’I Basic statistical concepts

1.1 INTRODUCTION

This chapter and the next chapter are essential for understanding the content
of this book. By design, the chapters present statistics from a quite different
perspective as usually the statistics is introduced and taught. The theory of
statistics is presented from the pure Bayesian perspective where we attempt
to make sure that concepts of the classical statistics are not mixed in the ex-
position of the theory. In our experience, the Bayesian statistics is frequently
introduced in image and signal analysis texts as an extension of the classical
treatment of probability. The classical treatment of probability is based on
the interpretation of probability as the frequency of occurring of some phe-
nomena based on repeated identical trials. The classical approach is often
referred to as the frequentist statistics. From the Bayesian point of view, the
probability describes the strength of beliefs in some propositions. One of the
most frequently used terms, the probability distribution, in frequentist statis-
tics means the “histogram” of outcomes of the infinite number of repetitions
of some experiment. In Bayesian statistics, the probability distribution quan-
tifies beliefs or in other words measure of uncertainty. Unfortunately, these
two concepts of probability, Bayesian and frequentist, are not compatible and
cannot be used together in a logically coherent way. What creates confusion
is that both approaches are described mathematically by the probability cal-
culus and because of that they can be intermingled and used together which,
to us at least, is incomprehensible.

In this book we decided not to introduce classical concepts at all. To help
the reader who is accustomed to thinking about the probability as a frequency,
we intentionally do not use the term random variable. This is because the ran-
dom variable is strongly associated with the concept of frequency. To avoid any
unwanted associations, the term random variable is replaced in this book by
the term quantity. The classical term parameter is not used in this book either.
In the classical statistics, parameters describe unknown values and inference
about those parameters is obtained in classical statistical procedures. Instead
of the term “parameter” the term quantity is used as well. Both the “random
variable” and the “parameter” are put on the same conceptual level and are
referred to as quantities. Finally, in the classical statistics the term data is
used to describe the outcome of experiments. Based on the data, inferences
about parameters are made in frequentist statistics. In the Bayesian view uti-
lized here, the term data is another quantity which is conceptually the same as
quantities corresponding to random variables or quantities corresponding to
parameters. For this quantity we relax our naming rule and use interchange-
ably the data and the quantity to describe outcomes of the experiments.
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It may appear that such convention creates confusion because there is a
single term “quantity” to describe so many phenomena. There is more to gain
than lose as we believe that this naming convention helps considerably with
understanding of Bayesian concepts. In order to help differentiating different
quantities, we will use adjectives observable and unobservable added to the
term quantity that identify which quantities are revealed in the experiment
(correspond to “data” in classical treatment) and which are never revealed
(correspond to parameters in classical statistics).

1.2 BEFORE- AND AFTER-THE-EXPERIMENT CONCEPTS

In this chapter, a specific view on processes that involve uncertainty will be
considered. The author hopes that the approach will allow to smoothly in-
troduce concepts that are frequently poorly explained or misunderstood. The
content of this book is concerned about knowledge of quantities that can, or
cannot, be observed directly in an experiment. Such quantities will be referred
to as observable and unobservable quantities, respectively. Interchangeably, we
will refer to knowledge about quantities as beliefs. We will also use uncertainty
about the quantity which is the opposite term to knowledge. For unobserv-
able quantities (UQs) the true value of the quantity is unknown (uncertain).
For example, suppose we are interested in a true weight of some object. This
quantity cannot be observed (determined) directly and the true weight is un-
known. By unobservable directly we mean that there is no experiment that
can reveal the true value of that quantity. The observable quantities (OQs)
will be those where the true values are revealed by the experiment. For ex-
ample when weighing an object the reading from the scale is an observable
quantity. Obviously, the true weight of the object (unobservable quantity) and
the reading from the scale (observable quantity) are two different quantities
and are not necessarily equal.

Important: Here an important distinction has to be made. The weight
of the object and the result of the measurement are two different quantities.
The weight is uncertain before and after the experiment; however, the
measurement is uncertain before the experiment (we do not know what the
reading on the scale will be), but it is known exactly after the experiment.
Therefore the quantity which is the measurement is revealed and known
exactly. The true weight remains uncertain.

The quantities that we will be interested in are going to be referred to
in this book as the quantities of interest (Qols) which include UQs and OQs.
Sometimes quantities that are known will be required to fully describe a prob-
lem at hand (when considering the radioactive decay such quantities can be
the half-life or decay constant for given radiotracer). These quantities will be
referred to as known quantities (KQs). The values of all Qols constitute the
objective truth that will be referred to as the “state of nature” (SoN). Obvi-
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ously the KQs also describe the SoN but since they are known at all stages
of the experimentation they are not considered as a part of Qols. We require
that the SoN is defined by at least one Qol. We assume that knowledge of the
true SoN implies the knowledge of all true values of Qols that define it and
vice versa. All true values of Qols, observable and unobservable, define the
SoN.

Although some Qols are not observable, we will be able to make a guess
about the true value based on our general knowledge and experience and
maybe some experiments that shed some light on the true values of the Qols
that were done in the past. There are two extremes in the amount of infor-
mation that we can have about a Qol. A perfect knowledge is when we know
the true value of the quantity and the least knowledge is when we have no
indication which of the possible values of the quantity is the true value.

One way to think about asking how accurate is the information regarding
some Qol is to think about a range of possible true values of this quantity. If
the number of such values is small, we say that our information is more precise,
or better, than information in the case where the number of possible values is
larger. In the extreme, for a single possible value, the knowledge is “perfect”
and no uncertainty is involved. The knowledge is perfect from the definition
for all Qols that are observable after the experiment performed. If all Qols
are OQs, after the experiment all values are certain, the SoN defined by those
quantities is therefore known and statistical description is not necessary.

The goal of any experiment is to improve knowledge about Qols and the
SoN defined by those Qols. For OQs this improvement is obvious as the true
values of those Qols are simply revealed and the knowledge about them be-
comes perfect (we know the true values of the Qols) once the experiment is
performed. Sometimes we will refer to those true values of OQ as experimental
data, data, or observations. We often will say that the OQ is revealed or real-
ized in the experiment as opposed to hidden, uncertain, or unknown. Based on
observable Qols that are revealed, some additional information about unob-
servable Qols will be obtained. This process will be referred to as the statistical
inference. We deliberately do not use the term random variable to describe the
Qol, because the word “random” is misleading and makes it difficult to under-
stand the line of reasoning employed in this work. The quantities we refer to
as UQ and OQ are deterministic and constant and using the term “random”
when referring to them would be confusing. Another deviation from the other
authors is that the term parameter typically used in the literature to describe
some unknown property of the state of nature is not used. The closest corre-
spondence to the classical term “parameter” used in this book is the UQ. We
do however place OQs and UQs on the same conceptual level and consider
them as quantities that define the SoN.

We consider two stages at which the information about the SoN is evalu-
ated: before-experiment (BE) and after-experiment (AE). When considering
the SoN after the experiment (AE), the uncertainty about SoN is described
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only by the UQs. In the AE stage, the OQs are no longer uncertain and are
known; therefore, no uncertainty about them can contribute to uncertainty
about the SoN. Just to be sure that there is no misunderstanding, the OQ is
the measurement (e.g., reading on the scale) and not the value of the quan-
tity that it attempts to estimate. If the goal of the investigation is to obtain
insights about the SoN, it is obvious to consider only the AE stage. However,
BE state is also interesting when we do not want to tie conclusions about
the SoN to actual observations of OQs, but rather consider all possible obser-
vations that can occur. This can be important when our task is to optimize
imaging systems in which case we need to consider all possible values of OQs
that can be obtained with that imaging system.

Let’s consider the following example of the before-experiment (BE) and
after-experiment (AE) concepts and a single OQ.

Example 1.1: Single-die roll (1)

The experiment is defined as a simple roll of a six-sided die. The result of the
roll is the observable Qol. The SoN is defined by the number obtained in the
roll. In the BE state, there are six possible true values of the Qol. The experiment
is performed and the number six is obtained. Therefore, the AE state (after the
roll) OQs are revealed (realized) so the true value of the Qol (six) is known. In
the AE state, there is no uncertainty for this example as the SoN is defined by a
single Qol that is known in the AE state.

The same concepts can be illustrated using a more sophisticated example
in which the SoN is defined by two Qols in which one is observable and one
is unobservable:

Example 1.2: Radioactive sample (1)

Let’s consider a sample of some radioactive material that is expected to create
f radioactive decays (total activity) per second. The value of f is unknown and
considered as the unobservable quantity since it cannot be observed directly.
Therefore, per our definition, the value f is a UQ. The experiment is performed
that involves observation of g decays from the radioactive sample during some
period of time using a detector that registers photons emitted from the sam-
ple. The sensitivity of the detection is assumed known. The sensitivity is the
deterministic constant (KQ) indicating the average of the ratio of the number of
detected photons to the number of emitted photons. For simplicity we assume
that we have a perfect efficiency and therefore 100% of emissions are registered
by the detector. The number of detected counts is a OQ. The SoN (defined by f
and g) is uncertain BE and AE; however, it seems that AE we have more informa-
tion about the SoN as one of the Qols that defines the SoN is known. Looking
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slightly ahead, the main idea of statistical inference is that the observation of
g counts registered by the detector not only reveals Qol g but also improves
the knowledge about the activity f (the UQ); therefore, observations not only
reduce the number of unknown Qols but can also improve the knowledge about
the UQs.

The concept of the before and after the experiment conditions introduced
in this section is illustrated in Figure 1.1. Before experiment (left column of
Figure 1.1) the possible true values of the Qols f and g are from 0 to co. After
the experiment is performed (right column of Figure 1.1) the OQ is observed
and at this stage it is known and equal to g. The UQ f is still unknown (the
true value is uncertain) and for the example presented here the initial range
of possible true values remains unchanged (0 to oo).

Before Experiment (BE) After Experiment (AE)
[0 } » 00 [0y » 00
9t 0y o0 g g

FIGURE 1.1 Before-experiment and after-experiment concepts.

To summarize, an important concept was introduced that will be used
throughout this book. We refer to this concept as the BEAE concept where
the BEAE stands for the before-experiment-after-experiment concept. The
term experiment indicates a process in which the true values of some quanti-
ties are observed (referred to as observable quantities or OQs) which before
experiment are unknown. At least one quantity of interest (Qol) should not
be observed in the experiment, otherwise no uncertainty would be present in
AE (see Example 1.1), all values of Qols would be known and there would
be no uncertainty in the description of the SoN as well since Qols define the
SoN.

Unobservable quantities will be studied in AE state. The uncertainty about
UQs will be studied in light of the observed values of OQs. Since OQs are re-
vealed in the experiment, the beliefs about their true values BE are irrelevant.

Although the terms before-experiment and after-experiment suggest that
a time series is analyzed, it is not how these two terms should be interpreted.
Simply, the term before-experiment indicates that the results of the experi-
ments are unknown but the experiment will be performed and they will be-
come known with certainty. Therefore, in BE state the OQs are uncertain,
but their true values are assumed constant. This may sound a bit paradoxical
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because if we think in terms of time, the experiment has not been performed
yet. It is therefore easier to associate the BE state with a stage at which the
actual experiment is already performed but simply the results are not yet
revealed. This view of the BEAE concept removes the logical paradox. The
BEAE concept does not address prediction of future experiments, but rather
indicates two stages of knowledge about Qols considered.

Figure 1.2 presents a summary of all quantities introduced in this section.
In this book it is assumed that quantities are numbers and in general can be
vectors. All three types of quantities define the state of nature of the system
that is being investigated. The true value of observable quantities are revealed
in the experiment and the true values of KQ are assumed known in all stages
of analysis. The KQs are not part of quantities of interest (Qols) because the
full knowledge about them is available in every state of experimentation. The
true values of unobservable quantities are uncertain and the main goal of the
statistical analysis is to use available information about the true values of
other quantities to reduce uncertainly about the UQs.

State of nature

Qols

0Qs| UQs| | KQs

Uncertain

FIGURE 1.2 Observable, unobservable, and known quantities (OQs, UQs, KQs) are
identified. UQs are uncertain at the AE stage. Both OQs and UQs are Qols.

1.3 DEFINITION OF PROBABILITY

At first the probability will be introduced for a single Qol. The term “proba-
bility” is used to indicate the strength of our beliefs that some particular value
of Qol is true. This definition is very close to the standard use of this term in
everyday life. Therefore if we think that some value of Qol is true with a high
probability, it indicates a high confidence in this proposition and conversely
if the probability that some value of Qol is true is low, our confidence is low.

Suppose we are considering a single Qol in BE state and that the number
of possible true values of the Qol is very small. For this case the SoN is defined
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by a single Qol and therefore probability of the Qol being true is equivalent
to the probability of the SoN. The belief that Qol is true is equivalent to
the belief that SoN defined by this Qol is true. For example, in a coin toss
only two true values are possible: heads and tails. Before the experiment (coin
toss) the measure of belief is assigned to each of those values that describes
our belief that the result of the toss (true value of Qol) is heads or tails. We
will use the term probability to refer to those beliefs.

At this point we are ready to define a measure of our beliefs that a value
of some Qol is true with more mathematical formality. We assume that for a
particular Qol we know all possible true values that the Qol can have. In this
book we will use small letters to denote the values of Qols such as g, f, or y,
and corresponding capital letters to denote the set of all possible true values
of that Qols such G, F or Y, respectively. We assume for a moment that the
Qols are scalars and extend the theory to vector quantities in Section 1.8.

As mentioned above, a measure of our beliefs about a given value of a
Qol being true is the probability. For a given G, any possible Qol g € G has
an assigned measure p(g) (the probability) which is a scalar value from the
range 0 to 1. The value of probability 0 about the value of g indicates that
the proposition that the ¢ is the true value is impossible and the value of 1
indicates that the true value of Qol is known with certainty and equal to g
(this will always be the case for OQs in the AE state).

The following properties of the probability measure are postulated and de-
fined below. Non-trivial extension of the properties of the probability measures
to more Qols will be given in Section 1.4.

1. We postulate that for Qol g where g € G, the probability that the
value g is true is described by a number p(g) where p(g) > 0.

2. We require that the sum over all possible true values of Qol of the
probability measure is equal to 1. Therefore fg ca p(g) = 1.

3. We require that the probability of Qol is either g; or g is the sum
of probability measures for g; and go. Mathematically this is denoted

by p(g1 U g2) = p(g1) + p(g2)-

Example 1.3: Single-die roll (2)

The example of the roll of a die is re-used. Before the experiment (which is the
actual roll of a die), assuming the die is fair, we believe that each number that
will be revealed in the experiment is equality probable. For this example the true
state of nature corresponds to the number that occurs in a die roll. Therefore,
denoting by ¢ the Qol indicating the number obtained, the probability a given
number is rolled p(g) is 1/6.

The a priori knowledge or belief is the information about Qol that is avail-
able before the experiment is performed. This knowledge is summarized by
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assigning for each possible value of Qol a measure of belief that this value
is the true value. In the example above, the a priori knowledge that a given
number would be rolled was 1/6.

All Qols can have a prior knowledge assigned to them, but it is meaningful
to specify prior knowledge only for Qols that are unobservable. The reason for
this is that a priori knowledge becomes irrelevant for OQs that are revealed in
the experiment. Since during the course of planning of the experiment which
Qols will be observed is known, the a priori knowledge for OQ will not be
considered.

Note how irrelevant is the fact that we assigned probability 1/6 to ev-
ery possible number that can be obtained in a roll once we actually know
the number that occurred. Since we know this number in AE condition, all
consideration about probability of this number in BE are irrelevant!.

As introduced in this chapter, two stages of the experiment are identified,
BE and AE, and the knowledge (probability, beliefs) about the true value of
Qols may change when considering Qols in BE and AE states. By conven-
tion we will refer to these probabilities as prior and posterior probabilities at
before- and after-experiment stage. We will adhere to this convention through-
out this book.

1.3.1 COUNTABLE AND UNCOUNTABLE QUANTITIES

By definition, a countable Qol is such that all possible true values of this
quantity can be enumerated by integers. Conversely, if the possible true values
of a Qol cannot be enumerated by integers, they are labeled as uncountable
Qol.

To illustrate these countable and uncountable Qols, consider the two fol-
lowing examples:

Example 1.4: Roll of die and random number generator

The simplest example of a countable Qol is a result of six-sided die roll. In the
BE condition the possible values of the Qol are 1, 2, 3, 4, 5, or 6. Therefore
the six possible ways can be trivially enumerated by integers 1 through 6 and
therefore it is a countable Qol. Another example is an experiment in which a
number from range of [0, 1] is selected. For this case in the BE conditions there
are an infinite number of values (real number from [0, 1]) that cannot be enu-
merated by integers and therefore the quantity is uncountable. The generation
of random number is a common task in computing when using Monte Carlo
methods. However, one needs to take into account that real numbers are repre-
sented using binary system with limited precision. If double precision is used for

n fact the actual prior of OQs can be used to test some assumptions made about the
model of the experiment, but this application of the prior of OQ is not discussed in this
book. For more on this topic see Berger [8] and Robert [84].
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example (64 bits per number) only 25* numbers can be represented. Therefore,
when using computers and double precision statistics we actually use countable
quantities. For most applications (including medical imaging), this limited pre-
cision in representing real number can be ignored, but one needs to be mindful
of the limitation of digital machines in representing the uncountable values.

To simplify the notation the symbol ngG is used for both (1) the sum-
mation for countable Qol and (2) the integral for uncountable Qol. Which of
these two (whether ¢ is countable or uncountable) applies will hopefully be
clear from the context. When not obvious it will be specified explicitly if the
symbol [ _. is a summation or an integral.

We Wifl use the symbol p to indicate the probability or probability density
for countable and uncountable Qols. However, we will use sometimes the term
probability for both countable and uncountable Qols and based on the type
of Qol it will be clear probability or probability density is referred to. If the
term probability density is used, it will always imply the uncountable Qol.

By p(g) the distribution is indicated, where g can be any of the possible
values from the set G. In AE condition some Qols are observed and at this
point their probability distribution is trivial. Only a single value Qol that was
observed has a posterior distribution that is non-zero and for all other gs the
posterior is zero. The posterior distribution has to obey the normalization
condition; therefore, for OQ in AE state, the non-zero posterior for countable
and uncountable Qols is either 1 or the Dirac delta function?. Without losing
generality, the G will be used to indicate Qols that are observable (their true
value is revealed in the experiment). The following example is used to illustrate
the definitions introduced in this section:

Example 1.5: Radioactive sample (2)

Let’s revisit the counting experiment (Example 1.2) in which the number of
radioactive decays is measured by a perfect sensitivity detector (all radioactive
decays are registered). In BE state we have two Qols f and g where f is
a uncountable Qol indicating the amount of radioactivity in the sample. We
unrealistically assume that this amount of activity does not change over time
and therefore it is assumed constant in time and reflects the average number
of emissions per unit time. G is countable Qol and represents the number of
decays that will be measured during the experiment. All possible true values of
both Qols are known. The values of f are from a range [0, co] and the number
of detected radioactive decays g can take integer values 0, 1, .. . , co. In BE state,
we express our beliefs about the true values of the Qols by the specification
of p(f) and p(g) for every possible f € F and g € G. After the experiment is

2The Dirac delta function §4(z) is defined such that ffeF 0(f) = 1, respectively.
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performed and g is measured (observed, realized), the posterior of g is trivial as
it is zero for all other than observed number of counts and 1 for the observed
number of counts. The prior probability of UQ f, p(f), after the experiment
is “updated” to the posterior probability. Interestingly, if we consider another
experiment that follows, the posterior from the previous experiment becomes
the prior for the new experiment, and is updated again by the data. This type
of analysis is called the sequential analysis and plays important role in many
applications. For more details on sequential analysis refer to Berger [8].

1.4 JOINT AND CONDITIONAL PROBABILITIES

In the preceding sections we considered SoNs that were defined by a single
Qol. There, p(g) was the probability that the SoN defined by g was true and
similarly p(f) was the probability that SoN defined by f was true. These two
different SoNs were considered independently.

Here, we assume that there is only a single SoN defined jointly by f and
g. By virtue of this assumption we generalize the probability of such SoN
as p(f,g). The comma signifies that we consider a SoN which is defined by
particular values f and g. If the SoN is defined by more than one Qol, the
probability will be referred to as joint probability distribution. For each pair
of {f,g} that define a possible SoN the probability is assigned. We note the
symmetry in the definition. The identical SoN is described by a pair {f, g}
and by {g, f} as there is no significance in the order that we specify the Qols.
This symmetry implies that p(f,g) = p(g, f), so the order of the symbols in
notation of joint probabilities is irrelevant.

The axioms that were specified for probabilistic description of SoN de-
scribed by a single Qol (Section 1.3) apply the same for the SoN described by
two (or more as it will be shown in Section 1.8) and therefore:

1. We postulate the probability that the SoN defined by g and f is true
is described by a number p(f, g) where p(f,g) > 0.

2. We require that the sum over the probability of true SoNs (the prob-
ability p(f,g)) is equal to 1. Therefore quG ffer(f, g) = 1.

3. We require that the probability of the SoN defined by {91, fr} or
{g2, f2} is the sum of probabilities for those two SoNs. Mathematically

this is denoted by p({g1, f1} U{g2, f2}) = p(g1, f1) + p(g2, f2)-

As defined in the beginning of this section, the true SoN is defined by f
and g. If one of those quantities becomes known by obtaining the experimen-
tal data g, the uncertainty about the true SoN is manifested only through
uncertainty in f. In other words, the probability distribution reflecting our
beliefs about the true SoN is the function of only f as the other Qol is known.
We indicate this “partial” knowledge of the SoN through the conditional dis-
tribution p(f|g). We define this distribution in the BE state and therefore
only “pretend” that g is known. The conditional distribution can be obtained
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from the joint distribution simply by extracting values of the joint distribu-
tion corresponding to known Qols and normalizing them by [ feF p(f,g). This
process is illustrated with Example 1.6.

Example 1.6: Conditional distribution from joint distribution

The concept of the joint probability distribution is illustrated in Figure 1.3. For
clarity, we assume that f and g are one-dimensional Qols and for each pair
{g, f} the probability is assigned. We first define all possible true values of
f and g which is the region [0, 1]. An analytical function p(f,g) = 144(f —
0.5)%> x (g — 0.5)? is chosen to represent the joint distribution and plotted in
Fig. 1.3(A). We consider a line on 2D plot corresponding to a value g = 0.3
(we "simulate” that g is known) and plot values of joint distribution in Figure
1.3(B). Therefore, we “simulate” an experiment in which value 0.3 of Qol g was
observed. The analytical form of this distribution is p(f, g = 0.3) = 144/25(f —
0.5)2. Normalization of values of p(f, g = 0.3) by the normalization constant
f.f€[0:1] p(f,g = 0.3) leads to the conditional probability which is denoted as

p(flg = 0.3). This notation indicates a conditional probability distribution of Qol
f if hypothetically the true value of g is 0.3. The actual shape of the conditional
distribution is identical to the joint distribution evaluated at ¢ = 0.3 and they
differ only by a scaling factor. Although the latter finding is demonstrated on a
simple example, it is true in general.

It is easy to demonstrate that all three axioms are obeyed for p(g|f) if they
are obeyed for p(f, g). The normalization factor (ffeF p(f,g)) that was used to
obtain the conditional probability we denote as p(g). In fact the normalization
factor can be interpreted as a function of g which can be shown to also obey
the axioms. The p(g) is the marginalized probability distribution obtained
from the joint p(f, g) by marginalization (integrating out) the other Qol that
the joint probability is dependent on (in our example it is f). Sometimes, if
the joint distribution has a closed form, the marginalization can be performed
analytically (see Examples 1.6 and 1.7). The notation is a little unambiguous
as the same symbols were used to describe distribution of ¢ when SoN was
described by a single Qol and here where p(g) indicates the marginalized
distribution. However, based on the context of whether the SoN is defined by
a single Qol or by multiple Qols would unambiguously indicate the type of
distribution that p(g) represents. It follows that if the SoN is defined just by a
single QoI the p(g) is the distribution of QoI ¢ in BE condition. If more than
one Qols describe the SoN, the notation p(g) always indicates marginalized
distribution.
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(A) Joint distribution p(f, g) = 144(f — 0.5)*(g — 0.5)2
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FIGURE 1.3 (A) 2D joint distribution defined for {f,g}. (B) Values of the joint
distribution for Qol g = 0.3. (C) Conditional distribution of f conditioned on g =
0.3. The shapes of both distributions in (B) and (C) are identical and they differ
only by a scaling factor.

Example 1.7: Analytic marginalization

Suppose a joint probability distribution p( f, g) is considered that expresses our
beliefs that f and ¢ define the true SoN:

(1.1)

The range of possible values of uncountable Qol f and countable Qol g is
F:fe[0,00]and G: g € [1,2,...,00]. We have that:

_ _ 6 ~ g,—f _ 6
p(9) —/fer(f,g) = 7T2929!/0 df ffe™’ = g (1.2)
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Unfortunately, situations where the analytic marginalization is available is ex-
tremely rare in practice and numerical methods are used in order to obtain the
numerical approximation of marginal distributions. For example for the case
considered here, the marginalization over g yields a sum that cannot be evalu-
ated in a closed-form expression as the sum has no simple mathematical form:

e & Vi

2 2
T 9:199'

p(f) = / )= (13)

It is left for the reader to check that p(f, g) and p(g) are proper probability
distributions and they integrate to 1 over the range of all possible values of f
and g.

1.5 STATISTICAL MODEL

There are two motivations that lead to the introduction of conditional distri-
butions. First, once the experiment is performed and OQ are known, there is
no point of considering the joint distribution, but rather we “extract” the con-
ditional distribution from the joint, which corresponds to observations, and
make inferences based on that. The other reason for conditional distribution
is that based on the knowledge of the experiment, we can propose a statistical
model of the experiment M by means of conditional distributions.

Before we can define the model, the statistical independence of Qols needs
to be introduced. We define the f statistically independent of g when beliefs
about f are insensitive to knowledge of true value of g. It follows that statisti-
cal independence of f and g implies statistical independence of g and f. Before
the experiment, we pretend that ¢ is known and therefore the independence
applies to any possible value of f and g.

p(flg) = p(f)- (1.4)

In other words, our beliefs about f are independent on knowledge of true value
of g. The Qols f and g are statistically dependent if p(f|g) # p(f). We leave it
for the reader to show that if f and g are statistically dependent/independent,
then g and f are also statistically dependent/independent. We consider the
dependence/independence of f and ¢ in the BE state and this implies that
the property is true for any value of Qols g and f.

We use Example 1.8 to illustrate the concept.

Example 1.8: Conditional distribution from joint distribution—
independence

Let’s consider an analytical function describing the joint distribution p(f, g) =
144(f — 0.5)%*(g — 0.5). This distribution is in fact an example of a joint dis-
tribution of two statistically independent Qols. This can be demonstrated using
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simple algebra and by showing that the particular p(f, g) considered in this
example implies that Equation (1.4) holds (this is left to the reader). An alter-
native approach to showing the independence is a graphical demonstration in
Figure 1.4 showing that all conditional distributions extracted from the joint
distribution are equal.

(A) Joint p(f, g =0.3) (B) Joint p(f, g =0.8)

(C) Joint p(f,g = 0.0)
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FIGURE 1.4 Three distributions extracted from the joint distribution p(f,g) =
144(f — 0.5)%(g — 0.5)? for different values of g equal to (A) 0.3, (B) 0.8, and (C)
0.0. After normalization the same conditional distribution is obtained (D).

So far we used a slightly artificial example of an analytic function repre-
senting the joint distribution of two Qols that are represented by scalar values.
To make the concept of statistical dependence/independence more intuitive, a
simple experimental model in which two dice are used is considered next. This
will also help with the introduction of the concept of the statistical depen-
dence and how it can be used to obtain more information about UQs based

on OQs.
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Example 1.9: Statistically independent Qols —dice

Consider rolls of two “fair” dice. The result on only one of the die (say die
number two) is revealed to the observer in AE stage. The true values of the
numbers obtained in the experiment (the rolls of two dice) are denoted by f
and g, respectively, for dice one and two. The possible true values of the Qols
for eachrollis 1,2, 3, 4, 5, or 6. With no other information about the experiment
(the model) the result of roll two g (revealed to the observer) does not affect
beliefs of the result of the roll one f and vice versa. Therefore, it can be stated
that experiment in which the true value g is revealed does change our beliefs
about f. This is another way of saying that f and g are statistically independent
(p(flg) = p(f)-

It should be quite clear from Example 1.9 that if the Qols are statisti-
cally independent, then in AE the OQ (g) is known and knowledge about
UQ (f) is unchanged. In fact, for any statistical problem in which there are
some OQs and UQs, the independence would preclude gaining any additional
knowledge (reduce uncertainty) about any of the UQs when some statistically
independent OQs are observed.

The statistical dependence between observable and unobservable quantities
is one of the most important concepts in statistical inference used in this
book and it is introduced through the definition of the statistical model of the
experiment. The model is simply the specification of conditional dependence
of OQs and UQs. The model is defined as the conditional distribution where
the OQs are conditioned on UQs. Adhering to our convention that an OQ
is denoted as g and an UQ denoted as f the model is denoted by p(g|f). If
the model is defined, it will imply that f and g are statistically dependent
(p(g|f) # p(g)) otherwise the model would be quite useless for statistical
inference (see Example 1.9). The knowledge of the model will be derived from
the known physical description of the experiment. When formulating a model,
various considerations have to be taken into account. Typically the reality is
much more complicated than what can actually be modeled with experiments
and the assumed models will simplify the reality in order to be tractable. A
trade-off between model complexity and tractability has to be considered in
almost every problem.

To better understand the concept of the model, let’s consider the extension
of the problem with two dice:

Example 1.10: Conditional two-dice roll (1)
Let’s consider an experiment in which we have two people. Person A rolls

two dice, one after the other. The f describes the result of the first roll and
g describes the result of the second roll. Person B ("The observer”) observes
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the result of only the second roll g (since g by convention is used to indicate
observable quantity). The value of roll g is the only observable quantity. The
result of roll f is unknown to person B. If no other conditions of the experiment
are specified (see Example 1.9), the numbers obtained in each of the two rolls
are independent, and we will not be able to infer any additional information
about f based on g.

However, the experiment is modified such that the person A repeats the
second roll g until the number is equal or less than the number obtained in the
first roll f and only the result of the last roll is revealed to the observer. By this
modification, the statistical dependence is introduced. Based on the description
of the experiment, the model of the experiment can be defined. Intuitively, the
statistical dependence is obvious since the number on the second roll g will be
dependent of the number obtained in the first roll f.

In real systems person A embodies the laws of physics or laws of nature. In
this example, the unknown number obtained in the first roll we interpreted as
the UQ and the rules governing the process of rolling the second die until the
number is equal or less than the number in the first roll are interpreted as the
“law of nature.”

Just to signal types of problems that will be discussed in this book, the typical
question that will be asked is as follows: Having observed the number in the
second roll (which is OQ), what can be said about an unobservable quantity of
the number obtained in the first roll?

In this book the laws of nature are always described by conditional probabil-
ities p(g|f) (the model) based on the description of the experiment, knowledge
of physical principles governing the experimental processes, and logic. For this
particular example based on provided description of rules of the experiment,
the model p(g|f) is defined in Table 1.1.

TABLE 1.1
The model: values of conditional probability of OQ ¢ if UQ has value f

p(glf)

f— 1 2 3 4 5 6

gl 1 1 1/2 1/3 1/4 1/5 1/6
2 0 1/2 1/3 1/4 1/5 1/6

3 0 0 1/3 1/4 1/5 1/6

4 0 0 0 1/4 1/5 1/6

5 0 0 0 0 1/5 1/6

6 0 0 0 0 0 1/6
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1.6 LIKELIHOOD

So far several quantities such as joint and conditional distributions were dis-
cussed and considered mostly in BE conditions. The model of the experiment
summarized by conditional probability p(g|f) where g is the OQ and f is UQ
was also introduced. We now move to the AE regime, and in this section we
introduce the most important distribution that will be used throughout this
book?3, namely, the likelihood function. There are two conditions needed to
determine the likelihood function: (1) The model has to be known, (2) the
data (some OQs used in model definition) need to be observed. Paraphrasing
those two conditions, the likelihood function is the “model” (p(g|f)) in the
AE condition.

The likelihood function (LF) exists only in the AE conditions and exists
only when at least one of the Qols is observed and there is a statistical de-
pendence between the OQs and UQs.

We denote the LF as p(G = g|f) and interchangeably refer to this quantity
as the likelihood function (LF), the data likelihood, or simply as the likelihood.
The fact that ¢ is observed (AE) is indicated by using the notation G = g. The
LF for an observed value of g assigns a value of likelihood to every possible
f € F that indicates how likely it is to observe the result G = g if the value
of the UQ is f. The LF is therefore a function of the UQ f. The difference
between the model p(g|f) and p(G = g|f) is that the first is the distribution
defined in the BE and is a function of both g and f, where the latter is a
function of f for observed data G = g and defined in AE the condition.

Example 1.11: Conditional two-dice roll (2)—likelihood function

Using the example of the model summarized in Table 1.1 the example of two
likelihood functions p(¢g = 1|f) and p(g = 5|f), for different values of OQ g
are shown in Figure 1.5.

The likelihood function is not a probability distribution and therefore we
cannot interpret the value of the likelihood function as a measure of probabil-
ity (belief) of f because in general the likelihood function is not normalized
Le, > ey P(G = g|f) is not guaranteed to be 1.

Example 1.12: Conditional two-dice roll (3)

Suppose we now consider the model summarized in Table 1.1 in AE condition

3The likelihood function is the most important distribution not only here in this book
but also in classical statistics [26, 66, 67, 106].
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FIGURE 1.5 The likelihood function for the model described in Example 1.10 cor-
responding to g = 1 (left) and g = 5 (right). The values in the figure correspond to
rows 1 and 5 in Table 1.1.

when g = 3 is observed. From the Table 1.1 we extract a row that corresponds
to g = 3 since these are the only relevant values in AE state. The row has the
following values 0, 0, 1/3,1/4, 1/5, and 1/6. Because these are the values in the
AE condition, from the definition they define the likelihood function p(G = g|f).
We immediately see that the sum over all possible f does not amount to 1 as
the likelihood function is not a probability distribution. Based of the values of
the likelihood a likelihood ratio of the form A(g; f1, f2) can be constructed. For
example the likelihood ratio A(3;4,6)/ = 1.5 indicates that if g = 3 is observed
it indicates that in the first roll f number 4 is 1.5 times more likely than number
6. We are careful not to use word “more probable” as the likelihood is not a
measure of probability. One way to interpret the likelihood is to think about it
as a “measure of probability” that comes only from the data. In the next chapter
we discuss the likelihood ratio in more details.

We assume that for all problems considered in this book the functional
form of the likelihood is known and derived from the model p(g|f). It should
be clear that if the model is known then the likelihood is known because from
all the distributions p(g|f) defined in the BE state, in the AE state we simply
select the distribution corresponding to the observed data g. Interestingly,
this function alone can be used to make inferences in classical statistics (e.g.,
maximum likelihood (ML) methods) but these inferences are quite limited and
cannot be easily extended to decision theory. For this reason, the methods that
are based solely on likelihood function are not utilized in this book. In general,
methods based on data likelihood (e.g., maximum likelihood estimation) do
not perform well for systems in which the data contain large amounts of noise
and systems with a substantial null space which frequently is the case in
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nuclear imaging and therefore the ML solution to imaging problems is never
used unless some regularization methods are employed.

1.7 PRE-POSTERIOR AND POSTERIOR

Throughout this book all decisions about UQ f will be based on posterior
distributions p(f|G = g). This distribution is defined in AE condition as
indicated by the fact that the OQ ¢ is known (G = g). Earlier for the case of
single Qol, we noted that our general approach to reasoning is that we start
with some initial beliefs about a true value of f which we described by the
prior distribution p(f). After the experiment is performed and some OQ (g) is
observed, the original beliefs are modified to reflect the additional information
that is obtained by revealing the true value of the OQ g. Here we describe
it mathematically by defining the posterior which is the original beliefs p(f)
updated by experiment outcome g. From the definition, the posterior is the
probability distribution on f when g is true (observed).

The conditional distribution of UQ conditioned on OQ can also be defined
in the BE state. For this case we simply assume that if g is observed it would
result in the posterior p(f|g). Because we only assume that g is observed
we will refer to the p(f|g) as the pre-posterior. There is only one posterior
distribution p(f|G = g) but there are many pre-posterior distributions and
the number of pre-posteriors is the same as the number of possible true values
of g. There are two ways to obtain the posterior distribution which we will
discuss below.

1.7.1 REDUCTION OF PRE-POSTERIOR TO POSTERIOR

The most straightforward approach to obtain the posterior is when the pre-
posteriors p(f|g) are known. The experiment reveals the true value of g and
from the family of pre-posteriors the one is selected that corresponds to g
which was observed. The pre-posterior is “reduced” to posterior once the g is
observed:

g is observed

p(flg) p(fIG = g). (1.5)

1.7.2 POSTERIOR THROUGH BAYES THEOREM

In real-world scenarios the direct knowledge of the pre-posterior will not be
available and the posterior will be obtained through the Bayes theorem. As
explained in Section 1.4 if the joint distribution is known in BE, it is quite
straightforward to determine the pre-posterior and once the pre-posterior is
known finding posterior in AE state is trivial (see Section 1.7.1). Unfortunately
the joint distribution is typically unknown. However, the joint distribution can
be approximated using

p(f,9) = plglfp(f) (1.6)
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where on the right-hand side we have a “model” p(g|f) that we assumed is
known and the p(f) which is unknown in the large majority of cases. How-
ever, since p(f) can be interpreted as the current knowledge about UQ f an
educated guess about this distribution based on the current knowledge can
be made and joint distribution can be approximated using Equation (1.6).
We come back to the problem of the selection of p(f) later in this section.
Assuming that the joint probability is known (or approximated) obtaining
the pre-posterior (or posterior) directly follows from Equation (1.6) and the
fact that if the joint distribution is known, the posterior can be obtained by
selecting values of the joint corresponding to the “hypothetically” observed g
and then normalizing those values to 1. Using this approach the pre-posterior
is readily calculated as follows:

_plfig9)  — plglf)p(f)
PO = T b0~ Tper a0 (17

Often in the literature the normalization term [ fer p(f,g) is abbreviated

to p(g). The posterior is derived from the pre-posterior replacing a value of
g with the actual measurement G = g and the following is obtained that we
refer to as the Bayes Theorem.

_ (G =glfplf)
Trer PG = gl F ()

where p(G = g|f) is the likelihood and p(f) is the guess about the value UQ f.
The p(f) can also be interpreted as the current state of knowledge about the
value of f. It is customary to refer to this distribution as the prior to indicate
that it represents the knowledge about some Qol prior to the experiment.

The above equation is known as the Bayes Theorem named after Thomas
Bayes who suggested using the above equation to update beliefs based on
data. The theorem gained popularity after it was rediscovered by Pierre-Simon
Laplace and published in 1812 [63].

p(fIG =yg) (1.8)

1.7.3 PRIOR SELECTION

One of the most frequent critiques of the use of Bayes Theorem in science is
that objectivity of the analysis using posterior requires the accurate knowledge
of the prior which is almost never available. It follows that if the guess about
p(f) is inaccurate the resulting posterior may be inaccurate as well. We fully
agree with these arguments; however, we would like the reader to consider the
following three points:

Complete objectivity is an illusion. Drawing statistical inference with-
out the use of Bayes Theorem relies on the model and the resulting like-
lihood after the experiment is performed. This, however, relies on the as-
sumption that the model is correct. When complex biological processes are
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involved this will never be the case and some level of approximation when
constructing a model will have to be used. Therefore, there is some level
of subjectivity used when a model is assumed. Therefore, so-called “objec-
tive” analysis frequently lacks objectivity as well because the model is never
exact.

Subjectivity is unavoidable in decision making. We should not forget
that the endpoint of any analysis in medical imaging or for that matter in
medicine is not the posterior or likelihood but rather the decision. Assum-
ing that statistical analysis is performed objectively the decision (disease
present or not, optimal course of therapy, etc.) still has to be made and this
decision will require a subjective judgment. The definition of prior should
be interpreted as an attempt to quantify the use of subjective knowledge,
and the use of subjective knowledge is unavoidable.

Bayesian analysis describes knowledge gain. The most importantly,
the application of the Bayes Theorem should be interpreted as an update
of the current beliefs (reflected by the prior p(f)) by the experimental data
leading to the posterior p(f|G = g). In this interpretation the correctness of
the prior is quite irrelevant with respect to the correctness of the theory and
logic of the approach. If the prior is inaccurate, it simply represents inac-
curate beliefs that hopefully are improved by the results of the experiment.
The correctness of the prior beliefs is not prerequisite for correctness of the
analysis. While using wrong assumptions (the prior) may result in wrong
conclusion (the posterior), there is no logical inconsistency in this process.
The main idea of the analysis is that the beliefs are improved by the data
and if the prior is “wrong” the posterior will be “less wrong.”

There is a substantial research in the field investigating various approaches
to prior selection. In this book we interpret the prior as the current (before
experiment) beliefs about the UQs. The prior expresses the level of uncertainty
about the true value of the UQ. However, we will also frequently use so-called
uninformative prior which is attempt to express the belief that we know little
about the true values of UQs. For example, one could assign the same prior
probability to every possible value of the UQ (flat prior) naively believing that
this assignment expresses the lack of knowledge. This approach is appealing
from the point of view of ease of the implementation, but in fact it is incorrect
and does not express our actual beliefs. The flat prior, in fact, implements
prior beliefs that all possible true values of UQ have the same probability,
which is a quite specific belief about the reality. By doing this we hope that
information contained in the likelihood overwhelms incorrect beliefs in the
prior. The benefits of the ease of use of flat prior have to be weighted against
the possible inaccuracy in the posterior.

A interesting approach to the selection of objective prior (not requiring a
subjective judgment) was introduced by Bernardo [10], Ye and Berger [113].
In this approach the selection of the prior is determined by the model in BE
stage, and maximizes the expectation of the gain in information (information
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defined in the Shannon sense [91]) that will be brought by the experiment.
Therefore, the prior is used merely as a tool to obtain a posterior, and since
the process is deterministic, the statistical analysis that leads to posteriors
based on reference priors does not require any subjective judgments.

Another type of priors that we would like to mention is the entropy priors
championed by Jaynes [47]. The idea is to maximize the entropy of the prior
distribution in order to minimize the amount of information that the prior
contains (we cover this topic in more detail in Section 6.1.2).

1.7.4 EXAMPLES

To help understand the distributions introduced in previous sections (joint
distribution, likelihood, pre-posterior, and posterior), the following two ex-
amples briefly introduced in previous sections are used.

Example 1.13: Conditional two-dice roll (4)

The example of the conditional dice roll is used in which person A rolls the first
die (f) and then rolls the second die g until number is equal or less than on
the first. Only the final number obtained on the second die g is revealed for the
observer. Therefore the true values of f and g (the true SoN) are known only to
person A and the observer knows only the true value of g in the AE state.

First, we characterize the problem in BE condition. For both Qols f (the value
of first roll) and g (the value of second roll) there are six possible true values of
f and g corresponding to the numbers 1 through 6. We assume that the dice
are “fair” and therefore assign a priori probabilities for each value equal to 1/6.
This is to ensure that the distribution is normalized to 1. Interestingly, for this
case the priors p(f) and p(g) that express the beliefs that the dice are fair are
the same as the non-informative flat prior that assigns equal prior probability
to every possible true value of the Qol. This is purely coincidental and only
infrequently a flat prior will express our exact beliefs.

In order to determine the pre-posterior and posterior for this example, the
joint distribution of p(f, g) is determined first. This can be done using Equa-
tion (1.6). The statistical model is summarized in Table 1.1. Table 1.2 presents
the calculated joint probability. The marginal values of the probability of ob-
taining ¢ (Table 1.2) calculated as ffeF p(g|f)p(f) are presented. The joint
distribution summed over all possible SoNs (pairs {f, g}) is equal to 1 which
can be verified in Table 1.2:

Since the joint distribution is specified, the value of the pre-posteriors can
be found by normalizing values in each row of Table 1.2 to 1. This is done by
dividing values in each row by the corresponding value of p(g) shown in the
last column in Table 1.2. The result of this division is shown in Table 1.3.

Having determined the distribution of the pre-posterior, in AE (Table 1.3), the
posterior can correspond to any row in the table. The selection of an appropriate
row depends on the observed true number obtained in the second roll g. For
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example, if g = 2 is observed, the probability of the value on the first roll f
being 2 is three times larger than that of being 6.

TABLE 1.2
Value of the joint probability f and g

(g, f) p(9) =2 ser (9, f)
f— 1 2 3 4 5 6
gl 1 1/6 1/12 118 1/24  1/30  1/36 147/360
2 0 1/12  1/18 1/24  1/30  1/36 87/360
3 0 0 1/18  1/24  1/30  1/36 57/360
4 0 0 0 1/24  1/30  1/36 37/360
5 0 0 0 0 1/30  1/36 22/360
6 0 0 0 0 0 1/36 10/360
TABLE 1.3

Value of the pre-posterior of f conditioned on g where g is assumed to be
observed in the experiment (dice rolls)

p(flg)

2 3 4 5 6
60/147 30/147 20/147 15/147 12/147 10/147

< o

gl

f—
1
2 0 30/87 20/87 15/87 12/87 10/87
3 0 0 20/57 15/57 12/57 10/57
4 0 0 0 15/37 12/37 10/37
5 0 0 0 0 12/22 10/22
6 0 0 0 0 0 1

1.7.5 DESIGNS OF EXPERIMENTS

Obtaining statistical inferences about UQ based on experimental data and
prior beliefs will be done using the following. The experiments are considered
as means of improvement of the information about the UQ. In BE state the
knowledge about UQs is described by the prior and in AE state by the poste-
rior. Often, the specification of the prior will be very difficult and a pragmatic
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approach will be followed compromising between the accuracy in formulation
of the prior with the ease of implementation. The goal will always be to obtain
the pre-posterior or posterior and based on these distributions make decisions
about a problem at hand. The following defines the experimental design that
will be followed for every problem discussed in this book:

1. Define BE and AE conditions, identify Qols that are unobservable
(UQ) and QoI that we can measure (obtaining their true value) which
are statistically dependent on UQs.

2. For each of Qols specify the range of possible true values.

3. Based on the description of the experiment, formulate the model of
the experiment defined by a conditional distribution.

4. For each of the UQs specify the initial beliefs (prior) in the form of
the prior distribution.

5. For UQs determine the pre-posterior distribution based on the model
and the prior using Bayes Theorem (Section 1.7). If decisions are
based on the actual measurements of OQs determine the posterior.

6. Make a decision based on posterior or pre-posterior depending on a
problem at hand.

In this chapter we cover steps 1 through 5, and in the next chapter we will
describe approaches to decision making (point 6) based on the posteriors and
pre-posteriors.

The steps 1 through 5 define the Bayesian analysis that will be used in
all problems that are discussed in this book. The Bayesian analysis of any
problem ends with providing the posterior or pre-posterior which contains the
complete information about the UQs. This sometimes will not be sufficient in
practical applications. For example, we doubt that providing physicians with a
million-dimensional posterior distribution would be received enthusiastically.
Therefore, the posterior will be summarized in one way or another to provide
easily digestible information for the decision maker. For example, the image
of the distribution of the radiotracer will be a much more reasonable result
provided to physicians than the posterior distribution function. The formation
of the image from the posterior is a decision problem, as a decision needs to be
made about which possible true values of the UQs best represent the reality.
The word “best” used in the previous sentence is undefined at this point
and exact definition will be given in the next chapter discussing the decision
making.

So far, we have introduced four key distributions pictured in Figure 1.6.
Only two of those distributions will be used in this book for decision making,
the pre-posterior and the posterior, covered in Chapter 2.
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Before Experiment (BE) After Experiment (AE)
p(glf)  Model p(G = g|f) Likelihood
p(flg)  Pre-posterior p(fIG =9) Posterior

FIGURE 1.6 Distributions introduced in Chapter 1. It is assumed that OQ is g and
uQ is f.

1.8 EXTENSION TO MULTI-DIMENSIONS

Up to this point, either a single Qol or a pair of single-dimensional Qols
f and g were considered. In real world applications many more Qols will
be used to characterize a problem. The case of multi-dimensional Qols is a
straightforward extension of the presented theory. To simplify the notation
and make it clearer in most cases we will adhere to the convention that all
Qols are divided into two groups: UQs and OQs. We will use vector notation
indicating UQs as f and OQs as g where I and K indicate the number of
elements in those vectors, respectively. Bold non-italic small-letter font will
always indicate vectors.

The probability distribution p(f) is defined as the joint probability distri-
bution of components of the vector f:

p(f) = p(f1. far- -, f1) (1.9)

Similarly, conditional probabilities p(f|g) are defined as the joint probability
of elements of f conditioned on the joint probability of elements of vector g
as:

p(flg) = p(f1, far- s f1lg1, 92, - -, 9K) (1.10)

Sometimes the notation will be used when more than two symbols will be
used to indicate the distributions. For example p(f, g, y) where y is a vector
with J Qols is a joint probability distribution of all elements of vectors f, g,

y:

p(ﬂgd’) :p(f11f27~">ffagla927"'7gK7y17y2a"'7yJ) (111)

All considerations from previous sections about two scalar Qols are easily
transferable to more than two vector Qols.

In the following two sections we present rules that will allow transforma-
tions of the joint and conditional probabilities of multi-dimensional probability
distributions of the Qols.
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1.8.1 CHAIN RULE AND MARGINALIZATION

The chain rule allows expressing the joint probability (e.g., probability distri-
bution of vector Qol) and is the generalization of Equation (1.6),

p( fl 7f27f37"‘7f1) :p(f1|f27f37'"7f1)p(f27f37"‘7f1) (112)
~N Y—m

where underbraces indicate two probability distributions: probability distri-
bution of f; and joint probability distribution fs,..., f;. Applying the above
I — 1 additional times the original joint distribution p(fi,..., fr) can be ex-
pressed as a product:

p(f17f27f37"'7f1) :p(fl‘f27f37"'7f[)p(f2|f37"'7ff) p(f[—l‘f])p((fl) )
1.13

To marginalize multi-dimensional distributions we apply similar rules as
in the two one-dimensional distributions a shown in Example 1.13 for two
dimensions.

p(f) = / rEe) (1.14)

where by G we indicate all possible values of Qols g. If we are interested in
the marginalized density of a single QoI which is an element of f the following
applies

p(fy) = / . /f ) (1.15)

Example 1.14: Application of chain rule, marginalization, and Bayes
Theorem

Suppose we want to express the conditional probability distribution of a single
element of vector f conditioned on a single element of g given conditional
p(glf). The chain rule, marginalization, and Bayes theorem are sufficient for

this task:
It is obtained by
1
phila) = [ / pElDp(e)  (116)
p(gl) S,y fI€F2,..., Fr Jga,..,.9x€Ga,..., Gi

The distributions p(f) and p(g1) were required in order to accomplish the task.
Distribution p(g1) can be obtained from p(g) through marginalization.

In order to express the Bayes Theorem and relations between the model
and pre-posterior (or likelihood and posterior) using multi-dimensional Qols,
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the straightforward generalization of two one-dimensional Qols is used, and
the chain rule described in the previous section,

_ p(glf)p(h)

) (1.17)

p(flg)

1.8.2 NUISANCE QUANTITIES

Sometimes when considering many UQs, some of them will not be of direct
interest. Therefore their value will influence the posterior and make it a higher
dimensional than if the posterior is dependent only on UQs that are of direct
interest. Those quantities that are not of direct interest will be referred to
as nuisance Qols. Since nuisance Qols are always UQs they will be denoted
as NUQs (N+UQs). In the formulation of the statistical analysis used in this
book, nuisance quantities are handled with relative ease. It is done by first
determining the pre-posterior or posterior distributions using methodology
provided in this chapter and then by marginalizing the NUQs. This can be
summarized in the following equations and illustrated by Example 1.15.

Suppose that the vector of NUQs is indicated by f and the posterior of all
unobservable Qols is indicated by p(f, f’|G = g), then the posterior of UQ is
obtained by marginalization:

p(E|G = g) = /f _prfiG=g) (1.18)

Similar marginalization of NUQs can be used to obtain pre-posterior of the

UQ.

Example 1.15: Three scalar Qols —marginalization of nuisance Qols

Suppose we consider a simple model of the experiment with three scalar Qol:
the OQ g, the UQ f, and the NUQ f. Each of the Qols has only two possible
true values of either 0 or 1. The model and the prior are defined in Table 1.4

From Table 1.4 we can formulate the initial beliefs about f and f by marginal-

izing the prior p(f, f) and obtain p(f = 0) = 0.80 and p(f = 1) = 0.20.
Similarly the marginalized prior of NUQ p(f = 0) = 0.40 and p(f = 1) = 0.60.
We also note that the joint prior p( f, f)~ as defined above indicates that f and f

are statistically dependent as the p(f, f) # p(f)p(f) which indicates statistical
dependence based on definition in Equation (1.4) because

A _ o)) pHp() _
p(flf) = () # o) p(f) (1.19)

and therefore p(f|f) # p(f).
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TABLE 1.4

Definition of the model p(g| f, f), the prior p(f, f), the pre-posterior p(f, f|g),
and the pre-posterior with marginalized NUQ

p(glf, f) Imodel]

{,f} = 00 0,1 1,0 1,1
gl 0 0.00 0.10 0.30 0.50
1 1.00 0.90 0.70 0.50
p(f, f) Iprior]
{f,f} = 00 0,1 1,0 1,1
0.30 0.50 0.10 0.10
p(f, f\g) [pre-posterior]
{L,f} = 00 0,1 1,0 1,1
gl 0 0.00 0.38 0.23 0.38
1 0.34 0.52 0.08 0.06
p(f|g)* [marginalized pre-posterior]
f— 0 1
gl 0 0.38 0.62
1 0.86 0.14

Note: The values are given with the precisi0n~of two decimal places.
@ The values of p(f|g) are obtained from p(f, f|g) by adding the first two and the last two
columns. For this simple example this addition corresponds to marginalization.

Example 1.16: Wire-cube of joint probabilities

In this example the data from the previous Example 1.15 is re-used. The idea
is to demonstrate using an illustrative model of wire-cube of joint probabilities
(Figure 1.7(A)) that the joint-distribution contains all statistical information about
the problem at hand and other distributions can be derived from the joint
distribution.

In Figure 1.7, only a few examples are given which demonstrate how to use
the wire-cube to obtain other distributions in BE and AE states. However, all
distributions can be derived with ease. Although only three dimensions are used
and only two possible true values for each Qol, the wire-cube model is correct
in any number of dimensions and any number of possible true values for Qols.
Obviously it would be impossible to represent graphically higher dimensional
wire-cubes.

In Figure 1.7(B), the wire-cube represents the model (conditional probabil-
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ity) of future observation g conditioned on values of f and f. The values of the
model are obtained from the joint probability (from the wire-cube Figure 1.7(A))
by selecting the corners in Figure 1.7(A) that corresponds to the same pair of
values of {f, f} and normalizing them to 1. This is indicated in Figure 1.7(B)
by connecting those corners by a thick line. The representation of pre-posterior
p(f, flg) in Figure 1.7(C) is obtained from the joint Figure 1.7(A) by identi-
fying corners that correspond to the same values of the measurement g and
normalizing them to 1. Those corners are connected by a thick line shown in
Figure 1.7(C). The wire-cube in Figure 1.7(C) represents the pre-posteriors and if
the data is measured in AE (either g = 0 or g = 1) one of the connected thick-line
squares corresponding to observed g will become the posterior. Figure 1.7(D)
illustrates the posterior p( f|g) which is the result of marginalization of p( f, f|g),
which simply adds values of p(f, f|g) in Figure 1.7(C) along f axis. Figuratively
speaking, the cube is squeezed and dimensionality of the distribution reduced.

Based on this example as an exercise, the reader may try to obtain various
likelihoods or quantities as p(f) etc.

1.9 UNCONDITIONAL AND CONDITIONAL INDEPENDENCE

The last idea introduced in this chapter could be one of the most impor-
tant concepts for the design of efficient computational algorithms discussed in
Chapter 3 and Chapter 6. At the same time, it is one of the hardest to prop-
erly understand and gain intuition about. The simple independence of some
Qols f and y was already defined in Section 1.5 and the usual mathematical
property indicating this independence is

p(f,y) = p(fp(y) (1.20)

with equivalent formulations p(y|f) = p(y) and due to symmetry p(f|y) =
p(f). It was explained that independence of y and f indicates that the knowl-
edge of the true value of f does not change uncertainty about y.

If another Qol g is introduced, the joint of three Qols is defined as p(f,y, g)-
The joint can be marginalized over f to p(g,y) and after the marginaliza-
tion the unconditional independence (note that we use the term wuncondi-
tional independence instead of simple independence) is considered again. If
the marginalized joint of g and y is independent (p(g,vy) = p(9)p(y)), then the
g and y are unconditionally independent. Unconditional independence is de-
fined in situations where at least three Qols are considered and all Qols other
than g and y are marginalized. Once obtained, the independence for marginal-
ized joint p(g,y) is assessed using standard methods (e.g., Equation (1.20)).
The difference between statements that g and y are independent or uncondi-
tionally independent is that in the first case the SoN is defined just by two
Qols, whereas unconditional independence is used when SoN is defined by
more than two Qols and other quantities are marginalized.
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p(f.f.9) p(glf. f)

(A) 030 0.45 B) 100 0.90

Lo 0.03 E0 0.54
L0000 i 1005 000 ) 0.10

003 05 030 0.50

p(f. fl9)

(C) 0.34 0.52
: i Pl i
{f, f.g} {0,0.1} {0,1,1}
: g g g 110.1} 1,1}
: 0.00 © o i0.38 0.38
: 0,0,0 {0,1,0}

0.62 (F) {1,0,0} {1,1,0}

FIGURE 1.7 (A) The wire-cube represents the joint probability of three Qols f,
f , and g. There are only two possible true values for each Qol and each corner
of the cube correspond to different values of f, f, and g, which are shown in (F).
The values of each Qol are either 0 or 1. (B), (C), (D) show some conditionals and
marginalizations described in detail in Example 1.16.

Consider a conditional joint p(g,y|f) which is a joint distribution of ¢
and y conditioned on f which is another way of saying the we consider joint
distribution of g and y assuming that the true value of f is known.

Therefore, if the value of f is known we define conditional independence
(conditioned on the knowledge of f). Similar to Equation (1.20) the condi-
tional independence of g and y given f can be mathematically summarized

by

p(g,ylf) = p(glfp(ylf). (1.21)

The above equation has to be true for all f € F' for g and y to be considered
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conditionally independent given f. Unconditional independence of g and y
(p(g,y) = p(g9)p(y)) does not imply they are also conditionally independent
(when the true value f is known) and vice versa.

The definitions are somewhat abstract and therefore we now put these ideas
in some more intuitive context.

Notation First let’s introduce a symbol | which indicates the indepen-
dence and therefore g 1 y is read as ¢ is independent of y. If g and y are
dependent, that will be indicated simply by ‘not g L y’. The conditional
independence and dependence of g and y given f are indicated by g L y|f
and ‘not g L y|f’, respectively.

Using these conventions let’s consider the following four scenarios:

1. (not g L y) and (not g L y|f)
The Qols g and y are dependent without any information about f
(not g L y) and with knowledge of true value f (not g L y|f). This
indicates that if either g or y is known, that would change the knowl-
edge about uncertain true value of y or g regardless of whether any
knowledge about true value of f is available. However, this does not
mean that the change in knowledge will be the same in cases when
we have and we do not have information about the true value of f.

2. (9Lly)and (not g Lylf)
In this situation without the knowledge of true value of f the g and
y are independent and no gain in reducing the uncertainty in g or
y can be obtained if the true value of y or g becomes known. Upon
knowing the true value of f (more information available) the g and
1y become dependent. To illustrate this, let’s consider the following:
Consider two people A and B. The probability of A getting a lung
cancer and probability of B getting a lung cancer in the next 10 years
without any other information seem to be independent. However,
upon obtaining the information that they both smoke, the probabil-
ities are no longer independent, as they both have a higher chance
of getting the lung cancer. If the information that is obtained is that
person A smokes and person B does not, it makes person A more
likely to have a cancer than person B in which case dependence is
introduced again, etc.

3. (not g Ly)and (g Lylf)
This situation applies to imaging and is discussed in Section 3.3.3.
For this case, the unconditional dependence is “removed” if the true
value of f is known. Because this case is important for the applications
discussed in this book, it is illustrated with Examples 1.17 and 1.18.

4. (g9 Ly)and (g Lylf)
The final case is in a sense the least interesting out of 4 cases listed
here. It states that no information can be gained about Qols g or y
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upon knowledge of true value of y or g without or with the knowledge
of true value of f.

Example 1.17: Three-dice roll (1) — conditional independence

The conditional example with two-dice roll (Example 1.10) is somewhat modi-
fied and three dice are used. Here, a person A rolls die 1 and notes the result f.
Then, the same person A rolls die 2 until the number is less than or equal to the
number obtained in roll 1 and the result of the last roll becomes g. He repeats
the last steps with die 3 obtaining y.

Y

Only the result of g and y are made known to person B who analyzes the
problem. Suppose that first we want to establish if there is unconditional inde-
pendence between g and y. Intuitively, we suspect that there is a dependence
because if, for example, g = 1 it makes it possible that the unknown f was also
1 in which case y must be 1 as well because of the description of the experi-
ment. It seems that if g is 1 it makes it more probable that y = 1 than any other
number 2 through 6 compared to a case when no dependence is considered.

In order to verify this let’s construct the marginalized distributions p(g, y),
p(g), and p(y) and then confirm that p(g,y) # p(g)p(y). In doing so we can
also confirm our intuition that p(f = 1|g = 1) > p(f = 1)p(g = 1). First, we
determine the joint p(g, y) by p(g,y) = 2?21 p(g,y|f)p(f). The p(f) is known
and equal to 1/6. The p(g, y|f) can be easily deducted from the description of
the experiment and for example for f = 3 it is:

y=1 y=2 y=3 y=4 y=5 y==6
g=1 1/9 1/9 1/9 0 0 0

g=2 1/9 1/9 1/9 0 0 0
g=3 1/9 1/9 1/9 0 0 0
g=4 0 0 0 0 0 0
g=5 0 0 0 0 0 0
g=6 0 0 0 0 0 0

Similarly the p(g,y|f) can be constructed for other values of f 1, 2, 4, 5,
and 6. Note that we obtained the entries of this matrix by simply multiplying
probabilities p(g|f) and p(y|f) because it is obvious that upon knowing f
(hypothetically) the rolls 2 and 3 are independent. And therefore p(g,y|f) =
p(g]f)p(y|f) which is the definition of conditional independence. Although the
conditional independence is obvious in this example, it will not always be the
case with real-world problems considered in this book.
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y=1 y=2
g=1 15369 1769
g=2 1769 1769
g=3 869 869
g=4 469 469
g=>5 244 244
g==6 100 100

y=3 y=4 y=5 y=6

869
869
869
469
244
100

469
469
469
469
244
100

244
244
244
244
244
100

100
100
100
100
100
100

33

We multiply p(g,y|f)’s by p(f) = 1/6 and add results obtaining p(y, g):

X
21600

Because the above 2D discrete distribution is symmetric upon exchange
of rows and columns, it follows that p(g) must be equal to p(f), and can be
obtained by summing either the columns or the rows. Once this is done, the
values of p(g,y) vs. p(g)p(f) are plotted in Figure 1.8. The plots show that
g and y are not unconditionally independent and confirm our intuition about
p(f =1lg=1)>p(f=1)p(g=1).

— 0.12 —
0.25} H ool |
5 020 i o0sl |
2 05| 1 006l ]
£ 010f 1 004} ]
0.05} 1 002} ]
0.00 0.00
0.030 0oL
0.025} H 0.012| !
2 0.020] H0.010} !
£ 0015} 1 0-008F 1
5 0.006 1
£ 0010} 1
2 0.004f 1
0.005¢ 10.002} :
0.000 0.000 L~ e

FIGURE 1.8 Comparison of p(f, g) and p(f)p(g) for Example 1.17.

the points were added for clarity.

Lines connecting
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Few of the properties of the conditional independence are specified below.
From the definition g L y for p(g,y|f) = p(9]f)p(y|f). The alternative defini-
tion is

pglf,y) = plgly) (1.22)
The above is more telling than Equation (1.21) because it directly indicates
that the knowledge of the true value of f is irrelevant for gaining any in-
sights about the true value of g if the true value of y is known. The proof of
equivalence of Equation (1.21) and Equation (1.22) is shown below:

~plg,u, f)  plalf,v)p(fy)
e )

Now since p(g,y|f) = p(g]f)p(y|f) we obtain that p(g|f,y) = p(gly).
Using similar considerations it can be shown that if f L gly then g L f|y.

An interesting property such that f,y L g1]|ge implies f L ¢g1]|g2 and y L g1]g2
can be shown as well (g1 and gy are two different Qols).

=p(glf,y)p(ylf) (1.23)

Example 1.18: Three-dice roll (2)-conditional independence

Another example relevant to some properties of imaging systems that will be
discussed in Chapter 3 is considered. We have a person A rolling die 1 f and
then, as before, rolling die 2 until the number (y) is smaller or equal to the
number rolled on die 1. Then, he proceeds to rolling die 3; however, he rolls
the die 3 until the number is smaller or the same as the number obtained in roll
2.

/ - Y - g

Note the difference with the previous Example 1.17 where roll 3 was done
with respect to roll 1. In this example it can be shown that the result of roll 3 is
conditionally independent of the result of roll 1 if the number obtained in roll 2
is known. In other words

p(glf,y) = p(gly) or g L fly. (1.24)

If y is known the knowledge of f is superfluous and unnecessary and does not
bring any additional information about g.

This and other properties of conditional independence listed above can be
illustrated using a similar approach as used in Example 1.17. The exercise of
demonstrating this is left for the reader.

1.10 SUMMARY

In this chapter the basics of the statistical approach that will be used in this
book was introduced. The are two main points that have to be emphasized.
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The first is that two stages of knowledge about the problem are identified.
The before experiment and after experiment stages which are denoted as BE
and AE. The second is that during the BE stage quantities of interests (Qol)
are identified that will be considered and grouped into two categories: (1)
quantities that will be observed (OQs) and their true values will be revealed
in the experiment and (2) Qols that will still be unknown in the AE stage and
the knowledge about their true values uncertain (UQs). It is assumed that all
quantities of interest have a deterministic true value and the knowledge (or
uncertainty) about the true values is described by probability distributions.

Once the experiment is performed and probability distributions of known
quantities are reduced to delta functions, the probability distributions of UQs
(that BE are represented by priors) are modified if there is a statistical depen-
dence between UQs and OQs. The formalism of modification of BE and AE
distributions of UQs was introduced by the means of the Bayes Theorem. In
order to be able to use the Bayes Theorem it was shown that the model of the
experiment (conditional probability of OQs conditioned on UQs) is required
as well as the prior probability of UQs. In all of the above, the probability
distributions are interpreted as measures of plausibility that a given value of
Qol is true [13, 22, 88]. This plausibility can be either a subjective belief which
reflects the level of uncertainty in knowledge of the true value of the Qols,
or other distributions chosen for cases where subjective knowledge is poor or
there are difficulties in summarizing the knowledge with a distribution.

This lack of objectivity in Bayesian formulation of the statistics is one of the
major criticisms of the Bayesian approach. This issue was already discussed
in Section 1.7.3 and here we reiterate our view on this subject. In applications
of statistical analysis in medial imaging and medicine the ultimate goal of the
imaging or medical procedures is to make a decision. In imaging one of the
most frequently performed tasks is to summarize imaging data by a single
image. This becomes a decision problem because usually there will be many
images that could be obtained from data acquired by some physical apparatus
that are plausible. For example, we can filter images and by adjusting parame-
ters of the filter providing an infinite number of filtered images at which point
we need to decide which of those images should be chosen to accomplish the
task at hand. Other decisions are made such as whether disease is present or
not, etc.

Any time a decision is made based on uncertain data, the subjectivity
must be used to make this decision. In the Bayesian model of uncertain data,
the subjectivity is introduced explicitly by the definition of the prior (prob-
ability distribution of UQ in BE condition) and by the “loss function” (see
Section 2.2) when decisions are made. In classical statistics inferences from
the experiment are objective?. For example, data may be summarized by the

4This assuming that the model is correct. In fact, a statistical analysis is always condi-
tional and there are no objective analysis per se, because assumption about the model of
the experiment has to be made.
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P-value which is the probability of obtaining at least as extreme result as
was observed assuming some hypothesis (or model of the experiment) is true.
However, in order to make a decision (reject the hypothesis or not) the signif-
icance (the value of the threshold) has to be selected BE. This selection is a
subjective choice that should be varied based on likelihood of the hypothesis.
The misunderstanding of the pseudo-objectivity of classical statistics leads
to many incorrect conclusions found in medical literature [35, 46, 89, 101]. For
example, the classical hypothesis testing used extensively in medical imaging
and medicine, the experimental evidence that is summarized by the classical
methods by the P-value should always be evaluated in the light of plausibility
of the hypothesis (see the next example); however, the classical statistics pro-
vide only limited means for quantitative combination of the findings from the
data and plausibility of the hypothesis, and plausibility of hypothesis is seldom
discussed in the context of objective evidence summarized by the P-value.

Example 1.19: Summary of experimental evidence: P-values

Suppose we roll a six-sided die thee times and we obtain six all three times. Using
measure of classical statistics the null hypothesis that obtaining any number is
equally likely can be rejected with a high statistical significance (low P-value).
Therefore the objective analysis of the data says that the die is rigged. Obviously
any reasonable decision maker who uses prior knowledge would require much
substantial evidence to be convinced that the die is “unfair” and based on
this subjective judgment, the null hypothesis will not be rejected based on
the mentioned experiment. In order to do so, the rejection region, has to be
equal to much lower value than P=0.05 or P=0.01 used so extensively in the
field. Perhaps for the example with die the significance level should be set at
107 level. Looking through scientific literature, it is rare that investigators ever
discuss the reasoning behind choosing the classical statistical significance level
used in their work.

We argue that the use of Bayesian methods (e.g., as the BEAE view) is jus-
tified and subjectivity is unavoidable when making decisions about uncertain
events. The use of Bayesian approaches force investigators to express their
beliefs in a form of the prior rather than combine in some unspecified way the
experiential evidence (summarized for example with the P-value) with prior
beliefs to make decisions. In medical imaging, decision making is the end-point
of any imaging procedure (e.g., disease present or not, disease progresses or
not, etc.) and therefore the issue of combining the experimental evidence with
the prior beliefs in some coherent way is of utmost importance.



