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Introduction

In the conference there was a series of talks devoted to Kato’s work on the
Iwasawa theory of Galois representations attached to modular forms. The
present notes are mainly devoted to explaining the key ingredient, which is
the Euler system constructed by Kato, first in the K,-groups of modular
curves, and then using the Chern class map, in Galois cohomology. This
material is based mainly on the talks given by Kato and the author at the
symposium, as well as a series of lectures by Kato in Cambridge in 1993. In
a companion paper [29] Rubin explains how, given enough information about
an Euler system, one can prove very general finiteness theorems for Selmer
groups whenever the appropriate L-function is non-zero (see §8 of his paper
for precise results for elliptic curves).

Partly because of space, and partly because of the author’s lack of un-
derstanding, the scope of these notes is limited. There are two particular
restrictions. First, we only prove the key reciprocity law (Theorem 3.2.3 be-
low), which allows one to compute the image of the Euler system under the
dual exponential map, in the case of a prime p of good reduction (actually, for
stupid reasons explained at the end of §2.1, we also must assume p is odd).
Secondly, we say nothing about the case of Galois representations attached
to forms of weight greater than 2. For the most general results, the reader
will need to consult the preprint [17] and Kato’s future papers.

Kato’s K, Euler system has its origins in the work of Beilinson [1] (see
also [30] for a beginner’s treatment). Beilinson used cup-products of modular
units to construct elements of K, of modular curves. He was able to compute
the regulators of these elements by the Rankin-Selberg method and relate
them to the L-function of the modular curve at s = 2, in partial confirmation
of his general conjectures [1; 27] relating regulators and values of L-functions.

Kato discovered that, by using explicit modular units, one obtained norm-
compatible families of elements of K,. These modular units are the values,
at torsion points, of what are called here Kato-Siegel functions. These are
canonical (no indeterminate constant) functions on an elliptic curve (over
any base scheme) with prescribed divisors, which are norm-compatible with
respect to isogenies. Such functions were, over C, first discovered by Siegel
— the associated modular units were studied in depth by Kubert and Lang
[19]. Over C generalisations of these functions were found by Robert [28]. Tt
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was Kato [16] who first found their elegant algebraic characterisation. In §1 T
have given an “arithmetic” modular construction of these functions, which is
more complicated than Kato’s but at least reveals the key fact behind their
existence — namely, the triviality of the 12th power of the sheaf w on the
modular stack. (The Picard group of the modular stack was computed by
Mumford [25] many years ago.)

In §2 we turn to K-theory, and give a fairly general construction of the
Euler system in K, of modular curves, and the norm relations. It is relatively
formal to pass from this to an Euler system in Galois cohomology of (say)
a modular elliptic curve. The hard part is to show that the cohomology
classes one gets are non-trivial if the appropriate L-value is nonzero. In
his 1993 Cambridge lectures, Kato explained how this can be regarded as a
consequence of a huge generalisation of the explicit reciprocity laws (Artin,
Hasse, Iwasawa, Wiles ... ) to local fields with imperfect residue field. This
is the subject of the preprint [17]. At the Durham conference he sketched a
slightly different proof, using the Fontaine-Hyodo-Faltings approach to p-adic
Hodge theory. In §3 we give a stripped-down proof of a weak version of one
of the reciprocity laws in [17] in the case of good reduction, using a minimal
amount of p-adic Hodge theory.

In §4 we explain how Kato uses the Rankin-Selberg integral (very much
as Beilinson did) to compute the projection of the the image of the dual
exponential into a Hecke eigenspace. Finally in §5 we tie everything together
for a modular elliptic curve.

The appendix to §2 (which is the author’s only original contribution to
this work) is an attempt to extend Kato’s methods to other situations. We
construct an Euler system in the higher K-groups of (a suitable open part
of) Kuga-Sato varieties. This is a precise version of the construction used
in [32] (see also §5 of [9] for a summary) to relate archimedean regulators
of modular form motives and L-functions. The p-adic applications of these
elements remain to be found.

I have many people to thank for their help in the preparation of this
paper. Particular mention is due to Jan Nekovai. He encouraged me to think
about norm relations in 1994, although in the end that work was overtaken
by events, and all that remains of it is the appendix to §2. It is only because
of his insistence that §§3-5 exist at all, and his careful reading of much of
the paper eliminated many errors (although he is not to be held responsible
for those that remain). T am also grateful to Amnon Besser, Spencer Bloch,
Kevin Buzzard, John Coates, Ofer Gabber, Henri Gillet, Erasmus Landvogt
and Christophe Soulé for useful discussions. Karl Rubin read the original
draft of the manuscript and made invaluable suggestions. Above all, it is
a great pleasure to thank Kato, the creator of this beautiful and powerful
mathematics, for encouraging me to publish this account of his work and for
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pointing out some blunders in an earlier draft.

This paper was begun while the author was visiting the University of
Miinster in winter 1996 as a guest of Christopher Deninger, and completed
during a stay at the Isaac Newton Institute in 1998. It is a pleasure to thank
them for their hospitality.

Notation

If G is a commutative group (or group scheme) and n € Z then [xn],: G — G
is the endomorphism “multiplication by n”, written simply [xn] if no confu-
sion can occur. We also write ,G and G//n for the kernel and cokernel of [xn/],
respectively.

Throughout this paper we use the geometric Frobenius, and normalise the
reciprocity laws of class field theory accordingly (see §3.1 below for precise
conventions, as well as the remarks following Theorem 5.2.1).

The symbol “=" is used to denote equality or canonical isomorphism. We
use the usual notation “:=" to indicate that the right-hand expression is the
definition of that on the left (and “=:" for the reflected relation).

1 Kato-Siegel functions and modular units

1.1 Review of modular forms and elliptic curves

We review some well-known facts about the moduli of elliptic curves. See
for example [7; 8; 18, Chapter 2]. For any elliptic curve f: F — S, with
zero-section e, we have the standard invertible sheaf

Wg/s = f*Q};/s = e*Q}E/S'

From the second description (as the conormal bundle of the zero-section of
E/S) we have the isomorphism wy ¢ = €*Op(—e¢). Because Qp ¢ is free
along the fibres of f, in fact Wp/s = :E*Q};/S for any section x € E(S).

The formation of wp g is compatible with basechange — in fancy language,
w is a sheaf on the modular stack M of elliptic curves.

A (meromorphic) modular form of weight k& is a rule which assigns to
each E/S a section of w%]js, compatible with basechange. By definition this
is the same as an element of T'(M,w®"). The discriminant A(E/S) is a
nowhere-vanishing section of w%}é compatible with basechange, and it defines
an invertible modular form A of weight 12. From this it follows in particular
that

e The set of nowhere-vanishing sections of w®!?? is {+ A4}, for any integer
d.
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Let N > 1 be an integer. The modular stack My v classifies pairs
(E/S,a) where a: E — E' is a cyclic isogeny of degree N of elliptic curves
over S. (When N is not invertible on S the definition of cyclic can be found
in [18, §3.4].) The functor (E,a) — E defines a morphism ¢: My, vy — M.
A (meromorphic) modular form on Tj(N) of weight k is a section of c*w®*
over MFO(N). Equivalently, it is a rule which associates to each cyclic N-
isogeny a: E — E' of elliptic curves over S a section of w%’/“s, compatible

with arbitrary basechange S’ — S. As well as A, one has the modular form
AW of weight 12, defined by

ANM(E 25 E') = o* A(E").
It is invertible exactly where « is étale. In particular, it is invertible on
S ® Z[1/N].
Suppose N = p is prime. The reduction of MFO(p) mod p has two irre-
ducible components, one of which parameterises pairs (F/S,«) where « is

Frobenius, and the other those pairs where « is Verschiebung. On the first

component A® vanishes, and on the second it does not.
Let m be the denominator of (p — 1)/12. Then A® . A~ is the m'

power of a modular function u, € F(Mro(p), ), which is invertible away

from characteristic p by the previous remarks. It is a classical fact [26] that
F(Mro(p) ® Q, O*) = < *,'LL >
and therefore
F(Mro(p), O*) = {:I:]_}
Recall the Kodaira-Spencer map (see e.g. [18, 10.13.10]); if E/S is an elliptic
curve and S is smooth over 7', one has an O¢-linear map

If T = SpecQ and E/S is the universal elliptic curve over the modular
curve Y(N), N > 3 (the definition is recalled in §2.2 below), then KS is an
isomorphism.

If S S, E < E is an extension of E to a curve E/S of genus 1 (not
necessarily smooth), and the identity section e € E(S) extends to a a section
e: S — E whose image is contained in the smooth part, then wgs = € Qg/g
is an invertible sheaf on S extending wpg. If S is smooth over the base

scheme 7', and S is the complement in S of a divisor S> with relative normal
crossings, the Kodaira-Spencer map extends to a homomorphism

KS%/5: w%jEAQ%/T(logSOO). (1.1.1)

IfS = X(N)q for N > 3 and E is the regular minimal model of the universal
elliptic curve, then (1.1.1) is an isomorphism.
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1.2 Kato-Siegel functions

If © is a principal divisor on an elliptic curve over (say) a field, there is in
general no ‘canonical’ function with divisor . For certain special divisors,
such canonical functions do exist. In their analytic construction they have
been used extensively in the theory of elliptic units. Kato observed that they
have a completely algebraic characterisation. Here we give a slightly more
general, modular, description of such a class of functions.

Theorem 1.2.1. Let D be an integer with (6, D) = 1. There is one and only

one rule ¥, which associates to each elliptic curve E — S over an arbitrary

base a section 1933/5) € O*(E — ker[x D)) such that:—

(i) as a rational function on E, ﬁ,(jE/S) has divisor D?(e) — ker[x D];

(i1) if S" — S is any morphism, and g: E' = Ex ¢S" — E' is the basechange,

then g*9(/S) = g#'/1s).

(i1i) if a: E — E' is an isogeny of elliptic curves over a connected base S
whose degree is prime to D, then

o, OE/S — gE'IS)

(iv) 9 =19, and ¥, =1. If D = MC with M, C > 1 then
x M), 0, = 92" and 0, o [x M] = 9, /95 .
In particular, [x D], 9, = 1.

(v) if T € C with Im(r) > 0 and E_/C is the elliptic curve whose points are
C/Z + 77, then 191()E*/(C) is the function

D—-1

(=1)"7 O(u, 7)?°O(Du, )"
where

@(U,T) = q%(t% — tf%) H(l _ q"t)(l . qntil)

and q= eQTI'iT’ t = 627riu.

Remarks. (i) We do not require that D be invertible on S.

(ii) Locally for the Zariski topology, any elliptic curve may be obtained by
basechange from an elliptic curve over a reduced base. It is therefore enough
to restrict to reduced base schemes S.
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(iii) Properties (i) and (iii) alone already determine 1933/5) uniquely; any
other function with the same divisor is of the form ud, for some u € O*(S),
and applying (ii) for the isogenies [x2], [x3] would give u! = u = u’, whence
u=1.

(iv) In down-to-earth terms, if S = Spec k for an algebraically closed field
k then for a separable isogeny «: E — E', the property (iii) is just the
distribution relation

[T 9570 = o7 ™), for any y € F'(k).

z€E(k)
afz)=y

(v) Over C this theorem was obtained by Robert [28], who proves rather
more: he shows that for any elliptic curve E/C and any finite subgroup
P C F of order prime to 6, there is a certain canonical function with divisor
#P(e) — P and properties generalising those of J,. One can prove his more
general result in a manner similar to the proof of 1.2.1; in place of the modular
form AP°~! one should use A(E)#P/3*A(E/P), where : E — E/P is the
quotient map.

Proof. We begin with the first two conditions. First observe that if S is a
spectrum of a field, then the divisor ker[x D] — D?(e) is principal (because D
is odd, the sum of ker[x D] — D?(e) in the Jacobian is zero). To give a rule
Y, satisfying (i) and (ii) is equivalent to giving, for any elliptic curve E/S,
an isomorphism of line bundles on FE

O, (kerx D]) =5 O, (D%) (1.2.2)

compatible with basechange. We have just observed that the line bundles
are isomorphic when restricted to any fibre of F/S. Since we can assume
(by remark (ii) above) that S is reduced, the seesaw theorem tells us that
to give an isomorphism (1.2.2) is equivalent to giving an isomorphism of the
restriction of the bundles to the zero-section. In other words, the existence
of ¥, is equivalent to finding, for each E/S, a trivialisation of the bundle

e*Op(ker[x D)) ® e*O(D?)" = e*x D]*O4(e) ® e* O (—D%)

= e*OE(e)®(1_D2)

®(D?*-1
= wE&S )

compatible with base-change. Note that (6, D) = 1 implies D> =1 (mod 12).

There are then exactly two non-vanishing sections of w%%tl) compatible

with arbitrary basechange, namely +A(E/S)(P*~1/12 Choose one of them,
and let ¢(Z/9) be the corresponding function on E — ker[xD]. So the rule
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(p: B/S s ¢'P/9) satisfies properties (i) and (ii). In a moment we will see
that exactly one of +¢ satisfies (iii). (See also remark 1.2.3 below).

By the basechange compatibility (ii), we are free to make any faithfully
flat basechange in order to check (iii). There exists such a basechange over
which o factors as a product of isogenies of prime degree. It is therefore
enough to verify (iii) when dega = p is prime. The quotient

9,(E/S,0) = a,¢FH(¢ED) 1 e 0(S)

is compatible with basechange. It therefore defines a modular unit g, €
(M, (), OF), and so g,(E/S, a) € {£1} for every (E/S,«). Moreover the
sign depends only on p.

To determine the sign, evaluate g, (E/F,, ;) for an elliptic curve over
and its Frobenius endomorphism. The norm map Fp,: k(E)* — k(E)* is
then the identity map, so g,(F, Fj;) = 1, and therefore if p is odd we have
g, = +1. Notice that replacing ¢#/5) by —¢#/5 does not change g, for p
odd, but replaces g, by —g,. Therefore for exactly one choice ¥, = +¢ it will
be the case that g, = +1, so exactly one of these choices satisfies (iii).

Now for property (iv). Evidently ¢ ,, also satisfies the characteristic prop-
erties (i) and (iii), hence ¥_, = 9. Also J, = 1 for the same reason. The
function [x M|, 9, has divisor M?(C?(e) — ker[xC]) and is compatible with
base change, so we can write x M],9, = e¥2’ for some ¢ = +1. Now prop-
erty (iii) gives

61961\'/[2 = [XM]*’&D = [XM]*[XQ}*,&D =
= [x2],[xM], 0, = [x2],(e9)") = e*0" = 0"

and so € = 1. The same calculation works for M = D by writing v, = 1.
If D = MC then the functions 9, o [x M] and 9, /9 both have divisor

C? ker[x M] — ker[x D]

hence their ratio is a unit compatible with basechange. The norm compati-
bility (iii) then shows that this unit equals 1, as in Remark (iii) above. This
proves property (iv).

Finally we check (v). Classical formulae (as can for example be found in
[39] — the function © is essentially the same as the Jacobi theta function o)
show that

F(u, 1) = O(u, T)DQG(DU, )t

is a function on E_ with divisor D?(e) — ker[x D], and is SL,(Z)-invariant.!

Hence F'(u,7) is a constant multiple (independent of 7) of 191()E*/©. As a

u at +b
ctr+d er+d)’

!'The SL,(7) action is: <Z Z) s (u, 1)~ <
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formal power series,

F = q(D271)/12t7D(D71)/2H (

n>0

1 — qnt)D2 (1 o qnt—l)D2
1 — qntD 1 — qnth

n>0

is a unit in the ring of Laurent g-series with coefficients in Z[t, 1/t(1 — t7)].
So by the g-expansion principle, the constant has to be +1. To determine
the sign, consider any elliptic curve E_ defined over R with 2 real connected
components. For such a curve one can assume that Re(7) = 0. (To be
definite, take E to be the curve

V2= X - X

for which 7 =4.) The real components of E_ are the images of the line seg-
ments [0, 1] and [7/2,1+7/2] in the complex plane. We compute [x2], F'(u, T)
for such a curve. The explicit formula for ©(u, ) shows that the first non-
vanishing u-derivative of F'(u,7) at the origin is real and positive. On the
interval [0, 1], F'(u, 7) has simple poles at u = k/D (1 < k < D—1) and so by
calculus (—1)P=Y/2F(1/2,7) > 0. On the segment [7/2,1 4 7/2], F is real,
finite and non-zero, hence the product F(7/2,7)F((1+ 7)/2,7) is positive.
Therefore at the origin,

1 1
2], F(u,7) = F(5, ) (2=, r)P( 2T ) F(

~ (=1)P=D72 % (positive real) x u”*~!

. 7)

and so [x2],F(u,7) = (=1)P=Y2F(u, 7). O

Remark 1.2.3. As we saw in the proof, ¥, corresponds to one of the two
nowhere-vanishing modular forms of weight (D? — 1)/12. Using (v) it is easy
to determine which. The form arises by restriction to the zero-section of the
composite isomorphism

X D]* O (e) < Op(ker[x D]) —~— O (D%)

< 9E/S)

since e*[x D]* = e*. Therefore the g-expansion is D times the leading coeffi-

0

cient in the expansion of 191()E*/ in powers of ¢, which from (v) is easily seen

to be
(0" Tl = 2 = ()5 A
n>0

Remark. Suppose that E/S is an elliptic curve over an integral base S, and
that P C F(S) is a finite group of sections. Let

D= me(:c) € Z[P]

zEP
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be a divisor with Y m, = 0 and ) m_,x = e. In the case when S is the
spectrum of a field, © is principal, but in general this will not be the case.
For example, suppose that P = {e, z} for a section z of order 2, disjoint from
e. Then © = 2(x) — 2(e) is principal if and only if ""%75 = e*0(D) is trivial.

Consider a Dedekind domain R containing 1/2, and an ideal A C R which
has order 4 in Pic R. Let A* = (a) and let E/R be the elliptic curve given by
the affine equation

y* = a(a” - a)

over the field of fractions of R. Take an open U C Spec R over which A
becomes principal, locally generated by «, say. Then a = a’c for some unit
e € O(U)*, and an equation for F over U is

(y/a®)? = (z/0®)((x/a?)* —¢).
Therefore Wg/R 18 locally generated over U by
d(z/a®) ad_:r
y/o? Y
i.e. wy p ~ A. So the divisor 2(0,0) — 2(e) is not principal on E/R.

Y

1.3 Units and Eisenstein series

Let E be an elliptic curve over an integral base S, let D > 1 be an integer
prime to 6, and x € E(S) a section. If x is disjoint from ker[x D], then one
obtains a unit ¥, (z) = 2*9J, € O*(S) on the base. In particular, suppose that
x is a torsion section of order N > 1, with (N, D) = 1. Since S is integral, z
has order N at the generic point. Under either of the following conditions it
is automatic that x Nker[x D] = {:

e N is invertible on S (then x has order N in every fibre); or

e N is divisible by at least two primes.

In the classical setting one takes S to be a modular curve (over C) and the
functions ¥, (x) are the Siegel units, studied extensively (see for example [19]).

There are at least two ways to form a logarithmic derivative from the pair
(95, z). The simplest is to form

dlog (9, (z)) € T(S, Q)

which in the classical setting gives weight 2 Eisenstein series. The other
way, which leads to weight 1 Eisenstein series, is to first form the “vertical”
logarithmic derivative

dlog, ¥, € I'(E — ker[x D], QlE/S).
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Since wp g = 7*Qp ¢ (see §1.1) we obtain
pEis(z) = pEis(E/S, x) := 2" dlog, ¥;, € T(S, 2" Q. 5) = T(S,wp)s),

a modular form of weight one. Notice that in this construction one can start
with any function whose divisor is D?(e) — ker[x D], since it will be of the
form g1, for some g € O*(S), and dlog, g = 0.

From property 1.2.1(iv) we have

(ﬁD)DIQ' Upy o [x D] = (ﬁD')DQ' Up o xD']
and therefore
D" dlog, 9, — x D']* dlog, ¥, = D*dlog, ¥, — [x D]*dlog, J,,.  (1.3.1)

Now [x D]* is multiplication by D on global sections of Q}E/S. Hence (1.3.1)
gives

D"”. Eis(E/S,z) — D'+ ,Eis(E/S, D'z)
= D*. Eis(E/S,x) — D - ,Eis(E/S, Dx).

It follows that for any D =1 (mod N), the section

1 . 1

Eis(E/S,z) == m]aw)

(1.3.2)

is independent of D. Now if p /2N, there exists D > 1, D =1 (mod N) with
(D,6) =1 and p/D(D — 1), so one can glue the various Eis(E/S, z) for the
different D to get a section Eis(E/S,z) € T'(S®Z[1/2N],w). For any D one
then has

pEis(E/S,x) = D*Eis(E/S,z) — D Eis(E/S, Dx).

Suppose E = C/A is an elliptic curve over C, with A = Zw, + Zw,. Let u
be the variable in the complex plane. Using the function o(z, A)P* /o(Dz, A)
(Weierstrass o-function) in place of ¥, gives

dlog, ¥, = (D*¢(u, A) — D{(Du, A)) dz

and if z € F(C) — {e} is the torsion point (a,w, + a,w,)/N € N~'A/A, with
(N,D) =1, then

1

; (mlwl + meQ) |m1w1 + m2w2‘5 s=0

Eis(E/C,z) = du.  (1.3.3)
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On the Tate curve Tate(q) over Ay = Z[uy]((¢"/"Y)) there is the canonical
differential dt/t, and the level N structure

Z/NZ)? — ker[xN], (a,a,) mod N s (4q®/N.
1) Qg N

as /N

If  is the point (y' ¢ then by explicit differentiation of the infinite product

in Theorem 1.2.1(v)

Bis(Tate(q)/ A1) = | B,(2) (X sy} ars

n>0 N de7, dn

7=ay mod N

if0 <a, <n,0<a, <n. Here B;(X) = X —1/2is the Bernoulli polynomial.
(In the case a, = 0 # a, the constant term is somewhat different.) In
particular, Eis(Tate(q)/Ay, x) is holomorphic at infinity.

One can also compute the logarithmic derivative of the unit J,(z) € A%.
The result is most interesting if one works with absolute differentials, that is
in the module of (g-adically separated) differentials

Q/\N/Z =Ay- d(ql/N) ® Ay/Iy - dCy

where I, C Ay is the annihilator of d(y (and equals the ideal generated by
the different of Q(u,)). The key point is that the logarithmic derivative of
a typical term in the infinite product for ¥, (z) is

dlog (1 - G gmie)
_(Ea glmtag/N)

1 — (Eugma/N)

=+ (a, dlog y + (a, + mN) dlog ¢*/"N)

whereas the corresponding term for the vertical logarithmic derivative is

_(Er glmtay/N)

dlog(1 — t='¢™) =+ dlogt.

t=Clgn/N 1 — (i glmEa/N)
Comparing gives the following striking congruence:
Proposition 1.3.4. If v = (3'¢®/N € Tate(q)(Ay), then

pEis(Tate(q) /Ay, )
dlogt

dlog 9, (z) = a; dlog ¢ + a, dlog¢"/Y) mod N.
D 1 N 2
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2 Norm relations

2.1 Some elements of K-theory

For a regular, separated and noetherian scheme X, the Quillen K-groups
K, X, 1 >0, together with the cup-product

U KX x KX — K, . X

define a graded ring K X, which is a contravariant functor in X— for any
morphism f: X’ — X of regular schemes there is a graded ring homomor-
phism f*: K. X — K X' If f is proper, then there are also pushforward
maps f,: K, X' — K, X (group homomorphisms) which satisfy the projection
formula

f.(ffaub) =aU f,b. (2.1.1)
For ¢ = 1 there is a canonical monomorphism
0" (X) = K, X. (2.1.2)

For arbitrary f, the restriction of the pullback map f* to the image of (2.1.2)
is pullback on functions; if f is finite and flat, then the pushforward map f,
restricts to the norm map on functions.

In this section we are concerned with K,. The cup-product in this case is
the universal symbol map

O*(X)® 0*(X) —» K, X
U = {u,v}

which is alternating and satisfies the Steinberg relation: {u,1 —u} = 0 if u,
1—ue O*X). If X = SpecF for a field F, then the symbol map induces
an isomorphism

K,X = K,F -~ A*F* /(Steinberg relation)

by Matsumoto’s theorem.

Returning for a moment to the general situation, let ¥ be a smooth (not
necessarily proper) variety over a number field F. Write Y = YV Qp Q,
G = Gal(Q/F), and let p be prime. Then if H/*!(Y,Q,(n)) has no G-
invariants, there is an Abel-Jacobi homomorphism

K

n—j—1

Y — HYGp, H(Y,Q,)(n)).

The condition that H°(G ., H/*'(Y,Q,(n))) = 0 can often be checked just by
considering weights; if for example Y is proper, then by considering the action
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of an unramified Frobenius and using Deligne’s theorem (Weil conjectures)
one sees that it holds if j + 1 # 2n.

In the case of interest here, Y is a curve and j = 1, and n = 2. Then the
Abel-Jacobi map is even defined integrally:

Aly: K)Y — H (Gp, H'(Y,Z,)(2)). (2.1.3)

It is constructed as follows. There is a theory of Chern classes from higher
K-theory to étale cohomology: these are functorial homomorphisms, for each
g > 0and n € Z:

Con: KY — H* (Y, Z,(n)).

Here the cohomology on the right-hand side is continuous étale cohomology.
These maps are not multiplicative, but can be made into a multiplicative map
by the Chern character construction.. All we need to know here is that if «,
o' € K|Y then

01,1(04) U 01,1(0/) = —02’2(04 Ua) (2.1.4)

(see for example [33, p.28]). One writes ch = —c, ,.

The étale cohomology of Y is related to that of Y by the Hochschild-Serre
spectral sequence:

By = H'(Gp, (Y, 2,) (n)) = H(Y, Z,(n)).
Let Y < X be the smooth compactification of Y, so that Y = X — Z for a
finite Z C X. The Z -module H(Y,Z,) = H°(X,Z,) is free of rank equal
to the number of components of X, and H*(X,Z,) = H*(X,Z,)(—1). The

module H'(X,Z,) is the Tate module of the Jacobian of X, hence is free.
There is an exact sequence

1 137 07
0—H (X,Zp) — H (Y,Zp) — H (Z,Zp)(—l)
- H*(X.,Z,) - H*(Y,Z,) = 0.
The map 7 is the Gysin homomorphism, mapping the class of a point z € Z

to the class of the component of X to which it belongs. Therefore all the
modules Hj(Y,Zp) are free?. Moreover if o is an eigenvalue of a geometric

Frobenius acting on H’(Y, Q,) at a prime v /p of good reduction, then a is
an algebraic integer satisfying

1 ifj =0,
la| =< N(v)Y/2 or N(v) if j =1, and
N(v) if j = 2.

221 the case to be considered later, Y is actually affine, in which case one even has
H?(Y,Z,) = 0.
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Therefore when n = 2 the first column {Eg]} of the spectral sequence van-
ishes. The exact sequence of lowest degree terms then becomes:
0— H*(Gp, H'(Y.Z,)(2)) — H*(Y, Z,(2))
i) HI(GFa H1(77 Zp)(Q)) - H3(GF: HO(?: Zp)(Q))

Composing the “edge homomorphism” e, with ch = —¢, , defines the Abel-
Jacobi homomorphism (2.1.3) — the minus sign is chosen because of (2.1.4).
Notice also that the last group H*(G, H*(Y,Z,)(2)) is zero if p is odd, and
killed by 2 in general (see for example [24]).

We also need the Chern character into de Rham cohomology. For a Noethe-
rian affine scheme X = Spec R there are homomorphisms for each ¢ > 0

dlog = dlogy: K R — QqR/Z

satisfying:
(i) dlog(a Ub) = dloga A dlogb;
(i)

(iii) On K R, dlog is the degree map.

If b e R* C KR then dlogh = b~"db € O, ,;

(iv) If R'/R is a finite flat extension of regular rings, then trf} , o dlogp =

/R
dlog o trg,/R.

In (iv), trg,/R: K,R'— K Ris the proper push-forward for Spec R' — Spec R
(also called the transfer), and tr%/R: Q;]z'/z — QqR/Z is the trace map for
differentials. Since this compatibility does not seem to be documented in the
literature we make some remarks about it. What follows was suggested in
conversation with Gillet and Soulé.

To check the compatibility we can work locally on Spec R, and thus assume
that R is local. Therefore R’ is a free R-module of rank d say. Choosing a
basis gives a matrix representation p: R —— M (R). We get for every n > 1
corresponding inclusions GL, (R') — GL,,(R), which in the limit give an
inclusion GL(R') — GL(R). This induces by functoriality the transfer on
K, (=) = m,(BGL(=)*).

One way to define the map dlog is to use Hochschild homology (see
for example [22, 1.3.11ff.]). There is a simplicial R-module C,(R) with
C,(R) = R®%*! (tensor product over Z), whose homology is Hochschild ho-
mology HH (R). There is also a pair of R-linear maps Q7 , SN HH (R) Zay
QqR/Z, whose composite is multiplication by ¢!. The map 7 is given by
re@ry® - @r > rodry Ao AT,
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There is a map Dtr: H (GL(R),Z) — HH,(R), the Dennis trace (see
[22, 8.4.3], which maps r € R* C H (GL(R),Z) to the homology class of
r~'®@r € C,(R). Assume that ¢! is invertible in R. Then composing on
one side with the Hurewicz map K (R) — H (GL(R),Z), and on the other
with (¢!)~'7,, defines the map dlog: K (R) — Q?{/Z, for any ¢ > 0. It is
not too hard to check directly (an exercise from [22, Ch.8]) that if a, b € R*
then dlog{a, b} = (ab)'da A db, which is the only part of (i) needed in what
follows.

There is a trace map tr’# on Hochschild homology: the representation
R'—— M,(R) induces by functoriality a map HH, (R') - HH, (M,(R)), and
by Morita invariance [22, 1.2.4] we have an isomorphism HH (M,(R) =
HH_(R).

Still under the hypothesis that ¢! is invertible, the maps ¢, and (q!)*lﬂq
make QqR/Z a direct factor of HH (R). One can then define the trace map
tr%/R as the composite (¢!) 'm0 trgf/lR og,. (This approach to trace maps is
due to Lipman [21] — see also Hiibl’s thesis [13].) It now is a simple exercise
to check the compatibility (iv), the essential point being the transitivity [22,
E1.2.2] of the generalised trace.

We need all of this only for ¢ < 2. This means that in the reciprocity law
3.2.3 and all its consequences we need to assume that p is odd.

2.2 Level structures

Let E/S be an elliptic curve. Then for every positive integer N which is
invertible on S, there exists® a moduli scheme S(NV), which is finite and étale
over S, and which represents the functor on S-schemes T

level N structures on E x ¢ T
SINT) = o (Z/N)2, 5 kerlxN]

More generally, for pairs (M, N) of positive integers invertible on S there is
a scheme S(M, N) which represents the functor

S(M, N)(T) = {

monomorphisms of S-group schemes
a: (Z/M X Z|N)p—Ep

The group GL,(Z/N) acts freely on S(N) on the right, with quotient S.
One has S(N, N) = S(N); in general S(M, N) is a quotient of S(N') where
N’ = lem(M, N). One usually writes S,;(N) for S(N,1), and we will also
write S{(N) for S(1,N). Of course S,(N) and S|(N) are isomorphic, but
they are different as quotients of S(N). We have a lattice of subgroups of
GL,(Z/NZ), and a corresponding diagram of quotients of S(N):

3To avoid overloading the notation we do not include the dependence on E in the
notation.
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10
/<0 1) TS(N)/S1(N) SW)
<1 *> \ / TS(N)/S](N)

S1(IV)

0
‘ (: 1) \}Sl(N)/SO(N) S1(N)
*
/ 5
\ Tsi(Ny/s
* TSo(N)/S s

Over S(N) there is a canonical level N structure ay: (Z/N)?* =5 ker[x N] C
E, and we let yy, yy € E(S(N)) be the images of the generators (1,0), (0,1).
Then y, already belongs to E(S,(N)), and ¢ to E(S](N)).

S,(N) is canonically isomorphic to the open subscheme of ker[x N] con-
sisting of points in the kernel whose order is exactly N; and

ker[x N] = [T S, (M). (2.2.1)

M|N

The scheme Sy(N) parameterises I'j(/V)-structures on E/S; in other words,
Sy(N)(T) is functorially the set of cyclic subgroup schemes of rank N of
E x4 T. In the case T'= S, (N), the morphism 7g x5 ()1 S1 (V) = Sy(N)
classifies the cyclic subgroup generated by y,.

If M|M'" and N|N' then there is a canonical level-changing map

WS(M/,NI)/S(M,N): S(M’,N’) _> S(M, N)

induced by the inclusion Z/M x Z/N — Z/M' x Z/N'. One has y,, =
(M'/M)y,, and likewise for y'.

We also recall that all the above moduli schemes can be defined for integers
M, N which are not invertible on S, using Drinfeld level structures, see [18,
passim]. They are finite and flat over S.

Recall finally that for a positive integer N which is the product of two
coprime integers > 3, there is a universal elliptic curve with level N structure
over the modular curve Y (N)/Z. We shall use the standard notations Y (N),
Y (M, N) without comment.

2.3 Norm relations for I'({)-structure

Now fix an integer D > 1 which is prime to 6. On each basechange F x T
(where T is one of the above moduli schemes) there is the canonical function
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9P1/T) which by Theorem 1.2.1(ii) is simply the pullback of 99/, Since
E and D will be fixed in the discussion that follows we shall write all these
functions simply as .

Consider the case of prime level . Write y = y,, ¥’ = y;, and abbreviate
Sp=Sp(¢) (T=1or0). Fix x € E(S) such that Dlz does not meet the zero

section of E. Let \: E'x ¢S, — E be the quotient by the canonical subgroup
scheme of rank ¢, generated by y. Let Z € E(S,) be the composite

S, - E x4 S, = E.

Write 9 = 9°/50) € D(E — ker[x D], 0%).

Lemma 2.3.1.

N, s(W(x +y)) = I(lx)d(z) . (N1)

N5, 0z +y')) = 0(€x) [T oz +ay) ™. (N2)
a€Z /L

Ng, s, (0 +y)) = I(@)d(x) ! (N3)

Nis(eyys, (0(x +y')) = O(x)d(z)~". (N4)

Ne,/s(0(3)) = o) 0(t). (N5)

Proof. (N1) By (2.2.1) there is a Cartesian square

S, s U g

e

s " . F

Hence
Ng 150z +y))I(x) = Ng 15/5((x + y, 2)"V)
= (lz)*[x (]9 since the square is Cartesian
= (Lx)™9 by 1.2.1(iii)
= J(lx).

(N2) The same argument, applied to the Cartesian square

sy T s, S g s,
a€Z/t

( (-
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(N3) This comes from the Cartesian square:

S, 118, ¥ By S,

S

S, —— E

The remaining relations (N4) and (N5) are obtained by combining (N1)—(N3)
and using

Ng 15,0z +y)) H 19:r+ay O

Lemma 2.3.2. The norm relations (Nl)f(NS) hold without the hypothesis
that ¢ is invertible on S.

Proof. Choose an auxiliary integer » > 2 prime to ¢. Then after replacing S
by an étale basechange there exists a level r structure (3,: (Z/r)? — ker[xr]
on E, with r invertible on S. Let £"Y — Y(r) be the universal elliptic
curve with level r structure over Z[1/r]. Then there is a unique morphism
£: S — £V — ker[x¢D] which classifies the triple (E/S, 3,,z): there is a
Cartesian square

E —— £ Xy (E™Y — ker[x£D])

E Epm

s —s WiV — ker[x (D]

such that 3, is the inverse image of the canonical level r structure on ",
and z is the pullback of the diagonal section £UMY — guniv x guniv,

By the basechange compatibility of 9, it is enough to verify the norm
relations in this universal setting; but the inclusion Y (r) ® Z[1/¢] — Y (r)
induces an injection on O*. Thus we reduce to the case in which ¢ is invertible
on S. O

Now consider two auxiliary integers D, D' with (6/, DD') = 1, and write
Y= 19(E/S) and ¥ = 19(E/ ) Following tradition we write Nyr for the push-
forward maps 7y, on K,, but the group operation in K, will be written

additively (for consistency with the higher K-theory case to be considered
below).

Proposition 2.3.3. In K,S the following identity holds:

Ny stz +y),9'(2" +y)} o
= {9(lx), V' (€2") } + ({I(x), V' (2)} — Ng,,s{9(2). ¥ (')}
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Proof. Compute using the projection formula (2.1.1) and the norm relations
2.3.1:

Ny s{d(z +y),0'(2" + ')}

= Ng /s{d(z+y). N )75, V(@' +y')}
= Ng, js{d(z + )19'(595) (@)~} by (N4)
= Ny, s {0(@)0(x) ", 9" (€29 (#') "} by (N3)

= =Ny {0(@). 7 (@)} = (€ + ){0(@), ' (t2")}
+{0(@), Ng, )57 (')} + {Ns,/s9(7), V' (€2') }
= Ny, s{0(@),7(@)} = (¢ + 1){d(), ¥ (¢a")}
+ {i(2), ' ()9 (¢a)} + {9(a)"I(E), ' (€2')} by (N5)

= —Ng, ;s {0(2), 7 (')} + ({(x), 0 (a")} + {9(¢x), V' (b)) O
Now suppose that S is a modular curve of level prime to ¢, and E is the
universal elliptic curve. Therefore S =Y, :=Y(N)/H for some subgroup

H c GL,(Z/N), E = &V N Yy, and Sy(€) = Yy, == Y ((,N)/H. Tt
is then possible to rewrite the above norm relation using the Hecke and the
diamond operators, whose definitions we briefly recall.

The centre (Z/N)* C GLy(Z/n) acts on Y;; and " on the right, defining
the diamond operators (a) € Aut Yy, (a), € Aut& for a € (Z/N)*. In mod-
ular language, the B-valued points of Y, are pairs (X/B, o), where X/B
is an elliptic curve and [y ], is an H-equivalence class of level N structures
(Z/N)* — X. Then (a): (X/B,|ay]y) = (X/B,[aay]y) is an automor-
phism of Y,;. The B-valued points of £"™ are triples (X/B, [ay];,2) with
z € X(B), and the automorphism (a), of " is given by (X/B, [ay]y, 2)
(X/B, lacy]g, 2).

Recall also [18, (9.4.1)] that the e, pairing defines a morphism

en: Yy — Spec Z[py )t H (2.3.4)
1/N 0
(E/S,ay) — eN(aN< 0 ),aN (1/]\7)) (2.3.5)
and the restriction of (a)* to Z[uy]% ! is then the map ¢ — ¢ (since

det{a) = a?).
The is a commutative diagram [5, (3.17)]

5univ [Xé}} 5univ <f\>f} guniv

N
Y, ——~— Y,
H <£> H
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and if z: Y; — £"V is any N-torsion section, (¢); o fx = z o (¢). Therefore
by the basechange property 1.2.1(ii),

Ip (lx) = (bx)"0p = ()" (0)5Ip = (0)"Vp(x) = (€7),Ip(2).

The scheme S is the quotient Yy, , := Y{(N{, N)/H, and Y, (N{, N) classifies
triples (X, ay,C) with C C X a subgroup of rank ¢. One then has the
standard diagram [5, (3.16)]

We

4 __ Y

guniv Cei=pry guniv Y, A Suniv v guniv Y. Ce guniv
< vy LHY ’ = vy TH ’

E E E E E

o ¢ H
Spec Z[py])" ——— SpecZ[py]

in which the first, third and fourth squares in the top row are Cartesian. The
Hecke operator T, is by definition the correspondence ¢, (cw)* on Yy, and the
correspondence cg, (cowg)* on £V, All the horizontal arrows are compatible
with the level N structure on £"" and the quotient level N structure on

—_~

guniv’ hence Ce OWgOT =T OCOW, and therefore

D(Z) = (Aoz)* D= (Mo x)*(ce ov) D= (cow) Iz
using as always the basechange property 1.2.1(ii). Therefore

T {i(2), 0 (')} = e, (c o w)" {9(x), ' ()} = N 5 (9(@), 9 (&)},

Finally write z = x + y,, 2/ = 2’ + ), so that fz = (z and z = (£2) o (£ 1).
Observe that the norm relation is invariant under the action of GL,(Z/(), so
that y,, y; can be replaced by any basis for the (-torsion of E. This yields
the following reformulation of 2.3.3:

Proposition 2.3.6. If S =Y, is a modular curve of level prime to ¢ and z,

2" are torsion sections of E/S({) whose projections onto ker[x(] are linearly
independent, then

Nsys{i(2), 7' ()} = (1 = T, o (€), + £40) ){(¢2), ' (¢2')}.
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2.4 Norm relations for I'({")-structure

We now consider norm relations in the tower {S(¢™,¢")}.

Lemma 2.4.1. Ifm>1,n>0 and z € E(S({™, (™)) is any section, then
NS(Em,l")/S(fm_l,l"): 19(37 + ygm) — 79(637 + yem—l). (NG)

Proof. 1f £ is invertible on S this follows from the Cartesian square

S(em, o) E
L g
S(em-1, gy g

In the general case one reduces to the universal situation exactly as in 2.3.2.
O

Proposition 2.4.2. If (6¢(,DD') = 1 and m, n > 1 then for all x, ' €
E(S(em=1 1),

Ns(lm’ln)/s(em—lyln—l) . {19(:17 + yfm), 19’(3?/ + yZn)}
= {0l + Ypm1), 0 (lx" 4+ yp) }.

Proof. This follows from the lemma since

Nom gy 5em=1,n-1y 1T + Ygm ), 0 (2" + ypn ) }
= Ng(pm gn-1),s {9 + Ygm); Ng(gm gny/s0m en-1y9' (3" + ypm) }
= Ngm g1y, {0(x + Ypm), V' (€2" + ypn1) }
— (Wl + o), 9 + )}

If £/S is a modular family over S = Y7}, of level prime to ¢, then E(Y7;)
is finite of order prime to /. Therefore

E(Y, (")) = (Z/0"™ x Z]l") x (prime to ¢),

torsion

so there is a well-defined projection onto (Z/f)? = ker[x/]. Computing as in
2.3.6 we get:

Proposition 2.4.3. Suppose that S =Y} is a modular curve of level prime
to € and that z, 2’ are torsion sections of E over Yy, ({™, ("), with m, n > 1.
If the projections of {z,2'} into ker[x{] are linearly independent, then

Ny ey v 11y {0(2), 9 (2) } = {d(€z), ' (£2") }. O
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2.5 Norm relations for products of Eisenstein series

We shall repeat the construction of the last paragraph for products of the
form

pEis(E/S,z) - ,Eis(E/S,z') € F(S,wQE/S).
If g: S — S is a finite and flat morphism of smooth T-schemes and E' =
E x4 S' then there are trace maps

trg - trS//S: g*osl — OS’ Q*Q}q//T — QAIS’/T
as well as a trace map on modular forms, defined to be the composite

try =trg q: F(S/:W%’k/s') - F(S”g*w%%)

tr
=T1(5,9.05 ®p, w%’]/“s) —5 T(S, w%’fs).

The Kodaira-Spencer map (§1.1) and the trace are not compatible.

Proposition 2.5.1. The diagrams below commute:

KSE"/S’
®2 1 w®? I o}
Wgis Qg )y E'/S' s'/T

A

£ .22 £ 1 . deg(9)-9"KSp/s
9 Yg/s — 9 QS/T g w%%* - g Q.lg/T

KSE"/S’

Proof. The first commutes because of the functoriality of the Kodaira-Spencer
map. Then applying tr, o g* = deg g gives the second. U

Lemma 2.5.2. The notation as in Lemma 2.4.1,
trg(m gy sem=1 gmy: pEIS(ZT + Ypm) 0 OEiS(0x + ypme).

Proof. Since [x(],0;, = ¥p, we have try,: dlogd, — dlog,. But on global
sections of QlE/S, trp is multiplication by (. Therefore the diagram

D(E — ket D], Q1) % pism n 1), w)

tr[xl]ﬁ E“rsun,zn—l)/sun—h

(Z"H’yzn—l)*
_—

['(E — ker[x D], Q") LS ), w)
commutes, which gives the result. O

Corollary 2.5.3. The notations being as in 2.4.3, let g be the projection
g: Y (0 0") = Y (0™t 1), Then

tr,: pEis(z) - Eis(2) — (2 Bis(¢z) - ;, Eis(¢2") (2.5.4)
tr,: KS(,Eis(z) - Eis(2')) — CKS(,Eis(lz) - ,Eis(¢2")) (2.5.5)

Proof. Follows from the preceding two lemmas, since deg(g) = £*. O
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A Appendix: Higher K-theory of modular
varieties

A.1 Eisenstein symbols

Let f: E — S be an elliptic curve, and assume from now on that S'is a regular
scheme. For any integer k > 0, write E* for the fibre product F xg - - x4 F
— it is an abelian scheme of dimension k over S.

In [2], Beilinson discovered a family of canonical elements of K, (E¥).
More precisely, he defined a canonical map

QB 0|57 = Ky (BY) © Q

which he called the Eisenstein symbol. Here we make a modified construction
which gives a norm-compatible system.

Let T, be the semidirect product of the symmetric group &, and p%, which
acts on E* as follows:

e G, acts by permuting the copies of E;

e the i'" copy of p, acts as multiplication by £1 in the " factor of the
product.

There is a character ¢, : I', — p, which is the identity on each factor pu, and
the sign character on the symmetric group.

I, has a natural realisation in GL,(Z) as the set of all permutation matri-
ces with entries £1. Geometrically it is the group of orthogonal symmetries
of a cube in n-space. In terms of this representation, ¢, is just determinant.
For any Z[I',|-module M, write M(g,) for the ¢, -isotypical component of
MQZ[1/2- k.

For x € E(S) we shall consider the inclusion

i: B¥ — EFH

(Uys ooy ty) = (= Upy Uy = Uy, ooy Uy — Uy, Uy).

whose image is the subscheme

k+1

Zvi = :1:} C EFL

1

{(vl,...,ka)

For any integer D # 0 such that z is disjoint from ker[x D], we define the
following open subschemes of E*:

UK, = 7' (B — kerlx D])*+)
Ub =) 7(UF.,)

YET
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Observe that Uj, and Uf,  are stable under translation by ker[x D]*, and
there is an étale covering

xDJ: U}y, = Uf .
We prove below the following lemma.

Lemma A.1.1. If z € E(S) is any section disjoint from e, the inclusion
Uf, = (B — {*z})* induces an isomorphism

Using this lemma we define K-theory elements, whenever (6, D) = 1:

I = pri(p) U Upri, (0p) € Ky (B — ker[x D!

(1)191[3H (z) = i:(ﬁgﬂ) S Kk+1U1k)I,a;
]‘ *
P05 (w) = g D 0 (V@) € Ko (U ()
k yery
Opl(x) = x D], ) (x) € K, (E — {£Dz})*(c,)

We call (i)ﬁg“} (z) Eisenstein symbols. For k = 0 we simply define i to be the
section z € E(S), and the Eisenstein symbol then becomes a Siegel unit:

D) = 9, (x) € O°(S).

Ifa),. ..,0,: E — E are isogenies of degree prime to D, then by repeated
application of 1.2.1(iii) one get the norm-compatibility

(s )L (951 = 05 (A.1.2)
Actually this is only of interest when all the o, are equal.
Proof of Lemma A.1.1. For any T/S

for all ¢, u; # e, £2;
UL(T) = {(“1’ ) € B(T)S forall i # j, u; £ u; # 0.}

The complementary divisor E* — Ufyz is the union of the two divisors
V= {(u;) | for some i, u; = e} U {(u,) | for some i # j, u, £ u; = e}
and
WF = {(u,) | for some i, u; = +2}

As S is regular, the K-groups in the lemma can be computed in K’-theory.
From the localisation sequence, it is then enough to show that K'(VF —
WF)(g,) vanishes. This is a special case of the following:
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Lemma A.1.3. Let V' C V¥ be any T, -invariant open subscheme. Then
K (V") (g,) is trivial.

Proof. Define a sequence of reduced closed subschemes
k_ 1k k koo
VE=V 2 Vg DD Vi =0

inductively, by writing V[f+1} for the smallest closed subset of V[’:} such that

V[f} — V[fﬂ} is smooth over S. Write V], = V[f} NV'. Then from the definition

of V¥ it is easy to see that:

(i) V[f} is a union of closed subsets each given by the vanishing of a certain
collection of expressions u;, u, £ u;, which are permuted by I';;

(ii) This gives a decomposition of V;, — V| ., as a disjoint union [V},

of open and closed pieces, permuted by I';, in such a way that for each
fv there is some v, € I'y which acts trivially on V[;"}u and for which

This forces K{(V};, —
c=Y ¢, € KL.(Viy = Vi) ®Z[1/2- k]

—@K' L) ®Z[1/2- k]

VI

1) (ep) = 0 for each r > 1. In fact, if

then v*(c) = 5,6(7#)0 = —c, whereas the p-component of v;(c) is evidently
+c, by (ii). Now using the long exact sequences

Ki( [r+1}) — K( [r}) - Ki(vm - V[;H}) AR
inductively (beginning with » = k — 1) we deduce that K,(V')(e,) =0. O

A.2 Norm relations in higher K-groups

Here we find norm relations for the Eisenstein symbols and for cup-products,
analogous to those in sections 2.3 and 2.4.

For the I'(¢)-structure norm relations, we use the same notation as in 2.3.
In addition, write \: E—~E X ¢ S, for the isogeny dual to A, and ¥, A for

the isogenies on E¥, EF. Cons1der the push-forward for the morphisms:
] x g g1 B¥ x5 8 — E"
% Tg /8, " E* Xg S — EF
Noxmg gt B — EF

Fix ¢ € {1,2,3} and abbreviate ﬁ,[jk}(:c) = (i)ﬁgd(:c). The symbol @gﬂ will

denote the analogue on E* of 9.
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Lemma A.2.1. The following relations hold in K, ,:

(€] % 75, 5),9p (x + 1) = 95 (£x) — [xL], 05 (x) (EN1)
(N x g 6 ), 00 (0 + y) = I (3) — Mol (a) (EN3)
(N x g, 6) 05 (3) = €< 0,95 (2) + 95 (€x).  (EN)

Proof. Here (EN1) and (EN3) are to be understood on U} ., and (EN5) on
(A)~Y(U% ,). The relations (EN1) and (EN3) are proved just as (N1) and
(N3), by considering the Cartesian diagrams:
E* xS, I Bt i pri
(xtixms, s <D [ e
EF itz y  Ekt1

and

E* xS, I EF xg 5, 20 gt g
(\F stl/so,/\k)E E/\k+1
Fk U Ek+1
and using the norm-compatibility (2.5.4). Applying \* x Ts,/s to (EN3) gives
(EN5). O

We now consider cup-products of the form 191[?} Udp in K, ,. Consider
the factorisation of multiplication by ¢:
S\kXﬂ'SO/S

idXTs (05, Nexms, /s
0

E* % S(0) E* xS, E* E*

N J

X xms0)/s

We compute:

(AF X T30 ). [0 (@ + ) Udp (2 + )]
= (N x g 1, ). 105 (@ +y) U (9 (€a’) = 0 ()] by (N4)
= (D7) — Neop)(2)) U (9 (L2") — Dy (7)) by (EN3)

We need to compute the image of this cup-product under (\* XTs,s). laking
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the terms in turn:

(A x Tgo/8)s
Ip! (&) Uy (£a') = (0,05 (2)" + 95 (€x)) U dpy (€2) by (ENB)
N () Uy () o [, 05" (2) U (00 (2') + Oy (2)) by (N5)
N () Uy (€0 5 (€4 1) (0,05 (2) Uty (€a'))  as degmg g = (+ 1
Combining these gives the required generalisation of 2.3.3:

Proposition A.2.2.

(<] X T00y/5), (9 (2 + ) Udpy (&' + ) = 0 (€x) U by (€)
— (N x g /6), (0 (8) Uiy (&) + (<0, 9 (2) Uy (). OO
Having got this far the analogue of 2.4.2 presents no further difficulty:
Proposition A.2.3. Ifn > 1 and z, 2’ € BE(S({"™")) then

k
([x€] x WS(E“)/S(E“”))*(ﬁ[D}(x + Y ) U (2" + ypm))
= I 0z + ypur) U (02 + ). O

3 The dual exponential map

3.1 Notations

In this section K will denote a finite extension of @, with ring of integers

0. We fix an algebraic closure K of K. Write o for the integral closure of
o in K, and G for the Galois group of K over K. We normalise all p-adic

valuations such that v(p) = 1. Let K be the completion of K, and write o
for its valuation ring. Fix a uniformiser 7, of o.

We fix for each n > 0 a primitive p"-th root of unity (,» in K such that
C;’n+1 = (,n. Write K, = K((,x) and denote by o, the valuation ring of K.
Put 0, = the relative different of K, /K.

For a topological G -module M write H'(K, M) for the continuous Galois

cohomology groups [38].

The cyclotomic character X, : G — Z3 is defined by g((,x) = Ziyd(g),
for every g € G and n > 0. Its logarithm is a homomorphism from G to
Z,, often viewed as an element of H'(K,Z,).

We normalise the reciprocity law of local class field theory in such a way
that if L/K is unramified, then the norm residue symbol (7, L/K) equals
the geometric Frobenius (inverse of the Frobenius substitution z — x9). This

implies that for any u € 0* we have y,(u, K*/K) = Ng g, (u).
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3.2 The dual exponential map for H' and an explicit
reciprocity law

Let V' be a continuous finite-dimensional representation of G over Q. Sup-
pose that V' is de Rham (for generalities about p-adic representations, see
for example [12]). Let DR(V) = (Byy ®q, V)9 be the associated filtered

K-vector space, with the decreasing filtration DR' (V') (induced from the fil-
tration on B,y). Then Kato has defined a dual ezponential map [16, §11.1.2]

exp*: H'(K,V) — DR (V)
which is the composite:
HY(K,V) — H'(K, Big ®, V) = H'(K,Fil'(By ® DR(V))) ~ DR'(V).

The last isomorphism comes from Tate’s computation [37] of the groups
H'(K, K(j)):

H'(K,K(j)) =0 unless j=0andi=0or 1; and

Ulog Xeyel
) ——

K = HY(K,K H'(K,K) (3.2.1)

together with the isomorphisms BZ, /Blt' ~ K(j).

The group H'(K,V) classifies extensions 0 — V' — V' — Q,(0) — 0 of
p-adic Galois representations, and the extension V' is de Rham if and only
if its class lies in ker(exp*). (This follows from [3], remark before 3.8 and
Lemma 3.8.1.) In particular, the kernel of exp* is the Bloch-Kato subgroup
Hgl(K, V) c HY(K,V).

In some cases one can define and study the dual exponential map without
reference to Bys. For example, if V. = H'(A,Q,(1)) for an abelian variety
A/K, it can be defined just using the exponential map for the analytic group
A(K). More generally, if the filtration on DR(V) satisfies DR' (V') = 0, then
one only needs to use the Hodge-Tate decomposition

R®y V% @K (~i) @ er' DR(V) (3.2.2)

1EZL

since then by (3.2.1) exp* is the natural map from H'(K,V) to

HY(K,K 0y V) —~= ) H'(K, K(~i) @ g DR(V"))
P (3:2.2)
—H'(K,K)®, DR"(V) «~— DR'(V)

(3.2.1)
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In what follows we shall be concerned with the case V = H'(Yz,Q,)(1) for a
smooth o-scheme Y, which is the complement in a smooth proper o-scheme
X of a divisor Z with relatively normal crossings. Write

Hig (Y/o) = H'(X,Q%/,(Z))

(the hypercohomology of the de Rham complex of differentials with logarith-
mic singularities along 7). Then DR(V) is just de Rham cohomology with a
shift of filtration:

DR'(V)=DR(V)=Hyp(Y/o) ®, K
DRY(V) = H(X, QY ,(log Z)) ®, K = Fil' Hjz(V/0) ®, K
DR' (V) =0

Moreover the Hodge-Tate decomposition has an explicit description, essen-
tially thanks to the work of Fontaine [11] and Coleman [4]. To compute exp*
one just needs to know the projection

T K®g V an K ®, H(X,QY,(log 2)) ® K(1) ®, H'(X, Oy)
P 3.2.2

— K ®, H'(X, QY ,(log Z)).
It is the limit of the maps given by the diagram

(1) «/my L, (2) */on
Hl(Yf(al*l'p") - HZUar(Yf(aO /p ) — HZUar(}/EaO /p )

~J ~J

p— s

HO(X, QY ), (log Z)) @ o/p"

Remarks. (i) The isomorphism labelled (1) comes about as follows. Gener-
ally, let S be a scheme on which m is invertible, with p,, C Og. An element
of H'(S, p,,) is an isomorphism class of finite étale coverings S’ — S, Galois
with group p,,. Given such an S’/S, there is an open (Zariski) covering {U,}
of S and units f; € O*(U;) such that S’ x U, = U,[ 7/f,]. It is easy to see that
{f.} is a well-defined element of H°(Yz, O%/m), and moreover that the map
thus obtained fits into an exact sequence

(1) X
— HZUar(S’ OS/m) - H%ar(‘s’ um)

H%ar(si l‘l’m) - Hélt(si l‘l’m)
If S is irreducible (as is the case here) then every non-empty Zariski open
subset is connected, so p,, is flasque for the Zariski topology, and the map
(1) is an isomorphism.
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(ii) The inclusion j: Yz < Y induces an isomorphism H°(Yz, O*/p") =%
HO(Yz,O*/p") denoted (2) in the diagram. To see this, consider the effect
of multiplication by p™ on the exact sequence

0= 05 = 5,05, = Q. =0

(the last map is the p-adic valuation along the special fibre, taking values
in the constant sheaf Q). This shows that Oy _/p" — (j*(’);‘}l?)/p". It is
therefore enough to show that (j, 0y )/p" = j,(O5_/p"), because then

H'(Y,,0"/p") = H(Y,, 5.(0y_/p")) = H(Yg, O" /p").

By passing to the direct limit, we can replace K by a finite extension of
K. Now consider more generally an open immersion U — S, where S is a
separated noetherian scheme which is integral and regular in codimension 1.
Suppose that m is invertible on U, and that p,, C Op. Then R'j pu, =0 for
i > 0 as p,, is Zariski flasque. The exact sequences

0—p, =0 = (09" =0
0— (0)" - O — O /m — 0.
give a short exact sequence
0 — (7,0p)/m = j,(O/m) = , R'j,0p — 0.
But because S is regular in codimension one, the divisor sequence
1—>O§—>K’;ﬂ> H /s
codim(z)=1

is exact, and therefore R'j, O} = 0.

(iii) The simplest case (which is, however, not enough for our purposes) is
when Y = X is proper, when this recipe reduces to that given by Coleman:
an element of H'(Xg, p,n) = Pic Xg[p"] is the class [D] of a divisor D on
Xy such that p"D = div(g) is principal. One can assume that the divisor of
g on Xy is precisely the closure D¢ of D. Put

w=dlogg € H(X;, Qﬁ(a/a(supp D).
Then because the residues of w at supp D are = 0 (mod p"), one has
w (mod p") € H(X, Qﬁ(/o) ®0o/p"

and this defines 7, ([D]) (mod p") = w (mod p"). (Coleman even defines such
a map in the case of bad reduction.) Unfortunately we know of no reference
for this description of the Hodge-Tate decomposition in the non-proper case.
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Now assume that X is a smooth and proper curve over o, and that Y
is affine. Then Z is a finite étale o-scheme. Recall (see also the following
section) that the different 9, = 0y is the annihilator in o, of Q, . If
K/Q, is unramified, then o, = o[C »] and therefore 2, ,, is generated by
dlog (,», and moreover ?, = p”(Cp - 1!

Theorem 3.2.3. Suppose that K/Q, is unramified (and that p > 2). There
exists an integer ¢ such that for every n > 0 the following diagram commutes
up to p°-torsion:

Ky(Y ®0,) ® p&! — % H(Y®K, )
dlogE EHochschild—Serre
HY (X ®0,, Vg, 1o(l0g 2))(~1) H (K, H(Y ® K, p,»))
| fr o
Q) o(=1) @ Fil' Hip (Vo) HY (K, o/p" ") @, Fil' Hi;(Y/o)

lengn(g)[Cpn}_ Hlﬁf g
on/an ®0 Flll H&R(Y/o) - on/pn_1 ®0 111 H(}R(Y/o)

U(l/pn) log Xeycl

Corollary 3.2.4. (The explicit reciprocity law) The following diagram com-

mutes:
. _ HSoch . —

lim (Ky,(Y ®o0,) @ pi ') ———— <h_mH1(Kn,H1(Y®K,upn))
dlog& E
<h_mH0(X®o Do, jo(l0g 2)) (1) <1i>_mH1(Km,H1(Y®I_(,upn))
| ) §
hrnQi =D Fil' H}, (Y /o) HY(K, ,H'(Y @ K, Z,)(1))

hmo JJo. @, Fil' HiL (Y/o)

’I'L

Eexp*

y K, ®, Fil' Hi;(Y/o)

(= AT R Ko >

Remarks. (i) The assumption that K/Q, is unramified is not essential for
the proof, and is only included to simplify the statement. In general the
situation is completely analogous to 3.3.15 below. The case p = 2 is excluded
only because we do not know a reference for the compatibility of the trace
maps in this case, cf. §2.1.
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(ii) The maps “Hochschild-Serre” comes from the Hochschild-Serre spec-
tral sequence with finite coefficients (cf. §2.1); since Y is affine, H*(Y ®
K, p,) =0.

(iv) For a discussion of the map dlog, see §2.1. A priori its target is the
group H*(Y ®0,,, 0%, /,)(—1). We just explain why its image is contained
in the submodule of differentials with logarithmic singularities along Z. By
making an unramified basechange, one is reduced to the case when 7 is a
union of sections. Let A be the local ring of X ® o, at a closed point of Z,
and t a local equation for Z. Then by the localisation sequence, one sees
that K,A[t '] is generated by K,A and symbols {u,¢} with u € of, and
dlog{u,t} = u'du A dlogt.

Proof. First we explain precisely what are the transition maps in the various
inverse systems in the diagram. In the Galois cohomology groups they are
given by corestriction and reduction mod p”. The finite flat morphisms YV ®
0,.; — Y ®o, induce compatible trace maps (cf. §2.1)

K2(Y X 0n+1) — KQ(Y ® On) and Q%’@on_i,l/o — Q%@on/o

which are the maps in the first and second inverse systems in the left-hand
side of the diagram. In the system (Q} Jo)n the transition maps are trace,
and in the remaining system (o0, /0,), the maps are %trKHl/K”. (For the
compatibility of these various maps, see 3.3.12 below.)

From the discussion above, the diagram below commutes:

HY(K,,. H'(Y ® K,Q,)(1) —"— H'(K,,.K ®, Fil' Hly(Y/0))

o ||

K, ®,Fil' H;(Y/o) —~— HYK,, K)®,Fil' H;(Y/o)
UlOg Xeyel
To deduce the corollary from the theorem it is thus only necessary to take
inverse limits and use the commutativity (cf. Proposition 3.3.10 below) of the
following diagram

— 108 Xeye =~

K, & H'(K, K)
pﬁmnmmﬁ E (3.2.5)

Lmlo cye ~

K, 0 gy K R).

O

Remarks. (i) Consider the special case Y = A! — {0} = Speco[t,t7!]. Let
(u,) € h£ 0¥ be a universal norm. By applying the corollary to the norm-

compatible symbols {u,,t} € K,(Y ® o,) one recovers a form of Iwasawa’s
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cyclotomic explicit reciprocity law, which will be proved more directly in
3.3.15 below.

(ii) Theorem 3.2.3 is proved in section 3.4 below. It is much easier than the
general cases considered by Kato in [17], first because one is not working with
coefficients in a general formal group, and secondly because the assumption
that X /o is smooth makes for considerable simplifications. In the non-smooth
case there is an analogous statement which is needed to compute the image
of Kato’s Euler system when p divides the conductor.

3.3 Fontaine’s theory

We shall review here some of the theory of differentials for local fields devel-
oped by Fontaine [11], and as a warm-up for the next section, show how it
gives a version of Iwasawa’s explicit reciprocity law.

Recall (see for example [34, §I11.6-7]) that if K'/K is a finite extension
then its valuations ring o’ equals o[z] for some z € o’. This implies that the
module of Kahler differentials Qo,/o is a cyclic o’-module, generated by dz,
and that its annihilator is the relative different Ok

The module Qﬁ/o equals the direct limit of QU,/O taken over all finite ex-

tensions of K in K. In particular, it is torsion.
Theorem 3.3.1. [11] There is a short exact sequence of 0-modules
0—a(l) = K(1) % Qg = 0

where a = U5/ S the fractional ideal
05/ = (¢, — 1)_10;(1/%6 cK

and where a: K(1) := Z,(1) QK — Q5/, s the unique o-linear map satisfying
dCpn
Cpn

for any n > 0. O

([ @ p7") = dlog ¢ =

Remark 3.3.2. In particular, for any n > 0 the annihilator of dlog(,» € Qa/a
is p"ano.
From 3.3.1 we get the fundamental canonical isomorphism

B/0(1) =5 1,05, (3.3.3)

which is o-linear, and maps ((,.), € Z,(1) C d(1) to (dlog (),
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Suppose that K”/K'/K are finite extensions. Then there is an exact
sequence of differentials

Qo @y 0" = Quur g = Qyrjy — 0

(the “first exact sequence”, [23, 26.H]), which is exact on the left as well by
the multiplicativity of the different (or alternatively by the argument in the
footnote on page 420). Passing to the direct limit over K" gives a short exact
sequence

0= Q) @y 0 =€, = Q0 =0 (3.3.4)

At this point, recall that for any short exact sequence 0 - X - Y — Z =0
of abelian groups, there is an inverse system of long exact sequences

0= wX = Y = 2 Z = X/p" = Y/p" = Z/p" — 0. (3.3.5)

If the inverse systems .M (for M = X, Y, 7) satisfy the Mittag-Leffler
condition (ML) then the inverse limit sequence

0T X—>TY —>T,7— (li_mX/p" — <li_mY/p” — <li_mZ/p" —0
is also exact (a special case of EGA 0, 13.2.3). Note that (. M) satisfies (ML)

in two particular cases:

e the torsion subgroup of M is p-divisible (then oM — ni M s surjec-
tive);

e the p-primary torsion subgroup of M has finite exponent (then (. M)
is ML-zero).

Applying these considerations to (3.3.4), since Q5,, and (5, are divisible and
Qo,/o is killed by a power of p, we get an exact sequence

0= T, = T, — Qy @y 0 — 0. (3.3.6)

Now pass to continuous Galois cohomology. This gives a long exact sequence
since the surjection in (3.3.6) has a continuous set-theoretic section (this is
obvious here as (0, ,,®,0 is discrete). We are only interested in the connecting
map, and define § to be the composite homomorphism:

5= 0 Qo HUK', Oy @y 8) 8 HY(K', T Q).

The map “reduction mod p"” : Tan/0 — ana/o induces a map on cohomol-
ogy, which when composed with 6, gives

dg (mod p") : QO,/O — Hl(K',ana/o).
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Lemma 3.3.7. (i) The following diagram commutes:

1% Kummer

HI(KI’ I"l'p")

dlogE Edlog

0 mod p™

(i1) For any nonzero x € o
S (dz) (mod p") = z dlog(Kummer(z))

Proof. (i) Simply compute: if u € o™ then fix a sequence (u,,) in 0" with
uy = u, ub,y = u,,. The composite dlogo“Kummer” maps u to the class of
the cocycle

g dlog(u?™") € /00

Now compute the effect of d,, on dlogu: first lift dlogu in the exact sequence
(3.3.6) to the element (dlogu,,),, € T,(S;/,,), then act by g —1 to get the
desired cocycle. So the commutativity is trivial.

(ii) If « is a unit this is equivalent to (i). For the general case one simply
calculates as in (i). O

Lemma 3.3.8. Let n > 1 and assume that p,» C K'. If p # 2, then the
diagram
UP%IOgXCycl

o' /p*(1) HY(K', a5,,/p")(1)
1®[Cpn}i—>dlogcpnﬁ zE(3.3.3)

d7r mod p™
Qil/o K—> Hl(K’,an%/o)

commutes. For p =2 it commutes mod 2"~ ".

Proof. All the maps are o'-linear, so it is enough to compute the image of
1 ® [(,n]. We have x,,4(g9) =1 (mod p") for all g € G, hence log x.,(9) =
0 (mod p") and so if p # 2 then

1

pn (chcl(g) - 1) mod pn.

1
ﬁ log chcl(g) =

In the proof of 3.3.7 one can take u, = (mn for all m > 0, and then
O (dlog () € H' (K, T,(€%/,)) is represented by the cocycle

g (dlog (1in) € T,(2y5)
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and Czr;in = ;,fgyﬂz(g)_l = ;ﬁ“yd(g)_l)/pn. Applying the inverse of (3.3.3) maps
this to the class of the cocycle
1

97 Xeya(9) =D @ (Gl € (1)

1 mn
= o l0g Xy (9) mod p™.

The reader will make the necessary modifications when p = 2. O

We now need some elementary facts about cyclotomic extensions of local
fields. Our chosen normalisation of the reciprocity law of local class field
theory identifies the homomorphisms

log Xeyel € Hl(K, Zp) = HomctS(Gal(I?/K), Zp)
and
logoNyq - K*—Z,.
As observed in the proof of the previous lemma, if p,» C K then log x ., =
0 (mod p™).

Lemma 3.3.9. Suppose that p,m C K. Then for any finite extension K'/K
the diagram

1
, Uom log Xcyel

0 HY(K',3)

trK’/KE Ecor

o — H'(K,D9)
Ume 10gX(‘,ycl

commutes.

Proof. The statement follows from the projection formula for cup-product in
group cohomology, since on H® the corestriction

cor: H'(K',3) = o' — H°(K,3) = o
equals e - O

Recall that K := K(Cpn). Let £ be the largest integer such that p, C K.
Then if n > m > ¢, direct calculation gives

g /K, (O[Cp"]) = {

Define, for any n > m >0

prmolCm] ifm >0
p" o if m = 0.
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Proposition 3.3.10. If n > m > max(¢, 1) the diagram

u nl,l log Xeyel ~
O[Cp"] . Hl(KnJ 0)

tn,m& ECOI‘

UﬁIOchycl ~
o[¢m] ————— H'(K,,,0)

s commutative. If n > £ =0, the diagram

1
UF log X cyel

o[¢,n] ——— HY(K,,0)
ptn,O& Ecor
0 UlOg XCyCl HI(K, /E\)

15 commutative.

Proof. For n =1, the second diagram commutes by 3.3.9 with K’ = K,. By
transitivity of trace and corestriction, the lemma will be proved if we verify
the commutativity of the first diagram for n = m + 1 > 1. Take the diagram
of 3.3.9 for K, ,/K,, and factorise:

Up~ " log Xcycl =~

0[]

Eter+1/Km Ecor

Up™ ™ 108 Xcye =
%ter+1/Km po[Cpm] —YI> Hl(Kmiom) E— Hl(Km,O)

%Xp ﬁm log Xcyel
Cpml

o[¢m

The bottom triangle commutes since H'(K, ,o0, ) = Hom, (Gal(K/K,),o0, )

is torsion-free. Hence the entire diagram is commutative, and going round
the outside gives what we need. O

Now consider 0, = 0y . From the definition of 0! as the largest fractional
ideal of K, whose trace is contained in o, it is an easy exercise to check

ol C p~"0[C,n]-

By [37, Propn. 5] the difference v,(d,) —n is bounded, so for some ¢ indepen-
dent of n,

po, Co[(x] Co

ne
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Since €2, , is cyclic with annihilator 9,,, the homomorphism

x>z dlog (,n

o[Cn]/p" Qo (3.3.11)

is well-defined, and its kernel and cokernel are killed by a bounded power of
p, by remark 3.3.2.

Proposition 3.3.12. Let n > m > max(¢,1). Then the diagram
x dlog Cpn

O[Cp”] Qon/cj

tn,mE Etr
x dlog (,m

O[Cpm] Qom/o

commutes.
Proof. 1t is enough to compute what happens when m = n — 1. Taking
L, G - .,C;)’;l as basis for o[(,.] over o[(,.1], for 1 < j <p
(¢l dlog () = tr(j'd¢ln) = jd(tr Jn) = 0
and for j =0
tr(dlog (,n) = dlog(Ny /i (pn) = dlog (ni. O

Therefore passing to the inverse limit gives a homomorphism

lim 0[(.] = lim o[C,»]/p" — lim Q (3.3.13)
(t_ 14 (t_ 4 <T 0,/0

which becomes an isomorphism when tensored with Q. (If K/Q, is unram-
ified, then (3.3.13) is itself an isomorphism.) By [38, Proposition 2.2], the
canonical map H'(K,,,Z,) — Jim H'(K,,,Z/p") is an isomorphism. Invert-

ing both of these arrows yields a diagram

. % Kummer . 1

norm n

dlogE E@ﬁl
Q®limQ, , Q@ lim HY(K,, Z/p")
trace n
dlog CanIEz Ecor (3.3.14)
Q®<)E_nj0[cpn]/p” Q®ﬁTmH1(Km,Z/p")
(tn,mnﬁ E
K, _~ H(K,, K)

1
Uom log Xcyel
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where down the right-hand side all the inverse limits are with respect to the
corestriction maps and reduction mod p™. We then have the following version
of the classical explicit reciprocity law of Artin-Hasse and Iwasawa. Without
loss of generality we can assume m chosen so that p,m+1 ¢ K.

Theorem 3.3.15. The diagram (3.3.14) is commutative.

Proof. At finite level, replacing Z/p™ with o/p™, one has the diagram:

Kummer

of M, HU(K, p)

n

dlog& dlog&

0f,, mod p"
Q! Hl(Kn,ana/o)

0,/0 Cpni1
li—dlog (,n g li—dlog (,n
ULnIOgXC cl _ <
o[l /p" ———— H'(K,.5/p")

tn,m& ECOI‘

o U 108 Xeyel ) .
o[Cym]/p H' (K, o/p").

This is for m > 0; for m = 0 the bottom arrow should read p~lo/p" —
H'(K,p~'a/p"). The top two squares commute by 3.3.7, 3.3.8 respectively.
The bottom square commutes up to p-torsion by (3.2.5). All maps are com-
patible with passing to the inverse limit. As remarked after equation (3.3.11),
the left-hand map labelled “1 — dlog(,»” has cokernel and kernel killed by
a bounded power of p, and by (3.3.3) the same is true for the one on the
right. Therefore passing to the limit and tensoring with QQ one obtains the
theorem. O

Remark. One can use 3.3.7(ii) to describe the image of an arbitrary element
of K, under the Kummer map in a similar way.

Here is the relation with the usual form of the explicit reciprocity law. Let
u = (u,), € lim o} be a universal norm. Its image down the left hand side
%

of the diagram (3.3.14) equals (with an obvious abuse of notation)

1 dlog u
O(u) ;= lim ——t —a | eK,.
() := Hm o e i, (dlogcpn) m

Going round the other way, use the expression of the Kummer map in terms
of the Hilbert symbol, which we write as a bilinear map [—, -] : K x K} —
Z/p" given by

n a. Kb _ z,al,
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Thus u, is mapped to the cocycle in H'(K ,Z/p") which takes the norm
residue symbol (a, K**/K) to [u,,a],. By the compatibility of the norm
residue symbol with norm and corestriction, one gets that the image of the
family u in H'(K,,,Z,) is represented by the cocycle (i.e. homomorphism)

(a, K*/K, )+~ lim[u,,a] €7Z

n—oo p

Therefore the reciprocity law says that this homomorphism, and the homo-
morphism

g p "®(u)logXaq(g)

represent the same cohomology class in H'(K, , K).

Proposition 3.3.16. [35, IIL.A7 ex. 2] Let ¢x: Homg (K, K) — K be the
unique map such that for all T € Home (K,K) and all x € K,

tr(xz] o T) = tr g, (zcpe(T)).
Then the diagram

Homg (K, K) —— K

ologE

Homcts(o*, K) U{1og Xeyel
local CFT (1
b 1 =
Hom, (G%, K) » H' (G, K)
18 commutative. |

Remark. Because of the normalisation of the reciprocity law of local class
field theory used here (see §3.1), this differs from the statement in [35] by a
sign.

Now the composite
Homg (K,Q,) — Homg (K, K) —*— K

is the inverse of the isomorphism K — Homg, (K,Q,) given by the trace
P
form. Therefore, for every a € o},

lim [u,al, = p~" tr._ o (B(u)loga)

n— 00

which is the “limit form” of the classical explicit reciprocity law [20, Ch. 9,
Thm. 1.2].
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3.4 Big local fields

This section reviews the generalisation by Hyodo [14, esp. §4] and Faltings
[10, §2] of Fontaine’s theory to local fields with imperfect residue field. We
consider fields L D @, such that:

L is complete with respect to a discrete valuation, and

its residue field ¢ satisfies [¢ : (P] = p" < oc. (3.4.1)

Fix such a field L, and write A for its ring of integers. If R C A is any
subring, define

~

Qyr = (h_m Q) r/P" L p

Fix also an algebraic closure E_of L, and let A be the integral closure of A in
L. For any B with A C B C A and any subring R C B set

QB/R - h_rn>Q 'JA'NR
I
the limit running over all finite extensions A’/A contained in B.

Let K C L be a finite extension of Q,, with ring of integers o and uni-
formiser 7. Then 7, is prime in A if and only if A/o is formally smooth
(by [23], (28.G) and Theorems 62, 82).

Let L'/L be a finite extension with valuation ring A’. Then A’ is finite
over A (being the normalisation of a complete DVR in a finite extension),
and is a relative complete intersection (by EGA IV 19.3.2). Therefore the
first exact sequence of differentials is exact on the left as well*

0= A'®, Q) = iy = Qijn — 0.

*More generally, if A’/A is a relative complete intersection of integral domains which is
generically smooth, then for any R C A the first exact sequence is exact on the left. For
an elementary proof, write A’ as the quotient B/I of a polynomial algebra B over A by an
ideal I generated by a regular sequence. Then one has a split exact sequence

0—>QA/R®B—)QB/R—)QB/A—>O (1)
as well as exact sequences, for 7 = A4 or R,
I/ = Qpp @p A = Q) — 0. (2)

Applying the tensor product ® g A’ to (1), and using (2) and the snake lemma, gives the
exact sequence

NA’/A — A'®4 QA/R_)QA’/R_)QA’/A — 0.

where Ny jx = ker(I/1*> — Qg4 ®p A'). Since A’/A is generically smooth the map
I/1? — QB4 is generically an injection, hence Ny/ 4 is torsion. Now I/I? is projective
since [ is a regular ideal; therefore Ny 4 = 0.



An introduction to Kato’s Euler systems 421

As in (3.3.5), we get an exact sequence of inverse systems
o Sara = A @4 Qo /D" = Qo /D" Qya /P — 0.

Since Q,,, is a finite A-module, the inverse system (,.€2,,,) is ML-zero,
and so passing to the inverse limit gives an exact sequence:

0—>A’®A§A/o—>§,/o—>§2,/A—>0. (3.4.2)

Proposition 3.4.3. (i) (AZA/U is a finite A-module, generated by elements of
the form dy, y € A*.
(ii) If Ty, ... T, € A are elements whose whose images in { form a p-basis,

then {dlogT,} is a basis for the vector space @A/O ®, L.

(ii1) If mp is prime in A, then @A/U is free over A.

Proof. By [23] pp. 211-212, A is a finite extension of a complete DVR B
in which p is prime. Then A, = Bo is a complete DVR with uniformiser
Ty, and A/A, is finite and totally ramified. Let k = o/7,0. One knows
(loc. cit., Thm. 86) that the image of {dT} is an {-basis for 2,/ and therefore
(by Nakayama’s lemma) QAO/O =@A,-dTl, = P A, - dlogT,, proving (iii).
To deduce (i) and (ii), it is enough to apply the exact sequence (3.4.2) to
A/A,)o. O

Taking the direct limit of (3.4.2) over all finite extensions L'/L, one gets
an exact sequence

0—>121®A£A2A/0—>§A/0—>QA/A—>0

of A-modules. Now apply (3.3.5) again. Since xdy = pzP~'xdz if y = 27,
one sees (using 3.4.3(i)) that €5, and Qz , are divisible. Therefore, since

~

QA/O is finitely generated, one can pass to the limit to get an exact sequence

of A-modules

:Bl)

0— Tp( A/o) — Tp(QA/A) l> ®A QA/O — 0. (344)

Because QA/U is a finite A-module, the map 7 has a continuous set-theoretic
section (write QA/U = P ® N with P free and N torsion; over A ® P one has

a continuous linear section of 7 by freeness, and A ® N is discrete, so over it

one can take any section).
One then has Hyodo’s generalisation [14, (4-2-2)] of 3.3.1 (see also [10,

§2b)]):
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Proposition 3.4.5. Let 05/, be as in 3.3.1 above, and put az,, = aa/of_l c L.
Then there is an exact sequence of A-modules and Galois-equivariant maps

0= az,(1) = L(1) 0z, HI =0

where a is given by the same formula as in 3.3.1, and where the map [ is a
split surjection, with right inverse

zr _> QA/O
(a/p"s... . a,/p") = Zaz’ leg(Tz’p_n) (a, € A). [

Remark. Hyodo states this only in the case K = Q,, but his proof works in
general. The key point (which underlies Faltings’ approach to p-adic Hodge

theory) is that the extension E/L(upoo,Tip_w) is almost unramified (cf. the

proof of Proposition 3.4.12 below), which shows that QA/a is generated as an
A-module by the forms dlog(,, dlog7? .

Corollary 3.4.6. There is a unique isomorphism

~

ai/0(1) = T,(Q5,) (3.4.7)
which maps ((,n), € Z,(1) to (dlog(yn),- O

Remark. Comparing (3.3.3) and (3.4.7) we have in particular

~

p"QA/O - p"QE/U ®a A (348)

Now consider as before the connecting homomorphism attached to the
Galois cohomology of (3.4.4), for a (not necessarily finite) extension L'/L
contained in L:

Ot Qujp @4 A — HY(L, T,03,,) (3.4.9)

For L' = L we write ¢, for Oprjp- If L'/L is finite the maps ¢;,, Ops /7, are
related by a commutative diagram

~

Q) @y A

canonical& W (3410)

~ 5.0 ~
Qe —2 HA(L.TQ),)
(because the exact sequence (3.4.4) is functorial in A). If L'/L is infinite,
we define 6,,: Q) — H' (L', T, ;,,) as the direct limit of the maps ¢, for
finite subextensions L C L"” C L'; the analogue of (3.4.10) still holds.

The following lemma is proved just the same way as 3.3.7.
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Lemma 3.4.11. For any algebraic extension L'/L, the following diagram
commutes:

T g Kummer 1
A R L )

dlog& Edlog

~ 07, mod p" ~

QA’/o — Hl(Llﬂp"QA/o) [

Proposition 3.4.12. Let L__/L be an algebraic extension which contains all
p-th power roots of unity, with valuation ring A, and whose residue field
extension is separable. Suppose that r = 1, so that [l: IP] = p. Then for
j > 2, Hj(LOO,TPSAZA/O) is killed by the mazimal ideal m_ C A, and the
kernel and cokernel of

— ~

N QA/O ®,A_ — H' (L

oo’ T p
are killed by a power of p.

Proof. Initially there is no need to make any assumption on r. Choose units
T,,...,T, € A* whose images in [ form a p-basis. Consider the extensions

o

M = L(T"",...T" ") and M, = ML_. Let B, B be the valuation

(3
rings of M, M_. Then the residue field of M is perfect, so Tate’s theory
[37] applies; in particular, the groups H(M_, A) are m_-torsion for i > 0.
Therefore, using the Hochschild-Serre spectral sequence and the fact that
2

m5, = m_, the inflation map

HI(M,, /Ly By) = H(M, /L HA(M., A)) » H(L,A)  (3.4.13)

is an isomorphism up to m_-torsion. Now by Kummer theory and the hy-
pothesis on the residue fields, Gal(M_ /L) >~ Z,(1)" (the isomorphism being
determined by the choice of {T}}). Therefore if r =1

H/(M_/L._,B_(1)) =0 forallj>1, and (3.4.14)
H'(M_/L,,B,(1)) ~ (Boo)zp(n' (3.4.15)

Now by 3.4.6 there exists a (non-canonical!) isomorphism of Gal(L/L_)-
modules Tpﬁ/—‘/o ~ A. Combining this and equations (3.4.14) and (3.4.13),

one sees that that H7(L_, Tpﬁﬁ/o) is killed by m_ for all j > 1.
For the second part, we compute the coinvariants in (3.4.15). First observe
that the ring A’ = A[T? "] is finite over A, and that 7, A’ is a maximal ideal
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in it. Therefore A’ is a discrete valuation ring, hence is the valuation ring of
L(T? "). 1t follows that any element of B,_ has the form

where T'=T, and b, € Z;, with b, — 0 as |a|, — oc. Let v € Gal(M_ /L)
be the topological generator for which v(T'?") = ¢, T*/?", for cach r > 1. If
b is divisible by (1 — (), then b = b, + (1 — v)b', where

bl — Z (1 - Cgr)ilbx/prTz/pT € BOO
0x/p"€Qy /Z,

From this one sees that the inclusion Z; C E; induces an injection
A_——H'(M_/L_,B_(1)) (3.4.16)

whose cokernel is killed by (1 —¢,). Now there is a diagram

A, M (ML /L, BL(1)
&inﬂ
IsdiogT H'(L., A1)

E(3.4.7)

o~ — 5LOO/L -~
QA/U ®Aoc Hl(Loo’TpQA/o)

in which the vertical arrows have kernel and cokernel killed by a power of
p (by 3.4.3, 3.4.6 and (3.4.13)). It remains to check that it is commutative,
which having got this far is an easy exercise. O

A similar computation can be carried out for all » > 1, using the isomor-
phism Gal(M_ /L) ~ Z,(1)" and the Koszul complex. In this way Hyodo

~

computed the cohomology of L(j) over L, generalising Tate’s result. His final
result (not needed here) is:

Theorem 3.4.17. [14, Theorem 1] There are canonical isomorphisms

R 0, ®Q ifj=q
H(L,L(j)) = 4, @Q ifj=q—1
0 otherwise

compatible with cup-product. For 7 = q — 1 = 0 it is given by cup-product
with 10g Xy and for q=j =1 by (3.4.7) and (3.4.9). O
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3.5 Proof of Theorem 3.2.3

Theorem 3.2.3 is proved by reducing to the setting of the previous section.
Recall that X is a smooth and proper curve over the ring of integers o of
a finite unramified extension K/Q,. Assume that X is connected and that
['(X,04) = o (otherwise first replace K by an unramified extension). Let
n € X be the generic point of the special fibre. Write also:

A= 5;; L = field of fractions of A;
L, = L(p,.); A, = integral closure of A in L,;

The fields L, L, satisfy the hypothesis (3.4.1), with » = 1. There is an obvious

localisation map ¢: Spec A — Y. Note that since A/o is formally smooth we

actually have A, = A® o0,; and by 3.4.3, @A/U is a free A-module of rank 1.
Now use the fact that the map

¢*: Fil' Hip (Y/o) = H'(X, QY ,(log 2)) — O,

is injective and its cokernel is torsion-free (this holds because the fibres of
X/o are connected). This means that the diagram in Theorem 3.2.3 can
be localised to Spec A without losing information. We shall write down the
localised diagram and then explain why it implies 3.2.3.

Proposition 3.5.1. There exists an integer ¢ such that for every n > 0 the
following diagram commutes up to p°-torsion:

(Ky(4,) @ ppn ) ————  H(L,p,)
dlog& EHochschild—Serre
Qin/o(_l) Hl(KnJHl(LE: l‘l’p"))
Qin/o(_l) ®o QA/o Hl(Kn,(Aa)*/pn)
dlog gpn®[§pnrm1&z Edlog

U(1/p™)10g Xcyel
—

on/an ®o QA/o Hl(KnJQA/o ®a/pn—1)

Remarks. (i) Since A/o is formally smooth, the valuation ring of LK is simply
Ao.
(ii) We have written
H?(Ly,, p,n)° = ker (ves: H*(L,,, p,n) — H*(LK, pr,0))
(Ky(A,) @ pon 1) = ker (ch: K,(A,) ® pin ' = H* (LK, ) -



426 A. J. Scholl

The map marked “Hochschild-Serre” is then the first edge-homomorphism
from the Hochschild-Serre spectral sequence.
(iii) Concerning the bottom right-hand corner: the natural map is

dlog: (48)"/p" = Qyyye/P"
but as A/o is formally smooth

Qa0 = (), ®0) & (4

o/o

®, A)

and the second summand is divisible.

(iv) To deduce Theorem 3.2.3 from the proposition, it is enough, by what
has already been said, to show that there is a map from the diagram in
3.2.3 to the diagram above. Since the composite K,(Y ® 0,) — K,(4,) —
H*(LK, pi5?) factors through H?(Y ® K, p5?) = 0, one obtains the map
K,(Y ®o,) = K,(A,)" The only remaining thing to check is that the
diagram

HY(K,, H' (Y @ K, p,»)) —— HY(K,,H'(LK, p,.))

7y (mod p) H'(K,, (Ao)*/p")

E o

HY(K,,5(1)/p") ®, Fil' Hlp(Y/0) —— H'(K,,Q,, ®5/p")

commutes, but this follows from the description of 7, given in §3.2.

Proof of 3.5.1. We reduce the diagram to the (smaller) diagrams in the fol-
lowing three lemmas. By (3.4.7), €, is free over A/p™ of rank one, and

by pnﬁg’fu we mean its tensor square as A/p"-module.

Lemma 3.5.2. For any m, n the diagram below commutes:

Ky(A,) —2=  H(L,,ps?)

o

B o HA(Ly, 1 05))

m’ p"
in which the unlabelled arrow is induced by dlog: p,» — pnﬁg/o.

Proof. Since A,, is local the symbol A} ® A* — K,(A,,) is surjective. Since
the Chern character is compatible with cup-product, the compatibility follows
by Lemma 3.4.11. U
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This reduces the computation to Galois cohomology. Write

2 AR21\0 _ 2 OR2 20177 OR2
H (Ln,anA/o) = ker |H (Ln’p”QA/o) — H (LK’p”QA/o) )

Lemma 3.5.3. (i) The composite map

Q82 — HY(LE, Q%)

/\2 /\25Ln 2
QAn/U H(Ln’p Afo " 4/0

equals zero.
(i) The following diagram is commutative:

~ ~ A2§ N ~
Qon/o ® QA/o: Q/an/o - HQ(Ln’an§f0)0
Hl(Kn’p"QE/o ®0 ﬁA/o) Hochschild-Serre
Hl(id®5LI?/L)E E
Hl(Kn,ana/0 Qg Hl(LI?,anA/U)) _— Hl(Kn,Hl(LI?,an/i‘f/?O))

(iii) The map H'(id @0z ) has kernel and cokernel killed by a bounded
power of p.

Proof. (i) The cup-product A?6, factorises as

Kn®0L, /L

O 0 O®2
Qan/o ® QA/o O« )

HY (K s 0 76) @ H' (L o) = H (L, 0057

n'p"-6/o
and so its composition with the restriction to LK is zero (it factors through

(ii) The bottom equality comes from (3.4.8). The commutativity is a
general fact. We have groups

I'=Gal(L/L,) D A =Gal(L/LK), T/A=Gal(LK/L,)= Gal(K/K,)
and two exact sequences of I'-modules

0—-A —-B —-C —0
0—-A"—-B —-C"—>0

given by (3.3.6) and (3.4.4) respectively. On the first A acts trivially. So we
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have the following diagram

HYT/A,C)@ HY(T,C") —2% 5 HYT/A, A)® HY(T, A')

[

s@id ker[res: H*(I[,A® A') = H*(A,A® 4')]
(s
HYT'/A,A) @ H(T', C") HY(T/A HY (A, A® A'))

4 g

H'(T/A, A® HY(A, ") 8% myr /A Ag HY(A, A))

and it is a simple, if tedious, exercise to check this commutes.
(iii) Follows from Proposition 3.4.12 applied to L. = LK. O

Lemma 3.5.4. The following diagram commutes:

— dlog ® dlo = AN
HY(LE, p3?) e H'(LK, . 057)
Kummergl H
(Ao)*/p"(1) oSk @5 H' (LK, ;0 ,)
dlog& d®pr,
— ~ 2Q(pn @ dlog (Hn Qw ~
0/p (1) ® QA/o ’ p"QE/o ®o QA/o
Proof. This follows from Lemma 3.4.11. O

As K/Q, is unramified, we have a = a5/, = ((, — 1)"'o by 3.3.1,50 0,0 = p"a
and 0/0,0 — a/p".
We now can make a big diagram:

(KA, ®Z[p")" — H(L,, py)’ ———  H'(K, H'(LK, py?)) —
o, — HQ(Ln’p”Q}?/QO)O SN H1(Kn,H1(LI?,an§/QO))

I I ?
~ ~ (* — ~

Qon/o ® QA/o HHl(KWp"QE/u ®a QA/o) _;Hl(Knvp”QE/o ®E Hl(LKvp"Q;\/a))

0,/0,(1) @, B HY(K,, a/p"(1) ®,Qy,0) +—— H'(K,, (A8)*/p")(1) —

n?
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To save space we have not labelled most of the arrows: they can be found
in the corresponding places in the subdiagrams 3.5.2-3.5.4, apart from the
arrow labelled (f), which is U(1/p")log X,,- The top left square commutes
by 3.5.2, and the top right square by functoriality of the Hochschild-Serre
spectral sequence. The rectangle in the middle commutes by 3.5.3, and the
bottom left square by 3.3.8. The remaining part of the diagram (the right-
hand hexagon) commutes by 3.5.4

Going round the outside of the diagram in both directions gives two maps

(K,A, ®Z/p")° — H'(K,,a/p"(1) ®, Q)

and it is enough to show that their difference is killed by a bounded power
of p. This follows from the commutativity of the diagram, since the kernel of
the arrow marked (x) is killed by a bounded power of p, by 3.5.3(iii). O

4 The Rankin-Selberg method

In this section we calculate the projection of the product of two weight one
Eisenstein series onto a cuspidal Hecke eigenspace, using the Rankin-Selberg
integral. In order to separate the Euler factors more easily, we work semi-
adelically, regarding modular forms as functions on (C —R) x GLy(A;). The
passage from classical to adelic modular forms is well-known, but we review
the correspondence briefly in §4.2 since there is more than one possible nor-
malisation. The same applies to the discussion of Eisenstein series in section
§4.3.

4.1 Notations

G denotes the algebraic group GL,, with the standard subgroups

r=(s 1) v=(0 1) 7={( o)}

If Ris aring and H is G or any of the above subgroups, write H, for the group
of R-valued points of H. If R C R then H}, denotes {h € H | det(h) > 0}.
The ring of finite adeles of Qis A, = Z@ZQ. Ifx=1Ix,: A} JQt, — C*is
a character (continuous homomorphism) and M is a multiple of the conductor
of x, then X,..qn: (Z/MZ)* — C* denotes the associated (not necessarily
primitive) Dirichlet character: for a € Z*, x(a) = Xoq, (¢ mod M). Of
course this means that if (p, M) =1 then x4, (p mod M) = x,(p) "
Write finite idelic and p-adic modulus as |~[;, [~|,, and archimedean
absolute value as |—| . If there can be no confusion we drop the subscripts.
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Write also H;, H, in place of HAf, H@p’ and define the standard congruence
subgroups

v — * * v
GpDKp:GZpDKU(p):{hGKph:(o *> rnodp}

v ]' * 14
DKl(p):{hEKp|hE<U *> modp}.

Haar measure on all the groups encountered is to be normalised in the usual
way: on Q, the additive measure dz gives Z, measure 1, and on Q) the
multiplicative measure d*x gives Z; measure 1. On G, G, the subgroups
Gy, K, have measure 1.

Fix additive characters ¢,: Q, — C*, ¢, = [[¢,: A; — C* by requiring
W, (z/p") = 2™V for every x € Z.

$ denotes the upper-half plane, and $* = C — R. The group Gy acts on
$T by linear fractional transformations. Put

j(y,7) =dety - (er +d) ! ifTEﬁim:(Z Z>€GR

so that j(y,7)(1, =7)y~! = (1, =v(7)).
Write S(A7) for the space of locally constant functions A7 — C of compact
support. The group G, acts on S(Afc) by the rule

(90)(z) = d(g 'z), ¢ € S(A}), z € Al (4.1.1)
If § € A} and ¢ € S(A}), write [6]¢ for the function
0]¢: 2+ ¢(07 ). (4.1.2)

So in particular, if ¢ is the characteristic function of an open compact subset
X C A}, then [0]¢ is the characteristic function of 6X.

4.2 Adelic modular forms
In the adelic setting, a holomorphic modular form of weight k is a function
F: 9T x Gf — C
which is holomorphic in the first variable, and satisfies:
(i) For every v € G, F(y(7),v9) = j(v.7) *F(,9);

(ii) There exists an open compact subgroup K C Gf such that F(r, gh) =
F(r,g) for all h € K;
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(iii) F' is holomorphic at the cusps.
Any modular form F' has a Fourier expansion
F(r.g)=Y a,(9)e™™, 17€8H, g€G,
meQ

where a,,(g) = 0 when m < 0 (this is the meaning of condition (iii)). Put
A(g) = a,(g), the Whittaker function attached to F. Then A is a locally
constant function on G, which satisfies

A (((1) ?) g> — ,(—b)A(g) forall be A,. (4.2.1)

One can recover the remaining Fourier coefficients (apart from the constant
term) from A(g) by

a, (9) =mFA <<Tg ?) g) if0<meQ
It is convenient to introduce the normalised Whittaker function
A*(g) = A(g)|det g/, */%. (4.2.2)

The group G, acts on adelic modular forms by right translation, and the
translates of F' by G, generate an admissible representation, call it 7. From
the definition 7 is isomorphic to the representation generated by A(g); the
representation generated by A*(g) is isomorphic to the twist 7 ® |det|;k/2. If
7 is irreducible it has a factorisation 7 = ®'r ), and the centre of G acts on
the space of 7 via a character. With the normalisation used here, there is a

(finite order) character e: A} /Q%, — C* with e(—1) = (=1)* such that

a 0 k *
7r<0 a)ze(a)a|f for all a € A},

This means that
«f(a 0O % *
A <<0 a) g) =e(a)A*(g) forall a € A} and g € G.

If F' comes from a newform on I'/(N) then A(g) is factorisable: there are
functions A : G, — C, satisfying A (1) = 1, [TA,(g,) = A(g) for all g =
(9,) € G and such that

A, <<8 2) <(1) l{) 9) = e (a)|aliy,(—b)A,(g) forallae Q) and be Q,.
(4.2.3)
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Suppose A, is K -invariant. Then 7 is unramified, and its local L-function
is given by

_ pr 0 r(k—s) __ * pr 0 r(k/2—s
ZERRED SR (A FERED SR VAR P
r>0 r>0
1
(T —a,p*)(1 —ayp?)

where
«(p 0O _
a, + a; = pk/QAp (U 1) and apa; = 5p(p)pk !

(this is the normalisation of L-functions which gives the functional equation
for s <3 k — 1 — s; it differs from that of Jacquet-Langlands by a shift).

Complex conjugation of Fourier coefficients defines an involution of the
space of modular forms. In representation theoretic terms, this becomes the
isomorphism

T~oTcel (4.2.4)

If A: A% /QC, — C* is any character of finite order and F' is an adelic modular
form of weight k, so is

F®M\: (1,9) = Ndet g)F(7,9). (4.2.5)

To go from adelic to classical modular forms, let K(n) be the standard level
n subgroup of G;. Then

Go\9* % G, /K (n) = G\H* x G5/ K(n) = Y (n)(C).

where the last isomorphism is normalised in such a way that the point (7, h) €
H* x GL,(Z/nZ) corresponds to the elliptic curve E, = C/(Z + 7Z) with
level structure

a i v=(1/n,—7/n) h-v
(Z/nT)? —>(%Z +22))(Z+ 72) = kerfxnl
Write z for the coordinate on E_, and let F' be an adelic modular form which
is invariant under K (n). It corresponds to the classical modular form over C
(E,,a,,) — F(r,h)du®* € H(E,,w®)
where h € Gy, and h € Gy is any lifting of h.

The map (2.3.4) ey : Y(N) — Spec Q(p ) is then given on complex points
by

ex: (1,9) = Yp(£detg/N) if g € Gy

the sign depends on the normalisation of the e,-pairing).
g N g
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4.3 Eisenstein series

Here we establish notations for Eisenstein series in the framework of the
previous section. The results quoted can be obtained easily from those found
in classical references (probably [31, Chapter VII] is closest to what is found
here).

Let ¢ € S(A7), with the action (4.1.1) of G;. The series

E,(9)(r.9) = Y (96)(m)(m, —m,)~*[m; —m,r|~>
0#£meQ?

is absolutely convergent for k42 Re(s) > 2, with a meromorphic continuation,
and satisfies

By () (v7,79) = j(7, )i, T)\_QSEk’S(@(T, g) forall vy e Gy,

The functions E(¢) := Ej ((¢) are holomorphic (and therefore modular of
weight k) if & > 3 or k = 1; if £ = 2 they are holomorphic provided that

ng ¢ = 0.
The map ¢ — E, () is G j-equivariant. In particular, if § = d € Q", then
in the notation of (4.1.2)

E, ,([dl¢) = d*d| 2 2°E; (8). (4.3.1)

One can rewrite the Eisenstein series as a sum over the group. If f: G, = C
is a locally constant function satisfying

a b k1o .
f <<0 d) 9) =a "ol f(g) foralla,de Q' be A, (4.3.2)
then define

By img) = Y f(r9)i(v.7) ity 7). (4.3.3)

'yGPdL\Ga
The relation between the two definitions is that £, [(¢) = E; , ; with

flg) =" (99) <“8> kx| 22,

zeQ*

Moreover every E, , . is an By (¢) for some ¢.
In the normalisation used here, the Whittaker function of E,(¢) is

(27ri)k 1 ki 11-2s T
im Yy oy "yl V(—2/y)(99) dx
(k—1)! Hoye% A[ ! <y>

B(g) =
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which can be obtained without too much difficulty from the classical formulae
— see e.g. [31, pp.156-7 & 164ff.].
One can decompose the Eisenstein series under the action of the centre of

G ;. Tt is more convenient to replace f and B by the normalised functions
(cf. (4.2.2) above)

F*(9) = f(g)ldet g ;)2 B*(g) = B(g)|det g 7"

and then to write

@)=Y filg). B(g) =) Bilg)

X
where the functions f;(g), B;(g) are zero unless x(—1) = (—1)¥, in which
case
* (a0 .
filg) = v@r (% 2i)e) da
A7 /Q%,
= 2det gl “* [ xta)alt H00) () o
A
and
B? = B* a”’ 0 d*
l9) = x(a) 0 o 1)9) @0
85705,
211 . , *
- Q%d b9l / X[y, (=2 /) 99) (y) dz d*y
Af XA} s=0

Ifo=1] ¢, is factorisable, with ¢ equal to the characteristic function of Zz
for almost all p, then the expressions above factorise and one has

where the functions f7 | B, are given by local integrals
P p

o) =t g [0 [ @l i) (3) 0 (@3

@
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By, (g,) = ldet g, ;""" / X )l (<2 /) (9,6,) (*’5) da d*y

Q, s=0
= |det g [/ / X, (W) yET*y (=) (g,8,) <xy> dz d*y
p'p D p p prp y 0
Q, X Q -
(4.3.5)

In fact the integral in (4.3.5) is a finite sum, because the z-integral is a finite
linear combination of integrals of the form

[ yt-apy)ds
t+p“Z,
which vanish if y is sufficiently close to 0. So one can omit s from the formula.
Because of (4.3.2) and (4.2.3) the functions fx, and By are determined

by their restrictions to the subgroup

0
((%P )KpcG

1 P
and these are given by
L <<73 ?) h> = x, (m)|m| 22 g (h) (4.3.6)
B, ((73 ?) h) = |ml[;H2H / X, W) y[E 1, (—ma ) (he,) (Z) dz d*y
Q<@
(4.3.7)
= |ml,*/**! / X, W)ylEw, (—ma) (hg,) (2‘”) dz d*y
Q, xQ;,
(4.3.8)

4.4 The Rankin-Selberg integral

Let F', G be adelic modular forms of weights &+ [, k respectively, at least one
of which is a cusp form, and let £, ; be the Eisenstein series (4.3.3). The
product

Q= E,, GFy*""2|det g| "' ~d7 A d7

is a left Ga—invariant form on $ x Gf, and the aim of this and the following
sections is to compute the inner product

(B, G, F) = / Qdg
GH\H%Gy



436 A. J. Scholl

which is a Rankin-Selberg integral.

Proposition 4.4.1. Let A(g), B(g) be the Whittaker functions of F' and G.

Then
F kE+1l+s—1
<Ezst F)= ((47T)k+l+ss1 )
< L5 9205 9930 erroms
A’JQXGZ

Proof. A very similar calculation is done in [30, §5]; here we simply write the
equations with little comment:

En,Gh)= [ X rait i
Gh\oxG, 1ERNGG
x G(1,9)F (1, g)y* " 2|det g|;k_l_sd7 A d7 dg

/ F(9)G(r, g Fr, g2 det g | *~*dax dy dg
P+\37J><Gf

i [ s ZBA((o Do)

P+\37J><Gf mEQ

% e—47rmyyk-|-l-l-s—2|de)c g|;k_l_sdl‘ dy dg

= -2 / F(9)B(g)A(g)e ™y 1+ 2|det g| 7+~ dx dy dg

- [ B @ el dadg

To get the final result, use the parameterisation

T Ay X AL X Gy /{E1} — G/ 27,

b (1) (3 )

in terms of which integration is given by

/ B(g) dg = / (x*®) (b, m, h)|y|~db d*m dh
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Since f(g)B(g)A(g) is invariant by g — <é l;) g, the integral in the last line

above splits as a product
—((m 0 "
dz db fBA 0 1 h| d*mdh
Q\RxA[ A X Gy /{£1}
and the first factor equals 1 by choice of Haar measure. O
Now suppose:

e I'is a cusp form, belonging to an irreducible 7 = ®'r,, with central
character ¢, whose Whittaker function A(g) =[] 4,(g,) is factorisable;

e G = E,(¢') is an Eisenstein series and f = [ for factorisable functions

¢ =110, ¢' =119, € S(A}).

Then the integral in the previous proposition can be decomposed under the
action of the centre and then factorised, giving:

Proposition 4.4.2. Under the above hypotheses:
<El,5(¢)Ek(¢’)a F> =C Z HIp(Xpa X;))
x.x' P

Rk + 1+ s —1)
Qk+20+2s—4 () — 1)

* * m 0 1 g%
L(Xp X,) = / prp <( ) ) |m| " d*m dh

and f;(‘p, By, are as in (4.3.4), (4.3.5) above. The sum is over all pairs of
characters x, x': A} /QLy — C* such that xx' =€ and x(—1) = (=1)".

where C =

and

Remark 4.4.3. Tt will become clear in the computation that follows that the
sum over characters is actually a finite sum.

4.5 Local integrals

Write char [)Y(] for the characteristic function of a subset X x Y C Afc.
The next proposition will compute the local integral [p(Xan;,) for almost
all primes.
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Proposition 4.5.1. Suppose that
7
— A — 40—
¢, = ¢, = ¢, = char [Zﬂ
and that A, is K -invariant, with A (1) = 1. Then

, L(m,, k+1+s—1)L(r,®x, ", 1 +5) ifx, is unramified
(X, x;,) = ‘
0 otherwise.

Remark 4.5.2. Since 7, has a K -invariant vector, ¢ is unramified at p. There-
fore since yx' = ¢, either both or neither of Xp: X;; are unramified.

Proof. (See [15, §15.9].) If ¢, = ¢! = ¢9 then by (4.3.6) for h € K,, m € Q;

(5 9) ) = tmimicer [t

pf{o}
_ J L(x,, 1 +2s) if x, is unramified
o otherwise.

Moreover by (4.3.7)
. m 0 _
B (5 ) 8) =i [ gl e ey
Z,xX7,—{0}
where the z-integral equals 1 is m/y € Z:, and vanishes otherwise. The y-
z; # 1, giving
])_T'k/2 Z X;(p)]p(r_J)(k_l)

. ((m 0 0<j<r
Bx% <<(] 1) h) = if r = v,(m) > 0 and x;, is unramified
0 otherwise.

integral then vanishes if x

(4.5.3)

Thus I,(x,,X,) = 0 unless both x, x' are unramified at p, which we now
assume. Then f;p, By, are K -invariant and
p

« TF 0
L(xp X)) = prBA( 1)

rez

r,r(1-1/2—s) * Ax r 0

r>0
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Now from (4.5.3)

« (P 0) o 1
B/ T —
2By (0 1) (1 = x,(p)p=*/2T)(1 — p*/>=T)

r>0

and therefore by [15, Lemma 15.9.4] one gets

L(m, ® X,Xp: kb + 1+ s —1)L(7, ® x,,[ + 3)
Ley ' xpx2, 1+ 2s)

I,(Xps Xp) = L(X, | + 25)

Since e = xxX' and @ ~ 7 ® ! (4.2.4) the result follows. O

Corollary 4.5.4. Under the hypotheses of Proposition 4.4.2, let S be a finite
set of primes such that, for every p ¢ S, ¢, = ¢, = 2, A, is K, -invariant
and A (1) =1. Then

<El,s(¢)Ek(¢l):F> =
C-Ly(mk+1+s—1)) Lorax i+ [ x))

XX peS

where the sum is over characters x, X' unramified outside S, with xx' = ¢
and x(=1) = (=1)L.

Here L denotes the L-function with Euler factors at all p € S removed.
At other primes we use the following choice for ¢,

Proposition 4.5.5. Let t € Q, with v,(t) = —v < 0. Suppose that

7

t+7Z
¢, = b, = char[ + ”].
p

Let m e Q), h = <Z 2) € K,. Then

N
<1 _ _) pu(l+25—1)X (amt)|m\l/2+s
o 0, = p P
» \\ 0 1 N if cond x, < v and h € Ky(p”)
0 otherwise.
Proof. Straightforward calculation from (4.3.4). O

At the bad primes for F' we are going to choose qﬁ% in such a way as to
make the local factor be simply a constant.
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The standard way to achieve this is to use a suitable Atkin-Lehner operator
to replace the coefficient of ¢™ in the g-expansion by zero whenever pn. In
representation-theoretic language, this means to use the vector in the Kirillov
model which is the characteristic function of Z;. (See [6, Thm. 2.5.6], and
also compare [30, 4.5.4].) For Eisenstein series it is easy to write down a
parameter qﬁz, which does the trick, although possibly this does not give the
best constant in 4.6.3 below.

Proposition 4.5.6. Suppose

, '+ 7Z 1 ' Y/
¢ = qﬁ;’t = char[ jZ_* ”] — —char[ *D p]

p p Z;

wheret' € Q, v, (') = —p < 0. Then for allh = <Z 2) € K,(p"HNK,(p?)

. x;(—amt’)/x;(y)lw,,(y) d*y

* m - * .

X <(0 1) h) = P 7y if cond x}, < pu and m € 7,
0 otherwise.

Remark. In the special case u = 0, this becomes

7 1 e/
¢; = ¢72J’1 = char [Zi] — —char [p ”]

pl P Z;

and for all h € K(p?) and all m € Q;

. m 0 1 if x! is unramified and |m| =1
B i h — P .
X 0 1 0 otherwise.

' +7Z
Proof. First consider what happens when qﬁ% = char[ —Zi_* ”]. For every
h € K,(p"") one has P
at' +7Z
h¢! = ch P
¢, =c¢ ar[ 2 }

which gives

By (7 ) 0) = b [ gy emap sy a5

(at'+7,)xZ;,
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and the x-integral vanishes for m ¢ Z
Therefore for m € Z, (4.5.7) becomes

o and equals ¢ (—amt'/y) otherwise.

w42 [ 3y ) (amt )y
Zy, — |m‘17k/2X;)(_amt/) / X;(y)flwp(y) d*y

Ty
mt' 7,

Now if B: G, — C is any Whittaker function (i.e. satisfies (4.2.1) and is
locally constant) which is invariant under K,(p”), some v > 1, then the
function

~ 1 1 plz
Bepy 2 (0 7)
z mod p

satisfies, for every h € K, (p*) N K,(p?),
~(({m 0 m 0
B <(0 1) h) = CharZ;(m)B <<0 1) h) .

(t'+p 'Z,) x L) = H <(1) p11x> [(t'+7Z,) x 73]

x mod p

Since

the result follows. ]

From Propositions 4.5.5 and 4.5.6 one obtains:

Proposition 4.5.8. Suppose that A, is invariant under K,(p") and that
A1) = 1. Lett, t' € Q with v,(t) = —v, v,(t') = —p and v > p > 0,

v >2. Then if ¢, = ¢," and ¢, = qﬁz’t',
!
’ < N E) p”(HQS_Q)Xp(t)X;,(—t') / X;,(y)flwp(y) d*y
T, 06 X5) = P ifcond X! < p
0 otherwise.

Remark. Since € = xx' one has cond x;, <y = cond x, <.

Proof. 1f cond x; > p then I (x,,x;) = 0. Otherwise, if h € Ky(p”) and
A, is K, (p”)-invariant, one has A3(h) = ¢,(a)A;(1) = x,x,(a)A5(1), so that
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I,(x,» X,) equals

('—Q;QW““”/xﬂw*%ﬁnfyu/;&mw%pﬂmgwgﬁ

pHLE Ko(p”)
v 1 - v s— — *
— ol K, (5") ( - 5) P [0, ) g 0 (- T
p MLy
and vol K,(p”) = [Kp: K, '=0+1/p)'p. [

There is just one more case to consider, in order to compute the image of
the Euler system in the cyclotomic tower.

Proposition 4.5.9. Suppose that

) 4
I 1,6 \tr __ A
¢, = (¢," )" = char [t’ +PZJ, v,(t") = —v <0.

. a b ”
Then for all m € Q and h = <c d) € K,(p"),

2 ((5 1)) (1=3) w2 it b iy b

x» \\0 1 if cond ) < v and v,(m) > —v
0 otherwise.
) bt' + Z ) ,
Proof. One has h¢) = char| =~ P| and dt' +Z, = dt'(1 +p"Z,), therefore
by (4.3.7) '+,
By =l [ gl ([ wema) i)y
dt' (1+p“Z,) bt' +7,
_ {0 if v,(m) < —v
|m | F2H (b )pr D) / Xp (), (—=mb/dy) d*y if v (m) > —v.
1+p¥Z,
If v,(m) > —v and y € 1+ p"Z, then ¢, (—mb/dy) = 1,(—mb/d) and the
result follows. O

Corollary 4.5.10. Suppose there exists a character \,: Q) — C* such that
T, ® )\;1 15 unramified, and that A; 18 the twist of the spherical vector; that
is, A» @M1 g A (det g) 7' A (g) is K -invariant and A (1) = 1. Put

6, = &', ol = (y")"  with v,(t) = v, (') = —v < 0.
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Then if X;)\;l is unramified and cond A\, < v,
N 1\
L) = (1= 1) (1= 2] #E 0 ) L, g T+

and otherwise I (x,,x;) = 0.

Proof. The central character ¢, = XPX;’ of m, is )\12) times an unramified char-

acter, so one of Xp)\;l, X;)\;f is unramified if and only if both are. By
Propositions 4.5.5 and 4.5.9, I (x,,, x;,) = 0 whenever cond x,, or cond x;, > v
Otherwise

1 - v(k+1+25—3
fp<xp,x;>=(1—]—9) P29 ()1 4

< [ tmpgmp o (0 0) a) aman

Q@ x Ko(p*)

1 72 v S5—
_ (1—5) P8 () (51

r,—r(l— s —r A% _ "0
< gl e ()

r>0

« / ¥, (@)X, (d)A(det 1) dh.

Ko(p”)

The integral in the last expression vanishes unless x,A\, ' and x, A\ are un-
ramified, in which case I,(x,, x,) becomes

N N\
< _2;> ( _?> pu(k+l+2sf4)Xp(t)X;(t/)

% p 0 —r(l—k+2s)/2
x> (A ()T Ar @ A 1<0 1>p ( ) (4.5.11)
r>0
= !
= < — 5) ( — ?) p" B ()X, () LT, © X, 1+ 5)
giving the desired expression from (4.2.4). O

Remark 4.5.12. One can do exactly the same computation merely assuming
that A7 ® )\;1 is K, (p”)-invariant; I (x,, X,) vanishes unless x;, )\ is unram-
ified, in which case one gets the formula (4 5.11).
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4.6 Putting it all together

We change notation slightly from the previous sections. Begin with a cusp
form F' of weight k + [, generating an irreducible 7 = ®’7rp, and whose Whit-
taker function A(g) =[] 4,(g,) factorises, with A (1) =1 for all p. Let € be
the character of the centre of G, on A*. Assume that the following data is
given:

(i) Disjoint finite sets of primes S and T', such that if p ¢ S then A is
K -invariant. (In particular this means that ¢ is unramified outside S.)

(ii) A character A: A7 /Q%, — C*, unramified outside T'.

(iii) For each p € S, elements ¢, t, € Q) with v,(t,) = —v,, v, () = —pu,,
such that v, > p, >0, v, > 2, and A is K, (p"»)-invariant.

(iv) For each p € T, elements ¢, t, € Q with v (¢,) = v,(t,) = —v, where
v, > max(cond A, 1).
Put

N=Hp"f', M= Hp”?, R = Hp”?.

peES peS peT

Denote by t, t' the finite ideles whose components at primes p € SUT are by
t;), and which are 1 elsewhere. Pick y € Z such that

!

P mod p/» forallpe S (4.6.1)
N, p p 6.

Y =

(note that the right-hand side belongs to Z;) — thus y is well-defined mod M.
The integral to compute is

(B (0)E () @ X7 F) = (B, (¢) By (¢'), F @A)
where
F & A(7,g) = AMdet g)F(r, g)
is the twist of F' by A, and ¢, ¢’ are given as follows:
e Forpe S, ¢, =y and ¢!, = ¢,
Ltp i Lt;: tr
e« ForpeT, o, = ¢y and ¢, = (65"

e Forpg SUT, ¢, =), = ¢,.
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We can then assemble the previous calculations. Put x = e\d and y' = \0~!
for a variable character # — thus yx' = €\?, the central character of A* @ ).
Then only those # satisfying the following conditions contribute to the sum:

o O(=1) = (=1)*A(=1);
e If p ¢ S then 6, is unramified;

o If p €S then condf, < pu,.
So cond §|M, conde|N and cond A|R. This gives:

(El’s(¢>)Ek(¢>’),F QAN =C- Lor(m@ANI+k+s—1)

X >, Ly r(m@0.14+5) T 1,(xp X))
O(=1)=(=1)*X(~1) peSUT
cond 0| M

by 4.5.4, 4.5.8 and 4.5.9, where .
5— 1y - *
1506 x,) =N T] < — ?) X, ()X, (=) / Xo ()™, (y) d*y

peES peES

pTHPL
with
Lo )X (=t) = T2, ve, (¢,)0, (=1, /1)
peS peS
= emodM Hg #p)‘ (MN)il
and Pes
I150.x,) =
peT

s N /oy
RF2H T <1 - —) ( - —2> X (tp)x (tp) LT, @ 6,,1 + 5)

peT p p
and for each p € T', x,(t,)x,(,)
(Ey(9)Ey(d), F®A) =

-1 -1
O . NIT25—2 ph+i+2s—4 H <1 _ %) H ( _ l)
p D

=¢,(t,)\, (t,t,). This gives

peSUT peT
O JIA(MNtt) - Lyp(r @A\ 1+ k+s—1)
peT
« 3 (H 0,( / () ()
6(—1)=(~1)FA(~1) p|M v
cond 6| M
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In the third line of this expression, the product over p|M can be rewritten in
terms of a classical Gauss sum as

P(M)™H D B (@)™,
x€(7/MTZ)*

(Here ¢ is Euler’s totient function.) The sum over characters 6 in (4.6.2) then
becomes (combining odd and even characters)

S > ) D)

cond 0| M z€(Z/M7Z)* m=>1
(m,N)=1 1, =1\ 2miz/M !
-1, — iz —l-s
X HmodM(l‘y m )6 Ay,

i % [0 (my /M) + (—1)*N(=1)¢,(—my/M)] a,;m™~*

by the character orthogonality relations.
For a € A, write

Ly(m,s;a) = Z Ys(maja,,m*
m>1
(m,N)=1

for the twisted Dirichlet series.

Theorem 4.6.3. Under the above hypotheses

(B, ($)E(¢)) ® \, F) = CN"*?RM4GL,(Z/RZ)™

1 -1
HA (MNtt) H(l—ﬁ> Ly gp(mn@ANI+k+s—1)

peT peS

x (Lg(m, 1+ s;y/M) + (=1)*AN(=1)Lg(m, 1 + s; —y/M))

with C' as in Proposition 4.4.2. 0]

5 The Euler systems

5.1 Modular curves

We can at last give Kato’s construction of an Euler system in the Galois
cohomology of the modular curve Y (N) over a family of abelian extensions
of Q. We assume throughout that p is a prime not dividing .
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Pick auxiliary integers D, D' > 1 which are prime to 6 Np, and put
R, = {squarefree positive integers prime to NpDD'}
R,={r=rp" |ry€R,, m>1}
Zl € EWV(Y(Nr)) ~

We suppose that, for each r € R, we are given points z,, z,

(Z/Nr)?, such that:

e Ifrand rs € R, then sz) = 2() —i.e., one has elements of the inverse
limit
(z,),, (), € (h_m ker[x Nr] ~ Z2 x H 7/t

r€R, LyNpDD'
of torsion points on the universal elliptic curve.

e For every r € R, the points Nz, and Nz, generate ker[xr] (in partic-
ular, the orders of z,, z. are multiples of ).

e If » = p™ then the orders of z,, z, are divisible by a prime other than
p.

Remarks. (i) The first condition implies that there exists e € Z; such that
for every r = ryp™ € R, the Weil pairing of 2, and z; is

—1
eny (2, 2) = (0 X (prime-to-p root of 1). (5.1.1)

ry~r

(ii) The third condition is really only added for convenience. It ensures
that for every r the points zﬁ’) are not of prime power order, which means
that they do not meet the zero section of £'"V/Y (Nr) in any characteristic.

It follows from (ii) that the modular units J,(z,), Y5 (2.) actually belong
to O*(Y(Nr),z), for any r € R,,. Define

G, = {Up(2,), 9 (2))} € Ky (Y (NT))

r

and also

0, = NY(NT)/Y(N)@Q(MT)&T €K, (Y(N) ® Q(l‘l’r));

by what was just said, these belong to the images of K, of the models over
Spec Z.

Let T, = Ty y(ny, (a) = (a)y () denote the Hecke correspondence and dia-
mond operators as in §2.3 above. If (¢,7) = 1 write Frob, € Gal(Q(u,)/Q) for
the geometric Frobenius automorphism, so that Frob, = go[l where ¢,: (.
¢! is the arithmetic Frobenius substitution. For every finite field extension
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L'/L write simply N, ; for the norm map K,(Y(N)® L") — K,(Y/(N)® L).
Notice that if £ /Nr then

Ny (vryy (e, © Tevve = Ty vy @ 24) © Ny vy (msaw,)

Ny(vmvmea) Oy = Oy vy @ €7) © Ny (v )y (veo(u,)

since T, acts as ¢, on the constant field and (¢) acts as ¢7, by §2.3. Therefore
from 2.3.6 and 2.4.3 one obtains:

Theorem 5.1.2. Letr € Rp. Then:

(1) Notu,,) atw,)Orp = Or-
(i1) If ¢ is prime and ({, NDD'r) =1 then

Nty /00w O = (L = Ty{f), ® Frob, + (((), ® Frob}) o,.

Now write

T,x = H'(Y(N)®q Q,Z,(1))

p

and consider, for r = r p™, the homomorphisms

<h_mK2(Y(N) ® Q(l‘l’rop")) ® MEJI

n>m
Al

Jim H Qg ). H' (Y (N) €4 Q. p1y0)

n>m
cor

Jim H Qg ). H (Y (N) € Q. p1y0)

H

Hl (Q(“r)’ P]Fp,N)

By 5.1.2(1), the family {0, ,» ® [(,n]', m > m} is an element of the first
group. (This twisting of elements of K, was used first by Soulé.) Let

& =&(V(N) € H(Q(p,), T, y)

be its image. On the one hand, Gal(Q(u,)/Q) acts on H'(Q(n,.), T, ), since
T, is a Gal(Q/Q)-module; on the other, the level N Hecke operators T},
(£) act by functoriality. Also Frob, acts as =" on .. By Theorem 5.1.2 the
classes ¢, therefore satisfy Euler system-like identities:
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Corollary 5.1.3. (i) For allr € R, Ot /0ty = &
(i) If € is prime and r, {r € R, then

COrg . ro(uSer = (1 = (71T, (¢) ,Frob, + ~'(f),Frob}) &,.

In the next section we will pass to an elliptic curve and get an Euler system
in the sense of §2 of [29].

Recall from §1.3 the definition of the weight 1 Eisenstein series (for any
N and any D > 1 which is prime to 6N)

pEis(z) = z* dlog, ¥, € H*(X(N), w).

defined for any 0 # z € "V (Y(N)) = (Z/NZ)* The form ,Eis(z) extends
to X(N), provided the order of z is divisible by at least 2 primes.
Recall from §1.1 the Kodaira-Spencer isomorphism

KSy = KSyy: H'(X(N),w®?) =5 H*(X(N), Qxxy,0(log cusps))

identifying holomorphic modular forms of weight 2 and differentials with at
worst simple poles at cusps. Let Y (N)°4 be the complement in Y(N)/Z of the
(finite) set of supersingular points in characteristic dividing N. The scheme
Y (N)°d is smooth over Z[p ] by [18, Cor. 10.9.2].

Proposition 5.1.4. The Kodaira-Spencer map divided by N extends to a
homomorphism of sheaves on Y (N )ord

C Ww®2 :
NKSN wguniv/Y(N)OTd — QY(N)Ord/Z[IJ’N}

with logarithmic singularities at the cusps.

Proof. The Kodaira-Spencer map takes the modular form f(g'/N) (dt/t)*? to
the differential f(¢'/")dq/q = Nf(¢"/™) dlog(¢"/"). So on g-expansions it is
divisible by N. The result follows by the g-expansion principle. O

Remark. One knows that (always assuming that N is the product of two
coprime integers, each > 3) the scheme X (V) is regular. Therefore the mor-
phism e, : X(N) — SpecZ[uy] is a local complete intersection (being a flat
morphism of finite type between regular schemes, EGA TV 19.3.2). Therefore
the sheaf of relative differentials extends to an invertible sheaf on X(N) g,
namely the relative dualising sheaf (sheaf of regular differentials), and one can
then show that (1/N)K S, extends to an isomorphism of invertible sheaves
on all of X(N)

1 re
NKSN: w? — QXN /71y (108 cusps).

This is not needed in what follows.
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Because Y (N)°™ is smooth over Z[uy], one has

2 _ 0! 1
v sz = Sy ez uy) © Walpy)2
and Qg 1/ is killed by N and generated by dlog(Cy).

Proposition 5.1.5. Let z, 2’ € E"™(Y(N) ;) be disjoint from ker[x DD'].

In Q%/(N)Ord/z the identity

1
—KSy(pEis(z) - pEis(2')) @ dlogey(z,2')

dlog{ip (), Iy ()} = 3

holds.

Proof. This can be checked on g-expansions. Suppose that on the completion
of Y(N) along a cusp we have fixed an isomorphism of £""V with the Tate
curve Tate(q) over Z[uy]((¢'/")), and that 2, 2’ are the points z = (3 ¢®/",
2 = (hgb2/N Applying the congruence 1.3.4 and the fact that ey (z,2') =

w@h=mb2 one get the desired result. (We have normalised the e -pairing as
in [18, (2.8.5.3)].) O

We can now give Kato’s description of the image of the Euler system {¢,}
under the dual exponential map (see §3.2 above)

eXp;: Hl (Q(l"’r)7 Tp,N) — Qp ®Q Q(l"’r) ®Q Flll H(}R(Y(N)/Q)

recalling that Fil' Hl, (Y/(N)/Q) = H'(X(N), Qx vy (log cusps)).
Define the following differentials on the modular curve in terms of the
weight 1 Eisenstein series:

1
W, = N—KSNT (pEis(z,) - p/Eis(2.)) € H*(X(Nr), ' (log cusps)).
r
W, = Ty (v x(V)Q(u,) Pr € H°(X(N)®Q(u,), Q' (log cusps))  (5.1.6)

Theorem 5.1.7. For everyr € R,
e . ©
exp, &, = Wy
where e € Z is as in (5.1.1).
Proof. By 5.1.5 we have in H(X (N7)", Q% ) (log cusps)) the identity
dlogo, = w, ® dlogey,(z,, 2.).

Now take r = ryp™ and tensor with Z,. Then by (5.1.1)

dlog o, =15 'ew, ® dlog{,m € H*(X(N7)” @ Z,, 2*(log cusps)).
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Taking the trace to X(N) ® Q(u,) gives, using the compatibility (§2.1) of
trace and transfer

dlogo, = ro’le w, ® dlog ,m.

Let o, be the ring of integers of Q,(m,»). By the explicit reciprocity law
3.2.3,

-1
* 0
epr 61" - llm ” trY(N)@U,n/Y(N)®0m wropn .

But since tryy, on)yv(vr) Qrgpr = p" Mw, by 2.5.3, this gives the desired
formula. 0

5.2 Elliptic curves

Suppose that £/Q is a modular elliptic curve of conductor N, with a Weil
parameterisation

vp: X (Ng) = E.

Choose a prime p not dividing 2Ny, and write T,(E) = H'(E,Z,)(1) — of
course, this is the same as the Tate module of F, but it is better to think in
terms of cohomology, especially if we were to work more generally with any
weight 2 eigenform (with character). Let the L-series of E be

L(E,s) = Z a,n”*

n>1

(again, this is best thought of here as the L-series attached to the motive
h'(E)). Let N be any positive multiple of N, with (N,p) = 1. (The actual
choice of N is to be made later.) Consider the composite morphism

¢
CrN: X(N) = X,(N,) = E.
There are Galois-equivariant maps of restriction and direct image

H'(X(N) ®,Q.Z,(1)) "5 H'(Y(N) ©,Q.Z,(1)) =T,

E/WE,N*

H'(E ©,,Q.Z,(1) = T,(E)

Now the Manin-Drinfeld theorem (or rather its proof) implies that there is
an idempotent I\ in the Hecke algebra (with rational coefficients) which
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induces for every p a left inverse to the map labelled “restriction”. So for
some positive integer hy (independent of p) the composite map

h’E SOE,N* © H(]:\lflsp: Tp,N - Tp(E)

is well-defined. Choose D, D' prime to 6 Np, and systems (z,), (z.) as in the
previous section.

Theorem 5.2.1. Define forr € R,

E(B) = (hp vpy, o Iy T)E(Y(N)) € HY(Q,), T,(E)).
Then the family {£,(E)} is an Euler system for T (E); that is,
o For everyr € R, corg, i )&p(E) =& (E);

e If ( is prime and ({, NDD'r) =1 then
Lo,y jo(un & (B) = (1 = €7 a,Frob, + (= Froby) £ (E).
where Frob, € Gal(Q(p,)/Q) is the geometric Frobenius.

Remark. Actually, Rubin considers cohomology classes not over Q(g,) but
rather over the subfield Q,, , (p, ), where r =rp™ and Q,, , /Q s the unique
extension of degree p™~! contained in the cyclotomic Z,-extension of Q. To
get an Euler system in the precise sense of [29, §2], one should therefore
take the corestriction of £ (E) to Q,,_,(p,, ). Note that his formula for the
norm relation differs from that here, as we are using geometric Frobenius: as
Nekovai has explained to us, the relation (ii) can be rewritten more concep-
tually as cor(§,,) = Q,(Frob,)¢,, where Q,(z) = det(1 — Frob,z | T,(E)*(1)).

Writing P,(z) = Q,(¢~'z) one gets the same formula as in loc. cit.

Proof. The first statement follows directly from the corresponding statement
5.1.3(i) for £ ,(Y(N)). The second follows from 5.1.3(ii) together with the
fact that () =1 and T, = a, on T,(E). O

On differentials, the projector II™ is the identity on cusp forms and
annihilates Eisenstein series. Put

wp"? = Y™ (w,) € H'(X(N) ® Q(p,), ).

Then Theorem 5.1.7 gives:

* eh cus
exp; & (F) = —=¢p,n, (W"). (5.2.2)

To compute this in terms of the L-function, use the Rankin-Selberg integral
from §4. Fix a differential w, on E/Q such that ¢jwy is a newform on
X,(Ng), which we write as 2miF'(7, g)dr for a weight 2 cusp form F' whose
Whittaker function satisfies:
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o A, is K -invariant if ¢ / Ny, and is K(¢”)-invariant if ord, (Ny) = v > 0;
o A (1)=1forallgq.

This means that A (q) = ¢ *a, for every ¢ fNp, and that L(E,s) = L(r, s)
where 7 is the representation of G, generated by F.

At this point it would be wise to recall that we have in §3.1 normalised
the reciprocity law of local class field theory to take uniformisers to geometric
Frobenius. This gives the classical isomorphism:

Z* SN % global CFT Gal(@ab/Q)

a — (G = G2

If X\ is any idele class character of conductor M, with associated Dirichlet
character A\ ., (Z/MZ)* — C*, we then have

Lir @AY, 8) = L(E, Ayoarrs 8) = Z Uy Aoa a7 (M)m

(m,M)=1

We also define the incomplete and twisted L-series

Ly (B, Apodars 8) == Z Uy Ao ar (M)M ™"
(m,MN)=1
LN(E,S;Q) = Z 27rimaamm—5
(m,N)=1

as in §4 above. Now put
e 0, = number of connected components of E(R);
e ()} = fundamental real period of w;
e (), = dpx fundamental imaginary period of wy
so that

/wE/\szﬁjgﬁE c iR
E(C)

The set of complex points Spec Q(u,)(C) is the set of primitive r*" roots of
unity {e27#/"} in C, which we identify with (Z/rZ)*. Write 1_: Q(u,) — C

for the corresponding embedding ¢, e?™*/"  Suppose A: A} /Qt, — C*is
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a character of conductor dividing r. Then we can compute

Z / )\modr(l‘) ’ x(pE N*(wCUSp) N (DE
z€(Z/rZ)* E(C)

— cusp x =
= Amodr (T) * Ly A YE,NYE

= )\modr(x) "t LWy A SO*E,N@E

Y(N)(C)x(Z /r7)*

(since cusp forms and Eisenstein series are orthogonal)

= ()\modNT= °© eNr) ) ajr A Qp*E,Nra_)E (523)
Y (N7)(C)

where the map ey, : Yy, (C) — Spec Q(p ) (C) = (Z/NrZ)* is that defined
n (2.3.4).

At this point we need to choose the parameters z,, 2z, of the Euler system
¢, in such a way that the expression (5.2.3) can be computed using Theorem
4.6.3. In fact it will be necessary to replace £, (E) by a certain linear combi-
nation of Euler systems. The choices to be made are best broken down into
a number of steps:

Step 1: Fix a prime p with pfN,, and ¢ € {£1}. We will restrict to
characters A with A\(—1) = e.

Step 2: If o = y/M € Q, the value of the twisted Dirichlet series at s = 1
is a period integral

L,, E 1; ) / Z nq "2midr

a TZMNE

and one knows that this is a rational multiple of a period along a closed path
in X(N)(C), for suitable N. Moreover the cusp form >, vy_; a,q" dq/q is
obtained from the eigenform ¢*w, by applying a suitable Hecke operator. It
follows that for any a € Q,

Lyn, (B, ;o) —eLlyy (E,1; —a) (5.2.4)

is a rational multiple of 2%. Moreover, one can find a with denominator
prime to any chosen integer for which (5.2.4) is nonzero, by [36].

We choose an o = y/M with M > 0 and (M,y) = (M,p) = 1, and for
which (5.2.4) is non-zero. By what has been just said, there will be a finite
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collection of such y/M which will cover all possible choices of p. We then
take

N = H q", v, =max(2,ord, (Ng),ord (M) +1).

q/MNg

Step 3: Fix auxiliary integers D, D' > 1 with (DD',6pN;) =1 and D =
D'"=1 (mod M). Let r = ryp™ € R; thus m > 1 and r; > 0 is squarefree
and coprime to pDD'N. In the notation of §4.6 we put R = r, T = {q|r},
S = {q|N} and choose the ideles ¢, ' € A} to have local components

1 if /N
ifq N ty=q —r"'ylM|, ifqlM

1 if g/ Mr
t, = ;
I {(Nr)_1 if ¢|Nr I

(Mr)~! if g|r

Then (4.6.1) holds, and ¢ € (N7)~'Z*, #' € (Mr)~'Z*. In §4.6 this data then
determines functions ¢, ¢' € S(A}). Let § € Z* be the finite unit idele

5 — D if ¢|Nr;
9 11 otherwise

and set, by analogy with (1.3.2),
p9 = D2¢ — D[é]¢

in the notation of (4.1.2). Likewise define ¢’ and ¢’ in the obvious way.
Since (N7, D) =1, if cond(\)|r we have

A8) =TT A(D) = Apoar(D). (5.2.5)

Step 4: We have ¢ = char[(t + Z) x Z] = char[(Nr) ' + Z x Z]. Choose
z, € E™Y(Y(Nr)) to be the point which in complex coordinates is

% e (%Z + L)/ (L+TL) ~ (L/N1Z)"

For different r the points z, are compatible: ¢z, = z,. We then can use (1.3.3)
to write the Eisenstein series in terms of the complex parameterisation as

LEis(z,) = E,(,¢) du. (5.2.6)
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Step 5: The function ¢’ has local components

char[Zq X Zq] if g/Nr;
¢ = char[Zt’q X él/Mr +Z,)] p— if q|r;
char[ 0" q] —q char[ } if g|N.
Z; Z;

The last expression can be rewritten as

tl Z —1.[1/./ —1Z
char[ a ;—q q] — [¢]char [q a —'Z- / q]

q

/ —1Z
— ¢ 'char [

—1tl —QZ
] + ¢ '[g]char [q 0 T4 q] :

Z

q q

Now by (4.3.1) there exist a finite set of points 2 ; € £"V(Y(Nr)) and
constants b; € N~ 'Z which are independent of r, such that

> b, pEis(2] ) = By (¢ du
J

and (z, ; = z, ;. Moreover the differences 2, ; — 2, ; will be N-torsion, and in
complex coordinates Nz, ; will be the point

. 1
(=Nt mod Z)r € (>Z + ~2)/(Z + TZ) ~ (Z/rT)>
r r
It follows that
(2 21 5) = Cp_nEMTO)_l X (prime-to p root of 1)

and thus that the constant e of (5.1.1) equals (=M~") € Z;.

Step 6: Put g,;, = {J5(2,),Up (2 )}, and let £ ,(E) be the associated
Euler system for T (E) The required Euler system is then

6= Y b6, (B) € H'(QR,).T,(E).

We can now compute the dual exponentlal of c,. Put w, for the differ-
ential on Y'(N7) constructed from (z,, 2, ;). The Kodaira- Spencer map takes
(dt/t)®? to dq/q, and therefore du®? to (27rz) Ydr. Therefore

~ 2mi) ! )
Zb]‘ “Wrj = (2rs) E\(p)E\(¢) dr.
J
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We then get
Z )\modr(’)/) eXp; C;y
vEGal(Q )=(Z /rZ)*
lhE .
( rQpQ g / (Amod vr © Exvp) * W A QOE,NTWE) “p
Y(N7)(C)
hg#GL (Z/er)
- EMNr229+Q— (Ei(p@)Ei(p¢) @ A, Flwy
EE

By Theorem 4.6.3, taking k =1 =1 and s = 0,

(E\(¢)E\(¢') ® N\, F) = C'r *#GL,(Z/rZ)" [ [ A, (MNt,t,)
qlr

x Ly, (E,\ 1)(Ly(E,1;y/M) — X(—1)Ly(E,1;—y/M))

s “*modr?

for some C' € Q*, depending only on FE, M and N. Moreover, using (5.2.5)
and the hypothesis that D = D' =1 (mod M),

(E\(pd) B (7¢) @ N, F) = C'r*#GL,(Z/rZ)™
x [[AJ(MNt )" DD'(D = A0, (D)D" = Ao, (D))
alr X LNT(E’ )\modrﬂ )(L (E 1; y/M) - A(_l)LN(EJ 11 _y/M))
Now for g|r we have t,t; = (MNr?)"!,so [],, A\, (MNt,t;) = 1since cond(A)|r.
Combining everything one gets the ﬁnal result:
Theorem 5.2.7. Let E/Q be a modular elliptic curve of conductor Ng. Fiz
a non-zero 1-form w, € Q' (E/Q), with real and imaginary periods Q3, Q.
Let p be a prime not dividing Np. Then there is an integer M prime to
p, and for every pair of integers D, D' > 1 with (DD',6pN,) = 1 and
D=D'"=1 (mod M) an Euler system:
¢, =c¢,(E,p,D,D") € Hl(Q(ur),Tp(E)), r=ryp", ry squarefree and
prime to pMNg, m >1

such that for each r and each character A\: Gal(Q(u,)/Q) ~ (Z/rZ)* — C*
with \(—1) = £1

Y A expydl =
v€Gal(Q(p,)/Q) I Bl
C;DD’(D_)\(D)*l)(DI_)\(D/)—l) 7“MNE§§i )
E

Wg

for some constant C’;, depending only on F.

In the special case r = p™ this is (with minor modifications of notation)
Theorem 7.1 of [29].
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