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THE CoVER shows the Cayley graph for the smallest non-Abelian simpdeyg, the alternating group
As (seegll). We will see ing16.that the simplicity of this group means there is no algebeafression
for any of the roots of the polynomiaP — 4z + 2 using the algebraic ingredients,

EEQ'F_X; 2/ 3/ 4/ 5
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so therefore there can be no formula for the solutionsi6f+ bz* + cx® + daz? + ex + f = 0 that works
for all possiblea, b, ¢, d, e, f € C.

N

(1,5,2,4,3) (1,4)(3,5)

(1,3,4,5,2)
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The Cayley graph is a visual depiction of the multiplicatinorthe groupAs. The vertices correspond
to the elements of the group as marked, the red edges to thieutarelement = (1,2, 3,4, 5) and the
black edges ta- = (1,2)(3,4). The red pentagonal faces are oriented anticlockwise wiheact to the
outward pointing normal vector (use the right-hand rule)ttet crossing a red edge in an anticlockwise
direction corresponds @ and crossing in a clockwise direction correspondsté (as in the diagram).

The edges depict multiplication on the right: crossing aaege anticlockwise (repectively clockwise)
multiplies the label of the start vertex ly(resp.o~1) to give the label of the finish vertex; crossing a
black edge in either direction multiplies the label of tharstzertex byr to give the label of the finish
vertex.

Thus, the green sequence of edges gives the decompaitioy(3,5) = 70270~ and the blue
sequence shows thétt, 2,4, 5, 3)70 21 = (1, 3,5).

It is a curious coincidence that the Cayley graph of the sastphon-Abelian simple group is the
Buckminsterfullerene molecule: the simplest known puretfof Carbon.

1The reason for the lack of orientation on the black edgesdalme the permutation= 71,



§1. What is Galois Theory?

A quadratic equationz? + bz + ¢ = 0 has exactly two (possibly repeated) solutions in the corple
numbers. We can even write an algebraic expression for tthemks to a formula that first appears in the
ninth century booldisab al-jabr w'al-mugabaldy Abu Abd-Allah ibn Musa al’Khwarizmi, and written
in modern notation as,

—b=£ Vb2 —4dac
="
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Less familiar maybegz? + bz? + cz + d = 0 has threeC-solutions, and they too can be expressed
algebraically using Cardano’s formula. For instance, atet®n turns out to be,
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and the other two have similarly horrendous expressiongrel'ts an even more complicated formula,
attributed to Descartes, for the roots of a quartic polyradeguation.

What is mildly miraculous is not that the solutions exist, ey can always be expressed algebraically
in terms of the coefficients and the basic algebraic operatio
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By the turn of the 19th century, no equivalent formula for fdutions to a quintic (degree five) poly-
nomial equation had materialised, and it was Abels who hadcthcial realisationno such formula
exists!

Such a statement can be interpreted in a number of ways. Doesah that there are always algebraic
expressions for the roots of quintic polynomials, but thieim is too complex for onsingleformula to
describe all the possibilities? It would therefore be neapsto have a number, maybe even infinitely
many, formulas. The reality turns out to be far worse: theeespecific polynomials, such a8 — 4z + 2,
whose solutiongannot be expressed algebraically in any way whatsaeVhaere is no formula for the
roots of just this single polynomial, never mind all the athe

A few decades after Abel’'s bombshell, Evaristé Galoistsththinking about the deeper problewhy
don’tthese formulae exist? Thus Galois theory was orifymabtivated by the desire to understand, in a
much more precise way than they hitherto had been, the ap&itd polynomial equations.

Galois’ idea was thisstudy the solutions by studying their “symmetrieflowadays, when we hear
the word symmetry, we normally think of group theory rath®art number theory. Actually, to reach
his conclusions, Galois kind of invented group theory altmgway. In studying the symmetries of the
solutions to a polynomial, Galois theory establishes aliatween these two areas of mathematics. We
illustrate the idea, in a somewhat loose manner, with an pl&m

w

The symmetries of the solutionsat— 2 = 0.

(1.1) We work inC. Let« be the real cube root & ie: a = ¥/2 € R and,w = —% + ‘/752 Note thatw
is a cube root of, and sav® = 1.

aw 7,7 The three solutions ta® — 2 = 0 (or roots of 3 — 2) are the complex
/ numbersy, aw andaw?, forming the vertices of the equilateral triangle shown.
o o The triangle has what we might call “geometric symmetrig¢stee reflections,

a counter-clockwise rotation throug%hof a turn, a counter-clockwise rotation
through2 of a turn and a counter-clockwise rotation thro@bf a turn= the
identity symmetry. Notice for now that if; andr, are the reflections in the
lines' shown the geometrical symmetries &fera, 721172, 1271, (ror1)? and(rqr;)? = 1 (read these
expressions from right to left).



The symmetries referred to in the preamble are not so mucameeiz as “number theoretic”. It will
take a little explaining before we see what this means.

(1.2) A field is a setF’ with two operations, calledqurely for conveniengetr and x, such that for any
a,b,ce F,

1. a + banda x b (= ab from now on) are uniquely defined elementsrgf
.a+(b+c)=(a+b)+c

.a+b=b+a,

. there is an elemepte F such thaO + a = a,

. foranya € F there is an elementa € F with (—a) +a =0,

a(be) = (ab)c,

ab = ba,

. thereis an elemeite F \ {0} with1 x a = q,
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. foranya # 0 € Fthereisam~! € Fwithaa™! =1,
10. a(b+ ¢) = ab+ ac.

A field is just a set of things that you can add, subtract, mplyitind divide so that the “usual” rules of
algebra are satisfied. Familiar examples of fields@r® andC; familiar examples of non-fields af&,
polynomials and matrices (you can't in general divide ietasgpolynomials and matrices to get integers,
polynomials or matrices).

(1.3) A subfieldof a field F' is a subset that also forms a field under the sarmend x. Thus,Q is a
subfield ofR which is in turn a subfield of, and so on. On the other har@@,u {+/2} is not a subfield
of R: it is certainly a subset but axiom 1 fails, as bathnd+/2 are elements but+ /2 is not.

Definition. If F'is a subfield of the complex numbe&fsands € C, thenF(3), is the “smallest” subfield
of C that contains botli” and the numbes.

What do we mean by smallest? That there is no other fi#lthaving the same properties &%33)
which is smaller, ie: nd@ with F C F’ andg € F’ too, butF’ properlyC F(3). Itis usually more
useful to say it the other way around:

If I’ is a subfield that also contaisand3, thenF’ containsF(j3) too. *

Loosely speakingF'(j3) is all the complex numbers we get by adding, subtractingtipiving and
dividing the elements of" and together in all possible ways.

(1.4) To illustrate with some trivial example®(¢) can be shown to be all of: it must contain all
expressions of the fori for b € R, and hence all expressions of the foirm bi with a, b € R, and this
accounts for all the complex numbe€$(2) is equally clearly just) back again.

Slightly less trivially,Q(1/2), the smallest subfield ¢ containing all the rational numbers ap@ is
a field that is strictly bigger tha@ (eg: it contains,/2) but is much, much smaller than all BE

Exercise 1 Show thaty/3 ¢ Q(v/2).



(1.5) Returning to the symmetries of the solutionsifo— 2 = 0, we look at the fieldQ(«, w), where

a=+2cRandw = —% + @i, as before. Sinc@®(«,w) is by definition a field, and fields are closed
under+ and x, we have

a € Q(a,w) andw € Q(a,w) = a X w = aw,a X w X w = aw? € Q(a, w) too.
S0,Q(«, w) contains all the solutions to the equatish— 2 = 0. On the other hand,

Exercise 2 Show thatQ(a, w) has “just enough” numbers in it to solve the equatidn— 2 = 0. More preciselyQ(«, w) is the
smallest(in the sense (*))subfield df that contains all the solutions to this equatiomin{, you may find it useful to do Exercise 5
first).

(1.6) A very loose definition of a symmetry of the solutionsidf— 2 = 0 is that it is a “rearrangement”
of Q(«,w) that does not disturb (or is compatible with) theand x.
To see an example, consider the two fieldigy, w) andQ(«, w?). Despite first appearances they are
actually the same: certainly
a,w € Qa,w) = o, w? € Qa,w).

But Q(a, w?) is the smallest field containin@, o« andw?, so by (*),
Q(a, w?) € Q(a,w).
Conversely,
o,w? x w? =w' =w e Q(a, w?) = Qa, w) C Q(a, w?).

Remember that® = 1 sow? = w. ThusQ(a, w) andQ(a, w?) are indeed the same. In fact, we should
think of Q(a, w) andQ(«, w?) as two different ways of looking at the same field, or more sstjgely,
the same field viewed from two different angles.

Whenever we hear the phrase, “the same field viewed from tffereint angles”, we should imme-
diately think that a symmetry is lurking—a symmetry that m®the field from the one point of view to
the other. In the case above, there should be a symmetry dietded(a, w) that puts it into the form
Q(a, w?). Surely this symmetry should send

a— o, andw — w?.

We haven't yet defined what we mean by, “is compatible with-thand x”. It will turn out to mean
that if « andw are sent tax andw? respectively, them x w should go tav x w?; similarly o x w x w
should go tax x w? x w? = aw* = aw. The symmetry thus moves the vertices of the equilatesigie
determined by the roots in the same way that the reflectiaf the triangle do€’s

=

(1.7) In exactly the same way, we can consider the fi€dsw, w?) andQ(«a, w). We have
a,w € Qla,w) = w?, aw € Q(o,w) = Qaw, w?) C Q(a,w);
and converselyyw, w? € Q(aw,w?) = aww? = aw?® = a € Q(aw, w?), and hence also

alaw =w € Qlaw, w?) = Q(o, w) € Q(aw, w?).

2This compatability also means that it would have made nossernisave the symmetry send— w? andw — a. A symmetry
should not fundamentally change the algebra of the fieldhabit an element likev cubes to givel, then its image under the
symmetry should too: but doesn’tcube to givel.



aw o

y Thus,Q(a, w) andQ(aw, w?) are the same field, and we can define another symme-
try that sends

e a— aw, andw — w?.

To be compatible with the- and x,

<jw axw»—>awxw2:aw3:a, anda X w X w — aw X w? X w? = aw’® = aw?.
So the symmetry is like the reflection of the triangle:
Finally, if we have two symmetries of the solutions to someatipn, we would like their composition
to be a symmetry too. So if the symmetrigsandr, of the original triangle are to be considered, so
ShOUldTgT‘lT‘Q, 172, (7‘17”2)2 and(r1r2)3 =1.

(1.8) The symmetries of the solutions t& — 2 = 0 include all the geometrical symmetries of the
equilateral triangle. We will see much later that any symmnef the solutions is uniquely determined

as apermutationof the solutions. Since there a3&= 6 of these, we have accounted for all of them. It
would appear then that the solutionstb— 2 = 0 have symmetrpreciselythe geometrical symmetries

of the equilateral triangle.

(1.9) If this was always the case, things would be very simple: Salweory would just be the study
of the “shapes” formed by the roots of polynomials, and thametries of those shapes. It would be a
branch of planar geometry.

But things are not so simple. If we look at the solutionscto— 2 = 0, something quite different

happens:
aw
CYQJQ i
a=2
«
VE—1  V2V5+5.
aw? W= + 4 v
oa.u4

We will see later on how to obtain these expressions for thesrd\ pentagon has 10 geometric symme-
tries, and you can check that all arise as symmetries of s nfz° — 2 using the same reasoning as in
the previous example. But this reasoning also gives a symrtiedt moves the vertices of the pentagon
according to:

aw

aw

QQ
aw

oa.u4

This is not a geometrical symmetry! Later we will see thatfor 2 a prime number, the solutions to
P — 2 = 0 havep(p — 1) symmetries. While agreeing with the six obtained f6r— 2 = 0, it gives
twentyfor 2° — 2 = 0. In fact, it was a bit of a fluke that all the number theoretimsyetries were also
geometric ones far® — 2 = 0. A p-gon ha2p geometrical symmetries arg < p(p — 1) with equality
onlywhenp = 3.



Exercise 3 Show that the figure on the left depicts a symmetry of the gplattoz® — 1 = 0, but the one on the right does not

w

IO 1
w

) O

Further Exercises fo§1.

w

. 1 3 . .
Exercise 4 You already know that tha-rd roots of 1 arel and—5 + gz What about the-th roots for higher primes?

1. Ifw # 1is a5-th root it satisfieso* + w3 + w? + w+ 1 = 0. Letu = w + w™?'. Find a quadratic polynomial satisfied

by u, and solve it to obtaim.
2. Find another quadratic satisfied this timeuaywith coefficients involving:, and solve it to find explicit expressions for the

four primitive 5-th roots of 1.

3. Repeat the process with tfigh roots ofl.
factoid: then-th roots of 1 can be expressed in terms of field operationeamection of pure roots of rationals for any The

details (which are a little complicated!) were finally comigld by the work of Gauss and Galois.

Exercise 5

1. LetF be afield such that the element
1+1+---4+1#0,
N— —

n times
for anyn > 0. Argueing intuitively, show thaf’ contains a copy of the rational numbépqsee als@4.).
2. Give an example of a field where
1+1+---+1=0,
N—— —

n times

for somen.

i. Show thatQ (o, w), Q(aw?, w®) andQ(aw*, w?) are all the same field.

|G

. 1
Exercise 6 Leta = V/5 € Randw = 5+

Exercise 7
1. Show that there is a symmetry of the solutiongto— 2 = 0 that moves the vertices of the pentagon according to:
ow
aw2
-2
aw3
Q’UJ4

wherea = /2, andw® = 1,w € C.
2. Show that the solutions ifi to the equation:® — 5 = 0 have12 symmetries.



§2. Polynomials, Rings and Polynomial Rings

(2.1) There are a number of basic facts about polynomials that Weeed. Supposé’ is a field Q, R
or C will do for now). A polynomial overF' is an expression of the form

f=ag+arx+ - -az",

where thea; € F andz is a “formal symbol” (sometimes called an indeterminate)e #én’t tend to
think of « as a variable—it is purely an object on which to perform atgebmanipulations. Denote the
set of all polynomials oveF by F[z]. If a,, # 0, thenn is called thedegreé of f, writtendeg(f). If the
leading coefficient,, = 1, thenf is monic

(2.2) We can add and multiply elements Bfz] in the usual way:

if f = Xn:aixi andg = i biIi,
=0 1=0

then,
max(m,n) ‘ m-+n
f+g= Z (a; + b;)x" andfg = Z crx® whereey, = Z a;b;. Q)
i=0 k=0 i+j=k

that is, ¢, = agbg + a1bg—1 + -+ + arby. The arithmetic of the coefficients (ie: how to work out
a; + b;, a;b; and so on) is just that of the field.

Exercise 8  Convince yourself that this multiplication is really jubet“expanding brackets” multiplication of polynomials tha
you know so well!

(2.3) The polynomialg-[x] together with this addition form an example of a,

Definition. A groupis a setG endowed with an operation such that for alk, b € G,
1. a ® bis a uniquely defined element 6f (closure);
2. a® (b®c) = (a®b) & c (associativity);
3. thereis ar € G such that @ a = a = a @ e (identity),;
4. foranya € G thereisam™! € Gwitha® a™! = e = a=! @ a (inverses).
A group that also satisfies® b = b @ a for all ¢, b € G (commutativity) is said to bAbelian

With polynomials, the operatios is just the regular addition of polynomials. When the groppra-
tion is “familiar” addition it is customary to use the symbpk- for @; 0 for e and— for inverses. Thus
the identity of F'[x] as a group is the zero polynomial and inverses are given by

n

- <§ aia:i> = (—a)a'.

=0

Its also easy to see thAfz] forms an abelian group: fof+ g = g + f exactly wheru; +b; = b; +a; for
all ;. But the coefficients of our polynomials come from the figldand addition is always commutative
in a field.

3In one of those triumphs of notation over intuition for whidkathematics is justifiably famous, defideg(0) = —oo, whereas
deg(A) = 0if X € F is not zero. The arithmetic of degrees is then just the agtierof non-negative integers, except we also
need to decree thatoo + n = —oo.



(2.4) If we want to think about multiplication as well, we need terial concept of,

Definition. A ring is a setkR endowed with two operations and® such that for alk, b € R,
1. Ris an Abelian group undep;
2. foranya,b € R, a ® bis a uniquely determined element Bf(closure of®);
3. a® (b®c) = (a®b) ® c (associativity ofg);
4. thereis arf € R suchthatf ® a = a = a ® f (identity of ®);
5.a® (b®c) = (a®b) & (a® c) (the distributive law).

Loosely, aring is a set on which you cadd (¢), subtract(the inverse ofb in the Abelian group) and
multiply (®), butnot necessarily divide (there is no inverse axiomdor
Here are some well known examples of rings:

Z, Fx] for F afield Z,, andM,,(F),

whereZ,, is addition and multiplication of integers moduloand M,,(F') are then x n matrices, with
entries fromZ’, together with the usual addition and multiplication of nicas.
A ring is commutativef the second operatiof is commutativea ® b = b ® a for all a, b.

Exercise 9
1. Show thatfg = gf for polynomialsf, g € F[z], henceF[z] is a commutative ring.
2. Show thaf andZ,, are commutative rings, bit/,, (F') is not foranyfield F'if n > 2.

(2.5) The observation thd and F'[z] are both commutative rings is not just some vacuous formalis
A concrete way of putting it it thisat a very fundamental level, integers and polynomials sttsgesame
algebraic properties

When we work with polynomials, we need to be able to add andipiyithe coefficients of the poly-
nomials in a way that doesn’t produce any nasty surprisesthier words, the coefficients have to satisfy
the basic rules of algebra that we all know and love. But tieséc rules of algebra can be found among
the axioms of a ring.Thus, to work with polynomials successfully, all we neethas the coefficients
come from a ring

This observation means that for a riRgwe can form the set of all polynomials with coefficients from
R and add and multiply them together as we did above. In facgnegust repeating what we did above,
but are replacing the fiel#l with a ring R. In practice, rather than allowing our coefficients to sonoerf
an arbitrary ring, we tak& to be commutative. Since we are so used to our coefficientsmgimg with
each other, this is probably a prudent precaution. Thigali$ to,

Definition. Denote byR[x] the set of all polynomials with coefficients from some comative ring R,
together with thet- and x defined at (1).

Exercise 10
1. Show thatR[z] forms a ring.

2. SinceR|[z] forms aring, we can consider polynomials with coefficientsrf R[z]: take a new variable, say, and consider
R[z][y]. Show that this is just the set of polynomials in two variahbieandy together with the ‘obvious? and x.

(2.6) A commutative ringR is called anintegral domainiff for any a,b € R with a ® b = e, we have
a = e, orb = e or both. ClearlyZ is an integral domain.

Exercise 11
1. Show that any field” is an integral domain.
2. For what values of is Z,, an integral domain?



Lemmal Letf, g € R[z], R an integral domainThen
1. deg(fg) = deg(f) + deg(9).
2. R[z] is an integral domain.

The second part means that given polynomfaéadg (with coefficients from an integral domain), we
havefg = 0 = f = 0 or g = 0. You have been implicitly using this fact for some time nowantyou
solve polynomial equations by factorising them.

Proof: We have

m-+n
fg= Z cxx® wherecy, = Z aib;,
k=0 i+j=k

S0 in particulare,, 1, = anb, # 0 asR is an integral domain. Thugeg(fg) > m + n and since the
reverse inequality is obvious, we have part (1) of the Lemart (2) now follows immediately since
fg=0=deg(fg) = —oo = deg f + deg g = —oo, which can only happen if at least oneobr g has
degree= —co (see the footnote at the bottom of the first page). O

All your life you have been happily adding the degrees of polypials when you multiply them. But as
the result above showshis is only possible when the coefficients of the polynocoiade from an integral
domain For exampleZg, the integers under addition and multiplication modéilés a ring that is not an
integral domain (a8 x 3 = 0 for example), and sure enough,

Bx+1)(2z+1)=5z+1,

where all of this is happening i#g[z].

(2.7) Although we cannot necessarily divide two polynomials aatiagnother polynomial, weandivide
upto a possible “error term”, or, as it is more commonly ahlke remainder.

Theorem A (The division algorithm). Suppose’ and g are elements oR?[z] where the leading coef-
ficient ofg has a multiplicative inverse in the rin§. Then there exis§ andr in R[z] (quotient and
remainder) such that

f=ag+r,
where either = 0 or the degree of is < the degree of.

WhenR is a field (where you may be more used to doing long divisiohthal non-zero coefficients
of a polynomial have multiplicative inverses (as they liaifield) so the condition o becomeg # 0.

Actually the name of the theorem is not very apt: it merelyrgngees the existence of a quotient and
remainder. It doesn't give us any idea how to find them (in otherds, an algorithm). Compare the
theorem with what you know abo#t There, we can also divide to get a remainder: when you divide
by 3, it goes5 times with remainde®; in other words17 = 5 x 3 4+ 2. With integers, we are used to
the remainder being smaller than the integer we are dividingn R[z] this condition is replaced by the
degree of the remainder being strictly smaller than theeakegf the divisor.

Proof: For all ¢ € R[z], consider those polynomials of the forfn— gq and choose one, say of
smallest degree. Let = degr andm = deg g. We claim thatd < m. This will give the result, as the
chosen has he form= f — gq for someq, giving f = gq + r. Suppose that > m and consider

7= (ra)(g, )2y,

a polynomial sincel — m > 0. Notice also that we have used the fact that the leading caifiofg has
a multiplicative inverse. The leading termofs r,z¢, which is also the leading term of Thus,r — 7
has degree d. Butr —7 = f — gq—rqg;;* 2%~ g by definition, which equalg — g(q—rqg;,'z4~™) =
f — gq, say. Thus — 7 has the formf — ¢q too, but with smaller degree thanwhich was of minimal
degree amongst all polynomials of this form—this is our kcontradiction. O

10



Exercise 12
1. If Ris an integral domain, show that the quotient and remaincenmique.
2. Show that the quotient and remainder are not unique whemliide polynomials irZe [z].

(2.8) Other familiar concepts frori are those of divisors, common divisors and greatest comrivon d
sors. Since we need no more algebra to define these notianstbashrined in the axioms for a ring, it
should come as no surprise that these concepts carry prattly straight over to polynomial rings. We
will state these in the setting of polynomials frdrii) for F' a field.

Definition. For f, g € F[z], we say thaff dividesg iff ¢ = fh for someh € F[x]. Write | g.

Definition. Let f, g € F[z]. Suppose that is a polynomial satisfying
1. dis a common divisor of andg, ie: d| f andd | g;

2. dis the greatest common divisor in the sense that any othemmmdivisor must dividel (and so
in particular be smaller!), ie: i | f andc| g thenc| d;

3. dis monic.

As with the division algorithm, we have tweaked the defimitfoom Z to make it work inF'[z]. The
reason is that we warihe gcd to be unique. IiZ you ensure this by insisting that all gcd’s are positive,
otherwise,—3 would make a perfectly good gcd férand27; in F'[x] we go for the monic condition
(otherwise ifd was a gcd off andg, then17 x d would be too).

(2.9) 22 — 1 and22® — 222 — 42 € Q[x] have greatest common divisor+ 1: it is certainly a common
divisorasz? —1 = (z+1)(z — 1) and2z3 — 222 — 42 = 2x(x +1)(x — 2). From the two factorisations,
any other common divisor must have the fokfx + 1) for some € Q, and so divides: + 1.

(2.10)

Theorem 1 Any twof, g € F[z] have a greatest common divisér Moreover, there are, by € F[x]
such that
d= aof + bog.

Compare this witlZ! In fact, one may replacé’[z] by Z in the following proof to obtain the corre-
sponding fact for the integers.

Proof: Consider the sef = {af + bg|a,b € F[z]}. Letd € I be a monic polynomial with minimal
degree. Thed € I gives thal = aq f + bog for someay, by € F[z]. We claim thatl is the gcd off and
g. The following two basic facts are easy to verify:

1. The sefl is a subgroup of the Abelian groupz|—exercise.
2. Ifu € I andw € F[z] thenuw € I, sincewu = w(af + bg) = (wa) f + (wb)g € I.

Consider now the seé® = {hd | h € F[z]}. Sinced € I and by the second observation abové,c I,
and we haveP C I. Conversely, ifu € I then by the division algorithmy = ¢d + r wherer = 0 or
deg(r) < deg(d). Now,r = u—qdandd € I,soqd € I by (2). Butu € T andgd € I sou—dg=1r €I
by (1) above. Thus, ifleg(r) < deg(d) we would have a contradiction to the degree dfeing minimal,
and so we must have= 0, givingu = ¢d. This means that any elementbis a multiple ofd, sol C P.
Now that we know thatl is just the set of all multiples of, and since lettings = 1,6 = 0 or
a =0,b=1gives thatf, g € I, we have thatl is a common divisor of andg. Finally, if d’ is another
common divisor, therf = u1d’ andg = usd’, and sincel = ag f + byg, we haved = aquid’ +bousd =
d'(apuy + bousz) giving d' | d. Thusd is indeed the greatest common divisor. O
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(2.11) We have one more thing to say about polynomial rings. Firstneed to recall a fundamental
notion:

Definition. Let R and.S be rings. A mapping : R — S is called aring homomorphisnif and only if
foralla,b € R,

1. p(a+0b) = p(a) + ¢(b);

2. p(ab) = p(a)e(b);

3. ¢(f) = f (wheref is the multiplicative identity inR).

Inany ring of interest to us, the last item translateg@sg = 1. Why do we need this but ngt(0) = 0?
Actually it's quite simple: we have(0) = ¢(0 + 0) = ¢(0) + ¢(0) and sinceS is an Abelian group
under addition, we can cancel (we are using the existenaevefses under addition!) to get0) = 0.
We can't do this to gep(1) = 1 as we don't have inverses under multiplication, so we neeshrine
the desired property in the definition.

You should think of a homomorphism as being like an “algebeaialogy”, or a way of transferring
algebraic properties; the algebra in the image @d analogous to the algebra Bf

(2.12) We will have much more to say about general homomorphisres tat. For now, let's look at
one in particular. LeR[x] be a ring of polynomials over a commutative riRgand letA € R. Define a
mapping:, : R[z] — R by

ex(f) = FON) Eag+ah+ -+ ap\.

ie: substitute\ into f. This is a ring homomorphism froR[z] to R, called theevaluation at\ homo-
morphism to see this, certainly, (1) = 1, and I'll leavee(f + g) = ex(f) + eA(g) to you as its not

hard. Now,
m+n m+n
ex(fg) = 5)\<Z Ck:ck> = Z c\¥ wherecy, = Z ab;.
k=0 k=0 itj=k
But 3 e Ak = (Z?_O ai)\i> <Z}”_0 bj/\j> = ex(f)exr(g) and we are done.

One consequence af, being a homomorphism is that given a factorisation of a pofyial, say
f = gh, we haves,(f) = ex(g)ea(h), ie: if we substitute\ into f we get the same answer as when
we substitute intg and ~ and multiply the answersThis is another fact that appears to be trivial at first
sight—you would have instinctively done this anyway no doub

Further Exercises fo§2.

Exercise 13 Let f, g be polynomials over the field and f = gh. Show thath is also a polynomial oveF'.
Exercise 14 Leto : R — S be a homomorphism of rings. Definé : R[z] — S[z] by

o*: Zaixi — Zo(ai)mi.
Show thato* is a homomorphism.

Exercise 15 let R be aring and definé : R[z] — R[xz] by

0: Z apaeh — Z(lmk)xkfl ando(\) = 0,
k=0 k=1

for any constanf\. (Ring a bell?) Show tha®(f + g) = 9(f) + d(g) andd(fg) = 9(f)g + fI(g). The mapd is called the
formal derivative
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§3. Roots and Irreducibility

(3.1) Much of the material in this section is familiar in the sedtiof polynomials withR coefficients.
The point is that these results are still true for polynomiaith coefficients coming from an arbitrary
field ', and quite often, for polynomials with coefficients from agiR.
Let
f=a+ax+---+az"

be a polynomial inR[x] for R aring. We say thak € R is aroot of f if
fFO) =ao+aA+ - +a,\" =0in R.

As a trivial example, the polynomiaf + 1 is in all three ring€Q|[z], R[z] andC[z]. It has no roots in
eitherQ or R, but two inC.

Aside. “I thought that we weren't thinking of as a variable!”, | hear you say. In fact we don't need to, ag Eswe are prepared
to think a little more abstractly about something we haventiegppily doing intuitively for a while now. Here is how: weysthat
Ais aroot off if and only if there is a homomorphism : R[z] — R such thatp restricts to the identity o, ie: ¢(«) = « for
all € R, and also thap(z) = X andy(f) = 0. In fact you see that the homomorphism needed is the evaluamomorphism

(3.2)

The Factor Theorem. An elemeni € Ris aroot off if and only if f = (z — \)g for someg € R|[z].

In English,\ is a root exactly when — ) is a factor.

Proof: This is an illustration of the power of the division algorithTheorem A. Suppose thathas the
form (z — \)g for someg € R[z]. Then

f) =R =XNg(\) =0.9(\) =0,

so that\ is indeed a root (notice we used thatis a homomorphism, ie: that, (f) = ex(z — Nea(g)).
On the other hand, by the division algorithm, we can divfdzy the polynomial: — X to get,

f=(@—=Ng+u,

wherey € R (we can use the division algorithm, as the leading coeffiaddn: — A, being1, has an
inverse inR). Sincef(\) = 0, we must also have\ — \)g + 1 = 0, henceu = 0. Thusf = (z — \)g
as required. i

(3.3) Here is another result that you probably already know to be for polynomials over the reals,
complexes, etc. Reassuringly, it is true for polynomialthwbpefficients from (almosgnyring.

Theorem 2 Let f € R[x] be a non-zero polynomial with coefficients from the integ@hainR. Then
f has at mostleg(f) roots in R.

Proof: We use induction on the degree which>s0 sincef is non-zero. Ifdeg(f) = 0thenf = p a
nonzero constant if?, which clearly has no roots, so the result holds. Assdmg f) > 1 and that the
result is true for any polynomial of degreedeg( f). If f has no roots ir? then we are done. Otherwise,
f hasaroot € R and

f=(@—=Ng,

for someg € R[z] by the factor theorem. Moreover, @is an integral domainf () = 0 iff either
w—A=0o0rg(u) =0, so the roots of are), together with the roots af. Since the degree gf must
bedeg(f) — 1 (by Lemma 1, again using the fact thats an integral domain), it has at maektg(f) — 1
roots by the inductive hypothesis, and these combined Wglve at mosteg( f) roots forf. O
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(3.4) As the theorem indicates, a cherished fact such as this mighte true if the coefficients of our
polynomial do not come from an integral domain. For instaifcB = Zg, then the quadratic polynomial
(x —1)(x — 2) = 2® + 3z + 2 has rootd, 2,4 and5 in Z.

(3.5) Notice that when we say thgte R[z], all we are claiming is that the ring is big enough to contain
the coefficients off. Soz? + 1 is equally at home i@[z], R[z] andC|[z] (not to mentiorQ(i)[z] . . .).

This observation and the theorem mean that a polynomialtmaest its degree number of roatsany
ring that contains its coefficient®ut another way, we may become comfortable with the idesesiting
“new” numbers to solve equations (for example, the creatioB to solvexz? + 1 = 0), but there will
always be a limit to our inventiveness—you will never find mtran two solutions te? + 1 = 0, now
matter how many “new numbers” you make up.

Exercise 16 A polynomial likez? + 2z + 1 = (x + 1)2 has1 as arepeated roat It's derivative, in the sense of elementary
calculus, i2(x + 1), which also had as aroot. In general, and in light of the Factor Theorem,xall F' a repeated root of iff
f = (xz — \)¥gforsomek > 1.

1. Using the formal derivativé (see Exercise 15), show thafis a repeated root of if and only if X is a root ofd( f).
2. Show thatf has no repeated roots, ie: the rootsfadre distinct, if and only igcd(f, 9(f)) = 1.

(3.6) Forreasons that will become clearer later, a very importaatis played by polynomials that cannot
be “factorised”.

Definition. Let F' be a field andf € F[z] a non-constant polynomial. Aon-trivial factorisationof f is
an expression of the forrfi= gh, whereg, h € F[x] anddeg g, deg h > 1. Sayf is reducible overF iff
it has a non-trivial factorisation, arideducible overF’ otherwise.

Thus, a polynomial over a field is irreducible precisely when it cannot be written as a pobaif
non-constant polynomials. Another way of putting it is ty faat f € F[z] is irreducible precisely when
it is divisible only by a constant, or i x f.

Aside. You can also talk about polynomials being irreducible oveng (eg: overZ). The definition is slightly more complicated
however: letf € R[x] a non-constant polynomial with coefficients from the riRgA non-trivial factorisationof f is an expression
of the form f = gh, whereg, h € R[z] and either,

1. degg,degh > 1, 0r
2. ifsayg = A € Ris a constant, thea hasno multiplicative inverse inR.

Say f is reducibleover R iff it has a non-trivial factorisation, anidreducible over R otherwise. Notice that iR = F a field, then
the second possibility never arises, as every non-zeroegieaf F' has a multiplicative inverse.

The reason for the extra complication in the definition ig tha € R is a constant which does have a multiplicative inverse in
R, then you can always write

F=2A7M).
So pulling out such constants is too easy! As an exangale 3 = 3(z + 1) is a non-trivial factorisation ifZ[x] but a trivial one

in Q[a].

The “over F” that follows reducible or irreducible isrucial; polynomials are never absolutely re-
ducible or irreducible in any sense. An obvious exampleZs+ 1, which is irreducible oveR but
reducible ovefC.

(3.7) There is an exception to this, and it is that a linear polyradrfi= ax + b € F|z] is irreducible
over any fieldF: if f = gh then sinceleg f = 1, we cannot have bottieg(g), deg(h) > 1, for then
deg(gh) = deg(g) + deg(h) > 1+ 1 = 2, a contradiction. Thus, one gfor h must be a constant with
thus irreducible oveF'. So maybe we can qualify the statement above: linear polyaisare absolutely
irreducible (we don’t need to mention the field), but that’s i

Exercise 17

1. LetF be afield and\ € F'. Show thatf is an irreducible polynomial over if and only if A f is irreducible over for any
A #0.

2. Show that iff (x 4+ ) is irreducible ovetF then f(x) is too.

14



(3.8) There is the famous,

Fundamental Theorem of Algebra. Any non-constanf € C[z] has a root inC.

Soif f € C[z] hasdeg f > 2, thenf has a root inC, hence a linear factor ovér, hence is reducible
overC. Thus, the only irreducible polynomials ov€rare the linear ones.

Aside. Actually, the fundamental theorem of algebra has been ibestas neither fundamental nor about algebra! Later we will
be able to prove it from something known as the Galois comedence, which also happens to be called the Fundamentaidrhe

of Galois Theory. Now, if you take the view that Galois the@a subset of algebra, then it does seem rather odd that metheo
supposedly fundamental to all of algebra can be proved frtmearem that is merely fundamental tpart of it.

Exercise 18 Show that iff is irreducible oveiR then f is either linear or quadratic.

(3.9) A very common mistake is to think that having no rootdins the same thing as being irreducible
over F. In fact, the two are not even remotely the same thing.

Just because a polynomial is irreducible ovédoes not mean that it has no roots in the fiale saw
above that a linear polynomial: + b is always irreducible, and yet has a roothin namely—b/a. It is
true though that if a polynomigl has degree> 2 and had a root itf”, then by the factor theorem it would
have a linear factor so would be reducible. Thusleg(f) > 2 and f is irreducible over, then f has
no roots inF'.

A polynomial that has no roots i’ is not necessarily irreducible over the fieldhe polynomial
z* 4+ 222 + 1 = (2% + 1)? is reducible ovef), but with rootsti ¢ Q.

(3.10) There is no general method for deciding if a polynomial oveaebitrary fieldF is irreducible:
the situation is not dissimilar to that of integration inaalus. There is no list of rules that collectively
apply to all situations. The best we can hope for is an eveamrding list of techniques, of which this is
the first:

Proposition 1 Let F’ be a field andf € F[z] be a polynomial of degre€ 3. If f has no roots inF’ then
it is irreducible overF'.

Proof: Arguing by contradiction, iff is reducible thery = gh with deg g, degh > 1. Sincedeg g +
degh = deg f < 3, we must have fop say, thatdegg = 1. Thusf = (ax + b)h and f has the root
(=bx a™1). 0

Exercise 19 We need a new field to play with. Lgtbe a prime and, the set{0, 1. .., p—1}. Define addition and multiplication
on this set to be addition and multiplication of integers miog.

1. Verify thatF, is a field by checking the axioms. The only tricky one is thesexice of inverses under multiplication: use
the gcd theorem frorf2. (but for Z rather than polynomials).

2. Show that a field" is an integral domain. Hence, show thatifs notprime, then the addition and multiplication of integers
modulon is not a field.

(3.11) Consider polynomials with coefficients from, s&, ie: the ringFs[x], and in particular, the
polynomial
f=a2*+z+1€F]

Now, 0* + 0+ 1 # 0 # 1* + 1 + 1, so f has no roots ifF,. Although this is a good start, we are in
no position to finish, as the Proposition above does not ajoplartics. But we can certainly say that
any factorisation off overF,, if there is one, must be as a product of two quadratics. Maedthese
guadratics must themselves be irreducible dgifor if not, they would factor into linear factors and the
factor theorem would give roots gf

There are only four quadratics ovies:

22,22 + 1,22 + zandz? + z + 1.
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The first two are reducible as they have rootnd1 respectively; the third is also reducible with both
0 and1 as roots. By the Proposition above, the last is irreducifleus, any factorisation of into
irreducible quadratics must in fact be of the form,

(22 + 24+ 1)(2? + 2 +1).

Unfortunately,f doesn’tfactorise this way (just expand the brackets). Thius irreducible oveifs.

(3.12) As we delve deeper into Galois theory, it will transpire t@as where much of the action happens.
Consequently, determining the irreducibility of polyn@isioverQ will be of great importance. The first
useful test for irreducibility ovef) has the following main ingrediento see if a polynomial can be
factorised ovef it suffices to see whether it can be factorised der

First we recall Exercise 14, which is used a number of timgkése notes so is worth placing in a,

Lemma 2 Leto : R — S be a homomorphism of rings. Defiaé : R[z] — S[x] by
o*: Zaixi — Z o(a;)x’.

Theno* is a homomorphism.

Lemma 3 (Gauss)Let f be a polynomial with integer coefficients. Theoan be factorised non-trivially
as a product of polynomials with integer coefficients if andlyaf it can be factorised non-trivially as a
product of polynomials with rational coefficients.

Proof: If the polynomial can be written as a product@fpolynomials then it clearly can as a product
of Q-polynomials as integers are rational! Suppose on the laéimerthatf = gh in Q[z] is a non-trivial
factorisation. By multiplying through by a multiple of themominators of the coefficients gfwe get a
polynomialg; = mg with Z-coefficients. Similarly we havk; = nh € Z[x] and so

mnf = gihy € Z[z]. (2)

Now let p be a prime dividingnn, and consider the homomorphism: Z — F, given byo(k) = k
mod p. Then by the lemma above, the map: Z[z] — F,[z] given by

o*: Zaixi — Z a(ai)xi,
i i

is a homomorphism. Applying the homomorphism to (2) gi¥es o*(g1)o*(h1) in F,[z], asmn =
0 mod p. As the ringF,[z] is an integral domain the only way that this can happen is & ohthe
polynomials is equal to the zero polynomiallip[x], ie: one of the original polynomials, say, has all
of its coefficients divisible by. Thus we have; = pg» with g5 € Z[z], and (2) becomes

mn
—f = g2h1.
p

Working our way through all the prime factors @in in this way, we can remove the factorafn from
(2) and obtain a factorisation gfinto polynomials withZ-coefficients. O

So to determine whether a polynomial withcoefficients idrreducible overQ, one need only check
that it has no non-trivial factorisations with all the coeiffints integers.

Eisenstein Irreducibility Theorem. Let
f=cpx" + -+ c12 + co,
be a non-linear polynomial with integer coefficients. Ifthis a primep that divides all the:; for i < n,

does not divide,, and such thap? does not divide,, thenf is irreducible overQ.
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Proof: By virtue of the fact above, we need only show that under theditimns stated, there is no
factorisation off using integer coefficients. Suppose otherwisefie: gh with

g:arl'r'i‘"'+a0andh:bsxs+...+b07
and thea;, b; € Z. Expandinggh and equating coefficients,

co = apbo
c1 = agb1 + a1bg

ci = apb; +arb;_1 + -+ -+ a;by

Cn = a,bs.

By hypothesisp | ¢o. Write bothag andb, as a product of primes, sojif| ¢y, ie: p|agbo, thenp must
be one of the primes in this factorisation, hence dividesaing or by. Thus, eithep | ag or p | by, but
not both(for thenp? would dividecy). Assume that it i® | ag that we have. Next | ¢;, and this coupled
with p| ag givesp | 1 — agby = a1by (If we had assumed | by, we would still reach this conclusion).
Again, p must divide one of the these last two factors, and since waikagady decided that it doesn’t
divide by, it must bea; that it divides. Continuing in this manner, we get thalivides all the coefficients
of g, and in particularg,.. But thenp dividesa,-.bs = ¢,, the contradiction we were after. O

As a meta-mathematical comment, the proof of Eisenstaddircibility is a nice example of the manner
in which mathematics is created. You start with as few assiompas possible (in this case thadivides
some of the coefficients of) and proceed towards some sort of conclusion, imposingednditions
as and when you need them. In this way the correct statemehé dfieorem writes itself in an organic
fashion.

(3.13) To show the power of the result, we get immediately that
z* — 523 + 1022 + 252 — 35,
is irreducible overQ, a fact not easily shown another way. Even more useful, we hav
z" —p,

is irreducible ovef) for any primep. Thus, we can find polynomials ov@rof arbitrary large degree that
are irreducible, which is to be contrasted strongly withgtieation for polynomials oveR or C.

(3.14) It turns out that there is a fundamental connection betweemiultitude of irreducible polynomials
over@Q (and the relative paucity of them ov@randC) and the empirical observation that there are lots
of fields a “little bigger” thanQ (for exampleQ(+/2) andQ(«, w) from §1.), but very few fields a “little
bigger” thanR or C.

(3.15) Another useful tool arises when you have polynomials witefficients from some rindg? and a
homomorphism fronk to some fieldF'. If the homomorphism is applied to all the coefficients of the
polynomial (turning it from a polynomial witli-coefficients into a polynomial witi'-coefficients), then
areducible polynomial cannot turn into an irreducible oriéhe precise statement goes by the name of:

The Reduction Test. Let R be an integral domainf' a field ando : R — F a ring homomorphism.
Leto* : Rlx] — F[z] be given by

o*: Zaixi — Z ola;)x’.
be the homomorphism of Lemma 2. Moreoverplet R[z] be such that
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1. dego*(p) = deg(p), and
2. o*(p) is irreducible overF'.

Thenp cannot be written as a produgh with g, h € R[z] anddeg g, deg h < deg p.

Althoughit is stated in some generality, the reductionitesery useful for determining the irreducibil-
ity of polynomials overQ. As an example, tak& = Z; F' = F5 andp = 82 — 6z — 1 € Z[x]. Foro,
take reduction modul®, ie: o(n) = n mod5. It is not hard to show that is a homomorphism. Since
o(8) = 3 mod5, and so on, we get

o*(p) = 32% + 4 + 4 € F5[z].

Clearly, the degree has not changed, and by substitutinfivdelements of; into o*(p), one can see
that it has no roots ifif5. Since the polynomial is a cubic, it must therefore be iragole overFs. Thus,
by the reduction tesgz® — 6z — 1 cannot be written as a product of smaller degree polynomitbs
Z-coefficients. But by Gauss’ lemma, this gives that this polyial is irreducible ove®).

F5 was chosen because wih instead, condition (i) fails; witfs, condition (ii) fails.

Proof: Suppose on the contrary that= gh with deg g,degh < degp. Theno*(p) = o*(gh) =
o*(g)o*(h), the last part because’ is a homomorphism. Now*(p) is irreducible, so the only way it
can factorise like this is if one of the factors'(g) say, is a constant, hendeg c*(g) = 0. Then

degp = dego*(p) = dego*(g)o*(h) = dego*(g) + dego™(h) = dego™*(h) < degh < degp,

a contradiction. Thaleg o*(h) < deg h rather than equality necessarily, is because the homorisonph
o may send some of the coefficientstofincluding quite possibly the leading one)@ce F'. i

(3.16) Our final tool requires a little more set-up. We've alreadgatved the similarity between poly-
nomials and integers. The idea of irreducibilityZris just that of a prime number, and perhaps this goes
some way to indicating its importance for polynomials aslwélne thing we know about integers is
that they can be written uniquely as a product of primes. Waldvhope that something similar is true
for polynomials, and it is in certain situations. For the fexv results, we deal only with polynomials

f € F[z] for F afield (they are actually true in more generality, but thiégond the scope of these
notes). In what follows, it is worth comparing the situatigith what you know about.

Lemmad 1. Ifged(f,g) = 1andf|ghthenf]|h.
2. If f is irreducible and monic, then for anymonic withg | f we have eithey =1 or g = f.
3. If gis irreducible and monic angd does not dividef, thenged(g, f) = 1.

4. If g is irreducible and monic and | f1 fs . .. f, theng|f; for somei.

Proof: 1. Sinceged(f, g) = 1 there ares, b € F[x] such thatl = af + bg, henceh = afh + bgh.
We have thalf | bgh by assumption, and it clearly divideg'h, hence it dividesifh + bgh = h
also.

2. If g divides f and f is irreducible, then by definitiog must be either a constant or a constant
multiple of f. But f is monic, sog = 1 or g = f are the only possibilities.

3. Theged of f andg is certainly a divisor of;, and hence by irreducibility must be either a constant,
or a constant timeg. As g is also monic, the gcd must in fact be eitheor g itself, and sincey
does not dividef it cannot bey, so must bd.

4. Proceed by induction, with the first step for= 1 being immediate. Since| fifz...fn =
(fifa--. fu-1)fn, we either haveg | f,,, in which case we are finished, or not, in which case
ged(g, frn) = 1 by part (3). But then part (1) gives thaf f1 f> . . . f»—1, and the inductive hypoth-
esis kicks in.

O
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Perhaps the best way of summarising the lemma is this: momidicible polynomials are like the
“prime numbers” ofF'[z].

(3.17) And just as any integer can be decomposed uniquely as a groflpcimes, so too can any
polynomial as a product of irreducible polynomials:

Unique factorisation in F'[z]. Every polynomial inF'[z] can be written in the form

Ap1p2 - . . Dr,

where) is a constant and thg; are monic and irreducible F'[z]. Moreover, ifuqiqs . . . gs is another
factorisation with thez; monic and irreducible, then = s, A = p and theg; are just a rearrangement
of thep;.

The last part says that the factorisation is unique, exaaptrivial matters like the order you write
down the factors. Like many such results in mathematicsfitsiempression is that the existence of the
factorisation is the useful part, but in fact it is the unigass that really is.

Proof: To get the factorisation in the first place is easy enough:Kesp factorising reducible polyno-
mials until they become irreducible. At the end, pull out tieefficient of the leading term in each factor,
and place them all at the front.

For uniqueness, suppose that

AP1P2 - - - Dr = Hq1q2 - - - G-
Thenp, dividespqiqs . . . ¢s which by Lemma 4 part (4) means that| ¢; for somei. Reorder the’s so

thatitisp, | ¢s that in fact we have. Since bogph andg, are monic, irreducible, and hence non-constant,
pr = ¢s, Which leaves us with

AP1P2 . Pr—1 = [1G1G2 - . . s—1-

This givesr = s straight away: if say > r, then repetition of the above leadsto= pqigs . .. gs—r,
which is absurd, as consideration of degrees gives diffemreswers for each side. Similarlyrif> s. But
then we also have that thés are just a rearrangement of th's, and canceling down tép; = g, that
A= L. i

(3.18) It is worth repeating that everything depends on the amlfielat ', even the uniqueness of the
decomposition. For example? — 4 decomposes as,

(22 +2)(z? — 2) in Q[x],
(22 +2)(x — V2)(x + v2) inR[z] and
(z — V/2i)(x + V2i)(z — V2)(z +/2) in C[z].

To illustrate how unique factorisation can be used to detegrnnreducibility, we have irC[z] that,
22 2= (z — V2i)(z + V2i).

Since the factors on the right are notltfiz] we have an inkling that this polynomial is irreducible over
R. To make this more precise, any factorisatiofRi] would be of the form

2242 =(x—\)(z - \2)

with the \; € R. But this would be a factorisation i@[z] too, and there is only one such by unique
factorisation. This forces thg; to be/2i and —+/2i, contradicting\; € R. Hencez? + 2 is indeed
irreducible oveiR. Similarly, 22 — 2 is irreducible ove.

Exercise 20 Formulate the example above into a general Theorem.
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Further Exercises fo§3.

Exercise 21 Prove that if a polynomial equation has all its coefficiemt€ithen it must have all its roots i@.

Exercise 22
1. Letf =anz™ +an_12" "1 4+ - 4 a1z + ag be a polynomial i_ﬁR[:c}, that is, all thea; € R. Show that complex roots
of f occur in conjugate pairs, i€: € C is a root off if and only if ¢ is.
2. Find an example of a polynomial @[] for which part (a) is not true.

Exercise 23

1. Letm,n andk be integers withn andn relatively prime (ie:ged(m,n) = 1). Show that ifm dividesnk thenm must
divide & (hint: there are two methods here. One is to use Lemma 4 it ithe other is to use the fact that any integer can
be written uniquely as a product of primes. Do this ferandn, and ask yourself what it means for this factorisation that
m andn are relatively prime).

2. Show that ifm/n is aroot ofag + a1z + ... + arz”, a; € Z, wherem andn are relatively prime integers, then|ag
andn|a, (hint: use the first part!).

3. Deduce that ifi,, = 1 thenm/n is in fact an integer.
moral: If a monic polynomial with integer coefficients has a raéibrootm /n, then this rational number is in fact an integer.

Exercise 24 If m € Z is not a perfect square, show thet — m is irreducible overQ (note: it isnot enough to merely assume
that under the conditions statgdm is not a rational number).

Exercise 25 Find the greatest common divisor ffz) = 23 — 622 + 2 +4 andg(z) = x% — 62 + 1 (hint: look at linear factors

of f(z)).

Exercise 26 Determine which of the following polynomials are irredueilover the stated field:
1. 1+ 28 overR,;

1422 42t 4 28 + 28 + 219 overQ (hint: Lety = z2 and factorisey™ — 1);

. x* 4 1523 + 7 overR (hint: use the intermediate value theorem from analysis);

et 4 (n4+ 22 + -+ (i +2) at + -+ 31z + 2! overQ.

z2 + 1 overFr.

. LetF be the field of order 8 fron§4., and letF[X] be polynomials with coefficients frof and indeterminateX. Is
X3 4+ (0 + @)X + (a® + a + 1) irreducible overF?

7. asz? 4+ azx® + asx? 4+ a1z + ag overQ where theu; € Z; a3, as are even andy, a1, ag are odd.

o oA W N

Exercise 27 If p is a prime integer, prove thatis a divisor of( i.’ ) for0 <i < p.

Exercise 28 Show that
Pl paP T 4 ( i.) ):cp*i71+~-~+p7
is irreducible over.
Exercise 29 A complex numbetw is ann-th root of unityif w™ = 1. Itis aprimitive n-th root of unity ifw™ = 1, butw” # 1

forany0 < r < n. So for example;t1, £ are the 4-th roots of 1, but only: are primitive 4-th roots.
Convince yourself that for any,

2 L. 27
W = CcOS — +1SIn —

n n
is ann-th root of1. In fact, the othen-th roots arev?, ..., w™ = 1.
1. Show that ifw is aprimitive n-th root of1 thenw is a root of the polynomial
R N B (3)

2. Show that for (3) to be irreducible ov&r, n cannot be even.
3. Show that a polynomiaf (z) is irreducible over a field” if f(x + 1) is irreducible over .

4. Finally, if
Bp(x)=aP 4P 2 4. 41
for p a prime number, show thdt, (z + 1) is irreducible overQ, and henceb, (z) is too (int: considerz? — 1 and use
the binomial theorem, Exercise 27 and Eisenstein).

The polynomial®,,(x) is called thep-th cyclotomic polynomial
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§4. Fields I: Basics, extensions and concrete examples

(4.1) This course is primarily the study of solutions to polynokaiguations. Broadly speaking, questions
in this direction can be restated as questions about figlgstd these that we now turn.

(4.2) We remembered the definition of a field in Lectgfe. Since then we have become more familar
with rings, so we can restate the definition as:

Definition. A fieldis a setF’ with two operations;p and®, such that for any, b,c € F,
1. Fis an Abelian group undep (with & normally called justt, e called0, anda~! called—a),
2. F'\ {0} is an Abelian group undep (with ® normally called justx, and f called1),
3. the two operations are linked by the distributive law.

The two groups are called traditive and multiplicative groups of the field. In particular, we will
write F* to denote the multiplicative group (ié7* is the group with element& \ {0} and operation the
multiplication from the field). Even more succinctly,

Definition. A fieldis a setF’ with two operations;p and®, such that for any, b,c € F,

1. F'is a commutative ring undep and® (with & normally called just-, e called0, inverses under
@ called—a, ® just x, andf calledl),

2. foranya € F\ {e} thereisam™! € Fwitha®a™ ! = f =a" ' ®a,

In particular,a field is a very special kind of ring
(4.3) More concepts from the first lecture that can now be propesfindd are:

Definition. Let F' and E be fields withF' a subfield ofE. We call E an extensiorof F'. The standard
notation for an extension is to writ8/ F, but in these notes we will use the more conciiéte E, being
mindful at all times that this mears is a subfield of/, and not just a subset.

If 6 € E, we write, as in§1l., F(3) for the smallest subfield oF containing both# and 3 (so
in particular F(3) is an extension of”). In general, if3;,...,0r € E, defineF(51,...,0k) =

F(B1,...,Brk—1)(Br)-

We say thafj has isadjoinedto F' to obtainF'((3). The last bit of the definition just says that to adjoin
several elements to a field, you just adjoin them one at &'tiffimally, if we have an extensiofl C £
and there is & € E such thatF = F'((), then we callE’ asimple extensionf F'.

(4.4) Trivially, R is an extension o; C is an extension dR, and so on. Any field is equally trivially an
extension of itself!

(4.5) Let F5 be the field of integers modul® arithmetic. Leta be an “abstract symbol” that can be
multiplied so that it has the following property: x o x o = a® = o + 1 (a bit like decreeing that the
imaginaryi squares to give-1). Let

F = {a + ba + ca®|a,b,c € Fa},

Define addition orf by: (a; +bia+c1a?) + (ag +baa+ coa?) = (a1 +az) + (by +ba)a+ (¢ +c2)a?,
where the addition of coefficients happen&in For multiplication, “expand” the expressiom + b+
c1a?)(ag + b + c2a?) like you would a polynomial withy the indeterminate, so thatva = o3, the
coefficients are dealt with using the arithmetic fréim and so on. Replace amy that result using the
rulea® = a + 1.

4Although the definition has you adjoining them in a particueder, the order doesn’t matter.
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For example,
I+a+ad)+(a+a?)=1land(l+a+a®)(a+a?)=a+a’ =a+ala+1)=a’

It turns out thai forms a field with this addition and multiplication, see Eoise 40. For now we content
ourselves with the following observation: taking thosenaats ofF with b = ¢ = 0, we obtain (an
isomorphic) copy offs inside ofF.

Thus, we have an extensionlpf that contains® elements.

(4.6) Certainly,Q(v/2) is a simple extension @@. On the other hand)(v/2, v/3) would appear not to
be; but looking at the definition closely you see that a singxension is on¢hat can be obtainetly
adjoining one element.

Consider nowQ(v/2 + v/3): certainlyv/2 + v/3 € Q(v/2,v/3), and saQ(v2 + v3) € Q(v/2,V3).

On the other hand,
(V2 +V3)? = 11V2 + 9v/3,
as is readily checked using the Binomial Theorem. Siné2 + v/3)? € Q(v2 + v/3), we get

(11vV2 4+ 9v3) —9(V2 +V3) € Q(V2 + V3) = 2v2 € Q(vV2 + V3).

And s0v/2 € Q(v2 + V3) as% is there too. Similarly it can be shown theB € Q(v/2 + v/3). The

upshot is thaQ(v/2,v3) € Q(v2 + v/3). SoQ(V/2,v/3) is a simple extension! It didn’t appear to be
as we hadn't written it the right way. We will see more prelyist the end o£9. when extensions are
simple.

(4.7) What do the elements of the fie@@(+/2) actually look like? Later we will be answer this question
in a general and completely satisfactory manner, but for m@can feel our way towards an ad-hoc
answer.

Certainly+/2 and anyb € Q are inQ(+/2) by definition. Since fields are closed underany number
of the formby/2 € Q(v/2). Similarly, fields are closed under, so anya + bv/2 € Q(v/2) for a € Q.
Thus, the set

F={a+bv2]a,becQ} CQ(W2).

But FF is a field in its own right using the usual addition and muitigtion of complex numbers. This is
easily checked from the axioms; for instance, the inversepb+/2 can be calculated:

1 Xa—b\/iza—b\/?: a _ b \/ieIF,
a+b/2 a—by/2 a?-=202 a?—-2b2 a?®-—2b?

and you can check the other axioms for yourself. We also fageF (lettingb = 0) and/2 € F (letting
a =0,b=1). SinceQ(v/2) is the smallest field having these two properties, we I@ug2) C F. Thus,

Q(V2) =F = {a+bV2|a,be Q.

Exercise 30 Let o be a complex number such that = 1 and consider the set

F = {ap +ara + az2a? |a; € Q}

ap 2a2 2a1 1
al ap 2a2 O
a2 al ao 0

find an element oF that is the inverse under multiplication @ + a1« + a2a?.
2. Show thaff is a field, henc&)(«) = F.

1. By row reducing the matrix,
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(4.8) The previous exercise shows that the following two fieldsshitée form,

Q(V2) = {a+ Y2+ V2" | a,b,c € Q) andQ(B) = {a + b3 + B | a, b, c € Q},
where
ﬁ:

Observe for now that these two fields are different. The firstéarly completely contained R, but the
second containg, which is obviously complex but not real.

V2 +2x/§\/§z cC

(4.9) A bijective homomorphism of ringg : R — S is called arisomorphism
A silly but instructive example is given by the Roman ring,08k elements are

{...,=V,—IV,—III,—II,—I,0,1,II,III,IV,V, -},

and with addition and mutiplication giving such things/as + IV = XIIT andIX x VI = LIV, ...
Obviously the ring is isomorphic té, and it is this idea of a trivial relabelling that is captuteydthe
idea of an isomorphism—two rings are isomorphic if they a&aly the same, just written in different
languages! The translation is carried out by the mapping

It seems a sensible enough idea, but we place a huge emphasis way things are labelled, often
without even realising that we are doing it. The two fields\abare a good example, for,

—2+ Y2V/3i

Q(2) and@( '

> are isomorphit

(we'll see why ing6.). To illustrate how we might now come unstuck, suppose wesweformulate the
following,

“Definition”. A subfield ofC is calledrealif and only if it is contained ifR.

SoQ(V/2) is a real field, bu@(w
should not depend on the way the elements are labelled. Tindepn is that we have become too bogged
down in the minutiae of real and complex numbers and we ne#drtk about fields in a more abstract
way.

is not. But they are the same field! A definition

(4.10) The previous example has motivated the direction of the fesxtsections. In the remainder of
this section we introduce a few more concepts associatédfieitls.

It is well known thaty/2 andr are both irrational real numbers. Nevertheless, from agkalgjc point
of view, v/2 is slightly more tractable than, as it is a root of a very simple equatief — 2, whereas
there is no polynomial with integer coefficients havings a root (this is not obvious).

Let ' C E be an extension of fields ande E. Call o algebraic overF' if and only if

ao + ara + asd® + - 4+ apa” =0,

for someag, a1, ...,a, € F. In otherwordsg is a root of the polynomiaf = ag + a1z + agz?® + - - - +
anz™ in F[z]. If « is not algebraic, ie: not the root of any polynomial wiihcoefficients, then we say
that it istranscendentabver F.

As the story of Galois theory develops, we will see that itis algebraic elements overthat are the
most easily understood. It is tempting to think of them asimexpressions in terms of elementsiof
the four field operations-, —, x, +~ and roots, /, &/, ..., o but as we shall see §16., the situation
is much more subtle than that. Indeed there are algebraibergihat cannot be expressdgdebraically.
For now it is best just to stick to the definition and not reaginauch into it.
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(4.11) Some simple examples:

1 5 3
V2, +2\/gand V2 + 53,

are algebraic ove®, whereasr ande are transcendental ov@r, = is however algebraic oveép(r).

(4.12) A field can obviously contain many subfields: if we look@tit containsQ(v/2), R, .. .. It also
containsQ, but no subfields that are smaller than thiis the usual sense that they are properly contained
in Q. Indeed anysubfield ofC containsQ. So,Q is the “smallest” subfield of the complex numbers.

For any fieldF, the prime subfieldF of F is the smallest subfield df' in the sense that if” is any
subfield withF’ C F thenF’ = F.

Exercise 31 Show that the prime subfield can also be defined as the intiensexf all the subfields of'. Thus in particular, the
prime subfield icontained in every subfield &f.

Exercise 32 Consider the field of rational numbe@ or the finite fieldF, havingp elements. Show that neither of these fields
contain a proper subfield (hint: fdt,, consider the additive group and use Lagrange’s Theorem §fdl. For@Q, any subfield
must containl, and show that it must then be all @).

Whatever the prime subfield is, it must contajrhence any expression of the foir-1 + - - - + 1 for
any number of summands. If no such expression equalg in¢he field, then we have infinitely many
distinct such elements, and their inverses under addisiomyhat we have is basically a copy®in F'.
Otherwise, ifn is the smallest number of summands for which such an expressequal td), then the
elements

L1+1,14+1+1,...,141+---+1=0,

n times

forms a copy ofZ,, inside of F.
These comments can be made precise as in the following egettlooks ahead a little, requiring the
first isomorphism theorem for rings §b.

Exercise 33 Let F' be a field and define a map— F by

0, ifn=0,
n— 14---+1,(ntimes),ifn >0
—1—---—1,(ntimes), ifn < 0.
Show that the map is a homomorphism. If the kernel consispgst{ 0}, then show thaf’ containsZ as a subring. Otherwise,

let n be the smallest positive integer contained in the kernel,slvow thatF’ containsZ,, as a subring. Ad" is a field, hence an
integral domain, show that we must have= p a prime in this situation.

Thusany field contains a subring isomorphic Zoor to Z, for some primep. But the ringZ,, is the
field F,, and we saw in Exercise 32 thEj contains no subfields. The conclusion is that in the second
case above, the prime subfield is this copyfgf In the first caseZ is obviously not a field, but each
m in this copy ofZ has an inversé/m in F, and the product of this with any othergives an element
m/n € F. The set of all such elements obtained is a cop@afiside F.

Exercise 34 Make these loose statements precise: Hebe a field andR a subring of i with ¢ : Z — R an isomorphism
of rings (this is what we mean when we say tliatontains a copy o). Show that this can be extended to an isomorphism
?:Q— F'C Fwithdlz = .

(4.13) Putting it all together we gethe prime subfield of a field is isomorphic either to the rasilsQ

or to the finite fieldF, for some primep. Define thecharacteristicof a field to be0 if the prime subfield

is Q or p if the prime subfield i€,. Thus fields like, R andC have characteristic zero, and indeed, any
field of characteristic zero must be infinte, to cont@nFields likeFs, F5 ... and the fieldF of order8
given above have characteristic3 and2 respectively.

Exercise 35 Show that a fieldF" has characteristip > 0 if and only if p is the smallest number of summands such that the
expressionl + 1 4 --- + 1 is equal to0. Show thatF' has characteristio if and only if no such expression is equalto
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Thus, all fields of characteristicare infinite, and the only examples we know of fields of chanastic
p > 0 are finite. It isnot true though that a field of characteristic>> 0 must be finite There are some
examples of infinite fields of characteristic> 0 below.

Exercise 36 Suppose thaf is an irreducible polynomial over a fielfl of characteristid). Recalling Exercise 16, show that the
roots of f in any extensiorE of F' aredistinct

(4.14) A natural question is to ask what fields contain the integ@PsObviously the rational® do, and
indeed by Exercise 34, as soon as a field contains a copytafiust also contain a copy @).

It turns out that we can also constri@tabstractly fromZ without having to first position it inside
another field: consider the set

F={(a,b)|a,beZ,b+#0, and(a,b) = (¢, d) iff ad = bc}.

In otherwords, we take all ordered pairs of elements ffnbut think of two ordered pairg:, b) and
(¢, d) as being the same ifd = bc, eg: think of(0,1) and (0, 2) as being the same element®fand
similarly (1,1) and(3, 3)

Aside. One makes these loose statements more preicse by definirguigalence relation on the set of ordered pdirs Z as
(a, b) ~ (c,d) if and only if ad = be. The elements dF are then the equivalence classes under this relation. Weeviértheless
stick with the looser formulation.

Define addition and multiplication di in the following way:
(a,b) + (¢,d) = (ad + be, bd) and(a, b) (¢, d) = (ac, bd).

Exercise 37
1. Show that these definitions are “well-defined”, ie:(df,b) = (a’,?’) and (c,d) = (¢/,d’), then(a,b) + (c,d) =
(a’, ')+ (c',d") and(a, b)(c,d) = (a’,b")(c’, d’")—in otherwords, if two pairs are thought of as being the sdndegsn’t
matter which one we use in the arithmetic as we get the samieeans
2. Show thaff is a field.

3. Now define amag : F — Q by ¢(a,b) = a/b. Show that the map is well defined, ie: (i&, b) = (a’, ') then
v(a,b) = p(a’,b"). Show thatp is an isomorphism frorir to Q.

This construction can be generalised as the following Egershows:

Exercise 38 Repeat the construction above withreplaced by an arbitrary integral domdih The resulting field is called theeld
of fractions ofR.

The field of fractions construction provides some very iesting examples of fields, possibly new in
the reader’s experience. L&Yz| be the ring of polynomials witti'-coefficients wherd" is any field.
The field of fractions of this integral domain has elementhefformf (x)/g(x) for f andg polynomials,
in otherwords, rational functions with-coefficients. The field is denotdd(z) and is called thdield of
rational functions over.

An infinite field of characteristip: If I, is the finite field of ordep, then the field of rational functions
F,(z) is obviously infinite (it contains for example all the polynials overlF,, of which there are an
infinite number). Moreover, the rational functidradds to itselp times to giveD.

A field properly containing the complex numbeemy field F' is properly contained ifF'(z), even
F=C.

Further Exercises fog4.

Exercise 39 Let F be the set of all matrices of the for ;;) Z wherea, b are in the fieldf's. Define addition and multiplica-

tion to be the usual addition and multiplication of matri¢esd also the addition and multiplication Iify). Show thafF is a field.
How many elements does it have?

5or more precisely, which fields contain momorphic copyf the integers.
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Exercise 40 Let > be the field of integers modul®, anda be an “abstract symbol” that can be multiplied so that it Hees t
following property:a x a x o = a® = o + 1 (a bit like decreeing that the imaginaigquares to give-1). Let

F = {a+ ba+ca?|a,b,c € Fa},

Define addition orf by: (a1 + bia + c1a?) + (a2 + baa + c2a?) = (a1 + a2) + (b1 + b2)a + (c1 + c2)a?, where the
addition of coefficients happens Tity. For multiplication, “expand” the expressign, + bya + c1a?)(az + baa + c202) like
you would a polynomial withx the indeterminate, the coefficients are dealt with usingatitametic fromFs, and so on. Replace
anya? that result using the rule above.

1. Write down all the elements @f.

2. Write out the addition and multiplication tables fof(ie: the tables with rows and columns indexed by the elemaints
with the entry in the-th row andj-th column the sum/product of thieth andj-th elements of the field). Hence show that
F is a field (you can assume that the addition and multiplicagice associative as well as the distributive law, as thesa ar
bit tedious to verify!) Using your tables, find the inversaader multiplication) of the elemenis+ « and1 + a + o2, ie:
find
1 1

and inTF.
1+ 1+a+a?

3. Is the extensioffz C F a simple one?

Exercise 41 Take the seF of the previous exercise, and define addition/multiplmatin the same way except that the rule for
simplification is nowa® = o2 + o + 1. Show that in this case yalon't get a field.

Exercise 42 Verify the claim in lectures that the sBt= {a + bv/2 | a, b € Q} is a subfield ofC.
Exercise 43 Verify the claim in lectures tha®(/2) = {a + b(¥/2) + ¢(¥/2)? | a, b, c € Q}.
Exercise 44 Find a complex numbet such thatQ(v/2,i) = Q(a).

Exercise 45 Is Q(v/2, v/3, v/7) a simple extension d®(v/2, v/3), Q(+/2) or even ofQ?

Exercise 46 Let V be an “abstract symbol” that has the following propeM§? = —V — 1 (a bit like i squaring to give-1). Let
F={a+bV|a,becR},

and define an addition diby: (a1 +b1V) + (a2 + b2V) = (a1 +a2) + (b1 + b2) V. For multiplication, expand the expression
(a1 + b1V)(az + b2V) normally (treatingV like an indeterminate, so th&fV = V2, and so on), and replace the resultiig
using the rule above. Show thatis a field, and is just the complex numbéts Do exactly the same thing, but with symbtl
satisfyingA2 = v/2A — /5. Show that youstill get the complex numbers.

26



§5. Rings II: Quotients

(5.1) Let R be a commutative ring. A subsetC R is called aprincipal idealiff there is somer € R
such that
a={pr|p € R}.

In other wordsg is precisely the set of all multiples of some fixed elemerDenote such an ideal by
(r).

The name is “principal” ideal as there are more general kofddeal. Nevertheless, in all rings we
will be concerned with, every ideal in this more general sdnsns out to be a principal ideal, so we will
drop the principal from now on and just say “ideal”.

Aside. Here is the more general notion:C R is an ideal iffa is a subgroup of the abelian grogR, @) and for anys € R we
havesa = {sp|p € a} C aand similarlyas C a. For example, ifR = Z[z], then the set of polynomials with even coefficients
and no constant term form an ideal. But there is no singlerotyial f in Z[z] such that every polynomial inis a multiple off.

Notice that ifs € R and(r) is an ideal, thes(r) = {s(pr) |p € R} = {(sp)r|p € R} which is
C (r). Similarly, (r)s C (r) (asR is commutative). In other words, multiplying the elemerftawideal
by an arbitrary element of the ring gives elements of thelidea

(5.2) In any ring there are the trivial ideal8) = {0} and(1) = R, the second one as any elemenfof
is a multiple of1.

Exercise 47

1. Show that the only ideals in a field are the two trivial ones (hint: use the property of ideals tiomed at the end of the
last paragraph).

2. If Ris a commutative ring whose only ideals g and R, then show thaR is a field.

3. Show that in the non-commutative ridd,, (F") of n x n matrices with entries from the fielfl there are only the two trivial
ideals, but thaf\/,, (F") is not a field.

(5.3) For another example, consider the ri@gz], the number/2 € R, and the evaluation homomor-
phisme 5 : Q[z] — R given by

Eﬁ(anxn++a0):an(\/§)n++ao

(see§2). Leta be the set of all polynomials if@[x] that are sent t® € R by this map. Certainly
2?2 —2ca(asy2 —2=0).If f = (22 — 2)g € Q[z], then

ez(f) =c5(2* —2)e 5(9) =0 x e z(9) =0,

using the fact that 5 is a homomorphism. Thug, € a, and so the idegk? — 2) is C a.
Conversely, ift is sent to) by ¢ 5, ie: h € a, we can divide it byr? — 2 using the division algorithm,

h=(2* —2)q +r,
wheredegr < 2, so thatr = az + b for somea, b € Q. But sinces 5(h) = 0 we have
2
(V2" —2)g(V2) +r(vV2) = 0= r(vV2) =0 = av2 + b = 0.
If a # 0, theny/2 € Q asa,b € Q, which is plainly nonsense. Thus= 0, henceb = 0 too, so that
r =0, and hencé = (22 — 2)q € (2% — 2), and we get that C (22 — 2).

The conclusion is that the set of polynomialsQifiz] sent to zero by the evaluation homomorphism
€3 Isanideal.
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(5.4) This in fact always happens. Remember thakjfS are rings and> : R — S a ring homomor-
phism, then th&ernelof o, denoted kep, is the set of all elements @t sent to0 € S by ¢, ie:

kerop={re R|p(r) =0¢€ S}.
Proposition 2 If F'is a field andS a ring then the kernel of a homomorphigsm F[z] — S is an ideal.

Proof: Chooseg; € kery non-zero of smallest degree (which we can do since the degf@elynomials
come from the seZt U {—cc}). We claim that kep = (g), for which we need to show that these two
sets are mutually contained within each other. On the ond,hipg € (g) then

¢(pg) = ¢(p)p(g) = w(p) x 0 =0,

sinceg € kery. Thus,(g) C kere.
On the other hand, let € kery and use the division algorithm to divide it lgy

f=qg+m,

wheredegr < degg. Now,r = f —qg = ¢(r) = o(f — q9) = ¢(f) — ¢(@)¢(9) =0 — ¢(q).0 =0,
since bothf, g € kerp. Thus,r is also in the kernel ap. If » was a non-zero polynomial, then we would
have a contradiction becaudegr < deg g, butg was chosen from kes to have smallest degree. Thus
we must have that = 0, hencef = qg € (g), ie: kerp C (g). O

(5.5) Let (f) C F[x] be an ideal ang € F[x] any polynomial. The set

g+ ) ={g+hlhe N}

is called thecoset of{ f) with representativg (or the coset of f) determinedy g).

(5.6) As an example, consider the ideal= () in Fy[x]. Thus,a is the set of all multiples of,, which
is just the same thing as the collection of polynomialEifx] that have no constant ternwhat are the
cosets ofi? Letg be any polynomial and consider the coget (x). The only possibilities are thgthas
no constant term, or it does, in which case this tert(&e are inFs[z]).
If g has no constant term, then
g+ () = (x).

For, g+ a polynomial with no constant term is another polynomiahwib constant term, igy + (z) C
(). On the other hand, ip € (z) is any polynomial with no constant term, then- g € (z) so

p=g+(—g)€g+(z) ie(r) S g+ ().
If g does have a constant term, you can convince yourself inlgithetsame way that,

g+ {(z) =1+ (x).

Thus, there are only two cosets@f) in F1[x], namely the ideal = (x) itself andl + a; in English, the
first coset consists of those polynomiafithoutconstant term, and the second thasth a constant term.

Notice that these two cosets are completely disjoint, beityepolynomial is in one or the other of them
of them.

(5.7) Here are some basic properties of cosets:

1. Every polynomial is in some coset off),forg =g+ 0 x f € g+ (f).

2. For anyg, we haveyf + (f) = (f), so multiples off get “absorbed” into the idedlf).
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3. The following three things are equivalent: (i}; and g lie in the
% same coset off); (i)). g1 + (f) = g2 + (f); (iii). g1 andg. differ
M g +(f) by a multiple of f. To see this: (iii)= (ii) If g1 — go = pf then
\/92 +(p) 9 = g2 +pfsothatg +(f) = g> +pf +(f) = g2 + (]} (i)

= (i) Sinceg; € g1 + (f) andga € g2 + (f), and these cosets are
equal we have thaj, g» lie in the same coset; (B> (iii) If ¢g; andgs lie in the same coset, ie:
91,92 € h+(f), theneacly; = h +p;f = g1 — g2 = (p1 —p2) f.
It can perhaps best be summarised by saying¢dhandg- lie in the same coset if and only if this
coset has the two different names,+ (f) andg. + (f), as in the picture.

4, The situation in the picture oppositeverhappens. If the two cosets
g1+ (/) pictured are called respectively + (f) andgs + (f), thenh is in both
()1 Lg2 + (f) and so differs frony; andg, by multiples off, ie: g1 — h = p: f and
f h— g2 = paf, sothatg, — g2 = (p1 + p2) f. Sinceg, andy, differ by
h/ 92 a multiple of f, we havey; + (f) = g2 + (f).

Thus, thecosets of an ideal partition the ring

(5.8) As an example of all these ideas, #€t— 2 € Q[x] and consider the ideal
(2* = 2) = {p(=® - 2)| p € Qla]}.
Certainly,(z® — 2z + 15) + (2 — 2) is a coset, but is it written in the nicest possible form? Ifdixde

by 22 — 2:
23— 20 +15 = x(x? — 2) + 15,

we have that® — 22 + 15 and15 differ by a multiple ofz2 — 2. That gives
(23 — 22 +15) + (2* — 2) = 15+ (2 — 2).
(5.9) If we look again at the example of the cose} in F3[z], there were only two cosets,
(x) =0+ (x) andl + (x),

that corresponded to the polynomials with constant téremd the polynomials with constant term
(these are the only possibilities for the coefficient&uiz]!) We could try “adding” and “multiplying”
these two cosets together according to,

0+ () + (04 (z)) =0+ (z), (1 +(2)) + (0 + (2)) = 1+ (2), A + () + (1 + (z)) = 0 + (z),

and so on, where all we have done is to add the representafities cosets together using the addition
from 5. Similarly for multiplying the cosets. This looks awfulliké Fo, but with0 + () and1 + (x)
replacingd and1.

(5.10) In fact this always happens. Léf) be an ideal inF'[z], and define an addition and multiplication
of cosets of /) by,

(914 () + (92 + () = (91 + 92) + (f) and (g1 + (f)) (92 + (f)) = (9292) + (f),

where the addition and multiplication of tlggs is happening irF'[z].

Theorem 3 The set of cosetB[z]/(f) together with thet and x above is a ring.
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Call this thequotient ringof F'[z] by the ideal f). All our rings have a “zero”, a “one”, and so on, and
for the quotient ring these are,

elementof aring corresponding elementifr] /(f)

a g+{f)
—a (=g) +(f)
0 0+ (f)=(f)
1 1+ (f)

Exercise 48 To prove this theorem,
1. Show that the addition of cosetsigll definedie: if g/ + (f) = g: + (f), then

(91 + 95) + (£) = (g1 + g2) + ()

2. Similarly, show that the multiplication is well definedctally, it is because of this and the previous part that weardy
take the quotients of polynomials by ideals, and not just@dysubring.

3. Now verify the axioms for a ring.

Notice that the quotient is a ring, but not necessarily a figlulthe motivating example above, where
the quotient turned out to be the fidid was a little special.

(5.11) Letz? + 1 € R|z], and look at the idedls? + 1). We want to see what the quotidhfr]/(z? + 1)
looks like. First, any coset can be putinto a nice form: faaraple,

e+ 1+ @+ D) =222+ )+ (e + 1)+ (@2 + 1),
where we have divided + 22 + = + 1 by 22 + 1 using the division algorithm. But
P+ )+ @+ )+ @+ ) =+ 14 (2% 4+ 1),
as the multiple ofr®> + 1 gets absorbed into the ideal. In fact, for ang R[z] we can make this argument,
g+ {x?+1) =q(@* + 1)+ (ax +b) + (2> + 1) = ax + b+ (z* + 1),
for somea, b € R, so the set of cosets can be written as
Rlz]/(2? + 1) = {az + b+ (z® + 1) |a,b € R}.

Now take two elements of the quotient, Say+ 1) + (? + 1) and(2z — 3) + (2 + 1), and add/multiply
them together:

{(x+1)+<x2+1>}—|—{(2x—3)+<x2+1>} =3z -2+ (2% + 1),
and

{(w+1)+<x2+1>}><{(2w—3)+<x2+1>}=(2x2—x—3)+<x2+1)

=22+ 1)+ (—z —5)+ @* + 1)
=—z—5+(2® +1).

Now “squint” your eyes, so that thet(x? + 1)” part in the above disappears, amd+ b + (2> + 1)
becomes the complex numher+ b € C. Then

(i+1)+ (2i—3)=3i—2and(i + 1)(2i — 3) = —i — 5.

The addition and multiplication of cosetsR{z]/(z? + 1) looks exactly like the addition and multipli-
cation of complex numbers!

30



(5.12) In order to see what quotient ringsally look like, you need to use the,

First Isomorphism Theorem. LetR, S berings andp : R — S a ring homomorphism. Then
R/kerp = 1mp C S,
where the isomorphisia : R/kerp — Imy is given byp(r + kerp) = o(r).

Aside. For any ringR and homomorphisnp, ker¢ is an ideal ofR in the more general sense mentioned at the beginning of the
section. Thus it makes sense to take the quotigfiter .

(5.13) Getting back to the example above, Rt= R[z] and.S = C. Let the homomorphisrp be the
evaluation at homomorphism,

o (Z Wk) = Y i)k

In exactly the same way as an earlier example, one can show tha
kere; = (z* + 1).

On the other hand, ifi + b € C, thenai + b = ¢;(ax + b), so the image of the homomaorphismis all
of C. Feeding all this into the first homomorphism theorem gives,

Rz]/(z? + 1) = C.

Exercise 49 Going back to the general case of an ideal a ring R, consider the map : R — R/a given by,
n(r) =r+a,
sending an element @t to the coset ofi determined by it.
1. Show that; is a homomorphism.
2. Show that if6 is an ideal inR containinga thenn(b) is an ideal ofR/a.
3. Show that ift’ is an ideal ofR/a then there is an ided of R, containinga, such that)(b) = b'.
4. Show that in this wayy is a bijection between the ideals Bfcontaininga and the ideals oR/a.

Further Exercises fo§5.

Exercise 50 Letf : R — S be a ring homomorphism. Show that,
1. 6(0) = 0 (hint: considerd(0 + 0)),
2. fisinjective (ie:1to 1) if and only if kerd = {0}.

Exercise 51 Determine which of these maps are ring homomorphisms.
1. The map : Z — Z given byf(n) = 2n.
2. The map : Z — Z given by6(n)
3. Themap : R — R given byd(z)
4. The map : C — C given byé(z) = z (i.e. complex conjugation).

—n.

|-

5. The ma : C — Matz(R) defined byd(z + iy) = { _my Z }

Exercise 52 Determine whether the following maps are ring homomorpkism

1. 0: Z[z] — Z given byd(f(z)) = f(0).

2. 0: Zlz] — Z given byd(f(x)) = f(1).

3. 0 : Z[z] — Z|z] given byd(f(z)) = f(—=).
4. 0 : Z]x] — Z given byd(f(x)) = £(2)2.

Exercise 53 Let ¢ = (1 4 +/5)/2 (in fact theGolden Number
1. Show that the kernel of the evaluation mgp: Q[z] — C (given bye, (f) = f(¢)) is the ideal(z? — z — 1).
2. Show that)(¢) = {a +b¢ | a,b € Q}.
3. Show thatQ(¢) is the image irC of the mape.
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§6. Fields Il: Constructions and more examples

(6.1) Anideal(f) is maximalif and only if (f) C F[z] and the only ideals of [x] containing it are itself
and the whole ring”'[z], ie:
(f) Cac Fla],

with a an ideal implies thad = (f) ora = F|x].

(6.2) The principle result of this section is,

Theorem B (Constructing Fields). The quotient ringF'[z]/(f) is afield if and only if /) is a maximal
ideal.

Proof: By Exercise 47, a commutative rirfgjis a field if and only if the only ideals aoR are the trivial
one{0} and the whole ring?. Thus the quotienf'[z]/(f) is a field if and only if its only ideals are
the trivial one(f) and the whole ringF[x]/(f). By Exercise 49, there is a one to one correspondence
between the ideals of the quotiefifz]/(f) and the ideals of'[z] that contain(f). ThusF[z]/(f) has
only the two trivial ideals precisely when there are only tideals of F'[z] containing(f), which is the
same as saying thaf) is maximal. O

(6.3) Suppose now thaf is an irreducible polynomial over, and let(f) C I C F[z] with I an ideal.
ThenI = (h) giving (f) C (h), and sc: dividesf. Sincef is irreducible this means thatmust be either
a constant € F or Af, so that the ideal is either()) or (Af). But (Af) is just the same as the ideal
(f). On the otherhand, any polynomiatan be written as a multiple of, just by settingy = A\(A~!g),
and so(\) = F[z].

Thus, if f is an irreducible polynomial, then the ide@l) is a maximal one. Conversely, {ff) is
maximal andh divides f, then(f) C (h), so that by maximalit{h) = (f) or (h) = F[z].

Exercise 54 Show that(f) = (k) if and only if h = A\ f for some constank € F. Similarly, (h) = F[z]if and only if h = X
some constant.

Thus, the idea{f) is maximal precisely whelfi is irreducible, giving,

Corollary. Flz]/(f) is afield if and only iff is an irreducible polynomial oveF'.
(6.4) The polynomiak? + 1 is irreducible over the realR, so the quotient rin®[z]/(x? + 1) is a field.

(6.5) The polynomiak:? — 2z + 2 has rootd =+ 4, hence is irreducible oveéR, giving the field,
Rlz])/(z? — 2z + 2).

Consider the evaluation map;R[z] — C given as usual by1.;(f) = f(1 + 7). In exactly the
same way as the example fers in §5., one can show that kei;; = (x? — 2z + 2). Moreover,
a+bi = e14,(a — b+ bx) so that the evaluation map is orftb Thus, by the first isomorphism theorem
we get that,

R[z]/{z? — 2z + 2) = C.

What this means is that one can construct the complex nuritb#re following (slightly non-standard)
way: start with the real®, and define a new symbdV, say, which is defined by the property,

V? =2V -2.
Now consider all expressions of the formt+ dV for ¢,d € R. Add and multiply two such expressions
together as follows:
(c1 +d1V) + (2 + d2V) = (c1 + c2) + (d1 + d2)V
(c1 + d1V)(c2 + daoV) = crea + (e1ds + dic2)V + d1d2V?
=c103 + (c1da + d1c2)V + d1d2(2V — 2)
= (c1c9 — 2d1dz) + (c1da + dyca + 2d1d2) V.
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Exercise 55 By solving the equationsx — 2dy = 1 andcy + dx + 2dy = 0 for = andy in terms ofc andd, find the inverse of
the element + dV.

Exercise 56 According to Exercise 18, if is irreducible overR then f must be either quadratic or linear. Suppose that
az? + bx + cis an irreducible quadratic ové&. Show that the fiel®R[x] /(222 4 bx + ¢) = C.

(6.6) We saw in§3. that the polynomiat* + z + 1 was irreducible over the fiell,. Thus the quotient
Fa[z]/(z* + 2 +1),

is a field. Each of its elements is a coset of the fgrm(z* 42+ 1). Use the division algorithm, dividing
gbyz* 4+ x4 1to get

g+ @+ ) =qla* +x+D)+r+ @+ +1)=r+ (@ +2+1),

where the remainder must be of the fornuz3 + bz + cx + d, for a, b, ¢, d € F,. Thus every element
of the field has the forma?® + bz? + cx + d + (z* + x + 1), of which there are at modt possibilities
(2 choices fora, 2 choices fon, .. .).

Indeed theseé6 are all distinct, for if

a1z +byx? Fox+dy + (gt F x4+ 1) = a0x® + bor? +epx Fdo + (2t 2+ 1)
then,

(a1 — a2)a® + (by — ba)z® + (c1 — c2)a + (dy — do) + (z* + 2 + 1)
=@+ 24+1) e (a1 —a)x® + (by — ba)x? + (c1 — o)z + (dy — do) € (2* + 2 +1).

Since the non-zero elements of the ideal are multiples ofgaedefour polynomial, they have degrees
that are at least four. Thus the only way the cubic can be anegieis if it is the zero polynomial. In
particular,a; — ag = --- = d; — do = 0 so the two cosets are the same.

The upshot is that the quotient ring is a field withelements.

(6.7) Returning to the general situation of a quotiétitz]/( f) by an irreducible polynomiaf, the re-
sulting field contains a copy of the original fiekd obtained by taking the cosets+ (f).

Exercise 57 Show that the map — X 4 (f) is an injective homomorphistA — F'[z]/(f), and saF is isomorphic to its image

in Flz]/(f)-

Blurring the distinction between the origin&l and this copy inside?'[z]/(f), we get thatFF C
F[z]/{f) is an extension of fields.

(6.8) Generalising the example of the field of ordérabove, ifFF), is the finite field withp elements and
f € F,[z] is an irreducible polynomial of degrek then the quotient, [z]/(f) is a field containing?
elements. They have the form,

ag—1x 4 ag + (f),

wheref = bgz?+- - +bi1z+bo and theu; € F,,. Any two such are distinct by exactly the same argument
as above. Lettinge = = + (f) and replacing, by its copy inF,[z]/(f) (ie: identifying\ € F, with
A+ (f) € Fplz]/{f)), we have,

Fpla]/(f) = {aa—10™"" + - --ag| a; € F,},

where two such expressions are added and multiplied lik/typonials” in «. The only proviso is that
sincef + (f) = (f), we have the “rulebza® + - - - + bya + by = 0, which allows us to remove any
powers ofa bigger thand that occur in such expressions.

Call « ageneratorfor the finite field.
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(6.9) The polynomiake® + z + 1 is irreducible over the field (it is a cubic and has no roots) so that
Falz]/{a® + 2 + 1),

is a field with2® = 8 elements of the fornf = {a + ba + ca?|a,b,c € Fa} subject to the rule
ad+a+1=0,ie:a® = a+ 1. This is the fieldF of orders in §4..

Exercise 58 Construct fields with exactly:
1. 125 elements;

N

49 elements;
3. 81 elements;
4. 243 elements.

(6.10) Theorem B and its Corollary clears up a little mystery thad hiagered since the end G#.
Remember from there that the fields

Q(V2) and@(M)’

were different (that is, their elements were different); isomorphic? The polynomiat® — 2 is irre-
ducible overQ, either by Eisenstein, or by observing that its roots do iedhlQ. Thus

Qlz]/(=® - 2),

is an extension field o). Consider the two evaluation homomorphismg; : Q[z] — C andeg :
Q[z] — C whereg is the complex number adjoined @in the second extension above. Since, and this
is the key bit,

V2 ang — V2T V2V3i +2\/§\/§’

are both roots of the polynomiaf — 2, we can show in a similar manner to examples at the er§é.of
that kere g5 = (2 — 2) = kereg. Thus,

Qla]/kere g3 ~————— Qlal/(a* - 2)

Q[z]/kereg
~ —— 18'Isomorphism Theorem—— =2

|m€\?7§ |m6[3

We can see what the imagef; must be by considering the diagram,

division (2

“alaorithm - 2
algorithm 2) + (a + bz + cx?)

anx” + -+ a1x + ag

6\3/5 E%
an(V2)" 4+ a1V24a0 ———— ——~ (a+bV2+c(V2)?)

The pointis that g is a ring homomorphism, so that

€yz(ana™ + -+ a1z +ag) = 6\3/§(q(1'3 —2) + (a + bx + cx?))
= 5\3/5((1)6\3/5(:63 —2) +eggzla+br+ cx?)
:6\3/5(q).0+5\3/§(a+bx+c:62) =a+bV2+c(V2)>2
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Pictures like the one above, where you travel two routes hdtup in the same place are called
commutative diagramd he result of the argument provided by the diagram is that

Ime 55 C {a+bV2+¢(V2)? €Cla,b,cc Q) =Q(V2).

On the other hand, any complex number of the farm b+/2 + c(1/2)? is the image ofi + bz + ca?.
Thus Ime g5 = Q(+/2). Similarly one can show that iy = Q(6). Filling this information into the first

of the two diagrams above gives the claimed isomorphisméet@(v/2) andQ(3):

(x3 —2) “abstract” field

\

“concrete” realisations i

(6.11) A special place is reserved in number theory for those fiefdhe form Q[z]/(f), for f an
irreducible polynomial over the rationals Such a field is called aumber fieldand their detailed study
is the subject of algebraic number theory.

Suppose that is a root of the polynomialf and consider the subfield @ given by Q(5). The
reasoning in the example above can be extended to show thaivthfieldsQ[z]/(f) andQ(5) are
isomorphic (see also Theorem D). Indeed{/#, ..., 3,} are the roots off, then we have: mutually
isomorphic fields insid€, namelyQ(51), . . ., Q(8,). The isomorphisms fror@®[z]/(f) to each of these
are called th&alois monomorphisnf the number field[x]/(f).

(6.12) Returning to some generality, the observation that the figlel/(f) is an extension of' has
far-reaching consequences that goes by the name of,

Kronecker's Theorem. Let f be a polynomial inF'[z]. Then there is an extension Bfcontaining a
root of f.

Proof: If fis notirreducible oveF’, then factorise ag = gh with g irreducible overF’ and proceed as
below but withg instead off. The result will be an extension containing a rooypand hence of. Thus
we may suppose thdtis irreducible ove andf = a,2” + an_12" ' + - - - a1z + ag With thea; € F.
ReplaceF’ by its isomorphic copy in the quotiedt[z]/(f), so that instead af;, we writea; + (f), ie,

f=(an+ ()" + (an—1 + (MHz" "+ + (a1 + (/))z + (a0 + (f)).

Consider the field? = F'[z]/(f) which is an extension df and the element+(f) € E. If we substitute
x + (f) into the polynomial then we perform all our arithmeticih ie: we perform the arithmetic of
cosets, and bear in mind that the zero of this field is the dggefThus,

f@+ () = (an + (M@ + )"+ (@ + M@+ )"+ (ar + ()@ + () + (a0 + ()
=mw@+wn+m%wﬁﬂ+wn+~wwmx+<»+m«u>>
= (an®™ + an_12" 4+ arx+ao) + (f) = £+ (f) = (f),

which in the fieldE translates ag () = 0 for u = = + (f). O

Corollary. Let f be a polynomial inF'[x]. Then there is an extension Bfthat contains all the roots of

f.

Proof: Repeat the process described in the proof of Kronecker'srEme at mostleg f number of
times, until the desired field is obtained.
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Further Exercises fo§6.

Exercise 59 Show thate* + z2 + 22 4+ 2 + 1 is irreducible oveif3. How many elements does the resulting extensidfsdfiave?
Exercise 60 As linear polynomials are always irreducible, show thatftelel F'[z]/(az + b) is isomorphic toF'.

Exercise 61
1. Show thatl + 2z + 23 € F3[z] is irreducible and hence thRt= F3[z]/(1 + 2z + 23) is a field.
2. Show that every coset can be written uniquely in the foara- bz 4 cx2) 4 (1 + 2z + 23) with a, b, ¢ € F3.
3. Deduce that the fiell has exactly 27 elements.

Exercise 62 Find an irreducible polynomiaf(z) in F5[z] of degree2. Show thafFs[z]/(f(z)) is a field with25 elements.

Exercise 63
1. Show that the polynomial® — 3z + 6 is irreducible over.

‘ : 1 V3
a=V2v2-3,8= —?/2\/§+3andw:—§+gi,

(@) the fieldsQ(a + B) andQ(wa + wP) aredistinct (that is, their elements are different), but,
(b) Q(a + B) andQ(wa + wp) areisomorphic

2. Hence, or otherwise, if

prove that

You may assume that + wg3 is not a real number
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§7. Ruler and Compass constructions |

If we allow ourselves a slightly fanciful historical intede, we can imagine that the earliest civilizations
to embrace agriculture came up against the problem of sigtialiyarable land into portions to be worked.
Thus the Babylonians for instance would have needed thesaksurveying at their disposal. The most
basic surveying instruments are wooden pegs and rope, witthwou can do two very basic things:
two pegs can be set a distance apart and the rope stretclveekinehem; alternatively, one of the pegs
can be kept stationary and we can take the path traced bytieeax you walk around keeping the rope
stretched taut. In otherwords, we can draw a line throughgweiats and draw a circle centered at one
point and passing through the other.

(7.1) Instead of the Euphrates river valley, we work in the complexeC. We are thus able, given two
numbers:, w € C, to draw a line through them using a straight edge, or to paesend of a compass at
z, and draw the circle passing through

()

Notice that neither of these operations involves any “meagu

(7.2) With these two constructions in hand, we call a complex nungbeonstructibleiff there is a
sequence of numbers
07177;: <17<27"'7<n = Ca

with ¢; obtained from earlier numbers in the sequence in one of tiee tlollowing ways:

Mmoo~ (i)

In these picturesy, ¢, » ands are all< j. Notice that we are given the three numbrs, i “for free”, so
that they are indisputably constructible. The reasoningiss if you stand in a plane (n®? or C, but a
plane without coordinates), then your position can be tals®in decree a direction to be the real axis and
a distance along it to be lengthconstruct the perpendicular bisector of the segment frdnto 1 (as in
the next paragraph) and measure a unit distance along thiaxis (in either direction) to get

(7.3) The basic two moves are a little restrictive for the purpasfedetermining which numbers are
constructible. There are a number of other constructiomsgh, that follow immediately from them. For
instance, we can construct the perpendicular bisector efmentA B by the following three steps:

37



The pictures are supposed to be self-explanatory, modaléollowing conventions. A ray, centered at
some point and tracing out a dotted circle is obviously méadescribe usage of the compass. If the ray
is markedr, as in the first two pictures above, this does not mean thatathes of the circle has been
set to some length, as we can not do this. It merely means that in passing fronfirstepicture to the
second, the setting on the compass is kept the same.

We can convince ourselves that the construction works &swsi think of the setS of points inC
that are an equal distance from bothand B. After a moments thought, you see that this must be the
perpendicular bisector of the line segméli? that we are constructing. Lines are determined by any two
of their points, so if we can find two points equidistant frehand B, and we draw a line through them,
this must be the séf that we want (and hence the perpendicular bisector). Buinteesections of the
two circular arcs are clearly equidistant frofrand B, so we are done.

(7.4) As well as bisecting segments, we can bisect angles, ie:dflitves meet in some angle we can
construct a third line meeting these in angles that are eallhe original one:

It is worth repeating that none of the angles in this pictue be measured. Nevertheless, the two new
ones must each be half the old one.

(7.5) Given a line and a poinP not on it, we can construct a new line passing throlgdnd perpendic-
ular to the line. We describe this as “dropping a perpendrdubm a point to a line”:

P 4

~—— perpendicular bisector oA B
1

B

o g
o}
N

(7.6) Given a linel and a pointP not on it we can construct a new line throuBtparallel to!:

P P """""""
— perpendicular fronP to [ ‘ , ' /
Q linel 0 A é
P 4R . .
P R

perpendicular bisector of B —

Q A B

38



Perhaps some explanation wouldn’t go amiss: the first stepdsop a perpendicular fror? to the line

[, meeting it at the new poin®. Next, set your compass to the distance fronto ), and transfer this
circular distance along the line to some point, drawing aisieche that meets at the points4 and B.
Construct the perpendicular bisector of the segment fAotm B, which meets the semicircle at the new
point R. Finally, draw a line through the poinfdandR. It should be obvious thd? areR are equidistant
from the linel, hence the line through them is parallefto

(7.7) Here are some basic examples that show that the numbers

3 1 1
3, 1 and— + —i

S
S

are constructible:

In the second example, we have bisected the segmentiftorh and then the segment fro%nto 1.

A
bisector of the right angle

|~
=] w

(7.8) Looking at the construction cg above, it is less clear how one might construct the nunﬁfégror
the golden ratio,
1+5

b=

Nevertheless, these numben® constructible, and the reason is the first non-trivial faobwt con-
structible numbers: they can be added, subtracted, miatipind dividefl. Defining K to be the set
of constructible numbers i@, we have,

Theorem C. K is a subfield ofC.

Proof: The proof proceeds in two steps: as itis easier to deal withmeambers rather than complex, we
show that the theorem can be reduced to the real case, ansghberthat the real constructible numbers
form a subfield ofR.

First observe thaf € K precisely when Reand Im( are in K. For, if { € K then dropping per-
pendiculars to the real and imaginary axes give the numbafsaRd In(i, the second of which can be
transferred to the real axis by drawing the circle centetédpassing through Iigi. On the otherhand,
if we have Re€ and Im{ on the real axis, then we have {intoo, and constructing a line through Re
parallel to the imaginary axis and a line throughCirparallel to the real axis gives

We now reduce the Theorem to the real case by showingdhiata subfield ofC if and only if K N R
is a subfield ofR. As the intersection of two subfields &f is a subfield ofC, the “only if” case is
immediate.

Suppose then that the real constructible numbers form aeddilofi the reals. We show théf is then
a subfield ofC, for which we need to show that if, w are constructible complex numbers then so are

81n principle you can now throw away your calculator, and perf arithmetic operations with ruler and compass! This isaso
far-fetched as it sounds, even if it is a little impracticeh. computecos x of a constructable number, construct as many terms of

the Taylor series,
22 4
cosx =1— o + o

as you need (your calculator only ever gives you approxionatanyway).

xT
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z + w, —z, zw and1/z. By the observation above we have that the real and imageatg ofz andw
are real constructible numbers. Then
—z = —Rez — Imzi
z +w = (Rez + Rew) + (Imz + Imw)i
zw = (RezRew — Imzlmw) + (Rezlmw + ImwRez)i
1 Rez Imz )
. _ i
z Rex2+1Imz2  Re? +1mz2”’
As the constructible numbers form a subfieldgthence are closed under the four basic field operations,
the real and imaginary parts efandw are constuctible. Thus, the complex nhumbers are conditects
their real and imaginary parts are.

In light of this, it suffices to show that the real construlibumbers are a subfield of the reals, for
which we need to show thatdif, b € K N R then so are-a, a + b, ab and1/a.

1. K nRis closed unde# and—: The picture below left shows thatdf€ K N R then so is—a.

—a a
Similarly, the two on the right give,b € K NR=a+bec KNR.
2. K nRis closed undek, as can be seen by following through the steps:
A A A A
a
S,
N ?ab >

Seeing that the construction works involves studying a@léimilar triangles.

3. K NRis closed undex-, which is of course just the previous construction backward

A A
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(7.9) As any subfield ofC containsQ we thus have the,
Corollary. Any rational number is constructible.

(7.10) Not only can we perform the four basic arithmetic operatiith constructible numbers, but we
can extract square roots too:

Theorem 4 If ( € K then /¢ € K.

Proof: First of all, we can construct the square root of any real nenmb

T A T A

. —P> —P —» . >

. midpoint of 0P
For a justification that this works, see Exercise 64. Next,@mplex number:

o T va e

where we have used the construction of real square roote isettond step. O

Exercise 64 Show that in the following picture,

the lengthz = /a.

Constructing angles and polygons

(7.11) We say that an angle can be constructed when we can constnulotés intersecting in that angle.

Exercise 65
1. Show that we can always assume that one of the lines givirmggle is the positive real axis.

2. Show that arangle# can be constructed if and only if teimbercos 6 can be constructed. Do the same §ii 6 and
tan 6.

Exercise 66 Show that ifp, 8 are constructible angles then so are-  andp — 6.
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(7.12) A regular n-sided polygoror regular n-gonis a polygon inC with n sides of equal length and
interior angles of equal size.

Exercise 67 Show that a regular-gon can be constructed centered & C if and only if the angle%7r can be constructed. Show
that a regular-gon can be constructed centered at C if and only if the complex number

2

)

21 .
¢ = cos — +isin
n

can be constructed.

Exercise 68 Show that if ann-gon and ann-gon can be constructed farandm relatively prime, then so canxan-gon (hint:
use theZ-version of Theorem 1).

(7.13) For whatn can one construct a regulargon? It makes sense to consider first thgons forp
a prime. The complete answer even to this question will naelealed untik15.. It turns out that the
p-gons that can be constructed asgremely rare Nevertheless, the first two (odd) primes do work.

Exercise 69 Show that a regulas-gon, ie: an equilateral triangle, can be constructed withside length. Using Exercises 4 and
67, show that a reguldf-gon can also be constructed.

(7.14) Here is a “proof” that a regulalr7-gon is constructible. Gauss proved the following remaldab
identity, which is still found in trigonometric tablesos % =

1 17(17 — V17 17 — V17
g 2(2 \/(f\/_)—\/%_—ax 344+ 2V17+3V1T + 17 + 34+2\/ﬁ+\/ﬁ+15)

Thus the numbetos /17 can be constructed as this expression involves only insedlee four field
operations and square roots, all of which are operationswgerform with a ruler and compass. Hence,
by Exercise 65(2) the angle/17 can be constructed and so adding it to itself gives the awgfe 7.
Exercise 67 then gives that th&-gon is constructible.

Further Exercises fo§7.

Exercise 70 Using the fact that the constructible numbers incl@eshow that any given line segment can be trisected in length.

Exercise 71 Show that if you can construct a regutassided polygon, then you can also construct a regeffat-sided polygon
foranyk > 1.

Exercise 72 Show thatcos 6 is constructible if and only i§in 6 is.

Exercise 73 If a, b andc are constructible numbers (ie: Id), show that the roots of the quadratic equatiar? + bz + c are also
constructible.
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§8. Linear Algebra I: Dimensions

We have met rings and and fields so far in our study of Galoi®mhdime for our third algebraic object:
vector spaces.

(8.1) A vector space over a fielfl is a setl” of vectorstogether with two operations: additianv +—
u + v of vectors and scalar multiplication v — v of a vector by an elementof the field 7', such that,

C(utv)Fw=u+ (v+w),foralu,v,weV;

. There exists a zero vectdr:e Vstv+0=v=0+vforallv eV,

. Everyv € V has anegativev s.t.v + (—v) =0 = —v + v, forallv e V.
u+v=v+u,foraluveV.

. Au+v) = Au+ M, forallu,v andX € F;

A+ v = v + pv,

- Muo) = (Ao,

lv=wvforlekF.

© N o o0 A W N P

Aside. Alternatively we can say that the sitof vectors forms an Abelian group under(these are the first four axioms) together
with the scalar multiplication which satisfies the last faxioms.

(8.2) The sefR? of 2 x 1 column vectors is a well known real vector space under theabaddition and
scalar multiplication of vectors. Alternatively, the colempnumbersC form a vector space ové, and
of course these two spaces are the same space after makidgrlkification,

[Z}Ha—i—bi.

The complex numbers also form a vector spager themselvesaddition of complex numbers gives an
Abelian group and now we can scalar multiply a complex nunfilyeainother one, just using the usual
multiplication of complex numbers. It may seem a little aggihg (especially the idea of thinking of a
complex number as beirlgptha vector and a scalar) but from a purely formal point of vidwgatisfies
the axioms and so is an admissible example. As we shall see/libke idea of thinking of the sanset

of objects as a vector space over two different fields is aroiapt one for Galois Theory.

(8.3) We can consider vector spaces over finite fields too:
011

111 Consider the set of ali-tuples where the coordinates come from the
field 5, so are eithef or 1, and add two such coordinate-wise, using
the addition fronmiF,. Scalar multiply a tuple coordinate-wise using the
multiplication fromF5. As there are only two possibilities for each co-

110  ordinate and three coordinates in total, we get a totafef 8 elements

100 in this space. Indeed, the elements can be arranged aroevetiices
of a cube as shown at left, where we have abbreviated sath# the vector with the three coordinates

a,b,c €.

001

000 =

(8.4) We saw in§4. that the fieldQ(1/2) consisted precisely of those element€odf the forma + bv/2
for a,b € Q. By making the identification,

coordinate in 1 direction”
coordinate in 4/2 direction”

a+bvV2 < [H
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we realiseQ(1/2) as a vector space ov@r. It is easy to check that the vector space operations match up
with (a + bv/2) + (¢ + dv/2) = (a + ¢) + (b + d)+/2 corresponding to,

a c| | a+c
BN
andc(a + bv/2) = ac + bey/2 corresponding to,
a | | ac
Ao |~ |oe |
(8.5) The polynomiak?® — 2 is irreducible overQ so thatQ|x]/(x3 — 2) is a field with elements having
the form(a + bz + cx?) + (x3 — 2). It becomes &)-vector space under the identification,

coordinate in 1 + (z* — 2) direction”
coordinate in % + («® — 2) direction”
coordinate in %? + (z* — 2) direction”

a
(@a+br+cx®)+(z3—2)« | b
c

(Check for yourself that the addition and scalar multigiimas match up).

(8.6) The previous two are special cases of the following sitmatib I* C E is an extension of fields
then E can be turned into a vector space o¥ein the following way: the “vectors” are the elements of
E and the scalars are obviously the element8 oAddition of vectors is just the addition of elements in
E, and to scalar multiply @ € E by aX € F, just multiply A\v using the multiplication of the field.
That the first four axioms for a vector space hold follows frilwe addition of the field”, and the second
four from the multiplication of the fieldv.

(8.7) Some more fundamental notions to do with vector spaces:;for. ., v, € V vectors, any vector
of the form

a1V + ...+ Uy,
foray,...,a, € F,is alinear combinatiorof thewv, ..., v,. Thelinear spanof vy, ...,v, € Vis the
set of all linear combinations of these vectors,

sparf{vi,...,v,} = {Zajvj tay € F}
J=1

Sayvs, . ..,v, spanV whenV = spafvi,...,v,}.
A set of vectorsy, . .., v, € Vislinearly dependenf and only if there exist scalaks,, . .., a,, not
all zerg, s.t.

av1 + ...+ apv, = 0.

The vectora, . . ., v, arelinearly independemtherwise, ie: whenever, v, + . .. + a,v,, = 0 implies
that thea; are allo.

(8.8) In the examples above, the complex numigsre spanned, as a vector space dgby the two
elementd(1,}, and indeed by any two complex numbers that are not scaldiptes| of each other. As
a vector space ovér, the complex numbers are spannedust one elemenfor example, any element
¢ € C can be written ag x 1, so that every element is a complex scalar multipld.ofndeed,C is
spanned as a complex vector space by any single one of iteetenexcept fod. The moral is that in
changing the field of scalars, you need to keep your wits ajmut

(8.9) A basisfor V is a linear independent sét; : j € J} (hereJ is a not necessarily finite index set),
that spand/. We sayV’ is finite dimensionaif it has a finite basis.

It can be proved that there is a 1-1 correspondence betweezldments of any two bases for a vec-
tor spacel/. Correspondingly, whenevér is finite dimensional we definthe dimension o to be
dim (V') = number of elements in any basis.
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(8.10) ThusC is 2-dimensional as a vector space ofebut 1-dimensional as a vector space oZerWe
will see later in this section thét is infinite dimensional as a vector space o@er

With the other examples abov@(+/2) is 2-dimensional ove®) with basis{1, v/2} andQ[z]/(z® — 2)
is 3-dimensional ovef) with basis the cosets

14 (23 = 2),z + (2* — 2) andz? 4 (2% — 2).

In Exercise 128 ir14., we will see that ifa = v/2, thenQ(«, i) is a2-dimensional space ové}(«)
or Q(ai) or evenQ((1 + 4)a); a4-dimensional space ovél(i) or Q(ia?), and an8-dimensional space
overQ (and these are almost, but not quite, all the possibilises;the exercise for the full story).

(8.11) Vector spaces, like groups, rings and fields, are algeblgécts, and so like these other examples,
there is a notion of ®aomomorphisnof vector spaces. This is a map: V; — V; that preserves any
operations we may have, which in the case of vector spachks eddition and scalar multiplications:

elu+v) =p(u) + ¢), p(Av) = Ap(v) foru,v € V andX € F.
For historical reasons, homomorphisms of vector are mareaonly calledinear maps

Aside. Although we don't need these concepts here, there is anraigegheory of vector spaces akin to that for groups, rings an
fields. For example, linear maps hakarnels there arejuotientsof vector spaces, and so on. There is a first isomorphismeheor
for vector spaces, which as usual readd/gkerp = imagep. We get things likedim (V1 /V2) = dim(V1) — dim(V2), so in
particular for a linear map,

dim (V) = dim(kery) + dim(imagey).
In thelinear theory of vector spaces (rather than the algebraic thediy)(imagey) is called therank, dim(ker) the nullility
anddim(V') the number of columns of a matrix. So the first isomorphisnortéen for vector spaces translates into the mantra,
“rank + nullility = the number of columns”.

(8.12) Let F' C E be an extension of fields. ConsidEras a vector space ovér, and define thelegree
of the extensioto be the dimension of this vector space, dendfed F']. Call F' C E afinite extension
if the degree is finite.

(8.13) The extension® C Q(v/2) andQ C Q[z]/(x* — 2) have degree2 and3.

(8.14) It is no coincidence that the degree of extensions of the fBrm F[z]/{f) turn out to be the
same as the degree of the polynonfias the next result shows.

Theorem 5 Let f be an irreducible polynomial itf'[z] of degreel. Then the extension,

FC Flal/(f),
has degred.

Hence the name degree!

Proof: Replace, as usual, the fieldby its copy inF'[z]/(f), so that\ € F' becomes\ + (f). Consider
the set of cosets,

B={1+(f),z+(f),a® +(f),....a" "+ (N)}.

ThenB is a basis foil'[x]/(f) over F', for which we have to show that it spans the field/vector sjpack
is linearly independent. To see that it spans, consideriaalyplement, which has the form,

g+ (f) = (@f +r){f) =r+{f) = (a0 + a1z + - + ag—12" ") + (f).
using the division algorithm and basic properties of cosElss is turn gives,

(a0t+arz+- - -+aa—12 ) +(f) = (ao+{f) A+ +(ar+()) @+ )+ - +(aa—1+(H)) @ +(f)),
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where the last is af’-linear combination of the elements Bf Thus this sets spans the space.
For linear independence, suppose we havé'dimear combination of the elements Bfgiving zero,
ie:
(bo + (PN + ) + (br+ (M) + () + o+ (bar + ()T + () = (),

remembering that the zero of the fieijx]/(f) is the coset + (f) = (f). Multiplying and adding all
the cosets on the left hand side gives,

(bo + b1z + -+ 4+ ba—1271) + () = (f),

so thathy + by + --- + bg_12971 € (f) (using another basic property of cosets). The elements )of
being multiples off, must have degree at leaktexcept for the zero polynomial. On the other hand
bo + bix + - -- + bg_12% ! has degreeC d — 1. Thus it must be the zero polynomial, giving that all the
b; are zero, and that the sBtis linearly independent ovdr as claimed. O

(8.15) What is the degree of the extensi@iC Q()? If it was finite, say{Q(7) : Q] = d, then any
collection of more thad elements would be linearly dependent. In particulardhel elements,

are dependent ovéd, so thatag + a7 + asm? + ... + agn? = 0 for someag, a1, ..., aq € Q, not all
zero, and sor is a root of the polynomiaky + a1z + axz? + ... + agz?, which contradictsr being
transcendental ové). Thus, the degree of the extension is infinite, and sd}far Q(«) to be finite, we
clearly cannot have that is transcendental ové).

(8.16) In fact this is always true:
Proposition 3 Let ' C F anda € E. If the extensiorF” C F(«) is finite, thenw is algebraic overF'.

Proof: The proofis very similar to the example above. Suppose lteegxtensio” C F'(«) has degree
n, SO that any collection of + 1 elements ofF'(«) must be linearly dependent. In particular the- 1

elements

2 n

1, a0,a «

) ) yr

are dependent ovéft, so that there arey, a1, . . ., a,, in F with
ag+ara+ -+ apa”™ =0,
giving thata is algebraic oveF’ as claimed. O

Thus, any field® that contains transcendentals oy&will be infinite dimensional oveF'. In particular,
R andC are infinite dimensional ovep.

(8.17) The converse to Proposition 3 is partly true, as we summadgein an important result

Theorem D (Complete Description of Simple Extensions).Let I C F anda € E be algebraic over
F. Then,

1. There is a unique polynomigle F[z] that is monic, irreducible oveF, and hasy as a root;
2. The simple extensiafi(«) is isomorphic to the quotier[z]/(f);

3. ifdeg f = d, then the extensioR' C F(a) has degreel with basis{1, a,a?,...,a% 1}, and so,

F(a):{a0+a1a+a2a2—l—---—i—ad_lad_l|a0,...,ad_1 e F}.
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Proof: Hopefully most of the proof will be recognisable from the sifie examples we have discussed
already. Asx is algebraic ovel there is at least ong-polynomial havingx as a root. Choosg¢’ to

be a non-zero one having smallest degree. This polynomiat then be irreducible ovdr, for if not,
we havef’ = gh with deg(g), deg(h) < deg(f’), anda must be a root of one af or i, contradicting
the original choice off’. Divide through by the leading coefficient ¢f, to getf, a monic, irreducible
(by Exercise 17} -polynomial, havingy as a root. Iff;, fo are polynomials with these properties then
f1 — f2 has degree strictly less than eithfgror f> and still hasy as a root, so the only possibility is that
f1 — fois zero, hencd is unique.

Consider the evaluation homomorphism: F[z] — F defined as usual by, (f) = f(a). To show
that the kernel of this homomorphism is the idé#} is completely analogous to the example at the
beginning of Sectiof5.: clearly(f) is contained in the kernel, as any multiplefofnust evaluate to zero
whenq is substituted into it. On the otherhandhifs in the kernel ok,,, then by division algorithm,

h=qf +r,

with deg(r) < deg(f). Finding thes,, image of both sides gives= ¢, (h) = 4 (qf) + €a(r) = ea(r),
so thatr hasa as aroot. Asf is minimal with this property, we must have that 0, so thath = ¢f, ie:
his in the ideak f), and so the kernel is contained in this ideal. Thusgker (f).

In particular we have an isomorphist : F[z]/(f) — Ime,, given by,

Ealg + (f) = ealg) = g(a),

with the left hand side a field agis irreducible overF'. Thus, Inz, is a subfield ofE’. Clearly, both
the elementy (¢,(z) = «) and the fieldF (¢,(\) = \) are contained in I@,, henceF'(«) is too
as Ik, is subfield of £, and F'(«) is the smallest one enjoying these two properties. Conlelige
g= > a;x" € F[z] thene,(g) = > a;a’, which is an element of («) as fields are closed under sums
and products. Hence b C F(«) and so these two are the same. Thiss an isomorphism between
Flz)/(f) andF ().

This final part follows immediately from Theorem 5, where hewed that the set of cosets

{1+ e+ {2+ (). 2"+ ()}

formed a basis foF[z]/(f) over F. Their images undef,, namely{1,a,a?,...,a?"1}, must then
form a basis foF’(«) overF'. O

Notice from the proof of the first part of Theorem D that theymalmial f has the smallest degree of
any polynomial havingv as a root. For this reason it is called tihéimum polynomiabf « over F'.

(8.18) An important property of the minimum polynomial is that ivilesany other F-polynomial that
hasa as a root. Suppose thatis such anF-polynomial. By unique factorisation i'[x], we can
decompose as

g=Afa-- fr,

where thef; are monic and irreducible ovét. Being a root ofy, the elemené& must be a root of one of
the f;. By uniqueness, thig; must be the minimum polynomial af over F'.

(8.19) It is labouring the point, but to find the degree of a simpleastonF C F(«), you want to find
the degree of the minimum polynomial ov&rof «.

How do you find this polynomial? Its simple: guess! A sensiiiigt guess is a polynomial with
F-coefficients that haa as root. If your guess is also monic and irreducible, then lyave guessed
right—-Theorem D says there is only once such polynomialblinguess is not monic, then replace it by
a suitable scalar multiple.

Thus, the only way you can go wrong is if you inadvertentlyggia polynomial that is not irreducible.
In this caseyour next guess should be a factor of your first gudsghis way, the search for minimum
polynomials is no harder than determining irreducibility.
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(8.20) As an example of this process, consider the minimum polyabavierQ of the p-th root of1,

2r . . 2m
COS — +1sln —,
p p
for p a prime. Your first guess is” — 1 which satisfies all the criteria bar irreducibility as- 1 is a factor.
Factorising,
2P —1=(z—1)P,(x),

for @, thep-th cyclotomic polynomial shown to be irreducible o¥@in Exercise 29.

(8.21) How does one find the degree of extensidhs F (a1, . .., o) that are not simple, but the result
of adjoining several elements? Such extensions are jusiuesee of simple extensions. one after the
other. If we can find the degrees of each of these simple arte)sall we need is a way to patch the
answers together. The result that does this is called the,

Tower Law. Let FF C E C L be a sequence or “tower” of extensions. If both of the intetiate
extensiong” C ' andE C L are finite, thenF C L is too, and indeed

[L:F)=|[L:E]E:F|.

(8.22) Before tackling the proof of the tower law, consider the eglanof the extensio® C Q(v/2, 1),
which is nothing other than a sequence of two simple extassio

Q CQ(V2) C Q(V2,4).

We can use Theorem D to find the degrees of each of these indiviimple extensions. Firstly, the
minimum polynomial ovef) of /2 mustz3 — 2, for this polynomial is monic iQ[z] with /2 as a root
and irreducible ove® by Eisenstein (using = 2). Thus the first of the two extensions above has degree
deg(x® — 2) = 3 and{1, v/2, (V/2)?} is a basis foQ(v/2) overQ.

Now letF = Q(+/2) so that the second extensiorffisC F(i) and where the minimum polynomial of
i overF must ber? + 1: itis monic inF[z] with i as a root, and irreducible ovEras its two rootsti are
notinF (asF C R). Thus Theorem D again gives tHAIC F(i) is a degreeleg(z? + 1) = 2 extension
with {1,4} a basis foff (i) overF.

Now consider the elements,

{1,V2,(V2)2,i, V2, (V2)%i},

obtained by multiplying the two bases together. The claithas they form a basis fd@(+/2,4) = F(i)
over Q, so we need to show that tlig-span of these six is all of this field and that they are linearl
independent oveR. For the first, letz be an arbitrary element @(+/2,i) = F(i). As {1,i} is a basis
for F(i) overFF, x can be expressed asBdinear combination,

r=a+bi,a,bel.
As {1,+/2, (3/2)?} is a basis foif overQ, botha andb can be expressed &slinear combinations,
a=ag+a1V2+aa(V2)?,b = by + b1 V2 + b2 (V2)?,
with thea;, b; € Q. This gives,
z = ag + a1 V2 + az(V2)? + boi + by V2i + ba(V2)%,

aQ-linear combination for, and so these six elements do indeed spamtvector spac€)(/2, ).
Suppose we have,

ap + a1 V2 + az(\3/§)2 + boi + brazV/2i + bg(\?’/i)Qi =0,
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with thea;, b; € Q. Gathering together real and imaginary parts,
(ao + a1\3/§ + ag(\?’/i)?) + (bo + b1\3/§ + bz(\s/i)Q)i =a+bi =0,

for a andb now elements oF. As {1, i} independent ovef we must have that the coefficients in this
last expression are zero, ie: that b = 0. This now gives,

ap + alf/§+ az(\s/i)Q =0=10by+ b1\3/§+ bz(\s/i)Q,

andag{1, v/2, (v/2)?} are independent ov€r we deduce that all the coefficients in these two expressions
are zero, ie: thatg = a1 = as = by = by = by = 0, S0 that the six elements are independent and form a
basis as claimed.

This certainly agrees with the answer given to us by the tdawein that,

6 =[Q(V2,49): Q] = 3 x 2 = [Q(V2,7) : Q(V2)][Q(V2) : Q).

(8.23) The example above is more than a specific verification of theetdaw. It also shows us exactly
how to prove it:

Proof: Let{a1,as,...,a,} be a basis foZ as anF-vector space anl:, 52, ..., O} @ basis for

L as anFE-vector space, both containing a finite number of elementhese extensions are finite by
assumption. We then show that the: elements

{iBi},1<i<n,1<j<m,

form a basis for thé'-vector spacd.. Working “backwards” as in the example above; i any element
of L we can express it as dntlinear combination of th¢ 31, ..., G},

m
r=> ab
i=1

where, as they are elements Bf each of thea; can be expressed ds-linear combinations of the

{al,ag, e ,an},
n m n
a; = Zbijaj = T = ZZZ)”OLJﬁl
j=1

i=1 j=1

Thus the elementge; 8, } span the field.. If we have

Z Z bija;3; = 0,

i=1 j=1

with theb;; € F', we can collect together all thg terms, all thed, terms, and so on (much as we took
real and imaginary parts in the example), to obtairEalinear combination,

(Z b1j04j>51 + <Z b2j04j>ﬁ2 + e <Z bmj%‘)ﬁm =0.
=1 =1 =1

The independence of th& over E forces all the coefficients to be zero so that

(Z bleéj) == (Z bmjaj) = O,
Jj=1 7j=1

and the independence of tlhe over I’ forces all the coefficients in each of these to be zero too, ie:
bi; = 0forall i, j. O
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Further Exercises fo§8.

Exercise 74 Show that the following two fields are isomorphic:
2 2 4 4
Q <COS ail} + sin —Wz) andQ <COS - + sin —Wz)
p p p p
wherep is an (odd) prime number.

Exercise 75
1. Show thatiff’ C L are fields with[L : F] = 1thenL = F.

2. LetF C L C F befields with[E : F| = [L : F]. Show thatFl = L.

Exercise 76 LetF = Q(a), wherea® = 2. Expresg1 +a)~! and(a* + 1)(a? + 1)1 in the formba? + ca + d, whereb, d, c
are inQ.

Exercise 77 Let o = /5. Express the following elements @f(«) as polynomials of degree at most 2dn(with coefficients in
Q):
1. 1/a.
2. o® —af.
3. af(a? +1).

Exercise 78 Find the minimum polynomial ove® of a = v/2 + v/—2. Show that the following are elements of the fi€da)
and express them as polynomialsair{with coefficients inQ) of degree at most 3:

1. V2.

2. v/=2.

3. 4.

4. o5 +4a+3.

5. 1/a.

6. 2a +3)/(a® +2a +2).

Exercise 79 Find the minimum polynomials ovép of the following numbers:
1. 1+

V.

V5.

V244

V2 + V3.

oo e

Exercise 80 Find the minimum polynomial ove® of the following:

1. V7.
2. (V11 +3)/2.
3. (iV3—-1)/2.

Exercise 81 For each of the following field& and F, find [L : F] and compute a basis fdr over F.
1. L=Q(2 {2),F =
2. L=Q(V2,9), F = Q(i);
3. L=Q(¢), F = Q, where¢ is a primitive complex 7th root of unity;
4. L =Q(i,v/3,w), F = Q, wherew is a primitive complex cube root of unity.

Exercise 82 Leta = e™/4. Find[F(a) : F]whenF = R and whenF' = Q.
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§9. Fields Ill: A Menagerie

This section collects together a number of miscellaneoustyortant concepts and examples of fields.

Splitting Fields

(9.1) In the first lecture we were interested in fields containirgy @nough numbers to solve some poly-
nomial equation.
Supposef is a polynomial withF' coefficients. We say thgt splitsin an extensiorf” C F iff we can

factorise
deg f

r=TJ @- ),
=1

in the polynomial ring’[x]. Thusf splits inE precisely wherE contains all the rootba, g, . . ., deg 1 }
of f.

There will in general be many such extension fields: we aer #fie smallest one. Call' a splitting
field for f overF, if f splitsinE andE = F(ai,qs,...,0deg f), Where{ai, as, ..., adeq ¢} are the
roots of f.

Exercise 83 Show thatFE is a splitting field of the polynomiaf over F' if and only if f splits in E but not in any subfield of2
containingF’ (so in this sense is thesmallestfield containing/” and all the roots).

(9.2) Our example from the first lecture again: the polynomial ws- 2 with rootsa, aw, aw? where
a=+{/2eRand
1 V3

Thus a splitting field forf overQ is given byQ(c, aw, aw?), which is the same thing &3(a, w).

(9.3) The example above shows that we can always find a splitting fiogla polynomial overf™: by
Kronecker’s Theorem we can find an extensioof F' that contains all the rootgyy, as, . . ., deg 1 } Of
f, and so adjoining them t&' gives a splitting fieldF (a1, a2, . . ., (tdeg ) € E.

Aside. In §12.we will prove (Theoren??) that an isomorphism of a field to itsedf : I — F can always be extended to an
isomorphismo : 1 — FE» where E; is a splitting field of some polynomigf over F and E5 is another splitting field of this
polynomial. Thusany two splitting fields of a polynomial ovét are isomorphic

Finite Fields

We have already met a number of examples of finite fieldsFthef course, and a few others such as the
field of orderg in §4..

(9.4) To get more examples, we saw §6. that by taking irreducible polynomials over finite fields we
could, in principle, construct fields with a prime power nwenof elements. The idea was to find a
polynomial of degree, irreducible over the field,, giving a field of ordep™. Here is a very concrete
example of that idea.

Consider the polynomigl = 2 + x + 2 € F3[xz]. Substituting the three elementsdf into f gives

0°4+0+2=2,1>+1+2=1and2’>+2+2=2,

so thatf has no roots iff's. Being a quadratic, this gives thétis irreducible over the fiel&s, and so
Fs[z]/(z? + = + 2) is a field of ordei3? called, sayF.

Leta = z + (22 + 2 + 2) in Fg be a generator for this field as §6., so that the elements &% have
the forma + ba with a, b € F3 and multiplication satisfying the rule® + o 4 2 = 0, or equivalently,

"Note that—1 = 2and—2 = 1 in F3.
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a? = 2o+ 1. Now let X be a new indeterminate, and consider the polynoniigl&| overFy in this
new variable. In particular,
g=X>+2a+1)X + 1.

As g is a cubic, it will be irreducible oveFy precisely when it has no roots in this field, which can be
verified as usual by a straight, albeit tedious, substitutio

9(0) =1,

g) =13 +2a+1+1=2q,

9(2) =2°+22a+1)+1=a+2,
gla)=a*+ala+1)+1=aRa+1)+aa+1)+1=40*+2a+1=2a+1+2a+1

=a+ 2,

gla+1)=(a+1)P+(a+1)2a+1)+1=a’+1+2a*+1+1=a2a+1)+22a+1)
=(@+2)2a+1)=2(*+a+1)=1,

gla+2)=(a+2P+(a+2)2a+1)+1=0a*>+2+ (a+2)2a+1)+1=(2a+2)2a+1)
= +2=2a+1)+2=2aq,

g(20) = (20)* + 2a(2a+1) +1 =2a(2a + 1) + 2a(2a+1) +1 = a(2a + 1) + 1

=2 +a+l=a+2+a+1=2aq,

g2a+1)=2a+ 1P+ 2a+1)2a+1)+1=2a* +1+a*+a+1+1=2a2a+1)+a* +a
=a2+2a+a2+a:a+2,

g2a+2) = (2a+2)3 + (20 +2)2a+1)+1=20° +a+a?+2+1=2a2a+1)+a+ao?
=2a’=a+2.

We have a used an energy saving device in these computat@asamarised in the following exercise.

Exercise 84 If F'is a field of characteristip > 0, then(a + b)? = a? + b (hint: refer to Exercise 27).

Thusg is irreducible oveify, giving a field
Fo[X]/(X?+ (2a + 1)X + 1)

of order9® = 35 = 729, called sayF29. As we have a sequence of extensiBas_ Fg C Fro9, We can
view F7o9 in two ways. Using the extensidy C Frq9, the elements have the form,

A + A18+ A2,

where thed; € Fg and3 = X + (g). Multiplication uses the rulg® = (a + 2)3 + 2. Alternatively, the
extensioriFs C Fro9 has, by the tower law, elements of the form,

ap + a1 + a2f8® + aza + asaff + asa B,
with thea; € Fs.

Exercise 85
1. Construct a fieldFg with 8 elements by showing thaf + = + 1 is irreducible oveifs.
2. Find a cubic polynomial that is irreduciblefig[z] (hint: refer to Exercise 26).
3. Hence, or otherwise, construct a field with= 512 elements.
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(9.5) Recall that the prime subfield of a field is the smallest sutbf@hd is isomorphic té',, for somep
or to Q. In particular, the prime subfield of a finite field must be isomorphic t&,.

Using the ideas from§8., we have an extension of fiel# C F' and hence the finite fiel& forms a
vector space over the fielg},. This space must be finite dimensional (foto be finite), so each element
of F' can be written uniquely as a linear combination,

a10q + agag + - - - + ApQp,

of some basis vectors;, as, . . ., a, With thea; € F,. In particular there arg choices for each;, and
the choices are independent, givipigelements of in total.
Thus,a finite field must have™ elements for some prime

(9.6) Here is an extended example that shows the converse, ies gistandard construction of a field
with ¢ = p™ elements for any primg and positive integen. Consider first the polynomial? — = over
the fieldlF, of p elements.

Let L be an extension of the field}, containing all the roots of the polynomial, as guarantedujsie
Corollary to Kronecker’'s Theorem. In Exercise 16 we usedfdnmal derivative whether a polynomial
has distinct roots. We have thatz? — z) = gz9~' — 1 = p"z?" ~! —1 = —1 asp” = 0in .. Clearly
the constant polynomiat1 has no roots in., and so the original polynomial? — x has no repeated
roots inL by Exercise 16.

In fact, thep™ distinct roots ofr? — z in L form a subfield, and this is the field of ordgt that we are
after. To show this, we need thatif i« are roots, then so are), A + p, A andi 1.

Firstly, (—\)? — (=) = (=1)2A7 + \. If pis a prime, then it is either = 2 or odd, in which case we
have two cases to considerplt= 2, then—1 = 1in Fo, so that(—1)I\? + A = X1+ X = A+ A (as)is
arootofz? —x sothat\? = \) =2XA = 0. If pisodd then(—1)? = —land(—1)IN + A= -+ )\ =
—A+ A = 0. In either case;-\ is also a root of the polynomial! — z.

Next,

q
A+ p)?= Z ( ? > N p?™" = X + p? + g(other terms,
1=0
where inF, we have tha = p™ = 0. Thus(A + )9 = A? + p9. Substitutingk + p into our polynomial
then gives
A+ =A+p)=A+p! = A=p=0,

as both\ andy are roots so that? — A = 0 = u? — u. ThusA + p is also a root of the polynomial.

Now, (M) — A = Apd — A= A — A = 0. Finally, A71)7 — (A7) = (X))~ — (A7) =
A~ — A~1 = 0. In both cases we have usati= \.

Thus theg = p™ roots of the polynomial i, form a subfield as claimed, and we have constructed a
field with this many elements.

(9.7) Looking back at this example, we Iéthe an extension df,, containing all the roots of the polyno-
mial 27 — z. In particular, if these roots akgv, . .., a4}, thenF, (a1, ..., a4) is a, hencehe, splitting
field overlF, of the polynomial. In the example we constructed the subKedfl L consisting of the roots
of 27 — . As any subfield contairig,, we haveF, (a1, ..., aq) C F, wheread = {a,...,aq} so that
F CFy(au,...,aq). Hence the field we constructed in the exampéesthe splitting field ovef, of the
polynomialz? — q.

If F'is now an arbitrary field withy elements, then it has prime subfiélg. Moreover, as the mul-
tiplicative group ofF' has orde — 1, by Lagrange’s Theorem (s§&1), every element of" satisfies
z97! =1, hence is a root of thE,-polynomialz? = x < 2% — x = 0. Thus, a finite field of ordey is
the splitting field oveit,, of the polynomialk? — x, and by the uniqueness of such thingsy two fields
of orderq are isomorphic

(9.8) We finish with a fact about finite fields that will prove usefatdr on. Remember that a field
is, among other things, two groups spliced together in a cdile way: the elements form a group
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under addition (thexdditive group) and the non-zero elements form a group under multiplicatibe
multiplicative group) .

Looking at the complex numbers as an example, we can find a ewofliinite subgroups of the
multiplicative groupC* of C by considering roots of. For anyn, the powers of the-th root of1,

2 .. 27
W = COS — +¢SIn —,
n n
form a subgroup of* of ordern. Indeed, by definition, this subgroup is cyclic.

Proposition 1 Let F' be any field and~ a finite subgroup of the multiplicative group*® of F'. ThenG is
a cyclic group.

In particular, if F' is now a finite field, then the whole multiplicative gro@j of F' is finite. Hencehe
multiplicative group of a finite field is cyclic

Proof: By Exercise 97 the order in an Abelian group of the elemgénis the lowest common multiple
of the orders of; andh. As G is finite we can write a list = my, mo, ..., m; of all the possible orders
of elements and find = g1, go, . . ., gx such thaiy; has ordern;. Thusg;g- . .. gx has order the lowest
common multiple of all the possible orders in the group. Tlfuse call this ordern, there is an element
g of the group of ordem, and any other elementsatisfiesh™ = 1. Hence every element of the group
is a root ofz™ — 1, and since this polynomial has at mastroots inF', the order ofzZ must be< m. As

g € G has ordermn its powers must exhaust the whole group, hefids cyclic. O

Algebraically closed fields

(9.9) In the first part of this section we dealt with fields in whichatular polynomial of interest split
into linear factors. On the otherhand, there are fields lieecomplex numbers in whicdmypolynomial
splits.

Afield F is said to bealgebraically closedf and only if every (non-constant) polynomial ovErsplits
in F.

(9.10)If F'is algebraically closed andlis algebraic oveF’ then there is a polynomial witR-coefficients
havinga as a root. AsF' is algebraically closed, this polynomial splits iy so that in particulary is
in F. This explains the terminology: an algebraically closeltifie closedwith respect to the taking of
algebraic elements. Contrast this with fields likeover which there are algebraic elements k2 that
are not contained if.

Exercise 86 Show that the following are equivalent:
1. Fis algebraically closed;
2. every non-constant polynomial ovErhas a root inf';
3. the irreducible polynomials ovdr are precisely the linear ones;
4. if I C FEis afinite extension thell = F'.

Theorem 6 Every field is contained in an algebraically closed one.

Proof (sketch): The full proof is beyond the scope of these notes, althoughethnical difficulties are
not algebraic or number theoretical, but set theoretid¢dhd field is countable, the proof sort of runs as
follows: there are countably many polynomials over a cobletfield, so take the union of all the splitting
fields of these polynomials. Note that for a finite field, tisign infinite union, so an algebraically closed
field containing even a finite field is very large. |
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Simple extensions

(9.11) We saw ing4. that an extension lik® C Q(v/2, v/3) is, despite appearances, simple. Itis certainly
a finite extension, and this turns out to give simplicity asnea show:

Theorem 7 Let F' C E be afinite extension so that the roots of any irreducible pofgial f € E|[x] are
distinct. ThenE is simple, ie:E = F'(«) for somex € E.

The following proof is for the case that is infinite.

Proof: Let{ai,as,...,ax} be abasis foE overF and consider the fielé, = F(as, ..., ax), So that
E = Fi(aq,az). We will show thatF; (aq, az) is a simple extension df, ie: thatF («q, as) = F1(6)
forsomef € E. ThusE = F(ay,as,...,ar) = F(0,a3...,ax), and so by repeatedly applying this
procedureF is a simple extension.

Let f1, f2 be the minimum polynomials ovéf; of «; andas, and letl. be an algebraically closed field
containing of the field?". As thea; are algebraic oveF', we have that the field8; and F are contained
in L too. In particular the polynomialg andf splitin L,

deg f1 deg f2

A= 1] @=8).f2= [] (x—d),

i=1 =1

with 81 = oy andd; = «q. As the roots of these polynomials are distinct we have thag 3; and
0; # d; forall ¢ # j. For anyi and anyj # 1, the equationg; + z6; = (1 + xd; has preciselypne
solution inFy, namely

_ Bi—

:v—él_aj.

(notice that if we had; = §; then there would be infinitely many solutions to the equafior- xd; =
B1 + zd1). As there only finitely many such equations and infinitelynnalements of, there must be
anc € I3 which is a solution tanoneof them, ie: such that,

Bi + cdj # B1 + cdy

foranyi and any; # 1. Letf = 51 + ¢d1 = a1 + caq, and we show thaF (a1, a2) = Fi(0) =
F1 (Oél + COLQ).
Clearlya; + cag € Fi(a1, az) so thatFy (a; + cas) C Fy(ag, o). We will show thatay € Fy (a1 +
Cag) =F (9), forthenif so,a; +cas —cas = a1 € Fy (041 —|—ca2), and saly (041, 042) Ch (041 —|—ca2).
We have) = f1(a1) = f1(0 — caz), so if we letr(t) € Fy(0)[t] be given byr(t) = f1(6 — ct), then
we have thatv, is a root of both-(¢) and f2(x). If v is another common root afand f5, then+ is one
of thed;, andf — ¢y (being a root off;) is one of the3;, so that,

7:6jand9—c7:5i$ﬁi+c§j:ﬁl—i—cél,

a contradiction. Thus and f> have just the single common roe. Let i be the minimum polynomial

of ae over £y (), so thath divides bothr and f, (recall that the minimum polynomial divides any other
polynomial havingy, as a root). This means thamust have degree one, for a higher degree would give
more than one common root ferand f», ie: h = ¢ + b for someb € Fy(6). As h(az) = 0 we thus get
thatas, = —b and sows € F;(0) as required. O

The theorem is true for finite extensions fafite fields (even without the condition on the roots of
the polynomials), but we omit the proof here. We saw in Exser@6 that irreducible polynomials over
fields of characteristié have distinct roots. Thugny finite extension of a field of characteristic zero is
simple For example, ifvy, .. ., «y are algebraic ove®, thenQ(ay, . .., ax) = Q() for somed. This is
a fundamental fact in algebraic number theory, the proofluittvwe have merely adapted.
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§10. Ruler and Compass constructions Il

(10.1) The degree of an extension is the only concept we need to edehplanswer the question of
which complex numbers are constructible:

Theorem E. The numbet € C is constructible if and only if there exists a sequence al Bgtensions,
Q=KyC K CKyC---CK,,
such thatQ(() is a subfield ofK,,, and eachk; is a degree two extension &f; 1.

Proof: (=) We prove the “only if” part first. Recall thaf is constructible if and only if there is a
sequence of numbers

Ovlai:<17<27"'7<n:<5

with ¢; obtained from earlier numbers in the sequence in one of tiee florms,

5
Mmoo~ 0

with p,¢,r, s € {1,2,...,n — 1}. Let K; be the fieldQ(¢1, . . ., {;), giving a “tower” of extensions,
QCKICKyC---CK,.

We will show the following two things: (a). each of the fieldS; is closed under conjugation, ie: if
z € K; thenz € K;, and (b). the degree of each extension.; C K is at most two. Part (a) is just a
technlcal convenience, the main point of which is illustchby the exercise following the proof. We will
prove it by induction:K; = Q(¢) is clearly closed under conjugation, so we assume khas closed
under conjugation if < j.

Suppose thaf; is obtained as in case (i), ie: as the intersection of twagditdines. The Cartesian
equation for one of the straight linesgs= myx + ¢;, and suppose this line passes through the points
Cp, Cq, With ¢, ¢, € K;_1. As this field is closed under conjugation, Exercise 87 gities the real and
imaginary parts of, and{, are inK;_; too. As(,, (, lie on the line with this equation we have,

IM¢, = miReC, + ¢ Im¢, — Im
a 175 1} = = M € K;_jandc; = Im¢, —miRe, € K1

ImCP = mlRegp +c1 B R%p - R&hq

(unless the line is vertical with equatian= ¢;, in which caser; = Re(, € K,_1). Similarly if the
equation of the other line ig = max + c2, we havems, co € K;_;1. As (; lies on both these lines we
have

Im¢; = maRe(; + ¢

C2 —C1 -
Im¢; = m1Re(; +cl} it € Ky Rey = my1 — ma and m(; = m e
and so R¢; and In; are inK;_; as well. As this field is closed under conjugation we have that
¢; € K;_; too, so that in fack; = K;_1((;) = K;_1. Thus the degree of the extensii_, C K,
being one, is certainl¥ 2. Moreover,K7 is closed under conjugation &S;_; is.
For case (||) suppose that the line has equagpl()ﬁ mz + c and the circle equatiofw — Re()? +
(y —Im¢)? = r?, wherer? = (Reg, — Res)? + (Im¢, — Im¢;)?, so that in particular? € K;_4
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as(p,(y,¢r, ¢ € Kj—1 hence their real and imaginary parts are too. ¢Adies on the line we have
Im¢; = mRe(; + ¢, and it lies on the circle too, so that,

(ReC; — Re(,)? + (mRej + ¢ — Im(,)? = 2.

Thus the polynomialz — Re(;)? + (mx + ¢ — Im(;)? = r? is a quadratic withK;_; coefficients having
Re(; as a root. As the minimum polynomial ovéf; _; of Reg; divides any othet;_;-polynomial
having R€; as a root, we get that this minimum polynomial has degfee Theorem D then gives,

[Kj-1(Re(;) : Kj—q] < 2.

Infact, Im(; € K;_;(Re(;) as In(; = mRe(; + ¢, thus(; itself is in K;_, (Re(;), asi also is. Hence
we have the sequence,
Kj1 C Kj = K;1(G) € Kj-1(Reg),

giving that the degree of the extensiéfj_; C K is also< 2 by the tower law. Finally, we show that
the field K; is closed under conjugation, for which we can assume thaddlgeee is two (it is trivially
the case if the degree is one). Nai; = K;_1(¢;) = K,;_1(Reg;), so that in particulag; and its real
part are ink;, hence its imaginary part

Im¢; = G _z'ReCj’

is too. The upshot is that Re— ilm¢; = (; is in K, and as the elements of this field have the form
a+ b(; with a,b € K;_,, we get that it is indeed closed under conjugation.
Finally, case (jii). As; lies on both circles we have,

(Reg; — Re(,)? + (Im¢; — Im¢,)? = 2 and(Re(; — Reg,)? + (Im¢; — Im¢,)? = 52,

with bothr? ands? in K;_, for the same reason as in case (ii). Expanding both expresstey contain
terms of the form R@f + Imgf, and equating leads to,

_ B Re(; + % wherea = 2(Im¢, — Im¢,), 61 = 2(Re, — ReC,)

andf, = Re(? +Im¢? — (Re(? +1m()) + s — 12

Im¢;

/ o

Combining thisK;_;-expression for Ing; with the first of the two circle equations above puts us into a
similar situation as part (ii), from which the result follevin the same way.
(<) Now for the “if” part. Suppose that we have a tower of fields,

Q=K CKiCKyC---CK,,

with Q(¢) in K,,. EachK; is a simple extensiok;, = K;_1(¢;), S0 K; = Q(¢1,...,¢;), and in

particular, K,, = Q(¢1, - - .',g‘n). We may as well assume th@Y () is not contained ink,,_;, so that
(& Kn1. AsQ(C1y--+,C6u-1,0) € Q(C1y---5Cn—1,Cn), we have tha®Q((1, ..., (,—1,() is a degree
two extension of)((1, ..., (,—1), SO by Exercise 75, part 2,

Q(Clv" -7<n713<) = Q(Clv" -aCnflaCn)-

Thus, the tower of extensions has the form,

QCQ(@) S CQ¢G, -, 6n-1) CQC1s-- -5 Gn—1,0)-

It suffices to prove therefore, that whenever we have an sideii’ C K (¢) of degree two, then there
are finitely many elements df’ from which & can be constructed in a finite number of steps. For if so,
then( can be constructed from finitely many element€)€,, . . ., (,,—1), each of which in turn can be
constructed from finitely many elements@f¢i, . . ., ¢,—2), and so on.
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GivenK C K (f) as above then, the minimum polynomiallobver K has the forme? + bz + ¢, with
b,c € K, so thatd is one of,

—1+Vb% —A4c
2 )
which can be constructed froi 2,4, b, c € K, using the arithmetical and square root constructions of
§7. O
Exercise 87 Let K be a field such that
Q@# CKCC,

as well as being closed under conjugation, iez i K thenz € K. Show thatz € K if and only if the real and imaginary parts
of zare inK.

(10.2) It is much easier to use the “only if” part of the Theorem, whéhows when numbecannotbe
constructed, so we restate this part as a separate,

Corollary. If ¢ € Cis constructible then the degree of the extengjoa Q(¢) must be a power of two.

To use the “if” part, in otherwords, to show that numbeas be constructed by finding a tower of
fields as in Theorem E, is a little harder. We will need to knogveat deal more about the fields stacked
in betweer) andQ(¢) before we can do this. The Galois Correspondengé4nwill give us the control
to do this, so we postpone any attempts at using the “if” pafth@orem E until then.

Proof: If Cis constructible then we have the tower of degree two ext@sss given in Theorem E, with
¢ € K,,. Thus we have the sequence of extensiors Q(¢) C K,, which by the tower law gives,

Thus[Q(¢) : Q] divides[K, : Q], which is a power of two, siQ({) : Q] must also be a power of twal

(10.3) Notice that the Corollary is only stated in one directiorddad, the converse, that if the extension
has degree a power of two, then the number is construcistet true

(10.4) A regularp-gon, forp a prime, can be constructed, by Exerc?& precisely when the complex

number¢ = cos(27/p) + i sin(27/p) can be constructed, so we need to find the degree of the exttensi

Q C Q(¢). By Exercise 29, the minimum polynomial ¢foverQ is thep-th cyclotomic polynomial,
Op(z) =P+ 2P 24 f 1

Thus the degree of the extensi@iC Q(¢) is p — 1, hence by the Corollary to Theorem E we require,
for thep-gon to be constructible, that— 1 is a power of two. In otherwords, the primpés of the form

p=2"+1.

Actually, even more can be said. 7t is odd, the polynomiat™ + 1 has—1 as a root, thus can be
factorised ag™ +1 = (x + 1)(a™ 1 — 2™ 2 + 2™ 3 — ... — 2 + 1). Thus ifn = mk for m odd, we
have

1= 1= (@)t - @2 2™ (20 1),

so that2” + 1 cannot be prime unlesshas no odd divisors, which means thaitself must be a power
of two.
Thus for ap-gon to be constructible, we must have thas a prime number of the form

22" 41,
a so-calledrermat prime Such primes are extremely rare: the only ores)*?° are
3,5,17,257 and65537.

We will see in§15. that the converse is true: jfis a Fermat prime, then a regulasigon can be con-
structed!
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(10.5) A square plot of land can always be doubled in area using aaualgcompass:

(V2t, V2t)
0, 8)

—(0)

Whatever the side lengthof the original square is, it is constructible: just set thenpass to the side
length. Asy/2 is also a constructible number, we can construct the poitht u!iordinates{\/it, \/§t),
hence doubling the area.

What about a regular cube: is there a similar procedure? &epine original cube
has side length, so that the task is to produce a new cub&afime2. If this could
be accomplished via a ruler and compass construction, theetting the compass to
the side length of the new cube, we would have constru¢ted But the minimum

7 “polynomial overQ of /2 is clearlyz?® — 2, with the extensio® C Q(+/2) thus having
'degree three. Thus, such a construction cannot be possible.

(10.6) The subse™ of R™ given by
" (e € R ||z < % for all i}

is ann-dimensional cube of side lengthhaving volume™. In particular, ind-dimensions we have the
so-callechypercube

8-cell or hypercube,the vertices of which can be placed on
the3-sphereS® in R*. Stereograpically projecting® to R®
gives apicture as at right. It is the shadow cast by a hypercub
on a 3-dimensional table top sitting in the 4-dimensional su

which can always be doubled in volume because the point witiicinates v/2t, v/2t, v/2t, v/2t) can
be constructed!

(10.7) One of our basic ruler and compass constructions was totlziseangle. It is therefore natural to
ask if there is a construction thatsectsan arbitrary angle. Certainly there are particular andglas¢an
be trisected, for instance, if the anglés constructible then the angbe& can be trisected!

However, the angle/3 cannot be trisected, as we show by demonstrating that tHe ari§ cannot
be constructed.

Exercise 88 Evaluate the complex numbgtos ¢ + i sin ¢)2 in two different ways: using the binomial theorem and De Nelw
theorem. By equating real parts, deduce that

cos 3¢ = 4 cos® @ — 3 cos ¢.
Derive a similar expression faeos 5¢ andcos 7¢. What about the general case?
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We have from Exercis@? that the angler/9 is constructible precisely when the complex number
cos7/9 can be constructed, for which it is necessary in turn thatdiagree of the extensio® C
Q(cos7/9) be a power of two. Using Exercise 88 with= /9 we get that,

T 4o T 3cost e 1= 8cos® T — 6eos
cos3 4 cos 9 30059 & 1 = 8cos 9 6(3089.
Thus, ifu = 2 cos(7/9), thenu? — 3u — 1 = 0. This polynomial is irreducible ove® by the reduction
test applied withp = 2, so it is the minimum polynomial ove® of 2 cos(7/9). Thus, the extension
Q C Q(2cos(/9)) = Q(cos(mw/9)) has degree three, and the ang}® cannot be constructed.
We will be able to say more about which angles of the farfn can be constructed §15.

Exercise 89
1. Can you construct an angle 44°?
2. Assuming7r2® is constructible, what abo@® ands®?

Further Exercises fo§10.

Exercise 90 Theoctahedronandicosahedrorare two of the five Platonic solids.

_ 52%(3+5)
- 12

Vi

The volume of each is given by the formula, wherés the length of any edge. Show that in each case, there is meraje
method, using a ruler and compass, to construct a new sohd drgiven one, and havirtgiice the volume.

Exercise 91 Consider a regular dodecahedron with volume as given.

B

z3(15 + 7V/5)
Vo=

Show that there is no general method, using a ruler and canfmsonstruct a new dodecahedron from a given one, anddhavin
five timegthe volume.

Exercise 92 Let Sp, Sp andS; be the surface areas of the three Platonic solids of Exe36isH,

So = 222v/3,8p = 32%1/5(5 + 2v/5) andS; = 5z>V/3,

determine whether or not a solid can be constructed fromengime with twice the surface area.
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Exercise 93 Using the identity
cos 50 = 16 cos® 6 — 20 cos” 0 + 5 cos 6.

Show that is is impossible, using a ruler and compasguisect(that is, divide into5 equal parts) any angke that satisfies,
5
cosp = 5
Exercise 94 Using the identity,

cos 70 = 64 cos” O — 112 cos® O + 56 cos® § — T cos 0

show that it is impossible, using ruler and compassgfaisectthat is, divide intoseverequal parts) any angle such that

cosp = 3

Exercise 95 Show that if a general angle can hesected (that is, divided inta equal parts) then a regulargon can be con-

structed. Use this to re-deduce the result of the last eseernid to obtain conditions on a primesuch that a general angle can be
divided intop equal parts.
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§11. Groups I: A Miscellany

As the title suggests, this section collects together samare{ully chosen) random facts about groups.

(11.1) A permutationof a setX is a bijectionX — X. Mostly we are interested in the case where
X is finite, sayX = {1,2,...,n}, so that a permutation is just a rearrangement of these msmbe
Permutations are most compactly written using the cyclation

(a117a127---7a1n1)(a211a22a---aa2n2)---(04k17ak27---aaknk)

where then;; are elements of1, 2, ...,n}. Each(ai, aso, . . ., auyn,) indicates that the points are per-

muted in a cycle as
e
e (i1 e
(%2 Oémn
o ®
Cﬁ
[}

The cumulative effect of the cycles is obtained by dealintpwiem from right to left, egf1, 2)(1, 2, 4, 3)
(1,3)(2,4) = (1,2,3). A permutation can always be rewritten so that the points e djcles are all
distinct

The set of all permutations of the s&t forms a group under composition of bijections called the
symmetric grougx, or S, if X = {1,2,...,n}.

(11.2) Any permutation can be written as a composition of permaoatiwhere just two things are
swapped, and everything else is left fixed. In other wordg, @@rmutation can be written as a com-
position oftranspositionf the form(a, b):

(a17a27 . -aai) = (a17ai)(aiaai—l) s (a17a3)(a17a2)-

Indeed, much more is true: there may be several ways thahaupation can be decomposed into trans-
positions like this, and different ways may not involve tlaeng number of transpositions, but any two
such decompositions will either both involve an even nunabéranspositions or both an odd number.

We can thus, without any ambiguity, call a permutatewenif it can be decomposed into an even
number of transpositions, atdd otherwise. Thélternating groupA,, consists of all those elements of
S, that are even.

Exercise 96 Show thatA,, is indeed a group comprising exactly half of the elementS,nf Show that the odd elements.§3, do
notform a group.

Exercise 97 Recall that theorder of an elemeny of a groupG is the least: such thaty™ = 1. Show that ifG is Abelian then
(gh)™ = g™h™ for everyg, h € G. Deduce that the order gf: is then the lowest common multiple of the ordergy@indh.

(11.3)If Gisagroupandgi,gs,-- ., 9.} are elements off, then we say that thg, generateG when
every elemeng € G can be obtained as a product

+1 41 +1
9=9i 9y -9 >
of theg; and their inverses. Writ€ = (g1, g2, - .., gn)-

(11.4) We find generators for the symmetric and alternating grotjistly, we have already seen that
the transpositioné&a, b) generates,,, for any permutation can be written as a product

(Oél,OéQ, .. .,Oéi) = (Oél,Oéi)(Oéi,Oéifl) e (0417043)(0[1,0[2).
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Symbol Name

Zy, cyclic
A, alternating

notes:p is a prime;
n#*1,2,4

Table 1: The simplest two families of simple groups

of transpositions. The transpositions themselves can pesged in terms of just some of them: letting
(i,7) be our transposition now with< j, we have

(7)) = (ii+ 1) +1,i+2) . (G—1, -2 j—1)...(i+1,i+2)(4,i+1)

where the easiest way to see that this works is to considgrithere,

i@ i+l @ i+2 e [ e j—le j®
T R T T ~__7

and perform the swaps indicated in the picture in the follmnorder: do the swaps across the top first,
from left to right, and then the swaps along the bottom fraghtrio left. Any number strictly in between
and; moves one place to the right and then one place to the lefi,veit effect that it remains stationary.
The pointi is moved progressively along jidoy the top swaps, but then stays there. Similardyays put
for a while but is then moved progressively rightwards bylibtom swaps.

Substituting this new expression for each transpositiergany permutation i1$,, as a product of
transpositions of the forni, i + 1). But in fact even these transpositions can be further retjuze
transferring and: + 1 to the two pointd and2, performing the swap between these two and transferring

the answer back tbandi + 1. Indeed ifr = (1,2,...,n) then the picture,
it =
le 2e [ ] [ ] @ ®i+1

gives(i,i + 1) = 7°71(1,2)r' " as7*~! sendsl to i, 2to i + 1 and so on, while-! ~* is its inverse.
The conclusion is that,, is generated bjust twopermutations, namelfi, 2) and(1,2,...,n).

Exercise 98 Show that the Alternating group is generated by the periiomstof the form(a, b, ¢). Show that in fact just the
3-cycles of the form(1, 2, 7) will suffice.

(11.5) Lagrange’s theorem tells us that(fis a finite group and? a subgroup of7, then the ordefH |
of H divides the ordefG| of G. The converse, that if subsebf a group has size dividing the order of
the group then it is a subgroupfalse

Exercise 99 By considering the Alternating grougy, justify this statement.

Exercise 100 Show that ifG is a cyclic group, then the converse to Lagrange’s theasdmae, ie: if G has ordem andk divides
n thenG has a subgroup of ordér

Exercise 101 Use Lagrange’s Theorem to show that if a graifhas order a prime number thenG is isomorphic to a cyclic
group. Thusany two groups of ordep are isomorphic

There is however partial converse to Lagrange’s Theorem, due to the Norwegian PgtewS

Sylow’s First Theorem. Supposé is a finite group of ordep*m, wherep does not dividen (ie: k is
the largest power of dividing the order of7). ThenG has a subgroup of order’ for any1 < i < k.

8pronounced Soo-lov, not Si-low.
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(11.6) It is often useful to consideall the subgroups of a group at once, rather than just one at a time
The information is summarised in tiseibgroup lattice which is a diagram depicting all the subgroups
and the relations between them. Specificallydif, H> are subgroups off with H; C Hs, placeH,
higher in the diagram thaff; with a line connecting them like so,

H,

H,y
At the very base of the diagram is the trivial subgrdigh} and at the apex is the other trivial subgroup,

namelyG itself. For example, the subgroups of the intedgéal have the forrmZ for somen (ie: the
multiples ofn) and arrange themselves into the lattice:

//I\\

37 57 TZ 1
/|><I\| :

97 107 ---
| s |

8Z 277

As another example, the group of symmetries of a squarestsrtdithe eight elements,

2

{id, o, o2, 0%, 1,07, 0T, 037},

whereo is a rotation anticlockwise througb of a turn andr is a reflection in the horizontal axis. The
subgroup lattice looks like,

G
{id, 02,7, 027} {id, 0, 0%, 03} {id, 0%, 01,037}

{id, 0?7} {1,7} {id,0?} {id,o37} {id,o7}

TN

{id}

(11.7) Suppose we have a finite grogpand a sequence of subgrouds = {1}, H1, ..., H,—1, H, =
G arranged as follows:
{1} =Hy<xHy<---<H,_1<H, =G,

ie: Hy is a normal subgroup off;, which is in turn a normal subgroup éf,, and so on. In fact, we
can always ensure this if the group is finite: find a normal soiyg of G, then a normal subgroup of that
normal subgroup, and so on. Eventually the process muststbthe identity subgroup.

Whenever we have normal subgroups we get new groups by tiiemguotient. Given a sequence like
the above then, we get a sequence of quotient groups,

Hy,/Hy,Hy/Hy,...,H,/H, 1.

In principle these quotient groups could be anything. Inghite special situation that they all turn out to
be Abelian, call the grougr soluble
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Symbol Name Discovered

PSL,F, projective 1870
PSR,.F, simplectic 1870
PQS orthogonal 1870
PQaopnt1 orthogonal 1870
Eg(q) Chevalley 1955
E+(q) Chevalley 1955
Es(q) Chevalley 1955
Fy(q) Chevalley 1955
G2(q) Chevalley 1955
2A4,(¢*) =PSU,F,2 unitary or twisted Chevalley 1870
2Dn(q?) = PQ3,, orthogonal or twisted Chevalley 1870
2Es(q?) twisted Chevalley c. 1960
3D4(q?) twisted Chevalley c. 1960
2By (22¢H1) Suzuki 1960
2Gq(2%¢1H) Ree 1961
2Fy (2%t Ree 1961

notes:n ande arec Z There are some restrictions an
q is a prime power; and, left off here for clarity.

Table 2: The simple groups of Lie type

(11.8) If G is an Abelian group, then consider the sequence of subgroups
{1} <G,

(note that the trivial subgroup &@waysa normal subgroup). There is only one quotient group to clamsi
here, namely=/{1} = G, an Abelian group. Thus Abelian groups themselves are Enlahd indeed,
one can think of solubility as a generalisation of Abelian.

(11.9) For another example, take the symmetries, both rotatiothseftections, of a regular-gon in the
plane, and the sequence,

{1} < {rotationg < {rotations and reflections

To convince ourselves first of all that this is indeed a praegjuence, we need that the rotations form a
normal subgroup of the full group of symmetries. That theyf@ subgroup is not hard to see, and the
normality follows from the fact that the rotations compiif of all the symmetries and Exercise 110.

Moreover, the rotations are isomorphic as a group to thé@gecbupZ,,, and so the quotients of this
sequence are

{rotationg /{1} = {rotationg = Z,, and{rotations and reflectiong{rotationg = Z,,

both Abelian groups. Thus the dihedral groups are sofuble

(11.10)It turns out, although for quite technical reasons (see éx¢couple of exercises) that a subgroup
of a soluble group is also soluble.

Exercise 102 Let H be a subgroup an®y a normal subgroup of some groapand,

NH = {nh|n € N,h € H}.

9Groups like this, where you have2astep sequencl } <t H <1 G, with Abelian quotients are sometimes calleéta-Abelian
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1. Defineamag : H — NH/N by ¢(h) = Nh. Show thatp is an onto homomorphism with kerndl N H.
2. Use the first isomorphism theorem for groups to deduceHhdf N NN is isomorphic toN H/H.

(This is called thesecond isomorphisior diamond isomorphisrtheorem. Why diamond? Draw a picture of all the subgrougs—th
theorem says that two “sides” of a diamond are isomorphic).

Exercise 103 Let G be a soluble group with series,
{1} =Ho<H1<---<Hp_1 <Hp =G,
and K a subgroup of7. IntersectK with all the H; and use the second isomorphism theorem to show that
{1} =HiNK<HiNK<Q---<H,-1NK<IH,NK =K,

is a series with Abelian quotients fét, henceK is soluble too.

(11.11) In some sense the antithesis of the soluble groups arsirtidegroups: groupg: whose only
normal subgroups are the trivial subgro{ipt and the whole groug:. These two are always normal
subgroups, so one could say that a group is simple when it(hasmtrivial normal subgroups.

Whenever we have normal subgroups we can take quotientaggioes way of putting it to say that a
group is simple whenever its only quotients are it§elf{ 1} = G and the trivial groug7/G = {1}. In
this way simple groups are analogous to prime numbers, warelntegers whose only quotietitsire
themselvep/1 = p and the trivial integep/p = 1.

The reason that simple groups are at the opposite end of &rsmet soluble ones is this: & is
non-Abelian and simple, the@ cannotbe soluble. For, the only sequence of normal subgroupgthat
can have is

{1} <G,

and ag“ is non-Abelian the quotients of this sequence are non-Abelihus, non-Abelian simple groups
provide a ready source of non-soluble groups.

(11.12)So what are these groups then? Amazingly, there is a conigieteompiled over approximately
150 years, through the efforts of over a 100 mathematiciand,running to roughly 15000 pages of
research articles. It is quite possibly the greatest tawoadif not necessarily conceptual) achievement
of 20th Century Mathematics. The list is contained in Talilss

Exercise 104 Show that ifp is a prime number then the cyclic grod, hasno non-trivial subgroups whatsoevyeand so is
certainly a simple group.

(11.13) Looking at Table 1 we see that the Alternating grouphsare simple fom # 1,2 or 4. Thus
these Alternating groups are not soluble, and as any supgyba soluble group is soluble, any group
containingthe Alternating group will also not be soluble. Thtls symmetric groupS,, are not soluble
if n#£1,2o0r4..

Exercise 105 Show that the previous statemenhist quitecorrect in that the symmetric groufy is soluble.

(11.14) Tables 2 and 3 list the really interesting simple groups. gfwips of Lie type are basically
groups of matrices whose entries come from finite fields. We ladready seen that if = p™ a prime
power, then there is a fieldl, with ¢ = p™ elements. The group $[F, consists of the: x n matrices
with entries from this field and the usual matrix multiplicet. Unfortunately this group is not simple as
the subset

N ={\,|\€F,},

consisting of all scalar multiples of the identity matrixtfizs a normal subgroup. But it turns out that this
is the biggest normal subgroup you can find in the sense taafubtient group,

SL,F,/N,

10%0pviously the way it is normally put is to say that the onlyisiars are itself and one, but as the notion of divisor doesay
over quite so easily to group theory, we use quotients idstea
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Discovered Order

Fischer-Griess or “Friendly Giant” or “Monster”

Symbol Name

1. First generation of the Happy Family
M4 Mathieu

Mo Mathieu

Moo Mathieu

Mos Mathieu

Moy Mathieu

2. Second generation of the Happy Family
HJ Hall-Janko

HiS Higman-Sims

McL McLaughlin

Suz Suzuki

Coq Conway

Cos Conway

Cos Conway

3. Third generation of the Happy Family
He Held

Figg Fischer

Figs Fischer

Flioy Fischer

Fy Harada-Norton

F3 Thompson

I Fischer or “Baby Monster”
M

4. The Pariahs

Ji Janko

J3 Janko

Ju Janko

Ly Lyons

Ru Rudvalis

O'N O’'Nan

1861
1861
1873
1873
1873

1968

1968
1969
1969
1969
1969?
19697

1968
1968
1968
1968
1973
1973
1973
1973

1965
1968
1975
1969
1972
1973

2432511
2133511
27325711
2732571123
21033571123

2733527
293253711
273653711
213375271113
221395472111323
218365371123
210375371123

21032527317
217395271113
21831352711131723
22131652731113172329
214365671119

21531053 72131931

241313 5672111317192347
~ 1055

23571119

273551719
221335711%2329313743
283756711313767
214335371329
2934573111931

Table 3: The sporadic simple groups
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has no non-trivial normal subgroups, ie: is a simple groupis benoted PSLIF,, and called the:-
dimensional projectivé special linear group ovéf,. The remaining groups in Table 2 come from more
complicated constructions.

Table 3 lists groups that don’t seem to fall into any of thegaties described so far—for this reason they
are called the “sporadic” simple groups. They arise froniower (often quite complicated) constructions
that are well beyond the remit of these notes. The most istiegeof them is the largest one—the Monster
simple group (which actually contains quite a few of the otlees subgroups). The Monster has a number
of fascinating connections with a diverse range of math@aladreas, including number theory (where it
plays a central role in something called “Monstrous MoonsHjiand even Mathematical Physics.

All of this notwithstanding, the simple groups in Tables 2I&hare all non-Abelian, hence provide
ready examples of non-soluble groups.

Further Exercises fo§11.

Exercise 106 Show that any subgroup of an abelian group is normal.
Exercise 107 Let G be a group. Show thal/G = {id} andG/{id} = G.

Exercise 108 Let n be a positive integer that it prime (sometimes called a composite integer). Show thatytbéc groupZ,,
is notsimple.

Exercise 109 Show that4s and A4 are not simple groups, buts is.

Exercise 110 Let G be a group and? a subgroup such thdf has exactlytwo cosets inGG. Let C be the group of order two with
elements{—1, 1} and operation just usual multiplication. Define a nfapG — C> by

1 €eH
f(g):{—l gQH

1. Show thatf is a homomorphism.

2. Deduce thafi is a normal subgroup.

Exercise 111 Consider the group of symmetries (rotations and reflectioha regularm-sided polygon for > 3. Show that this
is not a simple group.

Exercise 112 Show thatS> is simple butS,, isn't for n > 3. Show thatA,, has no subgroups of ind&for n > 5.
Exercise 113 Show that ifG is abelian and simple then it is cyclic. Deduce thaFifs simple and nokZ,, thenG is non-Abelian.

Exercise 114 For each of the following group&, draw the subgroup lattic&:
1. G = the group of symmetries of a square, pentagon or hexagon.

2. G = the cyclic group{1, 0,02, ...,0" 1} wheregio’ = oit+i MOdn angyn = 1.

the name “projective” comes fom the fact that the group isgitweip of symmetries of projective geometry over the figjd
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§12. Groups Il: Symmetries of Fields

We are finally in a position to introduce the idea of symmaetitg ithe solutions of polynomial equations.

(12.1) An automorphisnof a field F' is an isomorphisna : F' — F, ie: a bijective map front’ to F’
such that(a + b) = o(a) + o(b) ando(adb) = o(a)o(b) forall a,b € F.

We commented ig4. that an isomorphism of fields (indeed of any algebraic objeess just a rela-
belling of the elements using different symbols. The “algélis identical though. An automorphism is
then a relabelling that is achieved merely by moving the el@sof ' around amongst themselves. So
it is a way of picking the field up and placing it down upon ifsal it looks like the same field: it is thus
asymmetnpof the field.

Exercise 115 Show that ifo is an automorphism of the fielfl theno(0) = 0 ando (1) = 1.

(12.2) A familiar example of a field symmetry/automorphism is coexptonjugation: the map — z is
an automorphism df, for, from elementary complex analysis we have,

Z+w=z+wandzu =z,

with conjugation a bijectiof® — C. This symmetry captures the idea that from an algebraictfdin
view, we could have just as easily adjoinedto R, rather than, to obtain the complex numbers (they
look the same upside down as right side up!).

We will see at the end of this section that if a non-trivialaabrphism ofC fixes pointwise the real
numbers, then it must be complex conjugation. If we drop ¢lygiirement thak be fixed then there may
be more possibilities: if we only insist th&t is fixed pointwise, there are infinitely many.

(12.3) Every field I has a prime subfield that is eithBg or Q. Every element of the prime subfield has

the form,
m times

——
L+14--+1
1+1+---+1
N—————

n times
If o is now an automorphism df we have
m times
,_/% m
T+14---+1 —_—— 1
- ) =6(14+1+---+1 - -
0(1+1+-~-+1) ol 14 )0<1+1+-~-+1)
N————— N————
n times n
m times
m e e——
1 I+1+---+1
=(c(1)+o(1)+---+o0o(1 - .
(o(1) +o(1) ())(0(1)+U(1)+---+0(1)> 1+14---+1
N—————’

n n times

aso(1) = 1. Thus the elements of the prime subfield fixed pointwiséy the automorphism.

Exercise 116 We saw above that the map+ bi — a — bi is an automorphism of. Show thata + bi — —a + bi is not an
automorphism ofC.

(12.4) Symmetries of things normally arrange themselves into aigrend field symmetries are no
exception. We could talk just of the symmetry group of a fibldk, it turns out to be more instructive to
make a slightly more elaborate definition that takes intas@aration not just fields, but their extensions:

Definition. Let F C FE be an extension of fields. The automorphisms of the fielthat fix pointwise

the elements of’ form a group under composition called tlalois group ofE over F' and denoted
Gal(E/F).
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Thus an element of Gal(E/F) has the property that(\) = A forall A € F.

Exercise 117 For F' C E fields, show that the set of automorphisms @& F') of E that fix F' pointwise do indeed form a group
under composition.

(12.5) Consider as an example the figldv/2, ). From the proof of the tower law, a basis for this field
overQ is given by{1, /2,4, v/2i}, so that the elements of the field are, by Theorem D,

Q(V2,i) = {a+bV2 + ci + dV2i|a,b,c,d € Q}.
Suppose we have a symmetry= Gal(Q(v/2,)/Q) and consider its effect on a typical element,
o(a+bV24ci+dv2i) = o(a)+o(b)o(vV2)+o(c)o(i)+o(d)o(V2i) = a+bo(V2)+co(i)+do(V/2i)

using the properties of automorphisms and the factdtfates rational numbers. Thus, the symmetry
is completely determined by its effect on the basis elerdéntg2, i, v/2i}, in that once their images are
decided, themw is uniquely known.

Aside. We can see that this is really no surprise. When we have f#élds E, then among other thing#/ is a vector space over
F. Given asymmetry € Gal(E/F), then this is, among other things, a linear map of vectorepac— E, and we know from
linear algebra that such things are completely determipetidir effect on a basis.

Actually we can say even more. Cleadyl) = 1 is always true, ane(1/2i) = o(v/2)o(i). Thus the
symmetryo is completely determined by its effect ¢ andi, the elements adjoined .

(12.6) And indeed this is a general fact. ¥ C F(a1,as,...,a) = E ando € Gal(E/F), theno is
completely determined by its effect on the, ..., ay. For, suppose thgts, ..., 8.} is a basis forF
over F, so thato is completely determined as above by its effect onghe~rom the proof of the tower
law, eachs; is a product of the form,

B; = offa? e ai’“,

and sor(3;) = o(a1)o(az)®...o(ag)™. Thuse(3) in turn is determined by the(c;).

(12.7) The structure of Galois groups can sometimes be determiaedivhoc arguments, at least in very
simple cases.

w Letw be the primitive cube root of,
1 V3
D R
< w 3 + 5 1,
w? and consider the extensiéh C Q(w). Although the most obvious polynomial that

w is a root of isz® — 1, this is reducible, so the minimum polynomialofoverQ is in factz? + z + 1
(see Exercise 29 where we showed- z + z2 + --- + zP~! to be irreducible ovef) for p a prime).
Thus by Theorem DQ(w) = {a + bw | a,b € Q}, giving thatQ(w) is 2-dimensional ovef) with basis
{1,w}. Suppose that € Gal(Q(w)/Q), whose effect we now know is completely determined by where
it sendsw. Supposer(w) = a + bw for somea,b € Q to be determined. On the one hand we have
o(w?) = o(1) = 1, while on the other,

o(w?) = o(w)? = (a +bw)® = (a® +b* — 3ab?) + (3a*b — 3ab?)w.

The last bit uses the fact that = —w — 1.

One of the consequences{df, w} being a basis fof)(w) overQ is that elements hauaiqueexpres-
sions as linear combinations of these two basis elemerissigth consequence of linear independence).
This means that given two expressions for an element ag loogabinations oft andw, we can “equate
thel andw parts?”. Thus,

1 =0(w?) = (a® + b — 3ab?) + (3a®b — 3ab*)w, so thata® + b* — 3ab? = 1 and3a’®b — 3ab* = 0.

12just as we equate real and imaginary parts of complex nugraretgor the same reasofil, i} is a basis foC overR. On the
other hand, we couldot do this for two expressions in terms bfw andw?
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Solving these last two equations (@) gives three solutiongs = 0,06 = 1,a = 1,b = 0 anda =
—1,b= —1, coresponding to'(w) = w ando(w) = —1 — w = w? (the middle solution gives(w) = 1
which is impossible ag is a bijection and we already have thatl) = 1). Thus the Galois group
Gal(Q(w)/Q) = {id, o} has order two.

(12.8) Our first major tool for unpicking the structure of Galois gps is,

Theorem F (The Extension Theorem). Let F, F» be fields and- : F; — F, an isomorphism between
them withr* : Fy[x] — F3[x] the resulting homomorphism of rings given®y>_ a;2%) = > 7(a;)2.

If « is algebraic overFy, then the isomorphism extends to an isomorphisen: F;(«) — F»(8) with
o(a) = gifand only if 3 is a root ofr*(f), wheref is the minimum polynomial @f over F.

The elements and3 are assumed to lie in some extensidfiisC E; of the two fields, and when we
say thatr extends tar we mean thatr|p = 7.

F(a)- g»F(a) The theorem is quite technical, but nevertheless has aitivetmeaning. Suppose
we have the special case whéfe= I, = F ando is the identity isomorphism (hence
o* is also the identity map). Then we have an extensionF'(«) — F(3) precisely
wheng is a root of the minimum polynomidl of « over F'. Indeed we can say even

F F more: if 3 is an element of"'(«), thenF(3) C F(«), is an F-vector subspace, but
sincef must also be the minimum polynomial 6f F'((3) is (deg f)-dimensional oveF’, just like F'(«),
and soF'(8) = F(«). Thusc is an automorphism aof'(«) fixing F' pointwise, and so an element of the
Galois group GalF'(«)/F'). Summarising everything we know about Galois groups so far,

id

Corollary. Leta be algebraic ovef” with minimum polynomiaf overF'. Amapo : F(«a) — F(a) is

an element of the Galois group Gdl'(«)/ F) if and only if for anyzzigoffl axak € F(a) we have,

deg f—1 deg f—1
o met)= 2w

k=0 k=0
whereg is also a root off contained inF'(«).

Thus the elements of the Galois group permute the roots ehthiemum polynomial that are contained
in F'(«) amongst themselves.

Proof of the Extension Theorem: We give a “grungy” proof that nevertheless makes the sibnatice
and concrete. For the only if part, we have that i " a;2° with f(a) = 0, then>_ a;a’ = 0in E; so

that
U(Z aiai> =0= Z o(ai)o(a) =0 = ZT(ai)ﬁi =0in E;,

giving thatg is a root ofr*( f) as claimed.
For the if part, we need to define an isomorphism with the ddsproperties. The elements Bf«)
all have the forme:—O1 a;o, whered = deg f. Defineo by

m

0<§ aiof) => 7(a:)p, (4)

=0

for anym. From this definition we see thata) = 7(a) for anya € F; and also that («) = 5.
The proof then proceeds in three partss well-defined and 1:1Suppose we have two expressions

Z a;of = Z bio/,

representing the same elemenfofa). Thusd_(a; —b;)a’ = 0 giving thata is a root of the polynomial
g = Y (a; — b;)z* € Fy[z]. As f is the minimum polynomial ofr over F; we must have thaf is a
factor ofg, and so,

g="rhe () =7"(fh) =7"(f)T" (h).
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Hencer*(f) is a factor ofr*(g). As (3 is a root ofr*(f) it must then also be a root of(g), ie;

P =08 X rla-0)8 =06 Yol = X re)st s o Laa') =0 Sna').

Thus the two expressions for the same element are sent tauthe alement of; (), giving thato is
well-defined. This is the “only if” part of all the equivalees above, with the “if” part giving that is
1-1.

o is a homomorphismwe need to show that respects the addition and multiplication in the field

Fl(Oé). Let
A= Zaiai andp = Zbiai,
i=0 i=0

be two elements. Then

max{m,n}

max{m,n}

o\ +p) = a( > (ai+t bi)o/'>

=0 i=0
- ZT(ai)ﬁi + ZT(bi)ﬁi =0o(\) +o(p).
=0 i=0
Similarly,
n+m n4+m ndm
O'()\ ): g (libj ak = T aibj ﬁk _ T(ai)T(bj) ﬁk
0o (5 o)) B Z ) - B (o)
= ZT(az)ﬁi ZT(bJ)ﬁJ =o(Nao(p)

One comment: in both cases we hadf an expression, and we replaced this by the definition gaten
(4). Certainly in the case of multiplication, the expressias quite possibly not of the form a polynomial
in « of degree< d. If we had defined for just these expressions we wouldn’t have been able tod)se (
as it stands. Thus we definedfor any expression, but this then requires we show the definitioreto b
well-defined, for an element has many different expressasmmlynomials iny, if we relax the condition
that these expressions have degreé

o is onta Certainly we haver(F;(«)) is contained inf»(3) by the definition at (4)—the right hand
side is contained i, (). On the otherhand, any € F; arises as the imagg\) for some\ € Fy, as
7 is onto. Alsog = o(«) by definition, soFs, 5 € o(Fi(«)), henceFy(8) C o(Fi(e)), giving that the
image o(F1(a)) is Fz(B). O

(12.9) If we compute instead the Galois group of the extengjort Q(+/2), we have the freedom to
send+/2 to those roots of its minimum polynomial ové@rthat are also contained in the fie@( V/2).
This minimum polynomial is:> — 2 which has the roots, aw andaw? for o = /2 and
1 V2.

W=t
But now the rootsww andaw? are not contained if2(+/2) as this field contains only real numbers while
these roots are clearly non-real. Thus the only possiblgénfiar « is « itself, giving that GalQ(«)/Q)
is just the trivial group.

(12.10) Returning to the example we calculated in an ad-hoc fasmonddiately before the extension
theorem, any automorphism @f(w) that fixesQ pointwise is determined by where it sendsand this
must be to a root of the minimum polynomial ov@rof w. As this polynomial isl + z + 22 with roots

w andw?, we get that the possible automorphisms serd itself or tow?, ie:

Gal(Q(w)/Q) = {id,a},
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whereo(a + bw) = a + bw? is in fact just complex conjugation. This answers Exercisi& 3howing
that the left hand figure depicts an automorphism, but the fignd figure does not:

(po »

w2

U

(12.11) The only if part of the proof of the Extension Theorem is uligfstated as a separate,

Corollary. If g is a polynomial withF-coefficients and with a roat € E, then for any € Gal(E/F),
the imager («) is also a root ofy.

An immediate and important consequence is,
Corollary. If F' C Eis a finite extension then the Galois group GA|/ F) is finite.

Proof: If {a1,as,...,ax} is a basis forE over F', then we havell = F(aj,as,...,a), and by
Proposition 3, each of the; is algebraic ovef” with some minimum polynomiaf; € F[z]. If o is an
element of the Galois group, thenis completely determined by where it sends eaghfor which there
are only finitely many possiblities: to the roots f&f O

(12.12) Let p be a prime and let
2r . 2w
W = CoS — + ¢SIn —,
p p

be a root ofl.

w? By the Extension Theorem we have an element of the Galoiggrou
Gal(Q(w)/Q) precisely when it sends to some root contained in
W Q(w) of its minimum polynomial ove®. The minimum polynomial

wk \ is thep-th cyclotomic polynomial,
! ®,=1+a+a’+ - +2P ",
wk+1
,P,—1 as we saw in Exercise 29, with roots the other roots @xcept forl
itself) namelyw, w?, ...,wP~!. Clearly all these roots are contained
wP—2 in Q(w), and so we are free to sendto any one of them. Thus, the
Galois group has order— 1, with an element corresponding to each
of the possible images af. If o(w) = w* theno’(w) = w*', wherew? = 1.

We saw in§9. that the multiplicative group of the finite fielf, is cyclic. In otherwords, there is/a
with 1 < k < p, such that the powers of k exhaust all of the non-zero elementsif ie: the powers
k® run through{1,2,...,p — 1} modulop, or k generated’,.

Putting the previous two paragraphs together, if we takerathe Galois group withr (w) = w* for k
a generator of;, then the elements,

cr(w),ch(w), . ,crp_l(w),

run through the root§w,w?, ..., wP~1}. Thus the elements, o2, ..., o7~ exhaust the Galois group,
and sothe Galois group of the extensidh C Q(w) is cyclic. This (I imagine) is the reason behind the
term cyclotomic.
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(12.13) The extension theorem gives tegistenceof extended automorphisms, but also indicates the
number of such extensions: there is one for each roet*¢f) contained inE>. Making this more
precise:

Theorem G. Letr : Fy — F; be anisomorphism anl; C F; andF, C FE» be extensions witl; a
splitting field of some polynomigl over F; and E, a splitting field ofr*(f) over ;. Assume that the
roots of7*(f) in E5 are distinct. Then the number of extensions td an isomorphisna : E; — Fs is
equal to the degree of the extensibnC Es.

Proof: The proof proceeds by induction and the Extension Theorem.

Ey E, We have thatt; = Fi(aq,...,adeq ¢) @s itis a splitting field forf over Fi. Let
] a = a3 and consider the extensidfi C F;(«) and the picture at left whergis some
Fi(a) T Fa(8) element ofE>. We have by the Extension Theorem thatxtends to an isomorphism
7' Fi(a) — F»(p) if and only if 3 is a root inE> of 7*(p), wherep is the minimum
polynomial ofa over Fy. In particular,F>(3) is isomorphic as a vector space over
to the vector space; («) over F; (2 F»), and so they must have the same dimension.
F T F, Thus any polynomial that hasas a root, has, by Theorem D, degree at least that of
so thatr*(p) does. On the otherhand we always hdeg 7*(p) < degp. ThusT*(p)
must be the minimum polynomial @f over F5.
As « is a root of f we have thap dividesf, ie: f = phin Fi[z] so thatr*(f) = 7*(p)7*(h) in Fy[z]
giving that7*(p) divides7*(f). As the roots of-*(f) are distinct, those of*(p) must be too.
Thus the number of possible extensiefisvhich is equal to the number of distinct rootsrdfp), must
in fact be equal to the degree of(p), which is in turn the degree of the extensidf(3) : F»] > 1. By
the tower law,

[E> : Fo] = [Ey : F2(B)][F2(D) : F2l,
and by induction, any isomorphism : F;(«a) — F>(8) will have

[EQ . FQ]
[F2(8) : F]’

extensions to an isomorphistn: F; — FEs. Finally then, starting from the very bottom,extends to
[F»(B) : F»] possibler’’s, and extending each in turn gives,

(B2 : F2(B)] =

[EQ . FQ]
[F2(B) : I

extensions in total. O

[Fa(B) : Fh] = [By : Fy],

The reason that the roots of (f) need to be distinct is that we can then relate the number of aut
morphisms to degrees of extensions by passing through tiheagihouse of the roots of polyomials. If
the polynomial has repeated roots then the number of aufamsins would be less that the degree of the
extension and so the set-up is less conveniently described.

Thus the requirement in the Theorem, and later in the ndtasthe roots be distinct is not essential to
the theoryper se but allows the theorems to be stated in a nice way.

(12.14) To summarise where we are at, Theorem D gives a connectiovebptthe degrees of field

extensions and minimum polynomials, while the Extensioedrbm and Theorem connect minimum
polynomials with the number of automorphisms of a field. Rpehthe following theorem is not then so
surprising:

Corollary. Let f be a polynomial ove#’ and E = F(aq,...,a,,) its splitting field overF’ with the

rootsc; of f distinct. Then
|Gal(E/F)|=[E : F].
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The polynomialf is contained in theing F'[z] over thefield F', with E a vector spacever F' and
Gal(FE/F) thegroupof automorphisms. In this concise statement appears ath#tjer algebraic objects
of undergraduate mathematics.

Proof: The result follows immediately from Theorem by lettidg = F, = F, E; = E» = F andr

be the identity automorphism. This gives that there[ate F'] extensions of the identity automorphism
F — F to automorphisms off. On the otherhand, any automorphismioffixing F' pointwise is an
extension of the identity automorphism éh and so we obtain all the elements of the Galois group this
way. O

(12.15) The criterion that” be a splitting field is important in using Theorem and it's @ltary properly.

If you consider the extensio® C Q(+/2), theno is an element of the Galois group G&l(v/2)/Q)

precisely when it send¢/2 to a root contained if)(4/2) of its minimum polynomial ovef). As these

roots arey/2 itself and the other two are complex and the fi@I(K/2) is completely contained iR, the

only automorphism we can have is the one that sefi2l$o itself, ie: the identity automorphism.
Thus the Galois group has orderwhereas the degree of the extensiod.is

(12.16)

Theorem 8 Let f be a polynomial ovef’ and E = F(as, ..., a,) its splitting field overF' with the
rootsq; of f distinct. Moreover, suppose that

[E: F] = [[IF () : ).
Then there is & € Gal(E/F) with o(«;) = S, if and only if 5; is a root of the minimum polynomial
overF of o;;.

Proof: That is is necessary fgi; to be a root off; has already been established. On the other hand, the
condition on the degree of the extension means that the ofdee Galois group G4lE/F') is equal to

the product of the degrees of thfg and so for the correct number of automorphisms to be rehlise
must be possible to senrd to any root of its minimum polynomiaf;. O

(12.17) In the first lecture we looked at the automorphism&od, w) for

1
a:?/ieRandw:——+§i,

2 2
which in our new language translates as finding the eleménitedsalois group GdlQ(a, w)/Q). The
minimum polynomial ofo overQ is z3 — 2 with rootsc, aw, aw? and the minimum polynomial af
overQis 1 + x + x? with rootsw, w?. The Tower law then gives that

[Q(a,w) : Q] = [Qe, ) : Q][Q(ev) : Q] = [Q(w) : QJ[Q(a) : Q.

Thus by the Theorem above, we may sentb anyone ofv, aw, aw? andw to any one ofv, w? and get
an automorphism. This gives six possible automorphismeedgg with the six we found in Lecture 1,
one for each symmetry of the equilateral triangle formedhyrbots inC. Following this through with
the vertices of the triangle, we have three automorphisrisavmapped to itself:

G
| =RCRCE

/)

W= w



and another three with mapped ta,?: O
< a— « o= aw \_/y — ouw?
w — w? Q w = w? W — w?

Exercise 118 Let o = v/2 andw = cos(27/5) + isin(27/5) (so thata® = 2 andw® = 1). Letting 8 = a + w, eliminate
radicals by considering the expressigf — w)® = 2 and find a polynomial of degre20 having 3 as a root. Show that this
polynomial is irreducible ovef) and hence that

Qe+ w) : Q] = [Qa) : QJQ(w) : Q.
Finally, show thatQ(a + w) = Q(«a, w).

(12.18) Returning to some of the other examples from the first lecttire extensio) C Q(«,w)
satisfies the criterion of the Theorem above, where: /2 andw is a primitive 5-th root of 1. Thus
an automorphism is free to sendto any root of the polynomiat® — 2 andw to any root of thes-th
cyclotomic polynomial + x + 22 + 2% + . Thus there are twenty elements of the Galois group in total.

aw
aw? i
a=/2
«
O CVE-1 V2V 45,
aw? w= 4 + 4 ¢
aw?

In particular we have the automorphism that sends itself andw to w? as depicted in the picture.

(12.19) So far we have only considered the Galois groups of fieldsf lag are to get closer to the spirit
of the first lecture, then we should be more interested in th®i& groups opolynomials In the first
lecture we achieved this using the smallest field contaittiegroots of the polynomial, and indeed we
define: theGalois group of the polynomigl € F'[z] is the Galois group G&F/ F') of the splitting field

E of f. Denote the group by G&f).

Proposition 4 The Galois group of a polynomial of degrées isomorphic to a subgroup of the symmetric
group Sy.

Proof: If {a1,as,...,aq} are the roots off, then Gal /) = Gal(E/F) where the splitting field®

is given byE = F(aq,aq,...,aq). Any element of Galf) is determined by where it sends eaeh
which must be to some root of its minimum polynomial ovér For anyi, this minimum polynomial
divides f (recall that the minimum polynomial af divides any polynomial having as a root) so its
roots are contained amongst the rootg pfe: amongst thday, s, ..., aq}. Thus, any element of the
Galois group can be identified with a permutation of théseots. Different automorphisms correspond
to different permutations, as the effect of the automomphas the roots determines the whole automor-
phism. Thus Galf) may be identified with a subgroup of the group of permutatafriied roots, which

is clearly isomorphic t&. O

Aside. There is a slick algebraic (some would gagper) way to put this, although it loses a little of the intuitivatare of what is
going on. As any element of Galois group defines a permutatidhe roots, define a map Ga&'/F') — Sym{a1, az,...,aq}

by sending & € Gal(E/F) to this permutation. As the group operation is compositibmaps in both these groups, we get that
this is a homomorphism. & € Gal(E/F) is sent to the identity permutation, then as an automorplftifixes all the roots, so
must be the identity automorphism, ie: the kernel of the hmmiphism is trivial. The first isomorphism theorem for greupen
gives that Ga(E/F)/{id} = Gal(E/F) = H, a subgroup of Syfwi, az,...,aq} = Sy.
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Further Exercises fo§12.
Exercise 119 Show that the following Galois groups have the given orders:
1. |Gal(Q(v2)/Q)| = 2.
2. 1Gal(Q(¥2)/Q)| = 1.
3. [Gal(Q(—% + %20)/Q)| = 2.
4. |Gal(Q(V2, -1 + Fi)/Q)| = 6.

Exercise 120 Find the orders of the following Galois groups:
1. Gal(L/Q), whereL is the splitting field of the polynomiat — 2.
Gal(L/Q), whereL is the splitting field of the polynomiat? — 2.
I(L/Q), whereL is the splitting field of the polynomiat® — 2.
I(L/Q),
I(L/Q), whereL is the splitting field of the polynomial + 22 + 24 (hint: (22 — 1)(1 4+ 22 4+ z*) = 26 — 1).

whereL is the splitting field of the polynomial + = + z2 + =3 + z*.

a s wn

Gal
Gal
Gal

Exercise 121 Letp > 2 be a prime number. Show that
2 2
1. |Gal(Q(cos 2 +isin 21)/Q)| = p — 1.
p p

2. |Gal(L/Q)| = p(p — 1), whereL is the splitting field of the polynomiat? — 2. Compare the answer when= 3 and5
to Lecture§l..

Exercise 122 Letpq, ..., pm be distinct primes. Show that,

Gal(Q(vp1, - -+, vVPm)/Q) = Zp X -+ - X Ly

m times
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§13. Linear Algebra Il: Solving equations

This section exists purely to provide some of the techniesiiits we need for the big theorem of the next.
It can be skipped over on a first reading.

(13.1) Let V be an-dimensional vector space over the figld with fixed basis{a;, as, ..., an}. A
homogenous linear equatiaver F' is an equation of the form,

ai1xy + asxo + - -+ anxr, =0,
with thea; in F'. The vectow € V is a solution if
n
v = Ztiai = a1ty + asto + - - + antn, = 0.
1=1
Call a system of linear equations,

a1171 + a2x2 + - -+ + a1y = 0,

a2171 + agex2 + - -+ + agn Ty = 0,

ar1T1 + a2 + - + gy =0,

independendver F iff the collection of vectors,

v = Zaljaj,vg = ZCLQJ'OZJ', e, U = Zakjaj,
in V are independent.

Exercise 123
1. LetS be an independent system of equationa imknowns. Show tha$ has the unique solution = 0in V.

2. LetS be a system of independent equations/irand letS’ be aproper subset of the equations. Show that the set of
solutions inV to S is aproper subspace of the set of solutionslinto .S’.

Exercise 124 Let F' C E be an extension of fields arfd a finite set. Lef/» be theF'-vector space with basiB, ie: the elements
of Vg are formal sums
> Aibi,

with the \; € F and theb;, € B. Formal sums are added together and multiplied\by F in the obvious way. Similarly leVg
be theE-vector space with basiB, and identifyVx with a subset (it is not a subspace)1df in the obvious way. Now lef, S’
be systems of equations Iz as in the previous exercise. Show that the conclusion reatteee is still true when looking at the
solution sets iVg.

Exercise 125 Let F' be a field andvy, . . ., a1 distinct elements of it. Show that
af e [o%1 1

det . : . #0.
aZJrl s oap41 1

(hint: suppose not, and find a polynomial of degrebavingn + 1 distinct roots inF’, thus contradicting Theorem 2). This is
called theVandermonde determinant

Lemma5 LetF be afield andf, g € F'[z] two polynomials of degree over F'. Suppose that there exist
n + 1 distinct valuesy; € F, such thatf(«;) = g(«;) for all i. Thenf = g.

Proof: Let } .
f(z) = Zaix’ andg(z) = Z bix'.
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We getn + 1 expressions of the form

Zaiaj- = Zbiaj- & Zaéyi =0,

wherey; = a; — b;. Think of these last as + 1 equations in the: + 1 unknownsy;. The matrix of

coefficients is
o/ll . e o 1

a;ll-ﬁ-l N Qnt1 1

which is the matrix given in Exercise 125. Its determinamtds-zero, and thus the system of equations
has the unique solutiopy = 0 for all ¢, so thata; = b, for all i and hence = g. O

(13.2) Here is the result we will require in the next section.

Theorem9 Let F C E = F(«) be a simple extension of fields with the minimum polynomial of
over F' having distinct roots. Lefo,02 ..., 0%} be distinct non-identity elements of the Galois group
Gal(E/F). Then

o1(z) = 02(x) = -+ = on(x) =z,
is a system of independent linear equations dver

Proof: By Theorem D we have a basi$, o, o2, . .., a?} for E over F' where the minimum polynomial
f of ahas degred + 1. Thus anyz € E has the form

2 d
r =9+ T1Q+ T2” + -+ -+ 2900,

for somex; € F. By the Extension Theorem, the elements of the Galois gread s to roots of f.
Suppose these roots afe = ag, a1, . .., aq} whereo;(a) = «; (as none of the; are the identity, we
have that n@; sendsx to itself). Thenz satisfiess; (z) = z if and only if,

(a0 — ai)z1 + (af = af)az + - + (af — af)ra = 0.

Thus we have a system of equatiofis = 0 where the matrix of coefficientd is made up of rows from
the largerd x d matrix A given by,

ap—a; ai—a? - al-af
~ ap—ay ai—ai - al—af
A:

a—ag at—a% - al—al

Suppose we havab = 0 for some vectob € E™, so that

boa + brad + - 4 bgad = boa; + bra? 4 - - -+ bgad,
for eachl < i < d. Thusif f = box + by2% + - - - + bgz?, then we havef (o) = f(a1) = f(az) =
-+ = f(aq) = a, say. Thus the degrekpolynomialg = f — a agrees with the zero polynomialétt+ 1

distinct values, hence by the lemma, must be the zero poliaipamd so all the:; are zero. Thus, the
system of equationdx = 0, hence the systemz = 0, is independent. O
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§14. The Fundamental Theorem of Galois Theory

(14.1) In §10.we saw that a complex numbémvas constructible precisely when there was a tower of
fields,
Q=KiCKiCKyC---CK,,

with eachK; a degree two extension &f;_; andQ(¢) contained in the top field. All the examples we
have given so far that use this result have showed that naisweh exists. In otherwords, they have been
negative results, and for good reason: to use the theoreitivplys to show that a number can actually
beconstructed, requires a knowledge of the fields sandwiahbdtweer) andQ(¢). In this section we
prove the theorem that gives us that knowledge.

(14.2) First we need a picture of all the fields we are interestedniaJagous to the picture of all the
subgroups of a group that we drewsihl ..

Ky Let ' C F be an extension of fields. Call" anintermediate fielcprecisely when
K is an extension of and E is an extension of(: ie: ' C K C FE. Thelattice
of intermediate fieldss a diagram such that iK; and K, are two such fields and
K, C K, thenK, is placed higher in the diagram thdfy, with a line connecting

K them as shown at left. Denote this lattice B§(E/ F').

(14.3) From now on we will work in the following situation: we have awtensionf’ C F such that

every irreducible polynomial over has distinct roots ins. For example we saw in Exercise 36 that this

is the case i has characteristi@. It is also true ifF is a finite field, although we omit the proof here.

Thus, the following theorem includes in its remit the fields kave spent most of the time considering:
subfields ofC and finite fields. Itis only examples lik&,(¢), the rational function field oveF, (being
infinite of characteristip > 0, see Exercise 38) that are left out in the cold.

The Galois Correspondence (part 1). Let F C E be a finite extension as above withthe splitting
field over F' of some polynomiaf € F[z], andG = Gal(E/F) its Galois group. LetZ(G) and
Z(E/F) be the subgroup and intermediate field lattices.

1. For any subgroud of G, let
E" ={\e FE|lo(\) = \foralloc € H}.
ThenE* is an intermediate field, called the fixed fieldrf
2. For any intermediate field, G&E'/ K) is a subgroup of5.

3. The mapsf — Ef and K — Gal(E/K) are mutual inverses, hence bijectio$(G) «
Z(E/F).

4. Both maps reverse order: H, C H, C G thenF C Ef> C EHv C E,andif F C K; C K, C
E then GallE/K>) C Gal(E/K;) C G.

5. The degree of the extensiéi! C E is equal to the ordefH | of the subgroug.

In otherwords, once you know the lattice of subgroups of taéfs group, you can find the lattice of
intermediate fields just by turning it upside down (and weesa)! Schematically,

80



Gal(E/F) E

AN

EMm

Hw— Ef \

Hy EHf2

. S K — Gal(E/K)

{id} F

There are a few other things worth noticing. The whole Gajpaup Gal E/ F) fixes F' pointwise,
so its fixed field isF’, while the trivial subgroup, consisting of just the idept#tutomorphism, fixes
everything, hence its fixed field is all df. Thus, the largest subgroup corresponds to the smallest
intermediate field and the smallest subgroup to the largésthediate field.

The Theorem also says that the two maps— EX andY — Gal(E/Y) are bijections, hence in
particular are 1-1: itz = EH2 thenH; = H, and if Gal(E/ K1) = Gal(E/K,) thenK; = K.

If the upside down nature of the correspondence seems pgzitlis simply linear algebra (and indeed
this is how we will prove it). IfH is a subgroup, think of the fixed field” as the set of solutions if
to the equations,

o(x) =x,0 € H.

The more equations you have, the greater the number of eomsitieing imposed on, hence the smaller
the number of solutions. So larger subgroups should casresto smaller intermediate fields. That the
correspondence is exact, so that as soon as waiatldne morequation the number of solutions strictly
decreases, will follow fron§13. as these equations are linear amdependent

Proof: In the situation described, whergis a finite extension of, the extension must be simple by
Theorem 7, ie: of the fornk” C F'(«) for somea algebraic over.

For the first part, we havB® C E by definition, and?” C E¥ | as every element @, so in particular,
every element off fixes F. If A\, u € E¥ theno(\ + p) = o(\) + o(p) = X + p and similarly for
o(Au) anda(1/)). ThusE* is an intermediate field.

If an automorphism oft fixes the intermediate field pointwise, then it certainly fixes the field
pointwise. Thus GglE/K) C Gal(E/F) and we indeed have a mapf(E/F) — £(G) given by
K — Gal(E/K). If Xis fixed by every automorphism ifl5, then it is fixed by every automorphism
in H,; and soEH2 C Ef1, If ¢ fixes every element ok, pointwise then it fixes every element &f
pointwise too, so that G&F / K») C Gal(F/K1).

To show that the two maps are inverses of each other, we takbgraup H and show that their
composition,

H — Ef — Gal(E/E"),
gets us back to where we started, ie: that @I E") = H. This will then give the desired bijection.

By definition, every element off fixes E¥ pointwise, and since GaE/E*) consists ofall the
automorphisms of’ that fix £ pointwise, we have thati C Gal(E/E*). In fact, both of the sub-
groupsH and GalE/EH) have the same fixed field, igg®a(E/E") — EH_ To see this, certainly
anyo € Gal(E/E™) fixes E pointwise by definition, s&# C ECa(E/E")  On the otherhand, as
H C Gal(E/E") and the maps reverse order, we havéd (2/E") ¢ gH

By the results 0§13, the elements of the fixed field®a (E/E™) are obtained by solving the system of
linear equations(z) = x for all » € Gal(E/E™), and these equations are independent. In particular, a
propersubset of these equations has a strictly larger solutiov¢etlready have thdf C Gal(E/EH),
so suppose thaf is a proper subgroup of Gak'/ E*). The fixed fieldE*! would then properly contain

the fixed fieldE®a (E/E™) | As this contradict&? = EC2(E/E™) we must have thal = Gal(E/EH).
Thus the mag? — EH is a bijection as desired.
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As E is a splitting field we can apply Theorem G to ¢&al(E/E?)| = [E : E¥], where we now
have that GalE/EH) = H, sothat H| = [E : EH]. O

(14.4) We are certainly long overdue an example§12. we reverified the example of the first lecture to
show that the splitting fiel@(«, w) of the polynomiak:® — 2 had Galois group,

G = Gal(Q(a,w)/Q) = {id, o, o, 1, 0T, 027'},

wheres(a) = aw, o(w) = w andr(a) = a, 7(w) = w?.

We claim that the subgroup lattic# (G) is,

ANN

{id, 7} {id,or} {id, o027}

{id}

Firstly, the subsets given are easily seen to be subgroapsegust need to check that the picture is
complete. LetH be an arbitrary subgroup @ and suppose that contains the element. Then it
must contain all the powers of, hence must contain the subgrofid, o, o2}. Thus the order of{ is
constrained by < |H| < 6, and by Lagrange’s Theoreff | divides6, so we must havgH | = 3 or 6.
Thus H must equalid, o, 02} or be all of G. This completely describes all the subgroups that contain
the elementr. The same argument (and conclusion) applies to the subglccmnaininga Thus We
are left to describe the subgroups containing any one ofifeet'reflections’, or, o7 but noto or o2
Let H be a subgroup containing As H contains{id, 7}, and by Lagrange, it has ord2r3 or 6. The
only one of these three possibilities not already in théckatis the ordeB case, so we show that this is
not possible. To have ord8r H must also contain one ofr or o27. If the former, then it also contains
oTT = 0, a contradiction, and similarly for the other case. Thuddltice . (G) is as depictetf.

The Galois Correspondence now gives the latii¢er'/ F') of intermediate fields to be,

1 3 4
\ Fy //
Q
with F; the fixed field of the subgroufid, o, o2} and the others the fixed fields (in no particular order)
of the three order two subgroups. By the fourth part of theoSatorrespondence, each of the exten-
sionsF; C Q(«,w) has degree the order of the appropriate subgroup, s@thatv) is a degree three
extension off,, and a degree two extension of the other intermediate fields.

Suppose thak; is the fixed field of the subgroujid, 7}. We find an explicit description of its elements.
From the Tower law, a basis f@(«, w) overQ is given by

{1,a,0% w, aw, ow?},

13In general such arguments become more complicated as teeafrthe Galois group increases.
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so that an arbitrary elememntof Q(«, w) has the form,
r=ag+ a1+ a2042 + asw + agow + a5a2w,

with thea; € Q. The element: is in F; if and only if 7(x) = x where,

T(z) = ap+ a1+ as0? + asw? + agaw? + asa’w?

=ag +ara + azd® + az(—1 — w) + aga(—1 — w) + asa? (-1 — w)
= (ap — a3) + (a1 — ag)a + (az — a5)a® — azw — agaw? — aso’w.
Because we are using a basis, we can equate coefficients to get
ag — az = ag,ay; — a4 = a1,0z — G5 = Az, —a3 = a3, —a4 = a4 aNd — as = as.

Thus,as = a4 = a5 = 0 andag, a1, as are completely arbitrary. Henaehas the forme = ag + a1 +
aza? so is an element dP(«). This gives that; C Q(«). On the otherhand, fixes Q pointwise and
fixesa by definition, hence fixes every element@f«). This gives tha@Q(a) C F; and soF; = Q(«).

(14.5) The Galois correspondence allows us to “model” the subgradiphe Galois group by the inter-
mediate fields (and vice-versa). But there are subgroupshand are subgroups: what about the normal
subgroups? As they are slightly special, they should cpoed to slightly special intermediate fields. Is
the Galois correspondence sensitive enough to spot theralifte?

Let F C F be an extension of fields with Galois group GBI/ F'), and letK be an intermediate field
andeo € Gal(E/F). The image of by the automorphism is another intermediate field, and so we get
the picture below left. By the Galois correspondence, thezesubgroups G&F'/K) and Gal E /o (K))
corresponding to the two intermediate fields as shown beilgiut:r

E Gal(E/F)

K\ /U(K) c (ﬁencgmw/m Gal(E/o(K))
F

The two intermediate fields are then related by,

{id}

Proposition 5 The subgroups G&F'/K') and Gal(E/o(K)) are conjugate, indeed,
Gal(E/o(K)) = o 'Gal(E/K)o.
(We are reading expressions in a group from left to right).

Proof: If z € o(K), thenz = o(y) for somey € K. Thusifs € Gal(E/K), theno~'5o (read from
left to right) fixesz, and so is contained in GaF'/o(K)). Thuso~'Gal(E/K)o C Gal(E/o(K)).
The proof of the opposite inclusion is the same. |

(14.6) Remembering that a subgrodpof G is normal whery='!Ng = N forall g € G (see§11). We
haves~!Gal(E/K)o = Gal(E/o(K)), and this in turn will clearly equal G4F/ K ) wheno (K ) = K
forall . So this is the kind of intermediate field that picks out ndreudogroups: one that is sent to itself
by any automorphist.

If every automorphism sends to itself then any automorphism @f restricts to an automorphism of
K as well. This is all summarised in the second part of the Galoirespondence:

The Galois Correspondence (part 2). Under the assumptions of the first part of the Galois correspo
dence, letK’ be an intermediate field. Them(K') = K for all o € Gal (E/F) if and only if Gal(E/K)
is a normal subgroup of G4lE'/ F'), and in this case,

Gal(E/F)/Gal(E/K) = Gal (K /F).

14Note that this is different from saying that the field is fixeaimwise, which is a far stronger property
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Proof: If o(K) = K for all o then by Proposition 57~ 'Gal(E/K)o = Gal(E/o(K)) = Gal(E/K)
for all o and so GalF/ K) is normal. On the otherhand, if Ggf'/ K') is normal then Proposition 5 gives
that Gal(F /o (K)) = Gal(E/K) for all o, whereX — Gal(E/X) is a 1-1 map by the first part of the
Galois correspondence, hence we hayg ) = K for all 0.

Now define a map G4E/F) — Gal(K/F) by taking an automorphism of F fixing F pointwise
and restricting it toX’ C E. We get an automorphism df aso(K) = K for anyo. The map is a
homomorphism between these two groups rather triviallihasame operation, namely composition of
automorphisms, is being used in both. An elemei in the kernel of the homomorphism if and only
if it restricts to the identity map ok (ie: fixes K pointwise when restricted) which happens if and only
if oisin Gal(E/K). If o is an automorphism oK fixing F' pointwise then by Theorer??, it can be
extended to an automorphism Bffixing F' pointwise, ie: any element of the Galois group G&) F')
can be obtained by restricting an element of @@/ F'). Thus the map is onto and the isomorphism
follows by the first isomorphism theorem. ]

We used Theorera? in the proof to show that any element of G&l/F') was the restriction of an
element of Ga{ E/F'). Moreover, TheoremM? says that an element of Gat’/ F’) will be the restriction
of [E : K] elements of GalE/ F') and this gels perfectly with the isomorphism given above:itlentity
of Gal(K/F) will be the restriction of E : K| = |Gal(E/K)| elements of GalE/F'), in otherwords,
the kernel of the mapping given in the proof will ha@al (F/K)| elements.

Exercise 126 A subgroupH of a groupG' is said to benalnormalwheng € G'\ H gives thaty~! Hg N H = {id}. Thus, the
malnormal subgroups are in some sense the antithesis obtheahones. Show that the malnormal subgroups can be spntted
the Galois correspondence by describing the intermedigltisfthey correspond to.

(14.7) Here is a simple application. According to Exercise 110, sutygroup of index two in a groug

is a normal subgroup. By the first part of the Galois corredpore, subgroups of index two correspond
to intermediate fieldd” C K C E with the degree of the extensidn C F' equal to two. By the second
part of the Galois correspondence, any automorphisi éking F' pointwise must send such/d to
itself.

Further Exercises fo§14.

Exercise 127 Complete the example above:

Ai& | /@(a,\\

(a) Qla+aw) Qa? +a’w)
{idx ?T} {id, o7} \ @@//
{id}/

Q

Exercise 128

1. Leta = v/2 € Randi € C, and consider the fiel@(«, i) C C. Suppose that, T are automorphisms dd(«, i) such
that
o(i) =4,0(a) = ai, (i) = —i, and7(a) = .
Show that

G={1,0,0%,0%, 1,07, 0%7,0%7},
are therdistinctautomorphisms o@(«, i), and thatro = o37.

2. Suppose now that th@ above is the Galois group @(c, 7) over@Q, and thatG has the lattice of subgroups as shown on
the left:
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/\\ ///\\

{1,02,7,0%7} Qo) Q) " Q1 —9)a) Q((1+19))

/\\///\ \// I~

Hy {1,7} {1,052 {1,037} Hs Q(ia?)

A \\/

1
Find the subgroup#ly, H2 and H3 of G. If the corresponding lattice of subflelds is as shown onitte,rthen express the
fields F;, and F in the formQ(1, . . . , B ) for somess, ..., Bn € C.

Exercise 129
1. Letw = cos 277r + isin 277T Show thatQ(w) is the splitting field of the polynomial
1+z+ 2%+ 2% + 2t + 25 4 25,
Deduce thatGal(Q(w)/Q)| = 6.
2. Suppose € Gal(Q(w)/Q) is such that(w) = w3. Show that,
Gal(Qw)/Q) = {1,0,6%, 6%, 0%, 5°}.

3. Using the Galois correspondence, show that the latticet&fmediate fields is:

/\

N
Q

where F} is a degree 2 extension @f and F» a degree 3 extension. Find complex numb@rs. . ., 8, such thatF, =

Q(ﬁlw ‘. 7,671)

1
Exercise 130 Leta = v/2 andw = > + ?z and consider the field extensi@h C Q(«, w).

1. Show thaiGal(Q(a, w)/Q)| = 24.
2. Find a basis fof)(a, w) overQ.
3. Suppose that, 7 € Gal(Q(«, w)/Q) are such that : o — «a,w +— w® ando : @ — aw,w — w. Show that

H={1,0, 02,03, 0%, 0% 1,70, 702,703,704,705},
are then distinct elements in G&(«, w)/Q) too (do this by observing their effect on the basis).
4. Part of the subgroup latticeZ is shown below. Find the corresponding part of the latticent@&rmediate fields.

/
/

{id, 7,03, 037}

/ \ {id, 02, o*
{id, 7} {|d 03/

{id}
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Exercise 131 Letw = cos ?ﬂ + isin ?ﬂ and considef)(w).

1. Show thatQ(w) is the splitting field of the polynomial + = + 2 + 23 + 4.
2. Deduce thatGal(Q(w)/Q)| = 4.
3. Suppose € Gal(Q(w)/Q) is such that(w) = w?. by combining parts (a) and (b), show that,

Gal(Q(w)/Q) ={1,0, 0'2,0'3}.

(hence the Galois group is cyclic).

4. Find the subgroup lattic&; for G = Gal(Q(w)/Q).
5. Using the Galois correspondence, deduce that the latticeermediate fields is

Qw)

|
F
|
Q

Find a complex numbes such thatF' = Q(8).

Exercise 132 Consider the polynomiaf(z) = (22 — 2)(x2? — 5) € Q[z].

1.
2.

Show thatQ(v/2, v/5) is the splitting field off overQ.
Show that the Galois group G&(+v/2, v/5)/Q) has order four.

You may assume thatdf b, ¢ € Q satisfyay/2 + bv/5 + ¢ = 0thena =b = c = 0.

. Assume that and are automorphisms @®(+/2, /5) defined by,

V2o V2 V2o V2
Ve s Vi =5

List the elements of the Galois group G&l(v/2, v/5)/Q), justifying your answer.

. Complete the subgroup lattice on the left by listing trerednts off,

Gal(Q(v2,v5)/Q) Q(v2,V5)

Q(V5)

{id, o} {id, 7} H Q(

N

{id} Q

and use your answer to write the fiditlin the formQ(#) for somed € C.
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§15. Applications of the Galois Correspondence

Constructing polygons

If pis a prime number, then a regujaigon can be constructexhly if p is a Fermat prime of the form
2% 4 1.

We proved this back i§10. and all it required was the idea of the degree of an extensiastherwords,
we really didn’t require any Galois Theory in the proof, ifyytake Galois Theory to mean the interplay
between fields and their Galois groups.

What about results in the positive direction? Gagons with a Fermat prime number of sides be con-
structed? The first few such primes &té and17, and we saw 7. that these three were constructible,
albeit if we believe Gauss's identity feps(w/17). Thus,explicit constructions of these polygons is a
complicated business. Nevertheless, the full power of Gdlbeory proper gives,

Theorem 10 If p is a Fermat prime then a regular-gon can be constructed.

Proof: By Theorem E we are done if we can find a tower of fields,
QC K C---CK,=Q(),
for ¢ = cos(27/p) + isin(27/p) and with[K; : K;_1] = 2. AsQ(() is the splitting field of they-th
cyclotomic polynomial
Oy(z) =Pt 2P 24+,
we have by Theorem G that the Galois group has order,
1Gal(Q(¢)/Q)[ = [Q(¢) : Q] = deg® =p—1=2",

(asp, being a Fermat prime is of the form= 2" + 1). In §12. we showed that G&lQ(¢)/Q) was a
cyclic group, and so by Exercise 100, we can find a chain of mulyg®

{id} = Ho C H, C--- C H, = Gal(Q(¢)/Q),

whereH; has ordee?. Making it explicit, if Gal(Q(¢)/Q) = {id, 0,02, ..., 02"~} then the subgroups
are,

27172

{id} C {id, 02" '} C {id,0*" ", 022" " 632" T  C .
o fid, 0?02 63T Y e C {id, 0%, 0, )
The Galois correspondence thus gives a chain of fields,
Q=Ko C K C---CK,=Q(),

where K,,_; is the fixed fieldEF: of the subgroupH;. Lettingj = n — i, we have the extension
K; C Q(¢) of degree the ordeX of H;. In particular, by the tower law,

[Q(C) : Kj—1] = [Q(C) = KG][K; < K],

wherej — 1 = n — (i + 1), so that[Q(¢) : K;_;] = 2°t'. Thus2'*! = 2/[K; : K;_4], so that
[K; : K;_1] = 2 as required. O

Corollary. If n = 2kpips ... p,n with thep; Fermat primes, then a regular-gon can be constructed.

Proof: Certainly2¥-gons can be constructed just by repeatedly bisecting angleus, am-gon can be
constructed, where has the form given, by Exerci&®. O

Remarkably, with a little more Galois Theory, the convemsthis statement can also be proved, thus
completeley determininiposen-gons that can be constructed.

15Alternatively, these subgroups can be found using SylowisoFem from§11..
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(15.1) The anglerr/n can be constructed precisely when the argi¢n can be constructed which in
turns happens precisely when the regudagon can be constructed. Thus, the list of submultiples of
that are constructable runs as,

Exercise 133 Give direct proofs of the non-constructability of the arsgle

T T T s
—,—,—and—.
7911 13

The Fundamental Theorem of Algebra

The so-called fundamental theorem of algebra can be proweed the Galois correspondence, and we
have already observed how curious it is that a theorem fuedéathto all of algebra can be deduced from
a theorem fundamental to just part of it.

The proof requires two straight-forward observationsst-there are no extensions of the reals of odd
degree> 1. This is because any polynomial R{x] has roots that are either real or occur in complex
conjugate pairs, hence in particular, a real polynomiahwitid degree> 1 has a real root and so is
reducible oveiR. Thus, the minimum polynomial ové of anya ¢ R must have even degree RfC L
is an extension, then choosinge L \ R, we have

with the last term even by the comments above, h¢hceR] even.

The other observation is that the complexes have no extensibdegree two. IIC C L with [L :
C] = 2 then chooser € L \ C so that we have the intermediaieC C(«) C L. We must certainly have
[C(a) : C] = 1o0r2, and if the degree wasthen we would haver € C, so[C(«a) : C] = 2, and thus
L = C(«). If fis the minimum polynomial oft overC then f = x? + bz + ¢ for someb, c € R anda

will be one of the two roots
b+ Vb% —4c
2 3
which are inC, contradicting the choice oi.

Fundamental Theorem of Algebra. Any non-constanf € C[z] has a root inC.

Proof: The proof toggles back and forth between intermediate fiefds subgroups of Galois groups
using the Galois correspondence. If the polynonfi& reducible ovelR, with f = pq, then replacef
by p and continue. Thus we may assume thad irreducible ovelR and letE be the splitting field over
R not of f, but of (z? + 1) f. Thus in particular we have th&tand+i are inE, henceC is too, and thus
RCCCE.

The conditions of the first part of the Galois correspondérutd for £/, so we may apply this to the
Galois groupG = Gal(E/R). Sinced is a finite group, we may factor from its order all the powers of
2, writing |G| = 2¥m, wherem > 1 is odd. In particular, Sylow’s Theorem gives us a subgralupf G
of order2*, and so by the Galois correspondence we have the picture:

G E
\H c Galoisd \12: pH
orrespondence -~
e s

with the intermediate field” corresponding tdf giving an extensio” C E of degree”. As[E : R] =
[E : F][F : R] with [E : R] = |G| = 2¥m, we must have thak' is a degreen extension ofR. Asm is
odd and no such extensions existif> 1, we must haven = 1 and sqG| = 2*.
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We now use the Galois correspondence in the reverse dinectio
E G

\(C Galois
/ Correspondence

R {id}

As G has ordel*, the subgroup G4IE/C) has order dividing this, hence ord&r. If s > 1 then Sylow’s
Theorem again gives us a subgraipf Gal(E/C) of order2°—!, and we have the picture:

Gal(E/C)

Gal(E/C) 2N
Galois
H Correspondence \
25~ 1 C

with 251 [EH : C] = [E : C] = |Gal(E/C)| = 2%, henceE is a degree extension ofC. We
commented above that there are no such extensions, thus stehaues = 0, and sqGal(E/C)| = 0,
giving that Gal E/C) is the trivial group. We have then two fields, namélyandC, that map via the
1-1 mapX — Gal(E/X) to the trivial group, s&& = C. As E was the splitting field of the polynomial
(22 + 1) f, we get thatf has a root, indeedll its roots inC. O
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§16. (Not) Solving Equations

At the beginning of these notes we said that Galois Theoryimitially motivated by the desire to un-
derstand better the roots of polynomial equations. In galdr, to provide a context for the growing
conviction in Galois’ time that there is no formula for theots of an arbitrary polynomial equation, and
that the classical formulae that exist for quadratics, caildind quartics are some kind of “low degree
fluke”.

(16.1) The formulae for the roots of quadratics, cubics and quasiqress the roots in terms of the
coefficients, the four field equations —, x, + and N When we say we want a formula for the
roots of polynomials irQ[z] then, it seems reasonable that it should express the rotsms of rational
numbers+, —, x, + and »/ for somem. In particular the roots of the polynomial will be contained
an extension of) obtained by adjoining certaim-th roots.

With this in mind, an extensio@ C F is calledradical if and only if there is a sequence of simple
extensions,

Q C Qa1) CQ(ar,2) € --- CQ(ar,az,...,01) = E,

such that)"* € Q(oa, ag, ..., a;—1) for everyi. Thus, each extension in the sequence is obtained by
adjoining to the previous one an;-th root of an element.

(16.2) A simple example of a radical extension is,
QCQ(V2) CQ(V2,V5) C Q(ﬁ, V5 V2 - 7\/5)

By repeatedly applying Theorem D, we see that the elemerdgadical extension have expressions in
terms of rational numbers;, —, x, + and my/-

(16.3) If we are looking to find a formula for the roots of a polynomtakn these roots will have precisely
these kind of expressions. Thus we say that a polynofn@lQ|z] is solvable by radicalsf and only if
its splitting field overQ is contained in some radical extension.

Notice that we are dealing with a fixed specific polynomiald awot an arbitrary one. The radical
extension containing the splitting field will depend on tlodypomial.

(16.4) Any quadratic polynomiakz? + bx + c is solvable by radicals, with its splitting field contained
in the radical extension
Q C Q(Vb? — 4ac).

Similarly, the formulae for the roots of cubics and quartjese for any specific such polynomial, radical
extensions containing their splitting fields.

(16.5) Now we have a precise idea of what we mean by “finding a formari#hie roots of a polynomial”,
we are ready to wheel in the Galois theory.5lil. we called a groug- solubleif and only if there is a
sequence,

{1} =Hy<xHy<---<H,_1<H, =G,

such that the successive quotieflts/ Hy, H2/H,, . .., H,/H,_; are allAbelian groups

Theorem H (Galois). A polynomialf € Qlz] is solvable by radicals if and only if its Galois group
Gal(f) is soluble.

The proof, which we omit, uses the full power of the Galoisrespondence, with the sequence of
extensions in a radical extension corresponding to thessemuof subgroups in a soluble group.
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(16.6) Somewhat out of chronological order, we have,
Theorem 11 (Abels-Fubini) The polynomiak® — 42 + 2 is not solvable by radicals.

Proof: We need to show that the Galois group G4l is insoluble. Indeed, we show that it is the
symmetric groupSs, which contains the non-Abelian, finite simple grodg. Thus.Ss contains an
insoluble subgroup, hence must be insoluble as well, as angreup of a soluble group is soluble by
Exercises 102 and 103. H is the splitting field ovef) of f, then

E= Q(ala Q2, 3, (4, 065),

where then; are the roots of and the Galois group of the polynomial is G&l/Q). The elements of
this groups are, as usual, completely determined by whesestend they;, and by one of the Corollaries
to the Extension Theorem, they must be sent to rootg. of he conclusion is that the elements of the
Galois group of the polynomial must permute the roots amichgsnselves, so that G@f) is a subgroup

of the symmetric groups.

S As «; has minimum polynomiaf over@, the extensio® C Q(«1)
has degree five, and then the tower law gives that

[E:Q] = [F: Q(a1)][Qa1) : Q.

ool 7

o BE ®° Thus, the degree of the extensi@nC E is divisible by the degree of the
| extensionQ C Q(aq), ie: divisible by five. Moreover, by Theorem G,

/‘ the group GalE/Q) has order the degrd® : Q], thus the group has
— order divisible by five. By Sylow’s Theorem, this means ttne Galois
group contains a subgroup of order five. The only groups oéiofidle are the cyclic ones, and as every

element of the Galois group is already a permutation of theerfiots, this subgroup must have the form,

{Id7 0-7 0-27 0.37 0.4}7

for a permutatiorr that is a5-cycleo = («,, ai,, iy, @iy, i ). By drawing the graph of as shown,

we see that three of the; are real, and so the other two must be complex conjugates.awéns;12.
complex conjugation is an automorphismiofand this must fix the three real roots, and interchange the
two complex ones. This gives us another automorphisrhE that as a permutation has the form,

T = (aivaj)a

wherea;, o; are the two complex roots. O

It is worth meditating briefly on the philosophical impliaats of this result, which are profound. The
Theorem says that there is no possible expression for thte oddhe polynomial in terms of rational
numbers, the four field operations —x, + and roots x/ for anym. At first this may seem no great
problem; we know plenty of real numbers with this property, . But the roots of the polynomial
arealgebraicnumbers, so there is something more, something very subtiee notion of an algebraic
number than it just being expressible in “algebraic terms”.

(16.7) It is sometimes possible to establish the existence of nusnhigh special properties by counting.

For example, to explicitly show that a given real numberasscendental is complicated. If we count the

non-transcendental (ie: the algebraic) numbers we seglththat they areountable they can be put in

1-1 correspondence with the integ@swhereas the real numbers are not. Thus, there are many more

real numbers than algebraic ones, so transcendentals ristsiredeed greatly outnumber the algebraics.
Such a naive approach will not work to establish the exigt@rithe roots of equations not solvable by

radicals, as all the sets involved now are countable.
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(16.8) So how bad is it then? We have one polynomidl— 4z + 2 for which no algebraic expression
exists for its roots, but is this an isolated incident, oregtst one that is rare? In fact, polynomials not
solvable by radicals argenerig in the sense that polynomials theat solvable by radicals are the ones
that are relatively rare.

We can illustrate this phenomenon at least with some exan@lensider the quintic polynomials

%+ ax + b,

fora,b € Z and in the range-40 < a, b < 40.

40
B factors
I Ds
soluble
0 B~
M 4
insoluble
]85
—40
—40 0 40

The picturé® illustrates the(a, b) plane for this range aof andb. The vertical line througlt0, 0) corre-
sponds tof with Gal(f) the soluble dihedral group,, of order10. The horizontal line througtp, 0)
and the two sets of crossing diagonal lines correspond tacible f, as do a few other isolated points.
The (insoluble) alternating grougs; arises in a few sporadic places, as does another subgrasip of
However, the vast majority of, forming the light background, have Galois group the symimeroup
S5, and so have roots that aatgebraig but cannot be expressathebraically.

18which is based on an image from the Mathematica poster, iS&phhe Quintic”.
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§17. Selected Solutions

@) fu=w+w!=w+w!thenu? = w? + w3 + 2 so the quadratic we wantis® + u — 1 = 0. This has roots
—1++5
PR
We getw? — uw + 1 = 0 by multiplying through byv—1, hence

utVuZ —4
5 .

and substitute: into this to get,

7112&5 + (7115%)2 _4 7112[¢§ _ (7115%)2 _4

w= ,
2 2

(I don’t expect you to actually do this!)

(6) Note thatw is a sixth root ofl (in fact it has argumerz/6 and modulusl) so satifiess® = 1 (butw® # 1 for any k
betweenl and5). Clearly aw? andw® are€ Q(«,w), so thatQ(aw?, w®) C Q(a, w). Conversly,aw?, w® € Q(aw?,w’) =
aw?wdw® € Q(aw?, w?), butaw?w’w® = aw'? = a sincew® = 1. Thusa € Q(aw?,w®) and hencer~law? = w? is too,
and so finallyw?w® = w” = w (sincew’® = 1). ThusQ(a, w) C Q(aw?, wd).

To show thatQ (o, w) = Q(aw?, w?) is entirely similar.

(7) Consider the extension field(«, w) of Q. Note first that the solutions te® — 2 all lie in this field, as it containg, w and is

closed under multiplication.
The following paragraph is optionaQ(«, w) is in fact the smallest field that contains the solutions, &appose thak’ is some
field containinga, aw, . . ., cw. Since we are in the complex numbers,

T4+1+4---+1#0,
N———

n times

for anyn. Thus,F contains the rational®. Also, o, aw € F gives thato anda~law = w € F too, ie: F containsQ, a andw.
But it must then contain the smallest field that does thesg#hiie:Q(«a, w) C F, and soQ(«, w) really is the smallest.
So, symmetries of the soltions 4G — 2 are the rearrangements referred to in the first lecture, fadbioonew fieldQ(a, w).
Looking at the picture of the pentagon, the symmetry needetolo to itself andaw to aw?. This last one suggests that it
must sendw to w? (if the symmetry is not to disturb the and x of the field).
To see if such a symmetry exists, we need to show that the fig{dsw) and Q(«, w?3) are the same. Certianlyy, w3 €
Q(a, w), so thatQ(a, w3) C Q(e, w). Converslyw? € Q(a, w?) givesw3w? = Wb = w € Q(a, w?). We already have that
is there t00, s® (o, w) C Q(a, w?).
Finally, we need to check that the symmetry— o andw — w?3, does the right thing to the vertices of the pentagon. Well,
let's try aw? — a(w?)? = aw?” = aw?. The others are entirely analogous.

(19)
1. For multiplication, letn # 0 be inF,. Then theged of n andp must bel, so that for some integers, b we have
1 = an + bp. Butthenan = (—b)p + 1 = 1 modp. Thus, ifa = k modp then the inverse of is k.
2. Letab = 0fora,b € F. Then eithera = 0, or if a # 0 thena='ab = a~0 = b = 0. Thus, at least one af or b must
be zero. Thud is an integral domain.
Letn = rswith 1 < r, s < n integers, and considék,,, the ring of integers with addition and mutliplication madalux.
Thenr, s # 01in Zy, butrs = n = 0 modn. ThusZ,, is not an integral domain.

(22)

1. Usezizz = 71 23 andz1 + z2 = z1 + 23 (you can easily convince yourself of these by drawing veciothe plane).
First note tha@ = f(Z): use the two rules above with, ™ + - - - ag, remembering that the; € R meansz; = a;.
Thus,zisarootoff & f(z) =0& f(2) =0=0<% f(z) =0.

2. There are many examples. The simplest is probaBly- i, since the square roots fifby De Moivre’s theorem, lie on the
circle |z| = 1; one has argument/4, the others /4.

(23)
1. We havel = am + bn for some integera andb, hencek = amk + bnk. If m dividesnk then, as it already dividesmk,
it must also dividek as required.
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2.

(26)
1.

If m/n is such a root, then
ao + a1 (m/n) + az(m/n)% + -+ ar(m/n)" = 0.
Clearing denominators gives
aon” +a1n”  'mtam” 2m2 + -+ ar_inm” ' +arm” =0.

Considern. The numbenm divides 0 and clearly divides every term on the left, with gussible exception af,m”. But
since it divides everything else in sight,must also dividez,-m”. Our assumption thai andn be coprime implies that
does not dividen”, and hence we conclude thafa,.. Similarly, m|ao. Finally, if a, = 1, then we must have € {£+1},
so thatm /n is indeed an integer.

1 + 28 has no real roots as+ 8 > 1 # 0. But, inC we get
14+2% = (z = ()@ = C) -~ (z = Ca) (@ — Ca),
by the fundamental theorem of algebra. Thus,
1+2% = (2% + (G + Sz +¢1C1) -+ (@ + (Ca + Ca)z + CaCa),

and these are real polynomials since the sum and product@ahalex number with its conjugate is real. Thus- z8 is
reducible as a product of four quadratics.

. Following the hint is clearly a root ofy™ — 1, and we get

Y -l=(y-DA+y+yP++y" ),
so lettingy = 22 andn = 6 gives
A4+ +zt + 25+ 28+ 2002 —1) =22 - 1.

Thus the roots of the right hand side are 128 roots of 1. Hence the roots of the left hand side are alsa2iferoots of1.

Now =1 are certainly the roots af2 — 1, and these are two of theth roots, so the other ten are the roots of the polynomial
that we are interested in. Notice that they arezall, but two of them aret:, hence

(x — i) (z +1),

are factors ofl 4+ 22 + z* + 26 + 28 + 210, ie: 22 + 1is a factor ofl + 22 + z* + 26 + 2% + 219 (notice that this
argument, while more complicated than others maybe, wark$ f =2 + - - - + 22™). Having got that far, its then pretty
easy to spot that

1+2? +a2t +a8 + 28 + 210 = 2+ 1)@ + 2* +28),
so that the poynomial is reducible ov@r Can you generalise the argument to haridle 22 + - - - + 22"?

. The polynomial has valuewhenz = 0 and value—7 whenz = —1, hence by the intermediate value theorem, there must

be a real root somewhere between and1 (polynomials are continuous, so the graph must crosa:theis!) Hence we
have a linear factor and thus the polynomial is reducible.

. The polynomial has integer coefficients, 2 divides alhafh except that of the leading term aw= 4 does not divide the

constant term. Thus, by Eisenstein, the polynomial is urcéiale overQ.

. We are dealing with a quadratic, so irreducibility beceraenatter of merely checking for roots. i, no element squared

plus one is equal to zero, so the polynomial is irreducible.

. It looks complicated, but we have a cubic, and that meaamalyat all we need do is check for roots, this time in the field

F of order eight of4.. In fact, we've gone to all the trouble of writing the and x tables out, so we may as well use them!
Somewhat dissapointingly, 1 turns out to be a root, so thenpohial is reducible straight away. We can say a little more
(although this is not necessary) since no other elemefiti®f root, and therefore the cubic must factorise into a prodti

a linear and a quadratic factor. If you were sufficiently iaged, you could find the irreducible quadratic by longsion
(which works in exactly the same way as long division in thesesince we are still in a field!)

(27) We have that

(29)
1.

(1)- gy

for m an integer, as there are clearly an integral number of waghadsing: objects fromp. Thus,

pl = mil(p — 7)),

so that ap divides the left hand side, it also dividesi!(p — i)!. Asi < p, we can’t havep dividing ¢ or any integer less than it,
hence not dividing!. Similarly p doesn't divide(p — 4)!, and so it must dividen (all of which uses the fact thatis prime).

Clearlyw is a root ofz™ — 1 and
" —1l=(z— (@ 42" 2+ fz+1),

andw is not a root ofr — 1 (sincew being primitive, is notl), so must be of the desired polynomial.
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2. If n even then-1is aroot ofz™ — 1 and thus ofc™ ! + 2”2 ... 4z + 1too. Thuse™ ' + 2" 24 ... 2+ 1is
irreducible only ifn is odd.
3. If f(z) = g(x)h(x), then obvioulsyf(z + 1) = g(z + 1)h(z + 1), contradicting the irreducibility of (z 4+ 1). Thus
f(z) isirreducible too.
4. We know that
(1)-ss
i il(p — i)V
is an integerm, sop(p—1)! = mi!(p—1)!, hencep divides one oin, i! or (p—2)! If p|i! then itdivides g with1 < j < p
which cannot be. Similarlyy cannot divide(p — ¢)!, and thugp dividesm.
5. By the above,
P_1 1)? —1
P =1 = (0= )By(0) > pla) =~ = Bplw+1) = Chldut
- xT
and using the binomial theorem and cancelling we get
Pp(x+1)=aP ' +paP 2+ 4 ( YZ ):c”*"*l 4+ +p
Using Eisenstein, witp as the prime, give®,, (z + 1) irreducible by part (d), and hende, (x) too by part (c).

(40)

L. 1+z+2?)+ (1 +2)=2%(sincel +1 =0 = = + x in Zy arithmetic). Similarly,(1 + = + 22)(1 + =)

l+z+a22+a+a22+a23=1+23=1+1+z ==z (using the rulee® = = + 1).

2. F={0,1,z,z+ 1,22,2% + 1,22 + z,22 + = + 1}, soF has eight elements.

3. The tables are (somewhat tediously!)

4

+ 0 1 T r+1 x2 2 +1 24z 2441
0 0 1 x x4+ 1 x? z2 +1 2 +x 224+ x+1
1 1 0 z+1 T z2+1 x2 22 +ax+1 24z
x x z+1 0 1 ztzx 22 +z+1 22 z2 41
r+1 x4+ 1 x 1 0 22 4+z+1 x2 4+ x z2+1 x
x2 x2 2 +1 24z 2 +ax+1 0 1 T r+1
z2+1 z2 41 x? 2 4+x+1 z2 +x 1 0 r+1 T
22+ 22+ 22 +z+1 x2 z2+1 T r+1 0 1
24+l | 22+c+1 z? + 2 +1 x? z+1 T 1 0

Now, (F, +) is an Abelian group for the following reasons: the table etosp (we don’t get anything new and unexpected),
so the field is closed undek; the first row is identical to the indexing along the top,(sis the identity under-; each row
contains) somewhere in it, so inverses exist for all elements. Unfately, associativity isn’'t quite so easily established!

Similarly,
X 0 1 T x4+ 1 z2 z2+1 22+ 22441
0 0 0 0 0 0 0 0 0
1 0 1 T z+1 x2 z24+1 24z 22 4r+1
T 0 x x2 2 4z r+1 1 22 4+z+1 x2 41
z+1 0 z+1 24z z2+1 224r+1 x2 1 T
x? 0 x? z+1 2 +r+1 z? + T 2 +1 1
z2+1 0 2 +1 1 z2 x 22 +r+1 r+1 22+
24z 0 24z 2 +ar+1 1 2 +1 z+1 T x2
24+2+1 |0 z2+z+1 z2+1 T 1 z2 +x 22 x4+ 1
shows tha(F \ {0}, x) is an Abelian group. The distributive law is also a bit tediou
Finally,
1 .
=z?+zand—— = z%inF,
1+z 14+ 22

from the tables.

7

1. We certainly have thgD) is an ideal. Suppose thék) is another one withh # 0. For anyu € F we have thap = A=\
(the inverse of existing asF’ is a field) so thaf: is a multiple ofA and hence in the ided). Thus(\) = F. The conclusion

is that F' contains only the two ideal®)) and F'.

. We need only show that every non-zero elemer tias an inverse under multiplication. et 0 be such an element and

consider the idealr). By the restriction on the possible ideals we have eitigr= (0) = {0} or (r) = R. Asr € (r)
the first one cannot happen so that iti$ = R that we have. In particular € (r), ie: there is ars € R such thatsr = 1

and by commutativity we also have that = 1. Thuss is the inverse of as required.
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(61)

1. The polynomial has no roots Iy, so is irreducible as it is a cubic. The quotient ring givethan a field.

2. We use the division algorithm:
g@)+(1-—z+2Y)=@)l-—z+z>)+ (a+bz+cx®))+ 1 —z+23) = (a+ bz + ca®) + (1 — z + 23),
for any cosetg(x) + (1 — = + 23). The uniqueness follows from the fact that the quotient amdainder are uniquely
determined by the division algorithm (See the first handoutings).

3. There are three choices for eactupb andc in (a + bz + cx?) + (1 — x + x3), so that the field has atost27 elements.
On the other hand, suppose

(a1 +biz+ c12?) + (1 —z + 23) = (a2 + box + coz?) + (1 — z + %),

for somea;, b;, c; with ¢ = 1, 2. Then, using some of the basic properties of cosets deddrittee lectures, we get that,
((a1 —ag)-i—(bl—bg):c—i—(cl—cg)x2)+<l—x+x3> = <1—:c+x3> = (a1 —a2)+(b1—b2)x+(c1—02)x2 S <1—:c+x3> = .
(the last since two cosets the same means the difference oéginesentative polynomials is a multiple f(fc)). But the
degree ofa; — a2) + (b1 — b2)x + (c1 — c2)x? is two, while every muliple ofl — = + 2 has degree 3 or more, except
for one: the zero polynomial. Thus1 — a2) + (b1 — b2)x + (c1 — c2)x? must be the zero polynomial, iy = a2,
b1 = bz andcy = ca. Thus all the 27 cosets listed are different (there reaky2arof them!)

(69) Notice that one of the 5-th roots @ffound in the first question is (after a little massaging) égqoa

V5—1 N V2V54+5 :
4 4 '
In fact, this is the first vertex anticlockwise around theleirfrom 1. Now, this number is constructible precisely when its rewl a

imaginary parts,
VE—1 V2V5++5
4 4 ’
are constructible. But these last two numbers can be olotéinen integers using the four field operations and by tak\ifh_;;, all of
which we can do with ruler and compass. Thus constructible, hence so is the desired pentagon, jusigppimg off the length
of the line segment joining to w using your compass.

(70) If the length of the line segment is then the task is to construét and%””. We can certainly construé and% using our
ruler and compass, and we can multiply lengths using theseduals as well. So, multiply the two fractions by the line isemt,
and we're done (notice that we can use this argumentgect a line for anys, ie: divide it inton. equal parts).

(72) The best way to do this part is to use a picture proof that carubén both directions. Alternatively, one can write out a
solution in terms of words, and since this easieIgX, I'll do it that way.

If 6 is constructible, then assuming without loss of generaligt one side of the angle is theaxis, the intersection of the
other side with the unit circle is the poiftos 6, sin 6). Dropping a vertical line to the-axis gives usos 6. Conversly, ifcos 0 is
constructible, then so ig'1 — cos? 6, as the field of (complex) constructible numbers is closestbutaking of square roots. Hence
sin @ can be constructed up theaxis, and horizontal and vertical lines determiiees 6, sin #), and a line through this point and
the origin constructs the anghe

(76) We begin by computingl + a)~!. According to the lemma on the structure of simple algebeaiensions, this element
must have the forma2 + ca + d for some uniquely definebl ¢, andd in Q. So we simply need to solve the equation

(a+1)(ba®?+ca+d)=1
for these rational coefficients. Expanding, we find that
ba® + (b+c)a? + (c+da+d=1,
so that we have three equations for, andd, namely:

b+c = 0
c+d = 0
2b+d = 1

(where in the last equation we've used the fact thiat= 2).
Now, the first two equations imply that= —c = d, and hence from the third equation we see 8tat= 1. Henceb = 1/3,
¢ = —1/3,andd = 1/3, so that the required inverse fot + 1) is

(a+1)~1 :%(aQ—a—l—l).

(If you like, you can check your answer by multiplying by + 1).)
In a similar manner, we can compute that

1
(@+1)7 1= g(—a2 +2a+1),

so that, since + 1 = 2a + 1, we have that
(a4 + 1)(a2 +1)7t

|
—
O
o8
I+
—
=



(77) The minimum polynomial fory = /5 overQis z3 — 5, so every element d@@(«) has the formu + ba + ca? for a unique
choice ofa, b andcin Q. In each case we explicitly use the fact thét = 5.

1.
2. Thisis really easy:a® — af = 502 — 25.
3. Seta/(a? + 1) = a + ba + ca?, and solve fow, b andc in Q. We multiply through by(a? + 1) and see that
a = (?+1)(a+ba+ ca?) = (a+5b) + (b + 5c)a + (a + c)a?,
so that equating coefficients reveals the equations
a+5b=0 b+5c=1 a+c=0.

The last equation forces = —c, and substituting in, we’re left with the two equatiomst- 56 = 0 andb — 5a = 1. So
a = —5b andc = 5b and the middle equation becom&s = 1. Hence

af(@® +1) = (—5/26) + (1/26)a + (5/26)a> .

(78)
Leta = v2 4+ v/—2 = v/2 +iV/2. Thena? = 4i, so thata* = —16. Consider the polynomiaf(z) = z* + 16. This is
monic and has as a root. Moreover, we claim that this is irreducible andcleer the correct minimum polynomial. First
note thatf(x) has no roots i), becausef(a) > 16 for all a in Q. We still need to show thaf(x) does not factor as a
product of quadratics, and this is best done by drawing tbtsria the complex plane, being
2 2
t—+ —1
V2 V2
Any factorisation into quadratics of this polynomial wouldme from multiplying two terms of the form,
(z—C)(z — ),
but these never give polynomials with rational coefficierfisr the rest, we use the fact that = —16. Note that it's not
at all obvious that the first three numbers actually li®igx).For the first part, we begin by showing thd2 € Q(«). [We
could just solve as we did in part (c) of problem 3, but hoggftie method we're using will produce the answer almost
immediately.] We compute that, in addition to the above infation,
= (V2H4iV2)(4)
= —4V2+4iv2.
Hence it's easy to see thef2 = (1/8)(4a — o?). For exactly the same reasofi—2 = iv/2 = (1/8)(4a + a3). This is
the easiest of the lot: = (1/4)a?. Sincea* = —16, we have
a®+4a+3=—-16a+4a+3=3-12a.
We need to find a polynomial(«) in  which satisfiesxg(a) = 1. Sincea* = —16, we have(—1/16)a* = 1, which
means that /o = (—1/16)a3. This last is the most complicated. We é2tc+3)/(a? +2a+2) = a+ba+ca? +da?,
and solve for, b andc in Q. We multiply through by(a? + 2« + 2) and see that
20+3 = (a®+2a+2)(a+ba+ca?+ dad)
= (2a — 16¢ — 32d) + (2a + 2b — 16d)a + (a + 2b + 2c)a? + (b + 2¢ + 2d)a> .
so that equating coefficients reveals the equations
2a —16c—32d = 3
2a+2b—16d = 2
a+2b+2¢c = 0
b+2c+2d = 0
Hence we have 4 equations in 4 unknowns and can solve tafiad-1/2,b = 1/6, ¢ = 1/12 andd = —1/6, and so
(2a+3)/(a® +2a+2) = —-1/24+1/6a +1/12a% — 1/603.
B (79)
1. Leta = 1+ 1. Thena? = 24, so thata? — 2a = —2. In particular,« is a root of the polynomiaf (z) = 22 — 2z + 2

overQ. This is also monic, so we just need to decide whether oif e} is irreducible overQ. However, the only way that
f(x) could be reducible is if it factored 8z) = (z — a)(z — b) with botha andb in Q. But we Fnow that one of these
roots would necessarily he, so f(z) is indeed irreducible. Hencg(z) is the required minimum polynomial.

2. The obvious polynomial to try this time igz) = 23 — 7, since it's monic and clearly ha§/7 as a root. Moreover,
Eisenstein’s criterion immediately applies with= 7 and we see thaf(x) is irreducible ovefQ. Henceg(z) is the required
minimum polynomial.

3. Just as in the previous part, the minimum polynomial$és overQ is 24 — 5.
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4. This time there’s really no obvious choice, so we need tsicter relations between powerswf= /2 + i:

a = V2+i
a? = 1+2iV2
o® = V2+i+4i-2V2
= —V2+5i
at = (142iv2)2 =1-8+4iV2
= —T+4V2
So we notice without too much trouble thet —2a? = —9, so thatx is a root of the monic polynomidl(z) = x4 —222+9.

We need to check irreducibility df(x) overQ. Equivalently, we can work ovéf, and begin by checking for linear factors.
For any roota of h(z) in Z, we must have:|9. It's easy to see that none 6f1, +3, +9 is a root. Sah(x) has no linear
factors. If we try to factorisé(x) as
2t —22+9 = (22 +ax+0b)(2?+cx+d)
xz* + (a + )23 + (ac + b+ d)x? + (ad + be)x + bd .
Equating coefficients, we conclude that= —c, and hence thdl = ad + bc = a(d — b). So eithera =0 ord = b.
First assume that = 0, and hence: = 0. The remaining equations then imply that = 9 andb + d = —2, and these
equations have no solution i
So we must therefore hawves 0, and hencel = b. In that case the constant coefficienb¥s= 9. This forcesh to be3 or
—3. Consider now the remaining equation, which can be writeh-& d = a? — 2, or2b = a® — 2. Hence this implies
thata? = 2b + 2. But with our choices fob, we then have? = 8 or a® = —2, neither of which has a solution .
Thereforeh(z) is irreducible overQ and hence is the required minimum polynomial.
5. One way to do this part is to argue exactly as we did in part\ige setoe = v/2 + /3 and compute powers af, looking
for a relationship. If we try this, we compute powers upfband compare coefficients of o, . .., a5 to get 6 equations in
7 unknowns,

1 1

a = \/5—1—%

a? = 2+42v2V3+ (V3)?

a® = 3+2vV2+6V3+3V2(V3)2

ot = 4+ 12V2+3V3+8V2V3+12(V3)2

a® = 60+4V2+20V3 +15vV2V/3 + 3(V/3)? + 20v2(V/3)?
a® = 17+120v2 4 90V/3 + 24v2/3 + 60(V/3)2 + 18V2(V/3)?

and hence the matrix

1 0 2 3 4 60 17
0o 1 0 2 12 4 120
A= 0 1 0 6 3 20 90
' 0 0 2 0 8 15 24
0 0 1 0 12 3 60
0 0 0 3 0 20 18
Row-reduction yields:
1 0 2 3 4 60 17
0 1 0 2 12 4 120
0 0 2 0 8 15 24
0O 0 0 4 -9 16 —-30
0 0 0 O 8 79 48
0 0 O @ 0
64

Back-substitution finally yields the polynomial
flx) = 2% — 62% — 62> + 1202 — 362+ 1,

which is monic and has as a root.
Another approach which leads to the same polynomial is tinheigh the equationy = /2 + /3 and eliminate radicals.

So write
a—V2=13.
Cubing gives
(@—Vv2)?2 = 3
a® =3vV2a% +6a—-2vV2 = 3
(@® +6a) —Vv2(3a24+2) = 3
V2(Ba? +2) = a+6a-3,
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so that squaring gives
2(3a? 4 2)? (@® +6a —3)?
2090t + 1202 +4) = af+36a2+9+12a* — 60 — 36a.

Rearranging gives
ab —6at — 603 +120% —36a+1=0
which yields the same polynomial.
It remains to check that
flx) = 2® — 6z* — 62 + 1222 — 36z + 1
is irreducible overQ. Reducing mod 3 gives _
flz)=a5+1
which clearly has no roots ifis. Hence if theis reduces, then it must have a monic, irredigjbadratic or cubic factor.
Of the 9 possible quadratic polynomials oWy, a quick check shows that ony? + 1, 22 + = + 2 andz? + 2z + 2 are
irreducible, and a little work shows none of these dividés).

A similar argument with cubics shows thafz) has no cubic factors either, and herfde) is irreducible.

To see that itis, note that singél 1 is irrational, so isx. [If you don't believe this, you can see this as followsait= m/n € Q,
then we would have/11 = (2m + 3n)/n, contradicting the irrationality of/11.] (That+/11 is irrational follows from the fact
that the polynomiatz? — 11, has roots that are either integers or irrational, by a dprestom the first assignment. Clearly no
integer can square to give, so/11 must be irrational.) In particular then, ¢ Q, which means thaj(z) cannot be factored over
@, as such a factorisation would be of the fogitx) = (z — o)(x — 3) for somes € Q. Hencem(z) = ¢(z) is the minimum
polynomial fora: overQ.As in (b) we sef3 = (i+/3 — 1)/2 and work with23. We compute tha23)? = —2 — 2i+/3, so that

(26)% = (V3 —1)(=2 — 20v/3) = —2iv3 + 2 — 2(=1)(3) + 2iv/3 = 8.

But that means thai3® = 8, i.e. 3% = 1. Henceg3 is a root of the polynomiap(z) = 23 — 1. However, this isn’'t the minimum
polynomial, becausg(z) isn't irreducible. Using cyclotomic polynomials (or just bbservation), we see thafz) factors as

p(x) = p1¢3 = (z — 1)(:(:2 +x+1).

The quadratic factor is irreducible, since it's a cyclotorpolynomial. And clearlys is a root of this. Therefore the minimum
polynomial for3 overQis m(x) = 22 + x + 1.

(81)

1. LetL = Q(v/2, ¥/2), E = Q(+/2) andF = Q. Then since the minimum polynomial fer2 overQ is z2 — 2, we see
that[E : Q] = 2. Moreover a basis foF over Q is{ 1,v/2 }.
Now consider the extensioB C L. The polynomialg = x% — 2 is monic and irreducible oveE, since its roots are
2, /2w, and ¥/2w?, none of which lies inE (herew is a primitive 3rd root of unity). Sg is the minimum polynomial
for ¥/2 over E and hencd.. = F(+/2) satisfies|L : E] = deg(g(x)) = 3. Moreover a basis fof., over F is given by
{1,92,(¥V2)?}.
Therefore by the Tower LayL : Q] = 6 and a basis foL over Q is given by

{1,v2, V2,v2V2,(V2)*,vV2(V2)* }.
2. Seta = ¥/2 € Rand letF = Q(i) andL = Q(«, 1), so thatl = F(a). We need to find the minimum polynomial of

over F.

Now « clearly satisfies the polynomigl(z) = z* — 2 over F. Moreover, the roots of(x) in C ared«a and+ai, and
none of these lies i becausex ¢ Q.

Henceg(z) is irreducible overF” and so is the minimum polynomial fer over F'.
Therefore[L : F] = 4 and a basis fof, over F is given by

{10,062 =v2,0}.
3. LetL = Q(¢) and consider the extensidry Q.
Since is a primitive complex 7th root of unity, its minimum polynéhover Q is®7 (z) = 26 +x%+z*+x3+ 22 +x+1.
Therefore[L : Q] = 6 and a basis fof overQ is given by
{1,6,6%,6%,¢,¢%}.
4. Letw be a primitive complex 3rd root of unity and consider the toofefields
Q C Q(V3) CQ(V3,i) CQ(V3,i,w).

The minimum polynomial of/3 overQ is clearlyz2 — 2, as this is monic, irreducible (Eisenstein) and k&as a root.
Thus{1,+/3} is a basis forQ(+/3) over Q. Similarly, {1,4} is a basis forQ(+/3,) over Q(v/3) using the minimum
polynomialz? + 1.

This gives a basi§1, v/3, i, /3i} for Q(+/3, ) overQ.

An argument similar to part (i) shows thdf : Q] = 4 and that a basis faE overQ is given by{ 1,4, /3,iv/3 }.

The primitive complex 3rd roots of unity are given by= (—1 +iv/3)/2 andg = (—1 — i+/3) /2, so thatw must be one
of these. Buix and3 both lie inQ(+v/3,4)! HenceQ(v/3, 1) = Q(+/3, 4, w).
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(82) Notice thata* = —1, so thata is a root of the polynomial(z) = =% + 1. We use the result of problem 13 on sheet
1. We saw there thaj(z) is irreducible overQ, so thatg(z) is the minimum polynomial for: over Q. Hence by Lemma 3.4,
[Q(a) : Q] = deg(g(x)) = 4.

On the other hand, if" = R, the polynomialg(z) splits into a product of two monic, irreducible quadrati@ne of these has
as aroot, and hence is the minimum polynomialdaverR. Again by Lemma 3.4R(a) : R] = 2.

(89)

1. If we could construct0® we could then bisect it to construz6®. But20° = /9 is not constructible as/3 cannot be
trisected.

2. 1f 72° ands? are constructible, then so8§°, which can be bisected twice to giee® again. Thuss® is not constructible if
720 is. On the otherhand,20° is definitely constructible (just construct an regulartgie), hence so i$200 — 720 = 489,
This can then be bisected to gi2e®. Thus24° is constructible fronv2°.

(91) If we could perform the required task then we could constamct satisfying

23(15+7V5) 5
— =5
Rearranging,
3
M:E}ﬁx‘%:L:?ﬁ—lE’
4 (15 + 7V5)

(multiplying top and bottom line by5 — 7+/5). Thus
(@3 +15)2 =72 x5 = 25+ 3023 — 20 =0.

This last is irreducible by Eisenstein (usipg= 5) and so is the minimum polynomial ovér of the side lengthe of the 5-fold
volume dodecahedron. But this is a contradiction, sincerihimber cannot be constructed, as the deffdée), Q] = 6.

(119)

1. We know (Theorem 17) that it is the splitting field of some polynomial thé@al(L/Q)| = [L, Q], the degree of the
extensionQ C L. Now, Q(+/2) is the splitting field of the polynomiat? — 2, so we have,

|Gal(Q(v2)/Q)| = [Q(v2),Q).

Since the right hand side is a simple extension, TheoremvEs ghatQ(+/2), Q] is equal to the degree of the minimum
ploynomial overQ of +/2. This is obviouslyz? — 2 (its monic, irreduciblec Q[z] and has,/2 as a root), so

Gal(Q(V2)/Q)| = [Q(v2),Q] = deg(a? —2) =2,

as required.
Parts (c) and (d) are exactly the same: in (c) we have theisglfield of 1 + = + x2 (since the element adjoined @is a
3-rd root of unity) while in (d) we have the splitting field of — 2 of the first lecture. In this last case though we also need
to use the tower law (Theorem 16),

V3 V3 1, V3 V3 V3

3 1 3. 3 1 3. 3 . 1 3. 1 .
|Gal(Q(V2, —54‘71)/@” = [Q(V2, —5*‘72)7@] = [Q(\/iv_5—"_72)7Q(_§+77’)][Q(_5+77’)7Q}'

Work out each of these in turn using Theorem 15.

2. Here Theorem 17 is of no use @ /2) is not the splitting field of anything! (Can you see why?) Btis easy to do
anyway. Any automorphism in GAQ(/2)/Q) must permute the roots of any polynomial tH4® is a root of, hence must
permute the roots a#3 — 2. But the automorphism must also se@¢v/2) C R into itself, and since the other two roots of
x3 — 2 are complex, must in fact seni2 to itself. It must then sen@¥/2)? to itself as well, and these two, withform a
basis forQ( {/2), so our automorphism must be the identity.

(120)

1. Trick question: the root of — 2is 2 € Q, so the splitting field is jus®. Since every element of G@L, Q) must fix all
the elements of) pointwise, we getGal(L, Q)| = 1.

2. Another trick question: this is just question 3(d)fas= Q(V/2, —1 + @i).
3. The polynomial has splitting fiel@(c, w) wherea = /2 and
27 tisi 27
W = COS — 781N —.
5 5
By Theorem 17 and the tower law we get,

|Gal(L, Q)| = [Q(e,w), Q] = [Qa, w), QW)][Q(w), Q-

Each of the terms on the right hand side is the degree of asiaxpénsion, so we use Theorem 18(w), Q] = 4 since
w has minimum polynomial + z + 22 + z3 + 2* (notx® — 1!). Slightly trickier is the fact thafQ(a, w), Q(w)] = 5.
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In fact the minimum polynomial oveR(w) of « is indeedz® — 2 for which it is sufficient to show that this polynomial is
irreducible overQ(w).

To do this, we first need that no root 8 — 2 is in Q(w). These roots are;, aw, .. ., aw*. If aw’ € Q(w), then
aw'w™% is 100, ie: a is. We can probably beleive that this is not the case (see nmeetiwore rigorous statement!). Since
the polynomial has degree 5, checking the roots is not endugbuld factorsise into non-linear factors, but these nias
a quadratic and a cubic. In fact, the quadratic must be ofdira f

(z — aw®)(z — aw’) = 2% — (aw’ + aw’)z + a?witi.

Thus must be a polynomial ov&(w), so in particulara?w’*7 € Q(w). But then similarly,a? € Q(w) = o = a €
Q(w). We have already “convinced ourselves” that this isn't so.

4. By Theorem 17 again,
Gal(L/Q) = [L,Q,
whereL = Q(w) with w a primitive 5-th root of unity. The polynomial given is themimum polynomial ofv overQ, so
we have
|Gal(L/Q)| = deg(1 + & + z? 4+ 2% + z*) = 4.
See also question 9.

5. By the hint, the roots of 4 z2 +z* are the roots of% — 1 that are nott1, hence arev, w?, w* andw?, with w a primitive
6-th root of unity. Consideff = Q(w). Then clearly these roots arelif) so thatF contains the splitting field. On the
otherhand, the splitting field contaifig (since any subfield of does) and must contain the raot ThusF is contained in
the splitting field, ie: iiis the splitting field.

Thus the order of the Galois group is equal to the defe®] = [Q(w), Q] which in turn is equal to the degree of the
minimum polynomial (ovef)) of w. One may be tempted to gueks- 22 + «* for this, but,
1+22 42t =@ +oz+ 1)@ -z +1),

so is not irreducible. Your next guess® + = + 1 would be correct as its roots, andw?, are¢ Q.
Thus the order of the Galois group2s

(121)
1. Q(cos 2L 4 4sin —) is the splitting field of they-th cyclotomic polynomialb, (z) = 1 + x 4+ 22 4 - - - 4+ 2P~ 1, since
(z —1)Pp(z) = 2P — 1.

Thus the order of the group is equal to the degree of the a@rtemghich, being simple, can be deduced from Theorem 15
and the fact tha®,, is the minimum polynomial ove® of the element being adjoined (where we have used assigrBnent
number 1 again to get that, is irreducible). We thus get that the Galois group has opder1 as claimed.

2. This is entirely analagous to question 4(c), exeept {/2 andw is a primitive p-th root of1.

(128)
1. The Galois group of., overk is the group of all automorphisms of the fidldthat leave the subfield fixed pointwise.
2. Observe first that a basis fQ«, i) overQ is given by
{1,a,0?, 03,4, ai, o?i,a%i}

and the effect of the eight automorphismswmands is given by

| 1 o o2 o3 o o2 o3
a | a ot -« —at e at —a —a
7 7 7 7 7 —1 —1 —1 —1

Hence the automorphism are distinct and by their effeat.@mdi, we see thatr = o3,

3. Hy = {1,02%,0,0%},H, = {1,0%} andH3 = {1,0}. By the Galois correspondence, we hd@«, i), Q] is equal
to the index of{1} in G, ie the order ofG, which is8. The tower law give$F1, Q] = [F1, Q(iv/2)][Q(:v/2), Q] with
[F1, Q] = 4 and[Q(iv2), Q] = 2 since the corresponding Galois groups have these indiggs ience[F1, Q(iv/2)] =
2.

To describe the fields we use the fact that any elemeftQ(«, <) can be written uniquely in the form
r=ag+ara+ a2a2 + a3a3 + a4t + asat + a6a2i + (170432'7

for somea; € Q. The Galois group of)(c, i) over F is {1, 2} from the lattice diagram and the Galois correspondence.

Hence every element df; is fixed byo2, where

2 3 : . 2, 3

02(m) =ap — a1+ aza” — aza” + aqi — asai + agai — arai,

and equating this with the previous expression we see tichtaur must satisfyuz; = ag; andag;+1 = —a2i41, SO that
a1 = a3z = a5 = a7 = 0 while ag, a2, a4 andag are arbitrary. Hence we have

xr = ag + a2a2 + a4t + a6a2i,
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and clearlyF; C Q(a?,4). On the otherhandy?,i € Fy and saQ(a?2,i) C Fy. ThusFy = Q(a?,1).
To get the other one, notice that does notif®2, hence the Galois group Gf(c, i) overQ(iv/2) must beH; so that the
Galois group ofQ(a, i) over F» is {1, 02, , 2}. Running through the calculation above gives

2

o? () =ao — a1 + aza” — aza® + asgi — asai + aga’i — ara’i,

and

s azi —agai — a6a2i — a7a3i,

(x) =ap+aia+ asa? + aza
giving, a1 = a3z = a5 = a7 = a4 = ag = 0, hence arx € F is of the form
x = ag + aza?,

andF; = Q(+/2) for the same reasons as before.

(129)
1. The Galois group of, over F' is the group of all automorphisms of the figldthat leave the subfield fixed pointwise.
2. The polynomial in question has roatsw?, w3, w?, w® andw®, and these are clearly all ip(w). On the otherhand, i
is anyfield containing the roots of the polynomial, théhcertainly containsv (as this is one of them) and it also contains
Q (assignment question done in the problems class).«Bgt F andQ C F meansQ(w) C F, so that it is indeed the
smallest field containing the roots. The order of the Galaigig now follows immediately since,
|Gal(Q(w)/Q)| = [Q(w), Q] = deg(1 + = + 2% +2° + 2 +2° +2°) = 6,
since the polynomial is the minimum polynomial forover Q.
3. Abasis forQ(w) is given by
{17w7w27w37w47w5}7

and so any automorphism is determined by is effect on thesie bactors. In fact, any automorphism is determined by its

effect onw alone. On the otherhand, any automorphism must permutette of any polynomial that is a root of, eg:
14z + 22 + 23 + 2* + 25 4 28 with rootsw, w?, w3, w?, w5 andwS. Combining all this with the fact that there are
exactly 6 automorphisms means that they are precisely tips that send to one of these 6 roots. & sendsw to w® as
stated, thew? (w) = (w?)3 = w” = w?, ando®(w) = w27 = Wb Thus by Lagranger has ordes in the Galois group,
which must then be cyclic as claimed.

4. Clearly any subgroup containing contains everything. Similarly, since the powerso6f yield all the elements of the
group, any subgroup containing is the whole group. Thus, for a proper subgroup we must ndwdeer or o°. If we
don'tincludes? we get the subgroufl} or {1, o3}, whereas if we do, we get the subgrofip o2, o*}.

By the Galois correspondence, we get the lattice of interabedubfields as claimed, witfy the fixed field of a subgroup
of index2, hence of{ 1, 02, 0%}, and F» the fixed field of{1, o3}.
Now any element of)(w) can be written as
T =a0+aw+ a2w2 + a3w3 + a4w4 + a5w5
with thea; € Q. We requirex such that3(z) = z, where
03(a0 +a1w + azw? + azw® + agw* + a5w5) =aotai(-1—w—---— w5)+
a2w5 + a3w4 + a4w3 + a5w2
and we have by equating coefficients thgt— a1 = ap,a1 = —ai1,a5 — a1 = a2,a4 — a1 = a3,a3 — a1 = aq and
as — a1 = as. Thusz must have the form
z = ag + az(w? + w°) + az(w? + w?).

Hence the fixed field i~ Q(w? + w?, w3 + w?). On the otherhandy?® fixes both these elements and thQ&s? +
w® w? + w?) C the fixed field, givingFz = Q(w? + w®, w3 + w?).

(131)

1. The polynomial in question has roetsw?, w® andw?, and these are clearly all i(w). On the otherhand, if is any
field containing the roots of the polynomial, théhcertainly containsv (as this is one of them) and it also contaipgsee

question 3, assignmentl). Bute F andQ C F meansQ(w) C F, so that it is indeed the smallest field containing the

roots.
2. This follows immediately since,
Gal(Q(w)/Q)| = [Qw), Q] = deg(1 +z +a® +2° +2) =4,
since the polynomial is the minimum polynomial forover Q.

3. Abasis forQ(w) is given by
{17w7w27w3}7

and so any automorphism is determined by is effect on thesie bactors. In fact, any automorphism is determined by its

effect onw alone. On the otherhand, any automorphism must permutette of any polynomial that is a root of, eg:
14z + 22+ 23 + 2* with rootsw, w?, w3 andw?. Combining all this with the fact that there are exactly 4aurphisms
means that they are precisely the maps that setww or w? or w? orw?. If ¢ sendsw to w? as stated, thea? sendsw
to w*, o3 sendsw to w3, ando* sendw to 1.

Thus, the Galois group has the elements as stated.
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4. Clearly any subgroup containing contains everything. Similarly, since the powersoof yield all the elements of the
group, any subgroup containing? is the whole group. Thus, for a proper subgroup we must ndwdecr or o3. If we
don’t includes? we get the subgroupl}, whereas if we do, we get the subgro{i 2}. Thus the lattice has only one
subgroup apart from the two obvious ones.

5. This follows imediately by the Galois correspondence sinde the subgroup lattice has only one subgroup apart figm
andG. Now any element of(w) can be written as

r=ag+aw+ a2w2 + agwg,

with the a; € Q, and the intermediate field we are after is the fixed field ofshlegroup{1,02}. That is, we have
o?(x) = z for all z € Q(w). On the otherhand,

02(a0 +ajw + asw? + agwg) =ag + a1w? + a2w® + asw?® = ap + a1(—1 —w— w? - wg) + asw? + agw?

so that,
o%(z) = (ap — a1) — a1w + (az — a1)w? + (a2 — a1)w?,
and we have by equating coefficients that= ap — a1,a1 = a1,a2 = a3 — a1 andaz = a2 — a1. Thusz must have
the form
z=a+bw? +bw’ =a+bw?+w?) e Qu? +uwd).
Hence the fixed field i Q(w? + w?). On the otherhands? (w? + w3) = w? + w3, and so? must fixQ(w? + w?)
pointwise. ThusQ(w? 4+ w?) C the fixed field, an@Q(w? + w?) is the field we seek.
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