−1

− 23510468uj + 5134574uj+1)+ u j−2(43093692uj−2− 97838784uj−1

+ 55053752uj − 12183636uj+1)+ u j−1(56662212uj−1− 65224244uj

+ 14742480uj+1)+ u j (19365967uj − 9117992uj+1)+ 1152561u2j+1

I S6
2 = u j−3(139633uj−3− 1429976uj−2+ 2863984uj−1− 2792660uj + 1325006uj+1

− 245620uj+2)+ u j−2(3824847uj−2− 15880404uj−1+ 15929912uj

− 7727988uj+1+ 1458762uj+2)+ u j−1(17195652uj−1− 35817664uj

+ 17905032uj+1− 3462252uj+2)+ u j (19510972uj − 20427884uj+1

+ 4086352uj+2)+ u j+1(5653317uj+1− 2380800uj+2)+ 271779u2j+2

I S6
3 = u j−2(271779uj−2− 2380800uj−1+ 4086352uj − 3462252uj+1+ 1458762uj+2

− 245620uj+3)+ u j−1(5653317uj−1− 20427884uj + 17905032uj+1

− 7727988uj+2+ 1325006uj+3)+ u j (19510972uj − 35817664uj+1

+ 15929912uj+2− 2792660uj+3)+ u j+1(17195652uj+1− 15880404uj+2

+ 2863984uj+3)+ u j+2(3824847uj+2− 1429976uj+3)+ 139633u2j+3
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I S6
4 = u j−1(1152561uj−1− 9117992uj + 14742480uj+1− 12183636uj+2

+ 5134574uj+3− 880548uj+4)+ u j (19365967uj − 65224244uj+1

+ 55053752uj+2− 23510468uj+3+ 4067018uj+4)

+ u j+1(56662212uj+1− 97838784uj+2+ 42405032uj+3− 7408908uj+4)

+ u j+2(43093692uj+2− 37913324uj+3+ 6694608uj+4)

+ u j+3(8449957uj+3− 3015728uj+4)+ 271779u2j+4

I S6
5 = u j (6150211uj−47460464uj+1+76206736uj+2−63394124uj+3+27060170uj+4

− 4712740uj+5)+ u j+1(94851237uj+1− 311771244uj+2+ 262901672uj+3

− 113206788uj+4+ 19834350uj+5)+ u j+2(260445372uj+2− 444003904uj+3

+ 192596472uj+4− 33918804uj+5)+ u j+3(190757572uj+3− 166461044uj+4

+ 29442256uj+5)+ u j+4(36480687uj+4− 12950184uj+5)+ 1152561u2j+5.

The optimal weights are given by

C6
0 = 1/462; C6

1 = 5/77; C6
2 = 25/77; C6

3 = 100/231;
C6

4 = 25/154; C6
5 = 1/77.

EvaluatinguL
j+1/2 using just the optimal weights we get

uL
j+1/2 = −(1/2772)uj−5+ (61/13860)uj−4− (703/27720)uj−3+ (371/3960)uj−2

− (7303/27720)uj−1+ (20417/27720)uj + (15797/27720)uj+1

− (4003/27720)uj+2+ (947/27720)uj+3− (17/3080)uj+4+ (1/2310)uj+5.

III.d. Monotonicity Preserving Bounds

Suresh and Huynh [45] found a general way of bounding the valueuL
j+1/2 so that the

bounded value is monotonicity preserving. The key idea in that work was that one must dis-
tinguish between smooth local extrema and a genuine O(1) discontinuity. Like Chakravarthy
and Osher [11] and Hartenet al. [20] before them, Suresh and Huynh [45] realized that it
was essentially the clipping of local extrema that causes a loss of order of accuracy and
must, therefore, be avoided in the design of higher-order schemes. Local extrema are dis-
tinguished by analyzing the local curvature in the weights for a particular characteristic
field. Should a local extremum be detected enough space was created to allow for the local
extremum to be accommodated in the evaluation ofuL

j+1/2. We catalogue the formulae for
bringinguL

j+1/2 within the monotonicity preserving bounds here for three reasons: (1) We
have found it valuable to use values somewhat different from those in Suresh and Huynh
[45]. (2) There is a slightly greater latitude of freedom in the design of these monotonicity
preserving bounds which we have found useful in the treatment of certain types of hyper-
bolic systems and we wish to catalogue it here. (3) In the following section we wish to
evaluate the effect of different types of monotonicity bounds that can be designed on the
order property of MPWENO schemes.
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Following Suresh and Huynh [45] we focuson local measures of curvature here. In order
to utilize them in a numerical code we need to define the minmod and median functions as

minmod(x, y) = 1

2
(sgn(x)+ sgn(y))min(|x|, |y|) (3.1)

median(x, y, z) = x+minmod(y− x, z− x). (3.2)

It then becomes useful to define the curvature measures at the zone centers as

dj = u j+1− 2uj + u j−1. (3.3)

The expressions in Eq. (3.3) can be used to define the curvature at the zone boundary. This
is where a variety of definitions become possible. The definition of the curvature at the zone
boundary which is least restrictive in that it provides maximal space for local extrema to
develop is given by

dMM
j+1/2 = minmod(dj , dj+1) (3.4)

The superscript MM in Eq. (3.4) indicates the use of the minmod function. Suresh and
Huynh [45] recommend using a measure of the curvature at the zone boundary that is
somewhat more restrictive in that it reduces the space for local extrema to develop when
the ratiodj+1/dj is larger than 4 or smaller than 1/4 (hence the use of the superscript M4
in the ensuing equation). It is given by

dM4
j+1/2 = minmod(4dj − dj+1, 4dj+1− dj , dj , dj+1). (3.5)

The choice of the range [1/4, 4] in Eq. (3.5) is one of the heuristic features in the design
of monotonicity preserving schemes. In the next section we will show that the resulting
schemes are not sensitively dependent on this choice. It is interesting to notice that Eqs. (3.4)
and (3.5) would admit any situation where two zones had the same curvature as being an
acceptable extremum. For certain hyperbolic systems, MHD being a case in point, the
presence of small scale extrema where the wiggles in the solution are spread over just four
zones can damage the quality of the solution. In this case it becomes useful to admit only
those extrema where the profile of the extremal solution has a slightly larger domain of
support. Thus without damaging the monotonicity preserving character of the interpolation
strategy we can write this measure of the curvature with extended (denoted by superscript
M4X) domain of support as

dM4X
j+1/2 = minmod(4dj − dj+1, 4dj+1− dj , dj , dj+1, dj−1, dj+2) (3.6)

In the following section we will demonstrate that Eq. (3.6) performs almost as well as
Eq. (3.5).

Following Suresh and Huynh [45] we wish to define minimum and maximum bounds,
denoted byuL,min

j+1/2 anduL,max
j+1/2, within which the solutionuL

j+1/2 has to lie. The left-sided
upper limit (denoted by superscript UL) to the solution atxj+1/2 is given by

uUL
j+1/2 = u j + α(u j − u j−1). (3.7)
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The value ofα determines the CFL number that can be used with the scheme. In theory
the CFL number is required to be less than 1/(1+α). In practice we have found thatα= 2
allows us to safely use a CFL number of 0.6 in a large number of test problems that we
have tried. For superlative treatment of advected pulses a CFL number closer to 0.33 is,
however, recommended. The median (denoted by superscript MD) value of the solution at
xj+1/2 is given by

uMD
j+1/2 =

1

2
(u j + u j+1)− 1

2
dMD

j+1/2. (3.8)

The left-sided value with allowance made for a large curvature (denoted by superscript LC)
in the solution atxj+1/2 is given by

uLC
j+1/2 = u j + 1

2
(u j − u j−1)+ β

3
dLC

j−1/2. (3.9)

The value ofβ determines the amount of freedom available from utilizing a large value for
the local curvature. We have found thatβ = 4 works well for the schemes presented here.
We have also found thatβ = 2 does not degrade the order property so that the MPWENO
schemes presented here are not sensitively dependent on the value ofβ. This is very sat-
isfying because the value ofβ is one of the heuristic factors in the design of monotonicity
preserving schemes. For all the tests reported here we have usedβ = 4. We find that set-
ting dMD

j+1/2= dLC
j+1/2= dMM

j+1/2 provides the maximal space for local extrema to develop.
SettingdMD

j+1/2= dLC
j+1/2= dM4

j+1/2, which is also the choice that was made in Suresh and
Huynh [45], somewhat limits the space available for local extrema to develop. Setting
dMD

j+1/2= dLC
j+1/2= dM4X

j+1/2 filters out extremal features that have a very small domain of sup-
port but leaves extremal features with larger support intact. Expressions foruL,min

j+1/2 and

uL,max
j+1/2 can now be given by

uL,min
j+1/2 = max

[
min
(
u j , u j+1, u

MD
j+1/2

)
,min

(
u j , u

UL
j+1/2, u

LC
j+1/2

)]
(3.10)

uL,max
j+1/2 = min

[
max

(
u j , u j+1, u

MD
j+1/2

)
,max

(
u j , u

UL
j+1/2, u

LC
j+1/2

)]
. (3.11)

The monotonicity preserving value foruL
j+1/2 can now be obtained by using the equation

uL
j+1/2 = median

(
uL

j+1/2, u
L,min
j+1/2, u

L,max
j+1/2

)
. (3.12)

IV. NUMERICAL VERIFICATION OF THE HIGH-ORDER

ACCURACY OF MPWENO SCHEMES

In this section we study numerically how the MPWENO schemes fare when it comes to
achieving their designed accuracy. In the first subsection we study one-dimensional scalar
problems. In the second subsection we study multidimensional problems, both scalar and
systems of equations.

IV.a. One Dimensional Problems

Table IV shows several convergence studies for the advection equation,ut+ux = 0, with
initial conditionsu0(x)= sin(πx), defined on [−1, 1] with periodic boundary conditions.
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TABLE IV

Method Number of zones L1 error L1 order L∞ error L∞ order

r = 5 10 3.5827E-04 5.5930E-04
WENO 20 6.1123E-07 9.20 1.1927E-06 8.87

40 9.7166E-10 9.30 2.2653E-09 9.04
80 1.6306E-12 9.22 4.1460E-12 9.09

r = 5 10 4.8003E-04 8.6886E-04
MPWENO 20 6.1123E-07 9.62 1.1927E-06 9.51
dMD

j+1/2= dM4X
j+1/2 40 9.7166E-10 9.30 2.2653E-09 9.04

dLC
j+1/2= dM4X

j+1/2 80 1.6306E-12 9.22 4.1460E-12 9.09

r = 3 10 1.6694E-02 3.0224E-02
MPWENO 20 7.5962E-04 4.46 1.4569E-03 4.37
dMD

j+1/2= dM4X
j+1/2 40 2.2698E-05 5.06 4.5939E-05 4.99

dLC
j+1/2= dM4X

j+1/2 80 6.9830E-07 5.02 1.4783E-06 4.96

The error was measured att = 1. For this linear problem, LF, LLF, and RF building blocks
all become the same. We used linear Runge–Kutta methods of the same order as the spatial
operators with a CFL number 0.8.

The initial conditions for this problem are very smooth. We see that ther = 5 WENO
scheme reaches its designed accuracy very rapidly and with a very small number of zones.
In Table IV we also show results fromr = 5 MPWENO with the most restrictive mono-
tonicity preserving bounds given bydMD

j+1/2= dLC
j+1/2= dM4X

j+1/2. Ther = 5 MPWENO scheme
converges at the same rate and has almost the same errors as ther = 5 WENO scheme when
20 or more zones are used. This shows that the monotonicity restriction operator is having
no effect in this case. This is a very desirable feature and it is also significant that it can be
demonstrated for schemes with an order of accuracy as high as nine here. To enable us to
compare and contrast with a lower-order scheme we also show the convergence study for
r = 3 MPWENO withdMD

j+1/2= dLC
j+1/2= dM4X

j+1/2. Two very interesting insights can be gained
from Table IV. First, we see that for small numbers of zones the higher-order scheme has
a considerably smaller error than the lower-order scheme. Thus when the problem is not
well resolved on a given computational grid the higher-order scheme nevertheless gives
us a substantially smaller error than the lower-order scheme. Second, we see that when
the problem is well resolved the substantially better convergence rate of the higher-order
scheme allows it to obtain a significantly smaller error than the lower-order scheme. We
have also carried out similar convergence studies for MPWENO schemes withr = 4,6,
and 7, and the general trends noted here forr = 5 MPWENO are repeated for these other
schemes.

We have also performed a similar convergence study with the initial conditionsu0(x)=
exp(sin(πx)) and found that it produces the same trends that were reported above for the
u0(x)= sin(πx) initial condition. For this reason, we do not tabulate that convergence study
here.

Table V shows several convergence studies for the advection equation,ut + ux = 0, with
initial conditionsu0(x)= sin4(πx). It is important to point out that the initial conditions
used here are very flat at each of the two maxima; that is, the first three derivatives are zero
there. For this reason, Rogerson and Meiburg [32] found that the unbiased ENO schemes
performed poorly for this problem. We see that ther = 5 WENO scheme in Table V suffers
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TABLE V

Method Number of zones L1 error L1 order L∞ error L∞ order

r = 5 40 2.7674E-04 1.0711E-03
WENO 80 9.1766E-07 8.24 7.4607E-06 7.17

160 2.2566E-09 8.67 2.8738E-08 8.02
320 6.5289E-12 8.43 1.2815E-10 7.81

r = 5 40 4.8962E-04 2.4370E-03
MPWENO 80 1.9091E-05 4.68 1.7941E-04 3.76
dMD

j+1/2= dMM
j+1/2 160 1.2575E-06 3.92 2.1792E-05 3.04

dLC
j+1/2= dMM

j+1/2 320 5.9172E-08 4.41 1.8768E-06 3.54

r = 5 40 7.2627E-04 2.3674E-03
MPWENO 80 4.0853E-05 4.15 2.7778E-04 3.09
dMD

j+1/2= dM4X
j+1/2 160 2.2955E-06 4.15 2.5640E-05 3.44

dLC
j+1/2= dM4X

j+1/2 160 1.3622E-07 4.07 2.8514E-06 3.17

r = 3 40 3.6564E-03 8.9043E-03
MPWENO 80 5.0389E-04 2.86 1.8086E-03 2.30
dMD

j+1/2= dMM
j+1/2 160 2.8389E-05 4.15 1.7678E-04 3.35

dLC
j+1/2= dMM

j+1/2 320 1.4393E-06 4.30 1.6388E-05 3.43

less from this problem, almost reaching its designed convergence rate at about 80 points. In
Table V we also show the results fromr = 5 MPWENO schemes with the least restrictive
monotonicity preserving bounds given bydMD

j+1/2= dLC
j+1/2 = dMM

j+1/2 and the most restrictive
monotonicity preserving bounds given bydMD

j+1/2= dLC
j+1/2 = dM4X

j+1/2. This allows us to see
the effect of imposing different kinds of monotonicity preserving bounds. We see clearly
that even the imposition of the least restrictive monotonicity preserving bounds strongly
degrades the order of accuracy of the scheme for this problem. An inspection of the time
history of the buildup of the error shows that much of the error builds up very rapidly, i.e.,
within a time of 0.1 or less. We therefore see that the monotonicity preserving bounds do
not live up to the full extent of the claim made in Suresh and Huynh [45] that they do not
damage the order property of smooth solutions at all. The convergence rates in Table V show
that they do, however, permit the scheme to achieve a fairly high order of accuracy. This
serves to distinguish them from the older TVD limiters. By comparing the effect of the least
and most restrictive monotonicity preserving bounds on the convergence rate in Table V
we conclude that the effect of changing the monotonicity preserving bounds on the error or
its convergence rate is not very significant. This leads us to the rather satisfying conclusion
that most such monotonicity preserving bounds act similarly when imposed on MPWENO
schemes withr = 5. This conclusion is also verified numerically for MPWENO schemes
with other values ofr . Table V also permits us to comparer = 3 MPWENO withr = 5
MPWENO when both usedMD

j+1/2= dLC
j+1/2 = dMM

j+1/2. We see that the convergence rates for
both schemes are determined by the fact that the monotonicity preserving constraints are
used. However, we observe that ther = 5 MPWENO scheme has errors that are almost an
order of magnitude smaller than those of ther = 3 MPWENO scheme when both schemes
use the same number of grid points. Thus it indeed proves quite beneficial to go from an
r = 3 MPWENO scheme to anr = 5 MPWENO scheme. This trend, however, does not
extend tor = 6 andr = 7 MPWENO schemes, which have errors that are comparable to
those of ther = 5 MPWENO scheme for this test problem. This is an indication that for such
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TABLE VI

Method Number of zones L1 error L1 order L∞ error L∞ order

r = 5 20 1.1313E-03 8.4858E-03
MPWENO 40 6.9382E-06 7.35 7.6824E-05 6.79
dMD

j+1/2= dM4
j+1/2 80 2.7680E-08 7.97 4.6426E-07 7.37

dLC
j+1/2= dM4

j+1/2 160 7.5166E-11 8.52 1.2535E-09 8.53

type of problems ther = 5 MPWENO is an optimal scheme and it may not be beneficial to
use MPWENO schemes withr > 5.

Table VI shows a convergence study for the Burgers equation,ut + (u2/2)x = 0, with
initial conditionsu0(x)= 0.25+0.5 sin(πx). We used a third-order-accurate Runge–Kutta
time-stepping strategy for this nonlinear problem as well as for the nonlinear 2D
Euler equations in the next section. To hold down the errors from temporal discretiza-
tion the time step1t on successively refined grids was made to vary with the zone size
1x as1t ∝ (1x)(2r−1)/3. We carry out a convergence study forr = 5 MPWENO with
dMD

j+1/2= dLC
j+1/2 = dM4

j+1/2 at a time of 1/π , before the shock forms. We use the LLF flux
here. Table VI shows clearly that the scheme is operating close to its designed accuracy.
The trends shown in Table VI forr = 5 MPWENO also extend to MPWENO withr = 4, 6,
and 7.

The results from Tables IV and VI taken together allow us to conclude that the MPWENO
schemes achieve their designed accuracy in one dimension for both linear and nonlinear
hyperbolic equations when the solution is smooth and does not have a very flat extremum.
When the solution does have a flat extremum the MPWENO schemes do show a degradation
of their order property, as shown in Table V. The order of accuracy of the MPWENO schemes
nevertheless remains quite high, especially when compared to the older TVD schemes. In
such situations ther = 5 MPWENO scheme seems to be an optimal scheme when compared
with the other higher-order schemes designed in this paper.

IV.b. Multidimensional Problems

Table VII shows several convergence studies for the two-dimensional advection equation,
ut+ux+uy= 0, with initial conditionu0(x)= sin4(πx) sin4(πy). The problem was run on
the area [−1, 1]× [−1, 1] with periodic boundaries and the result att = 1 is shown. We show

TABLE VII

Method Number of zones L1 error L1 order L∞ error L∞ order

r = 5 40× 40 2.0434E-04 1.1146E-03
WENO 80× 80 6.7552E-07 8.24 7.5314E-06 7.21

160× 160 1.6650E-09 8.66 2.8819E-08 8.03
320× 320 4.8120E-12 8.43 1.2817E-10 7.81

r = 5 40× 40 5.3034E-04 2.3487E-03
MPWENO 80× 80 3.0493E-05 4.12 2.7559E-04 3.09
dMD

j+1/2= dM4X
j+1/2 160× 160 1.7532E-06 4.12 2.6314E-05 3.39

dLC
j+1/2= dM4X

j+1/2 320× 320 1.0509E-07 4.06 2.9132E-06 3.18

19



ther = 5 WENO scheme and cross compare it with ther = 5 MPWENO scheme with the
most restrictive monotonicity preserving bounds given bydMD

j+1/2= dLC
j+1/2 = dM4X

j+1/2. The
results are very similar to those of the one-dimensional case shown in Table V, indicating
that our schemes are as accurate in 2D as in 1D.

Porteret al.[30] have shown through DNS simulations that the evolution of compressible
hydrodynamic turbulence is dominated by the evolution of structures of high vorticity once
the initial phase of shock-dominated dissipation is over. To pick a test problem that is quite
close to the target applications for the schemes designed here, we analyze the propagation
of a strong vortex at a supersonic Mach number. The vortex propagates at 45◦ to the grid
lines, which gives ample opportunity for the effects of multidimensional propagation to
manifest themselves in this test problem. The problem is initialized on the two-dimensional
domain given by [−5, 5]× [−5, 5]. An unperturbed flow of the Euler equations with
(ρ, P, vx, vy)= (1, 1, 1, 1) and a ratio of specific heats given byγ = 1.4 is initialized
on the computational domain. The temperature and entropy are defined asT = P/ρ and
S= P/ργ . The vortex is defined as a fluctuation to this mean flow given by

(δvx, δvy) = ε

2π
e0.5(1−r 2)(−y, x)

(4.1)

δT = − (γ − 1)ε2

8γπ2
e(1−r 2); δS= 0,

wherer 2= x2 + y2 and the vortex strengthε= 5. We utilize periodic boundary condi-
tions.

In Table VIII we show the errors from ther = 5 MPWENO withdMD
j+1/2= dLC

j+1/2 = dM4
j+1/2

at a time of 10.0. By this time the vortex has travelled the entire length of the diagonal of
the computational domain and is centered back again at the origin. We also show the results
from r = 3 WENO. For both ther = 5 MPWENO andr = 3 WENO calculations we used
a third-order-accurate Runge–Kutta scheme for the temporal. In order to help the reader
to appreciate the effects of dimensional sweeping on higher-order Godunov schemes we
also show the results of this same test problem run with the PPMDE variant of the PPM
scheme in Colella and Woodward [13]. The results are shown for the PPM scheme run
without either the PPM steepener or the PPM flattener. Another set of runs was carried

TABLE VIII

Method Number of zones L1 error L1 order L∞ error L∞ order

r = 5 25× 25 1.3518E-02 1.4072E-01
MPWENO 50× 50 1.9875E-04 6.09 4.6708E-03 4.91
dMD

j+1/2= dM4
j+1/2 75× 75 3.7569E-05 4.11 1.4146E-03 2.95

dLC
j+1/2= dM4

j+1/2 100× 100 1.0725E-05 4.36 4.1951E-04 4.23

r = 3 25× 25 5.6303E-02 8.1172E-01
WENO 50× 50 4.8654E-03 3.53 8.3836E-02 3.28

75× 75 9.0182E-04 4.16 1.7957E-02 3.80
100× 100 2.4801E-04 4.49 5.9807E-03 3.82

PPM 25× 25 4.4533E-02 7.5762E-01
50× 50 1.2806E-02 1.80 1.6085E-01 2.24
75× 75 7.7270E-03 1.25 8.5558E-02 1.56

100× 100 3.7955E-03 2.47 5.0517E-02 1.83
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out with the PPM steepener and the results werefound to be almost identical to those
shown in Table VIII. Symmetrized interleaving of sweeps in thex- andy-directions were
used for the temporal update of the PPM scheme. This directional splitting of the Euler
equations was proposed by Strang [44] and is expected to result in a temporal update that
is second-order accurate in space and time. In the previous subsection we showed that the
CFL number needs to be decreased with increasing mesh resolution in order to enable
the scheme to reach its design accuracy. Most realistic simulations are done at a finite
CFL number that is held fixed as the resolution of the simulation is increased. It is also
computationally impracticable to do a convergence study in multiple dimensions with a
CFL number that decreases with increasing resolution. For both these reasons we have run
the WENO and MPWENO convergence studies with a fixed CFL number of 0.2. For the
PPMDE calculations we used a CFL number of 0.2 for each individual sweep. We see
from Table VIII that ther = 5 MPWENO scheme is the most accurate scheme among the
schemes considered. If a fixed resolution is to be used, ther = 5 MPWENO is at least an
order of magnitude more accurate than ther = 3 WENO scheme. At fixed resolution, both
schemes are substantially more accurate than the PPMDE scheme. We see from Table VIII
that ther = 5 MPWENO can obtain about the same accuracy on a grid of 50× 50 zones
that ther = 3 WENO achieves on a grid of 100× 100 zones. We also see that even on a
grid of 100× 100 zones the PPM scheme only produces a solution with accuracy that is
roughly comparable with ther = 3 WENO scheme’s accuracy on a grid of 50× 50 zones.

Further insight can be gained by paying attention to the quantitative values in Table VIII.
Ghosal [15] has shown that the subgrid force terms in the typical situations considered by
him are not much larger than 10% of the total force terms. THus being able to model the
subgrid force terms in an LES calculation with a nominal 10% accuracy requires that one
be able to simulate features in the flow with at least 1% accuracy. For this problem the
density, vortex velocity, and radius of the vortex are all of the order of unity, implying that
the total force is of the order of unity in the vortex. We see that even when 25× 25 zones
are used ther = 5 MPWENO scheme has an error in theL1 norm that is at the 1% level.
The PPM scheme, on the other hand, achieves an error in theL1 norm that is at the 1%
level on a grid of 50× 50 zones. To model the subgrid forces in an LES simulation one is
more likely to be interested in the error measured in theL∞ norm. Ther = 5 MPWENO
scheme achieves an error in theL∞ norm that is better than 1% with a mere 50× 50 zones.
The PPM scheme does not achieve a comparable error in theL∞ norm even on a 100× 100
zone grid. This provides a quantitative demonstration of the claim made in Ghosal [15] that
second-order schemes do not reduce the error fast enough on any of the scales represented
in the computation to permit accurate LES sibgrid modeling to be done for the scales that
are not represented in the computation.

V. ACM AND THE HIGHER-ORDER PROPERTIES OF MPWENO

SCHEMES THAT USE ACM

When isolated discontinuities in linearly degenerate characteristic fields are present in
the flow it is customary to want to improve their profile so as to endow them with as sharp
a profile as possible. This is usually done by using the ACM strategy, where one adds an
extra linear profile to the interpolant in a given zone. This profile is only added when the
addition of such a profile does not destroy the TVD property. The addition of this linear

21



profile is intended to steepen the interpolated profile in the zone. There are two questions
which must be addressed in this procedure: (1) What is the right amount of steepening to
add to schemes of high order such as the ones designed here? (2) What are the consequences
of the ACM on the order property of numerical schemes, especially the schemes with very
high order of accuracy designed here? Yang [50] has designed an ACM scheme that has
proven particularly popular. We seek to answer these two questions within the context of
Yang’s ACM.

As in Section III we focus on the interpolation of a scalar quantityu to the zone boundary
xj+1/2. The interpolated values on the left and right of the zone boundary are denoted by
uL

j+1/2 anduR
j+1/2, respectively. These interpolated values are to be obtained by using the

MPWENO interpolation strategy. Since the scheme designed here operates on characteristic
variables the extension to hyperbolic systems can be trivially made by steepening the weights
in Eq. (2.4) for any characteristic field that needs to be steepened using ACM. The slope
modifier for the interpolated profile in zonej is then given by

δu j = 2minmod
[
σ j minmod

(
uR

j−1/2− uL
j−1/2, u

R
j+1/2− uL

j+1/2

)
,

(5.1)
minmod

(
u j+1− uL

j+1/2, u
R
j−1/2− u j−1

)]
so that the value ofuL

j+1/2 is modified as follows:

uL
j+1/2→ uL

j+1/2+
1

2
δu j . (5.2)

The coefficient of the slope modifierσ j in Eq. (5.1) can be written as the product of a
discontinuity detectorµ j and a balance factorψ j as

σ j = cµ jψ j , (5.3)

where we have

µ j =
(

u j+1− 2uj + u j−1

|u j+1− u j | + |u j − u j−1|
)2

(5.4)

and

ψ j =
∣∣∣∣u j − u j−1

u j+1− u j

∣∣∣∣b((λ j1t/1x)−0.5 sgn(λj ))

when(u j − u j−1)(u j+1− u j ) > 0
(5.5)

= 0 otherwise.

The variableλ j in Eq. (5.5) denotes the signal speed at which the variableu is being advected
in zone j . For a hyperbolic system it refers to the characteristic speed of the characteristic
field in zone j that is being treated by the ACM technique. Equations (5.3) and (5.5) show
clearly that the variablesc andb are variables whose values have to be set in the ACM.
The variableb affects the way the scheme introduces a balance between ascending and
descending profiles and needs to be set to 4.3 for all the schemes used here. The variable
c may be set to different values for schemes of different orders and determines the amount
of steepening introduced by the ACM. It needs to be set by trial and error.
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TABLE IX

Method Number of zones L1 error L1 order L∞ error L∞ order

r = 5,ACM, 10 4.6231E-04 8.1426E-04
MPWENO 20 5.1904E-07 9.80 1.0259E-06 9.63
dMD

j+1/2= dM4X
j+1/2 40 2.3023E-09 7.82 7.8494E-09 7.03

dLC
j+1/2= dM4X

j+1/2 80 6.2205E-12 8.53 2.9266E-11 8.07

Through extensive trial and error we have found that when the variablec in Eq. (5.3) is
given a large value and used in very high order schemes it actually damages the structure of
discontinuities. Thus higher-order schemes need smaller values ofc. Higher-order schemes
can, however, capture discontinuities in linearly degenerate characteristic fields and propa-
gate them without much degradation even when the ACM is not used. Hence with increasing
order of accuracy there is a diminishing need to rely on the ACM. We have experimented
with several hyperbolic systems including scalar advection, the Euler equations, and the
equations of ideal MHD. The value ofc to be used for optimal capturing of discontinuities
belonging to linearly degenerate characteristic fields does not seem to depend sensitively
on the particular hyperbolic system being solved when the order of the MPWENO scheme
is held fixed. This is a very desirable result because it shows that the optimal value ofc to
be used does not vary from one hyperbolic system to another. Thus forr = 3 MPWENO we
recommend that the maximal value ofc bec= 20.0, thoughc= 25 is permissible on occa-
sion. Forr = 4 MPWENO the maximal value ofc is given byc= 20.0. Forr = 5 MPWENO
we suggest using a maximal value ofc given byc= 15.0, thoughc= 20.0 might sometimes
be acceptable. Forr = 6 MPWENO we suggest usingc= 15.0 and forr = 7 MPWENO we
recommend not using ACM at all. In general we find that MPWENO schemes with even
values ofr do not take as well to the use of ACM as MPWENO schemes with odd values
of r . It is also worth pointing out that schemes withr ≥ 5 can propagate discontinuities
with about seven zones in them without any degradation in the discontinuity’s profile and
so do not necessarily need to rely on the use of steepening techniques such as ACM. We
will show this numerically in the next section. To view this in a different way, in certain
problems where very accurate propagation of discontinuities is strongly desired it may be
more acceptable to allow discontinuities to propagate with a natural width of seven zones
and high phase accuracy than to make them propagate with an artificially steepened width
of three zones and risk a degradation in phase accuracy. The previous comment has special
relevance to turbulence calculations, where very accurate propagation of flow structures has
a great deal of bearing on the accuracy of the results.

In Table IX we show the convergence study forr = 5 MPWENO with c= 20.0 for
the advection problem with initial conditions given byu0(x)= sin(πx). By comparing the
results in Table IX with the reuslts in Table IV we see clearly that the accuracy and the
order of the scheme are not affected significantly by the use of ACM.

VI. ONE DIMENSIONAL TESTS

VI.a. Scalar Advection

Our first test problem consists of testing the behavior of the scheme on a rather stringent
scalar advection test problem. This is the same test problem that was catalogued in Jiang
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and Shu [23]. Thus we solve the problem

ut + ux = 0 −1< x < 1
(6.1)

u(x, 0) = u0(x) periodic

with

u0(x) = 1

6
[G(x, β, z− δ)+ G(x, β, z+ δ)+ 4G(x, β, z)] −0.8≤ x ≤ −0.6

= 1 −0.4 ≤ x ≤ −0.2

= 1− |10(x − 0.1)| 0.0≤ x ≤ 0.2 (6.2)

= 1

6
[F(x, α,a− δ)+ F(x, α,a+ δ)+ 4F(x, α,a)] 0.4≤ x ≤ 0.6

= 0 otherwise

G(x, β, z) = e−β(x−z)2

(6.3)
F(x, α,a) =

√
max(1− α2(x − a)2, 0).

The constants in Eqs. (6.2) and (6.3) are given by

a = 0.5; z= −0.7; δ = 0.005; α = 10; β = log 2

36δ2
. (6.4)

The problem has several shapes that are difficult to advect with fidelity. The shapes consist
of: (1) a combination of Gaussians, (2) a square wave, (3) a sharply peaked triangle, and
(4) a half-ellipse arranged initially from left to right. This is a stringent test problem because it
has a combination of functions that are not smooth and functions that are smooth but sharply
peaked. The Gaussians differ from the triangle in that the Gaussians’ profile actually has an
inflection in the second derivative. A good numerical method that can advect information
with a high level of fidelity must be able to preserve the specific features of the problem that
we have catalogued above. The problem was initialized on a mesh of 200 zones. It was run
for a simulation time of 20, which corresponds to 10 traversals around the mesh. In doing
so the features catalogued in Eqs. (6.2) and (6.3) were advected over 2000 mesh points. The
problem was run with a CFL number of 0.4.

In Fig. 1a we show the results fromr = 5 MPWENO withdMD
j+1/2 = dLC

j+1/2 = dM4
j+1/2.

In Fig. 1a the ACM steepener was not used. To aid comparison with the exact solution, the
exact solution is also shown in the figure with a solid line. We see that the different shapes
have been accurately advected so that one can readily pick out the differences between
the different shapes even after 10 traversals around the computational mesh. The peaks in
the Gaussians and the triangle have been preserved without any substantial flattening of the
points at their maxima. The fact that the Gaussians have an inflection in the second derivative
while the triangle does not can also be seen. The square pulse has retained its flat top. About
seven points have been put in by the scheme to represent the rising and falling parts of the
square pulse. This is the motivation for our claim in Section V that these very high order
schemes can advect profiles well without smearing them over much more than seven zones.
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FIG. 1. The scalar advection test problem catalogued in Eqs. (6.2), (6.3), and (6.4). The iniitial profile was
allowed to propagate 10 times around the computational domain with CFL number 0.4. (a) The result forr = 5
MPWENO without ACM. (b) The same as (a) but with ACM. (c) The result from the PPM scheme without the
steepener. (d) The result from the PPM scheme with the steepener.

They are able to do this without needing to rely on the ACM steepener. The rounded top of
the parabolic profile is accurately captured and stands out in contradistinction to the flattened
top of the square wave. Notice, too, that the profiles of all the pulses are fully symmetrical
about their peaks, which is a very desirable feature in a numerical algorithm. Figure 1b
shows the same scheme with the ACM also being used. We used the same suggested
values for the coefficients in the ACM steepener that we catalogued in Section V. We see
that the square wave profile has become sharper. The other strongly peaked shapes have
not been damaged. The parabolic profile has not had any numerically induced change in its
curvature. We observe a slight asymmetrical aspect in the profiles in Fig. 1b when compared
to those in Fig. 1a. But the balancing factor in Eq. (5.5) has ensured that the profiles are,
for the most part, very symmetrical. Thus the ACM step has been mostly beneficial for the
square wave pulse where it was most needed and unobtrusive for the elliptical wave pulse
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FIG. 1—Continued

where it was not needed. Thus Yang’s ACM behaved very well on this rather stringent test
problem.

In Figs. 1c and 1d we show the performance of the PPM method of Colella and Woodward
[13] on this test problem. Figure 1c was produced by a run without the contact discontinuity
steepener. Figure 1d was obtained from a run with the contact discontinuity steepener
that is described in Colella and Woodward [13]. We used the Lagrange-remap version of
PPM, which has a slightly higher accuracy than the direct-Eulerian version of PPM for
this type of problem. Because piecewise parabolic profiles can be exactly integrated for the
scalar advection equation, the test problem was done without any errors emanating from the
temporal discretization. We used a CFL number of 0.4 as in the previous case. It is beneficial
to be able to compare and contrast the performance of the higher-order schemes designed
here with the traditional TVD schemes. We see from Fig. 1c that PPM has flattened the
tops of all the pulses in the problem. This has resulted in considerable degradation of the
Gaussians’ profile and the triangle’s profile. The rising and falling parts of the square wave
have about eight to nine zones across them. We also see that the profiles of all the other
pulses have the same number of zones in their rising and falling parts along with flat tops.
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Thus the PPM scheme has effectivelyturned all the different pulse shapes into profiles that
are equivalent to a square pulse. This indicates that the PPM scheme, because it is a TVD
scheme and relies on TVD limiters, has suffered a genuine loss of phase accuracy. Figure 1d
shows the effect of the steepener catalogued in Colella and Woodward [13]. We see that
most of the pulses have been turned into square wave pulses with sharp edges. The leading
edge of the Gaussians’ pulse is asymmetrical when compared to its trailing edge. This is
a clear consequence of the steepener in PPM not having a balancing factor like the ACM
algorithm of Yang [50]. From Figs. 1c and 1d we see that all the phase accuracy has been
lost in the solutions that were computed with the PPM algorithm.

VI.b. Hydrodynamical Interacting Blast Wave Problem

We have run the interacting blast wave problem from Woodward and Colella [49] using
exactly the same parameters used by those authors. The problem was run with ther = 5
MPWENO scheme withdMD

j+1/2 = dLC
j+1/2 = dM4

j+1/2. The RF version of the scheme was
used. The ACM method was used with the parameters suggested in Section V for ther = 5
MPWENO scheme. A CFL number of 0.6 was used. In Fig. 2 we show the density variable
from a 400-zone simulation with open circles. The solid line shows the converged density
obtained from a 1000-zone simulation. We see that the left-going contact discontinuity is
captured very well even in the 400 zone simulation. We also see that the density profile
from the 400-zone simulation is very close to the converged density profile.

FIG. 2. The density profile at a time of 0.038 for the interacting blast waves problem. Ther = 6 MPWENO
scheme was used with ACM. The problem was run with a CFL number of 0.6. The open circles show the results
of a 400-zone simulation. The solid line is a converged density profile obtained from a 1000-zone simulation.
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It is also worth noting that we have run the classical shock tube test problems by Sod [43]
and Lax [24] with the schemes designed here and obtained good results.

VI.c. MHD Shock Tube Problems

In order to illustrate the versatility of the methods developed here and their applicability
to other hyperbolic systems we apply them to a couple of Riemann problems that are drawn
from MHD. The eigenstructure of MHD has been thoroughly explored in Roe and Balsara
[36], a linearized Riemann solver was developed in Balsara [1], and TVD schemes for MHD
were developed in Balsara [2]. Balsara and Spicer [4] have constructed a divergence-free
formulation of MHD. Because such formulations use both the zone-centered and the face-
centered values of the magnetic field the MPWENO methodology has to be extended to
accommodate such a staggering of variables. This extension, which is specific to numerical
MHD, has been carried out by Balsara and will be reported by him in a later publication. For
one-dimensional MHD problems this extension is unessential and the methods developed
here are perfectly adequate for treating such problems. Therefore we report on a couple of
one-dimensional MHD Riemann problems here. Both were run with ther = 5 MPWENO
scheme withdMD

j+1/2 = dLC
j+1/2 = dM4X

j+1/2. The RF version of the algorithm was used here. The
ACM method was used with the parameters that are suggested in Section V for ther = 5
MPWENO scheme. The ACM was applied to all the linearly degenerate characteristic fields
in the problem. A CFL number of 0.6 was used. For MHD it was found useful to setχ = 1.3
in Eq. (2.5).

Figures 3a to 3e show the density, pressure,x-velocity, y-velocity, andy-component of
the magnetic field, respectively, for the Brio–Wu [6] test problem. The problem is specified
on a 400-zone mesh that covers the region [−0.5, 0.5]. The 400 mesh points are shown
as open circles. The solid line corresponds to the exact solution. The initial conditions are
given by

(ρL, PL, vx,L, vy,L, vz,L, By,L, Bz,L) = (1, 1, 0, 0, 0, 1.0(4π)1/2, 0.0) x < 0

(ρR, PR, vx,R, vy,R, vz,R, By,R, Bz,R) = (0.125,0.1,0,0,0,−1.0(4π)1/2, 0.0) x > 0

Bx = 0.75(4π)1/2.

(6.5)

The problem was run up to a simulation time of 0.1. The ratio of specific heats was set to
2.0. The ACM was used in Figs. 3a to 3e. Figure 3f shows the density from the same test
problem when the ACM was not used. The problem generates a right-going fast rarefaction
wave, a right-going slow shock, a contact discontinuity, a left-going slow compound wave,
and a left-going fast rarefaction wave. Alfven waves are not generated since the problem is
coplanar. We see that all the shocks are captured with sharp, oscillation-free profiles. The
contact discontinuity is also represented with a sharp profile having just a few zones across
it. We see that the representation of the contact discontinuity without ACM is almost as good
as its representation with ACM. This bears out the claim we made in Section V that these
very high order schemes do not need to rely much on ACM-type steepening techniques to
achieve good representation of linearly degenerate characteristic fields. It is significant that
this claim is as true for the MHD equations, which have a richer wave structure, as it is
for the Euler equations. We conclude from the above discussion that ther = 5 MPWENO
scheme has been able to capture all the features in the problem very well. Because this is
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FIG. 3. (a)–(e) The density, pressure,x-velocity,y-velocity, andy-component of the magnetic field, respec-
tively, for the Brio–Wu [6] test problem. It was run to a time of 0.1. In either case ther = 5 MPWENO scheme
was used with ACM. The problem was run with a CFL number of 0.6. (f ) The density for the same test problem
when the ACM was not used. The 400 mesh points used in this problem are shown as open circles. The solid line
corresponds to the exact solution.
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a very high order scheme it was able to achieve very good definition of the features in the
flow by using a computational grid with just 400 zones.

Figures 4a to 4g show the density, pressure,x-velocity, y-velocity, z-velocity, and
y-component, andz-component of the magnetic field, respectively, for one of the test
problems in Ryu and Jones [37]. The problem is specified on a 400-zone mesh that cov-
ers the region [−0.5, 0.5]. The 400 mesh points are shown as open circles. The solid line
corresponds to the exact solution. The initial conditions are given by

(ρL, PL, vx,L, vy,L, vz,L, By,L, Bz,L) = (1.08,0.95,1.2,0.01,0.5,3.6,2.0) x < 0

(ρR, PR, vx,R, vy,R, vz,R, By,R, Bz,R) = (1.0, 1.0, 0, 0, 0, 4.0, 2.0) x > 0

Bx = 2.0

(6.6)

This was run to a simulation time of 0.2. The ratio of specific heats was set to 5/3. Figures 4a
to 4g show the results when ACM was used. Figures 4h and 4i show the density and
y-component of the magnetic field in the same problem when ACM was not used. This
is a non-coplanar problem. It, therefore, generates seven waves, the waves being a right-
going fast shock, a right-going rotational discontinuity, a right-going slow shock, a contact
discontinuity, a left-going slow shock, a left-going rotational discontinuity, and a left-going
fast shock. We see that all the shocks are properly captured with only a few zones across
the shock profile. It is also significant that this very high order scheme captures slow shocks
with just a few zones. It was found in the study of TVD schemes for MHD—see Balsara
[2]—that the profiles of slow shocks sometimes have a few more zones across them than
might be deemed optimal. This trend is exacerbated when one studies TVD schemes for
relativistic MHD; see Balsara [4]. By observing Fig. 4 we notice that ther = 5 MPWENO
scheme represents slow shocks with a crisp profile. Thus using the very high order schemes
designed here improves the representation of slow magnetosonic shocks. We also notice
from Fig. 4 that the contact discontinuity and the rotational discontinuities are captured
properly with just a few zones across their profiles. This is as true when the ACM algorithm
is used as when it is not used, showing once again that the very high order schemes designed
here do not need to rely much on ACM-type steepeners. From Figs. 4e and 4f we see that
there are only a few zones between the rotational discontinuities and the corresponding slow
shocks. The ability of the scheme to represent all discontinuities with sharp profiles is vital
for keeping the rotational discontinuities distinct from the slow shocks and representing
their profiles with a high degree of accuracy. This has allowed us to carry out the present
simulation on a grid of 400 zones. To obtain a comparable quality in the solution from a
TVD scheme would have required doing the problem on a grid of 800 zones. This illustrates
the considerable advantages of the very high order MPWENO schemes designed here.

VI.d. Shock–Entropy Wave Interaction

In Section IV, where we did a fair bit of convergence testing, we showed that it was
advantageous to go to higher order. It is interesting to ask whether these advantages are
realized in a realistic test problem. Shu and Osher [39] presented a problem where a Mach
3 shock wave interacts with a density disturbance and generates a flow field that has a
combination of smooth structures and discontinuities. This problem is a good model for
the kinds of interactions that occur in simulations of compressible turbulence. It represents
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FIG. 4. (a)–(g) The density, pressure,x-velocity,y-velocity,z-velocity,y-component, andz-component of the
magnetic field, respectively, for one of the test problems in Ryu and Jones [37]. It was run to a time of 0.2. In
either case ther = 5 MPWENO scheme was used with ACM. The problem was run with a CFL number of 0.6.
(h) and (i) The density andy-component of the magnetic field for the same test problem when the ACM was not
used. The 400 mesh points used in this problem are shown as open circles. The solid line corresponds to the exact
solution.
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FIG. 4—Continued

the amplification of entropy fluctuations as they pass through a strong shock. As mentioned
in the Introduction, accurate capturing of isolated discontinuities, such as shocks, does not
pose a problem for second-order-accurate TVD schemes. It is the interaction of smooth
structures with shocks that poses a problem because that is where the damaging effects
of TVD limiters are maximal. Jiang and Shu [23] have carried out a detailed comparative
study showing that the performance of ther = 3 WENO scheme is far superior to that of
a well-designed TVD scheme. Jiang and Shu [23] came to the important conclusion that
ther = 3 WENO scheme with 800 zones outperformed the TVD scheme with 2000 zones
by a substantial margin. To examine the role of increasing order of accuracy we make a
comparison between ther = 3 WENO scheme and ther = 5 MPWENO scheme designed
here. Ther = 5 MPWENO scheme was run withdMD

j+1/2= dLC
j+1/2= dM4

j+1/2. Both schemes
were run with a CFL number of 0.6. The RF version of the numerical flux was used for
both schemes. We did not use the ACM for either of the schemes. The problem was run on
a grid of 200 zones in the interval [−1, 1]. The initial conditions are specified by

(ρL, PL, vx,L) = (3.857143,10.3333,2.629369) x<−0.8
(6.7)

(ρR, PR, vx,R) = (1+ 0.2 sin(5πx), 1,0) x >−0.8.

The problem was run upto a simulation time of 0.47.
The points in Fig. 5a show the density from ther = 5 MPWENO scheme run on a grid

with 200 zones. We also ran ther = 5 MPWENO scheme on a grid of 800 zones in order
to generate a reference calculation. The density from the reference calculation is shown
as the solid line in Fig. 5a. The points in Fig. 5b show the density from ther = 3 WENO
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FIG. 5. The densities from the shock–entropy wave test problem. (a) Ther = 5 MPWENO scheme run on
a grid with 200 zones. We also ran ther = 5 MPWENO scheme on a grid of 800 zones in order to generate a
reference calculation. The density from the reference calculation is shown as a solid line. (b) A similar plot for
ther = 3 WENO scheme run on a grid with 200 zones. The ACM was not used. The problem was run with a CFL
number of 0.6.

scheme run on a grid with 200 zones. As before, the solid line is the density from the
reference calculation. Velocity and pressure variables are not shown because they are not
as illustrative as the density variable. We see that the density from ther = 5 MPWENO
scheme has converged to the reference calculation. Each of the extrema in the 200 zone
calculation that was carried out with ther = 5 MPWENO scheme matches those in the
reference calculation. On observing the extrema in Fig. 5a we see that there are no more than
11 points between the density extrema that immediately follow the shock. Thus the scheme
has not just converged to the reference calculation but has done so with a very small number
of points between extrema. In Section IV we pointed out not only that higher-order schemes
converge faster than lower-order schemes but also that when the number of available points
is kept fixed the higher-order scheme produces a smaller error. The ability of ther = 5
MPWENO scheme to converge to the reference calculation with just 11 points between
extrema gives us a validation of the results in Section IV on a real-world problem. Figure 5b
shows that ther = 3 WENO scheme has not converged to the reference calculation. In fact
the extrema in Fig. 5b fall well short of those in the reference calculation. This clearly
demonstrates that the theoretical results from the convergence tests that were carried out in
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Section IV have a genuine bearing onreal-world calculations. This also shows that there is
a utility in using a scheme with very high order of accuracy. Ther = 3 WENO scheme does
converge to the reference calculation when run on a 400-zone grid. But this calculation,
even though it is a one-dimensional calculation, is much more than twice as computationally
expensive as a calculation that usesr = 5 MPWENO on a grid of 200 zones. With increasing
dimensionality the computational costs favor ther = 5 MPWENO scheme even more. This
clearly shows that in going fromr = 3 WENO tor = 5 MPWENO we have not reached
a point of diminishing returns. This also shows that when the calculation is starved of
resolution or when complex flow structures develop on all scales (both of which occur in
several turbulence calculations) the higher-order schemes do indeed give us a substantial
advantage.

VII. MULTIDIMENSIONAL TESTS

VII.a. Mach 3 Wind Tunnel with a Forward Facing Step

This test problem was initially proposed and discussed in some detail by Woodward and
Colella [49]. More recently it has been simulated at very high resolution by Cockburn and
Shu [12]. Their simulation captured fine details in the solution, such as the vortex sheet
rollup, which appear when the resolution and the accuracy of the numerical scheme are
simultaneously increased. Our purpose is not to make such a resolution study but rather to
validate the robust and accurate behavior of the schemes proposed here. For this reason we
have simulated this test problem at the same resolution as Woodward and Colella [49]. The
problem consists of a wind tunnel that is initialized on a two-dimensional grid with 240× 80
zones that span the region [0, 3]× [0, 1]. A forward facing step is set up with the corner of
the step at (0.6, 0.2). The left boundary is initialized as an inflow boundary that has a Mach
3 gas with density of 1.4 and unit pressure flowing in. The gas has a ratio of specific heats
given by 1.4. The right boundary is taken to be an outflow boundary. Reflective boundary
conditions are applied to the walls of the tunnel. We treated the singularity at the corner
with the same technique suggested in Woodward and Colella [49]. The problem was run
until a simulation time of 4.0.

Figures 6a and 6b show the density and entropy at the final time. The problem was run
with the r = 5 MPWENO scheme withdMD

j+1/2= dLC
j+1/2= dM4

j+1/2. A CFL number of 0.6
was used. The RF version of the numerical flux was used. Since we wanted to test the basic
scheme’s ability to handle contact discontinuities in multiple dimensions without added
embellishments we did not use the ACM. We see that all the shocks have sharp profiles
which are properly captured on the computing grid. The vortex sheet that emanates from
the Mach stem is properly resolved with just a few zones across the vortex sheet. This is
made most evident in Fig. 6b for the entropy. It is significant that this scheme shows little
or no spreading of the vortex sheet over the length of the computational domain despite the
fact tha no ACM steepening was used.

VII.b. Double Mach Reflection of a Strong Shock

This test problem was also initially proposed and discussed in some detail by Woodward
and Colella [49]. More recently it has been simulated at very high resolution by Cockburn
and Shu [12]. Their simulation captured fine details in the solution, such as the rollup of
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FIG. 6. (a) and (b) The density and entropy for the Mach 3 wind tunnel test problem. We used ther = 5
MPWENO scheme with the RF strategy for the fluxes. The ACM was not used. The problem was run with a CFL
number of 0.6 and the results are shown at a simulation time of 4. The grid resolution was 240× 80 zones. Some
of the contours on the top boundary of the step show corruption of the contour lines; this is entirely an artifact of
the plotting routines.

the contact discontinuity that emanates from the stronger of the two Mach stems, which
appear when the resolution is increased. Our purpose is not to make such a resolution study
but rather to validate the accuracy and robustness of the schemes proposed here. For this
reason we have simulated this test problem at the same resolution as Woodward and Colella
[49]. The problem is initialized on a two-dimensional grid with 480× 120 zones that span
the region [0, 4]× [0, 1]. Only the region [0, 3]× [0, 1] is displayed in the figures. A right-
moving Mach 10 shock is set up such that the shock front makes an angle of 60◦ with the
x-axis and intersects thex-axis atx= 1/6. The boundary withx> 1/6 on thex-axis is taken
to be a reflecting boundary. The ratio of specific heats was taken to be 1.4. The unshocked
fluid has a density of 1.4 and a pressure of unity. The problem was run till a simulation time
of 0.2 was reached.

Figures 7a and 7b show the density, pressure, entropy, and Mach number at the final time.
The problem was run with ther = 5 MPWENO scheme withdMD

j+1/2= dLC
j+1/2= dM4

j+1/2. A
CFL number of 0.6 was used. The LLF version of the numerical flux was used. As shown
by Cockburn and Shu [12] and Burger and Colella [8] this problem is genuinely under-
resolved at the resolutions being used here. This is a situation where the ACM can help
capture phenomena with the minimal number of zones possible. Thus to demonstrate that
the ACM strategy works well in multiple dimensions we used the ACM technique for this
problem. We see that both Mach stems are properly captured and all the shocks in the
problem have crisp profiles. The boundaries of the dense jet that forms at the wall are
properly captured. The rollup of the slip lines that emanate from the head of the jet is
well captured in this simulation and is consistent with the higher-resolution simulations
of Cockburn and Shu [12] and Burger and Colella [8]. This rollup of the slip lines shows
through most clearly in the entropy plot; see Fig. 7b. This same problem has been done
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FIG. 7. (a) and (b) The density and entropy for the double Mach reflection test problem. We used ther = 5
MPWENO scheme with the LLF strategy for the fluxes. The ACM was used. The problem was run with a CFL
number of 0.6 and the results are shown at a simulation time of 0.2. The grid resolution was 480× 120 zones.

with ther = 3 WENO scheme in Jiang and Shu [23] using the same resolution as was used
here. By comparing with that work we can see clearly that our use of the higher-orderr = 5
MPWENO scheme here has had a positive effect on the quality of the solution.

A note needs to be added about the use of the RF numerical flux for this test problem. On
using the RF version of the numerical flux we found a mild “carbuncle effect” at the point
where the right-going normal shock meets the wall. The carbuncle effect—and causes that
give rise to it—has been thoroughly discussed by Quirk [31]. Quirk found that this effect
was essentially a consequence of poor coupling of the postshock entropy in the zones behind
a shock when the shock is aligned with the grid. By comparing Eq. (2.5) with Eq. (2.6) it
is easy to see that the LLF numerical flux gives better coupling between zones than the RF
numerical flux. Thus the use of the LLF numerical flux in regions that are flagged to be in
the immediate vicinity of shocks was seen to cure this carbuncle effect and restore good
and stable behavior to the RF version of this scheme. As a result we were able to repeat
this same test problem with ther = 5 MPWENO scheme without the carbuncle effect when
the LLF flux was used in the vicinity of shocks but the RF flux was used everywhere else.
It is also worthwhile to point out that, unlike other strategies that have been proposed for
removing the carbuncle effect, this strategy does not degrade in any way the high-order
accuracy of the scheme.

VII.c. Shock–Vortex Interaction Problem

In this third multidimensional test problem we study the interaction of a vortex with a
shock. This test problem was first presented in Pao and Salas [29]. It was later carried out
using a TVD scheme by Meadowset al. [28] and anr = 3 WENO scheme by Jiang and
Shu [23]. The latter used exact expressions for the vortex while earlier authors had used
approximate expressions for the vortex. We have used the same parameters for the shock
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and the vortex as Jiang and Shu [23] with an important difference. All the previous authors
have simulated this test problem with the flow aligned with one of the principal directions
of the grid. We have chosen to have the shock normal make an angle of 45◦ to thex-axis.
We also choose to have the vortex flow into the shock with a mean flow that makes an
angle of 45◦ to thex-axis. Done this way it has a greater correspondence with real-world
problems where one scarcely has the luxury of choosing grids that are aligned with the
flow. The present test problem is a good model for sound waves that are generated when
turbulence interacts with shock structures in a jet plume resulting in broadband noise. The
more detailed interaction of shock waves with turbulence has also been studied in Jamme
et al. [22] and so it is to be expected that the test problem described here plays a role in
those simulations, too. The problem was initialized on a two-dimensional domain spanning
[0, 1.5]× [0, 1.5] using a uniform grid of 150× 150 zones. A standing Mach 1.1 shock
was initialized along the liney=−x+ 1 with the preshocked gas flowing into the shock
from the left-bottom corner. The zones withy≤−x+ 1, including the boundary zones that
satisfy this condition, were initialized with preshocked gas. The zones withy>−x+ 1,
including the boundary zones that satisfy this condition, were initialized with postshocked
gas. The imposition of these somewhat more complicated boundary conditions produced
a slight corruption of the interior flow due to the boundaries but the effect was not very
strong. We wanted to prevent strong startup transients from developing at the shock front.
As a result, the primitive variables in the zones that were within a distance1x of the
line y=−x+ 1 were given a linear variation that went from the preshock values to the
postshock values. The gas had a ratio of specific heats given by 1.4. The preshocked gas
had its density and pressure set to unity. A vortex centered at(xc, yc)= (0.25, 0.25) was
initialized so that its velocity, temperature, and entropy fluctuations to the mean flow in the
fluid that was flowing into the shock were given by

(δvx, δvy) = ετeα(1−τ
2)(sinθ, −cosθ)

(7.1)
δT = − (γ − 1)ε2

4αγ
e2α(1−τ 2); δS= 0,

whereτ = r/rc andr 2= (x− xc)
2+ (y− yc)

2. Hererc denotes the core radius for the vortex,
α controls the length scale over which the vortex decays, andε denotes the vortex’s strength
so that we haverc= 0.05, α= 0.204, andε= 0.3. The temperature and entropy are defined
here asT = P/ρ andS= P/ργ . The problem was run until a simulation time of 0.8.

We used ther = 5 MPWENO scheme withdMD
j+1/2= dLC

j+1/2= dM4
j+1/2 to simulate this test

problem. The LLF version of the numerical fluxes was used. The ACM was not used.
The problem was run with a CFL number of 0.6. Figures 8a and 8b show the density and
Mach number, respectively, for the shock–vortex interaction test problem at a simulation
time of 0.28. The vortex is halfway through the shock so that the vortex core is strongly
interacting with the shock. Two distinct pressure regions are seen to develop in the postshock
region. The region above the vortex center has higher pressure than the region below the
vortex center. Figures 8c and 8d show the same two variables at a simulation time of
0.5. The vortex core has passed through the shock. A wave front that is centered on the
vortex core has developed and is still strongly interacting with the shock. Figures 8e and
8f show the same two variables at a simulation time of 0.8. By this point the wave front
emanating from the vortex core has reached the top boundary of the computational domain.
The times 0.28, 0.5, and 0.8 in our simulation correspond approximately to times 0.2,
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FIG. 8. (a) and (b) The density and Mach number, respectively, for the shock vortex interaction test problem
at a simulation time of 0.28. (c) and (d) The density and Mach number in the same simulation at a time of 0.5.
(e) and (f) The same two variables at a simulation time of 0.8. We used ther = 5 MPWENO scheme with the
LLF strategy for the fluxes. The ACM was not used. The problem was run with a CFL number of 0.6. The grid
resolution was 150× 150 zones. The same simulation was run again using a PPMDE scheme again with a CFL
number of 0.6 on a 150× 150 zone grid. (g) and (h) The same two variables as (a) and (b) for the PPM scheme. (i)
and ( j) show the same two variables as (c) and (d) for the PPM scheme. (k) and (l) show the same two variables
as (e) and (f) for the PPM scheme.
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0.35, and 0.6 in the simulation of Jiang andShu [23]. We see that despite the modest
resolution in the simulation that we have carried out here, the vortex still has a well-
defined circular shape, thus showing that our scheme has accurately represented the shock–
vortex interaction. We also see that despite the fact that the obliquely positioned shock has
undergone strong interaction with the vortex, its structure has been properly preserved. We
also wish to make a comparison with older, dimensionally split TVD schemes. For this
reason, the problem was initialized on a similar grid of 150× 150 zones and simulated with
the PPMDE scheme of Colella and Woodward [13]. A Lapidus viscosity with the value
suggested in Colella and Woodward [13] was used to provide multidimensional coupling.
The steepener was not used. The flattening algorithm described in Colella and Woodward
[13] was also not used because the shock described here is not very strong. The use of
the flattening algorithm is only recommended for simulations with strong shocks. Its use
here would only have degraded the order of accuracy with which the PPM scheme would
have simulated this test problem. Figures 8g to 8l correspond to Figs. 8a to 8f, respectively.
We see that there is considerable corruption of the density variable when the vortex core
reaches the shock in Figs. 8g and 8h. Also when the wave front reaches the shock in Figs. 8i
and 8j the multidimensional interaction of two waves produces considerable small scale
fluctuation in the region where the shock and the wave front interact. We see, therefore, that
on strongly multidimensional problems where the mean flow is not aligned with any of the
grid directions the schemes presented here do indeed outperform the older, dimensionally
split TVD schemes.

VIII. CONCLUSIONS

Based on the work presented in this paper we offer the following conclusions:
(1) We have designed a class of numerical schemes with increasingly high order of

accuracy.
(2) The higher-order WENO schemes may not always preserve monotonicity. How-

ever, the monotonicity preserving bounds of Suresh and Huynh [45] restore monotonicity
preserving behavior to these schemes. We call such schemes MPWENO schemes.

(3) The resulting schemes are robust and efficient, and can run with a reasonably
large CFL number. To give an estimate of the efficiency, ther = 5 MPWENO scheme has
a computational complexity that is only greater than ther = 3 WENO scheme by a factor
of 1.35 to 1.5 on all problems that we have tried. Ther = 3 WENO scheme, in turn, has a
computational complexity that is only a factor of two larger than that of a TVD scheme.

(4) The higher-order members of the MPWENO family of schemes are almost spec-
trally accurate. We verify that this is so for MPWENO schemes withr ≥ 5 by presenting
several one- and two-dimensional convergence tests.

(5) We have examined the role of steepening algorithms such as the ACM algorithm
of Yang [50]. We have documented suitable values for the parameters that are to be used
in the ACM method with MPWENO schemes of increasingly high order. We were able to
show that such algorithms do not damage the order property of the numerical method. We
also show that higher-order schemes need to rely much less, or perhaps not at all, on such
steepening algorithms.

(6) We have presented an extensive body of tests in one and two dimensions. These
tests have shown conclusively that the higher-order schemes designed here have substantial
advantages over lower-order schemes such as TVD schemes.
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(7) We have shown that the methods developed here extend very well to other hyper-
bolic systems such as MHD.

(8) It is argued that the methods designed here have great utility in situations where
the flow has complex structures on all scales. Applications that have this property may be
found in DNS and LES simulations of compressible turbulence.

(9) We have carried out several multidimensional test problems on grids where the
flow is not aligned with one of the grid directions and compared them with problems where
the flow is aligned with one of the grid directions. This has led us to the conclusion that
it is very advantageous to design and use test problems for higher-order schemes where
the flow is not aligned with any of the grid directions. In particular, the difference between
earlier, dimensionally split TVD schemes and the schemes designed here becomes glaringly
apparent when the flow and the grid are not aligned.
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