L3 – 4.5 Double Angle Formulas MHF4U

Jensen

Part 1: Proofs of Double Angle Formulas

Example 1: Prove $\sin(2x) = 2\sin x \cos x$

LS

RS

Example 2: Prove $\cos(2x) = \cos^2 x - \sin^2 x$

LS

RS

Note: There are alternate versions of $\cos 2x$ where either $\cos^2 x$ OR $\sin^2 x$ are changed using the Pythagorean Identity.

Double Angle Formulas

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\cos(2x) = 2\cos^2 x - 1$$

$$\cos(2x) = 1 - 2\sin^2 x$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

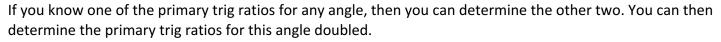
Part 2: Use Double Angle Formulas to Simplify Expressions

Example 1: Simplify each of the following expressions and then evaluate

a)
$$2\sin\frac{\pi}{8}\cos\frac{\pi}{8}$$

b)
$$\frac{2 \tan \frac{\pi}{6}}{1 - \tan^2 \frac{\pi}{6}}$$

Part 3: Determine the Value of Trig Ratios for a Double Angle



Example 2: If $\cos \theta = -\frac{2}{3}$ and $0 \le \theta \le 2\pi$, determine the value of $\cos(2\theta)$ and $\sin(2\theta)$

We can solve for $cos(2\theta)$ without finding the sine ratio if we use the following version of the double angle formula:

To find $\sin(2\theta)$ we will need to find $\sin\theta$ using the cosine ratio given in the question. Since the original cosine ratio is negative, θ could be in quadrant _____. We will have to consider both scenarios.

Scenario 1: θ in Quadrant ____

Scenario 2: θ in Quadrant ____

Example 3: If $\tan \theta = -\frac{3}{4}$ and $\frac{3\pi}{2} \le \theta \le 2\pi$, determine the value of $\cos(2\theta)$.

We are given that the terminal arm of the angle lies in quadrant ____: