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380 A. J. Scholl5 The Euler systems 4465.1 Modular curves . . . . . . . . . . . . . . . . . . . . . . . . . . 4465.2 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 451References 458IntroductionIn the conference there was a series of talks devoted to Kato's work on theIwasawa theory of Galois representations attached to modular forms. Thepresent notes are mainly devoted to explaining the key ingredient, which isthe Euler system constructed by Kato, �rst in the K2-groups of modularcurves, and then using the Chern class map, in Galois cohomology. Thismaterial is based mainly on the talks given by Kato and the author at thesymposium, as well as a series of lectures by Kato in Cambridge in 1993. Ina companion paper [29] Rubin explains how, given enough information aboutan Euler system, one can prove very general �niteness theorems for Selmergroups whenever the appropriate L-function is non-zero (see x8 of his paperfor precise results for elliptic curves).Partly because of space, and partly because of the author's lack of un-derstanding, the scope of these notes is limited. There are two particularrestrictions. First, we only prove the key reciprocity law (Theorem 3.2.3 be-low), which allows one to compute the image of the Euler system under thedual exponential map, in the case of a prime p of good reduction (actually, forstupid reasons explained at the end of x2.1, we also must assume p is odd).Secondly, we say nothing about the case of Galois representations attachedto forms of weight greater than 2. For the most general results, the readerwill need to consult the preprint [17] and Kato's future papers.Kato's K2 Euler system has its origins in the work of Beilinson [1] (seealso [30] for a beginner's treatment). Beilinson used cup-products of modularunits to construct elements of K2 of modular curves. He was able to computethe regulators of these elements by the Rankin-Selberg method and relatethem to the L-function of the modular curve at s = 2, in partial con�rmationof his general conjectures [1; 27] relating regulators and values of L-functions.Kato discovered that, by using explicit modular units, one obtained norm-compatible families of elements of K2. These modular units are the values,at torsion points, of what are called here Kato-Siegel functions. These arecanonical (no indeterminate constant) functions on an elliptic curve (overany base scheme) with prescribed divisors, which are norm-compatible withrespect to isogenies. Such functions were, over C , �rst discovered by Siegel| the associated modular units were studied in depth by Kubert and Lang[19]. Over C generalisations of these functions were found by Robert [28]. It



An introduction to Kato's Euler systems 381was Kato [16] who �rst found their elegant algebraic characterisation. In x1 Ihave given an \arithmetic" modular construction of these functions, which ismore complicated than Kato's but at least reveals the key fact behind theirexistence | namely, the triviality of the 12th power of the sheaf ! on themodular stack. (The Picard group of the modular stack was computed byMumford [25] many years ago.)In x2 we turn to K-theory, and give a fairly general construction of theEuler system in K2 of modular curves, and the norm relations. It is relativelyformal to pass from this to an Euler system in Galois cohomology of (say)a modular elliptic curve. The hard part is to show that the cohomologyclasses one gets are non-trivial if the appropriate L-value is nonzero. Inhis 1993 Cambridge lectures, Kato explained how this can be regarded as aconsequence of a huge generalisation of the explicit reciprocity laws (Artin,Hasse, Iwasawa, Wiles : : : ) to local �elds with imperfect residue �eld. Thisis the subject of the preprint [17]. At the Durham conference he sketched aslightly di�erent proof, using the Fontaine-Hyodo-Faltings approach to p-adicHodge theory. In x3 we give a stripped-down proof of a weak version of oneof the reciprocity laws in [17] in the case of good reduction, using a minimalamount of p-adic Hodge theory.In x4 we explain how Kato uses the Rankin-Selberg integral (very muchas Beilinson did) to compute the projection of the the image of the dualexponential into a Hecke eigenspace. Finally in x5 we tie everything togetherfor a modular elliptic curve.The appendix to x2 (which is the author's only original contribution tothis work) is an attempt to extend Kato's methods to other situations. Weconstruct an Euler system in the higher K-groups of (a suitable open partof) Kuga-Sato varieties. This is a precise version of the construction usedin [32] (see also x5 of [9] for a summary) to relate archimedean regulatorsof modular form motives and L-functions. The p-adic applications of theseelements remain to be found.I have many people to thank for their help in the preparation of thispaper. Particular mention is due to Jan Nekov�a�r. He encouraged me to thinkabout norm relations in 1994, although in the end that work was overtakenby events, and all that remains of it is the appendix to x2. It is only becauseof his insistence that xx3{5 exist at all, and his careful reading of much ofthe paper eliminated many errors (although he is not to be held responsiblefor those that remain). I am also grateful to Amnon Besser, Spencer Bloch,Kevin Buzzard, John Coates, Ofer Gabber, Henri Gillet, Erasmus Landvogtand Christophe Soul�e for useful discussions. Karl Rubin read the originaldraft of the manuscript and made invaluable suggestions. Above all, it isa great pleasure to thank Kato, the creator of this beautiful and powerfulmathematics, for encouraging me to publish this account of his work and for



382 A. J. Schollpointing out some blunders in an earlier draft.This paper was begun while the author was visiting the University ofM�unster in winter 1996 as a guest of Christopher Deninger, and completedduring a stay at the Isaac Newton Institute in 1998. It is a pleasure to thankthem for their hospitality.NotationIf G is a commutative group (or group scheme) and n 2 Z then [�n]G : G! Gis the endomorphism \multiplication by n", written simply [�n] if no confu-sion can occur. We also write nG and G=n for the kernel and cokernel of [�n],respectively.Throughout this paper we use the geometric Frobenius, and normalise thereciprocity laws of class �eld theory accordingly (see x3.1 below for preciseconventions, as well as the remarks following Theorem 5.2.1).The symbol \=" is used to denote equality or canonical isomorphism. Weuse the usual notation \:=" to indicate that the right-hand expression is thede�nition of that on the left (and \=:" for the re
ected relation).1 Kato-Siegel functions and modular units1.1 Review of modular forms and elliptic curvesWe review some well-known facts about the moduli of elliptic curves. Seefor example [7; 8; 18, Chapter 2]. For any elliptic curve f : E ! S, withzero-section e, we have the standard invertible sheaf!E=S := f�
1E=S = e�
1E=S:From the second description (as the conormal bundle of the zero-section ofE=S) we have the isomorphism !E=S = e�OE(�e). Because 
1E=S is freealong the �bres of f , in fact !E=S = x�
1E=S for any section x 2 E(S).The formation of !E=S is compatible with basechange | in fancy language,! is a sheaf on the modular stack M of elliptic curves.A (meromorphic) modular form of weight k is a rule which assigns toeach E=S a section of !
kE=S, compatible with basechange. By de�nition thisis the same as an element of �(M;!
k). The discriminant �(E=S) is anowhere-vanishing section of !
12E=S compatible with basechange, and it de�nesan invertible modular form � of weight 12. From this it follows in particularthat� The set of nowhere-vanishing sections of !
12d is f��dg, for any integerd.



An introduction to Kato's Euler systems 383Let N � 1 be an integer. The modular stack M�0(N) classi�es pairs(E=S; �) where � : E ! E 0 is a cyclic isogeny of degree N of elliptic curvesover S. (When N is not invertible on S the de�nition of cyclic can be foundin [18, x3.4].) The functor (E; �) 7! E de�nes a morphism c :M�0(N) !M.A (meromorphic) modular form on �0(N) of weight k is a section of c�!
kover M�0(N). Equivalently, it is a rule which associates to each cyclic N -isogeny � : E ! E 0 of elliptic curves over S a section of !
kE=S, compatiblewith arbitrary basechange S 0 ! S. As well as �, one has the modular form�(N) of weight 12, de�ned by�(N)(E ��! E 0) = ���(E 0):It is invertible exactly where � is �etale. In particular, it is invertible onS 
 Z[1=N ].Suppose N = p is prime. The reduction of M�0(p) mod p has two irre-ducible components, one of which parameterises pairs (E=S; �) where � isFrobenius, and the other those pairs where � is Verschiebung. On the �rstcomponent �(p) vanishes, and on the second it does not.Let m be the denominator of (p � 1)=12. Then �(p) � ��1 is the mthpower of a modular function up 2 �(M�0(p);O), which is invertible awayfrom characteristic p by the previous remarks. It is a classical fact [26] that�(M�0(p) 
 Q ;O�) = hQ � ; upi:and therefore �(M�0(p);O�) = f�1g:Recall the Kodaira-Spencer map (see e.g. [18, 10.13.10]); if E=S is an ellipticcurve and S is smooth over T , one has an OS-linear mapKS = KSE=S : !
2E=S ! 
1S=T :If T = SpecQ and E=S is the universal elliptic curve over the modularcurve Y (N), N � 3 (the de�nition is recalled in x2.2 below), then KS is anisomorphism.If S ,! S, E ,! E is an extension of E to a curve E=S of genus 1 (notnecessarily smooth), and the identity section e 2 E(S) extends to a a sectione : S ! E whose image is contained in the smooth part, then !E=S := e�
E=Sis an invertible sheaf on S extending !E=S. If S is smooth over the basescheme T , and S is the complement in S of a divisor S1 with relative normalcrossings, the Kodaira-Spencer map extends to a homomorphismKSE=S : !
2E=S ! 
1S=T (logS1): (1.1.1)If S = X(N)=Q for N � 3 and E is the regular minimal model of the universalelliptic curve, then (1.1.1) is an isomorphism.



384 A. J. Scholl1.2 Kato-Siegel functionsIf D is a principal divisor on an elliptic curve over (say) a �eld, there is ingeneral no `canonical' function with divisor D. For certain special divisors,such canonical functions do exist. In their analytic construction they havebeen used extensively in the theory of elliptic units. Kato observed that theyhave a completely algebraic characterisation. Here we give a slightly moregeneral, modular, description of such a class of functions.Theorem 1.2.1. Let D be an integer with (6; D) = 1. There is one and onlyone rule #D which associates to each elliptic curve E ! S over an arbitrarybase a section #(E=S)D 2 O�(E � ker[�D]) such that:|(i) as a rational function on E, #(E=S)D has divisor D2(e)� ker[�D];(ii) if S 0 ! S is any morphism, and g : E 0 = E�SS 0 ! E is the basechange,then g�#(E=S)D = #(E0=S0)D ;(iii) if � : E ! E 0 is an isogeny of elliptic curves over a connected base Swhose degree is prime to D, then��#(E=S)D = #(E0=S)D(iv) #�D = #D and #1 = 1. If D =MC with M , C � 1 then[�M ]�#D = #M2C and #C � [�M ] = #D=#C2M :In particular, [�D]�#D = 1.(v) if � 2 C with Im(�) > 0 and E�=C is the elliptic curve whose points areC =Z + �Z, then #(E�=C )D is the function(�1)D�12 �(u; �)D2�(Du; �)�1where �(u; �) = q 112 (t 12 � t� 12 )Yn>0(1� qnt)(1� qnt�1)and q = e2�i� , t = e2�iu.Remarks. (i) We do not require that D be invertible on S.(ii) Locally for the Zariski topology, any elliptic curve may be obtained bybasechange from an elliptic curve over a reduced base. It is therefore enoughto restrict to reduced base schemes S.



An introduction to Kato's Euler systems 385(iii) Properties (i) and (iii) alone already determine #(E=S)D uniquely; anyother function with the same divisor is of the form u#, for some u 2 O�(S),and applying (ii) for the isogenies [�2], [�3] would give u4 = u = u9, whenceu = 1.(iv) In down-to-earth terms, if S = Spec k for an algebraically closed �eldk then for a separable isogeny � : E ! E 0, the property (iii) is just thedistribution relationYx2E(k)�(x)=y #(E=k)D (x) = #(E0=k)D (y); for any y 2 E 0(k).(v) Over C this theorem was obtained by Robert [28], who proves rathermore: he shows that for any elliptic curve E=C and any �nite subgroupP � E of order prime to 6, there is a certain canonical function with divisor#P (e)� P and properties generalising those of #D. One can prove his moregeneral result in a manner similar to the proof of 1.2.1; in place of the modularform �D2�1 one should use �(E)#P=���(E=P ), where � : E ! E=P is thequotient map.Proof. We begin with the �rst two conditions. First observe that if S is aspectrum of a �eld, then the divisor ker[�D]�D2(e) is principal (because Dis odd, the sum of ker[�D] � D2(e) in the Jacobian is zero). To give a rule#D satisfying (i) and (ii) is equivalent to giving, for any elliptic curve E=S,an isomorphism of line bundles on EOE(ker[�D]) ��! OE(D2e) (1.2.2)compatible with basechange. We have just observed that the line bundlesare isomorphic when restricted to any �bre of E=S. Since we can assume(by remark (ii) above) that S is reduced, the seesaw theorem tells us thatto give an isomorphism (1.2.2) is equivalent to giving an isomorphism of therestriction of the bundles to the zero-section. In other words, the existenceof #D is equivalent to �nding, for each E=S, a trivialisation of the bundlee�OE(ker[�D])
 e�OE(D2e)_ = e�[�D]�OE(e)
 e�OE(�D2e)= e�OE(e)
(1�D2)= !
(D2�1)E=Scompatible with base-change. Note that (6; D) = 1 impliesD2 � 1 (mod 12).There are then exactly two non-vanishing sections of !
(D2�1)E=S compatiblewith arbitrary basechange, namely ��(E=S)(D2�1)=12. Choose one of them,and let �(E=S) be the corresponding function on E � ker[�D]. So the rule



386 A. J. Scholl(� : E=S 7! �(E=S)) satis�es properties (i) and (ii). In a moment we will seethat exactly one of �� satis�es (iii). (See also remark 1.2.3 below).By the basechange compatibility (ii), we are free to make any faithfully
at basechange in order to check (iii). There exists such a basechange overwhich � factors as a product of isogenies of prime degree. It is thereforeenough to verify (iii) when deg� = p is prime. The quotientgp(E=S; �) = ���(E=S)(�(E0=S))�1 2 O�(S)is compatible with basechange. It therefore de�nes a modular unit gp 2�(M�0(p);O�), and so gp(E=S; �) 2 f�1g for every (E=S; �). Moreover thesign depends only on p.To determine the sign, evaluate gp(E=Fp ; FE) for an elliptic curve over Fpand its Frobenius endomorphism. The norm map FE� : �(E)� ! �(E)� isthen the identity map, so gp(E; FE) = 1, and therefore if p is odd we havegp = +1. Notice that replacing �(E=S) by ��(E=S) does not change gp for podd, but replaces g2 by �g2. Therefore for exactly one choice #D = �� it willbe the case that g2 = +1, so exactly one of these choices satis�es (iii).Now for property (iv). Evidently #�D also satis�es the characteristic prop-erties (i) and (iii), hence #�D = #D. Also #1 = 1 for the same reason. Thefunction [�M ]�#D has divisor M2(C2(e) � ker[�C]) and is compatible withbase change, so we can write [�M ]�#D = "#M2C for some " = �1. Now prop-erty (iii) gives"#M2C = [�M ]�#D = [�M ]�[�2]�#D == [�2]�[�M ]�#D = [�2]�("#M2C ) = "4#M2C = #M2Cand so " = 1. The same calculation works for M = D by writing #1 = 1.If D =MC then the functions #C � [�M ] and #D=#C2M both have divisorC2 ker[�M ] � ker[�D]hence their ratio is a unit compatible with basechange. The norm compati-bility (iii) then shows that this unit equals 1, as in Remark (iii) above. Thisproves property (iv).Finally we check (v). Classical formulae (as can for example be found in[39] | the function � is essentially the same as the Jacobi theta function #1)show that F (u; �) = �(u; �)D2�(Du; �)�1is a function on E� with divisor D2(e) � ker[�D], and is SL2(Z)-invariant.1Hence F (u; �) is a constant multiple (independent of �) of #(E� =C )D . As a1The SL2(Z) action is: �a bc d� : (u; �) 7! � uc� + d ; a� + bc� + d�.



An introduction to Kato's Euler systems 387formal power series,F = q(D2�1)=12t�D(D�1)=2Yn�0 (1� qnt)D21� qntD Yn>0 (1� qnt�1)D21� qnt�Dis a unit in the ring of Laurent q-series with coe�cients in Z[t; 1=t(1� tD)].So by the q-expansion principle, the constant has to be �1. To determinethe sign, consider any elliptic curve E� de�ned over R with 2 real connectedcomponents. For such a curve one can assume that Re(�) = 0. (To bede�nite, take E to be the curveY 2 = X3 �Xfor which � = i.) The real components of E� are the images of the line seg-ments [0; 1] and [�=2; 1+�=2] in the complex plane. We compute [�2]�F (u; �)for such a curve. The explicit formula for �(u; �) shows that the �rst non-vanishing u-derivative of F (u; �) at the origin is real and positive. On theinterval [0; 1], F (u; �) has simple poles at u = k=D (1 � k � D�1) and so bycalculus (�1)(D�1)=2F (1=2; �) > 0. On the segment [�=2; 1 + �=2], F is real,�nite and non-zero, hence the product F (�=2; �)F ((1 + �)=2; �) is positive.Therefore at the origin,[�2]�F (u; �) = F (u2 ; �)F (u+ 12 ; �)F (u+ �2 ; �)F (u+ 1 + �2 ; �)� (�1)(D�1)=2 � (positive real)� uD2�1and so [�2]�F (u; �) = (�1)(D�1)=2F (u; �).Remark 1.2.3. As we saw in the proof, #D corresponds to one of the twonowhere-vanishing modular forms of weight (D2� 1)=12. Using (v) it is easyto determine which. The form arises by restriction to the zero-section of thecomposite isomorphism[�D]�OE(e) � � OE(ker[�D]) �����!�#(E=S)D OE(D2e)since e�[�D]� = e�. Therefore the q-expansion is D times the leading coe�-cient in the expansion of #(E� =C )D in powers of t, which from (v) is easily seento be (�1)D�12 qD2�112 Yn>0(1� qn)2D2�2 = (�1)D�12 �(�)D2�112Remark. Suppose that E=S is an elliptic curve over an integral base S, andthat P � E(S) is a �nite group of sections. LetD =Xx2P mx(x) 2 Z[P ]



388 A. J. Schollbe a divisor with Pmx = 0 and Pmxx = e. In the case when S is thespectrum of a �eld, D is principal, but in general this will not be the case.For example, suppose that P = fe; xg for a section x of order 2, disjoint frome. Then D = 2(x)� 2(e) is principal if and only if !
2E=S = e�O(D) is trivial.Consider a Dedekind domain R containing 1=2, and an ideal A � R whichhas order 4 in PicR. Let A4 = (a) and let E=R be the elliptic curve given bythe a�ne equation y2 = x(x2 � a)over the �eld of fractions of R. Take an open U � SpecR over which Abecomes principal, locally generated by �, say. Then a = �4" for some unit" 2 O(U)�, and an equation for E over U is(y=�3)2 = (x=�2)((x=�2)2 � "):Therefore !E=R is locally generated over U byd(x=�2)y=�3 = �dxy ;i.e. !E=R ' A. So the divisor 2(0; 0)� 2(e) is not principal on E=R.1.3 Units and Eisenstein seriesLet E be an elliptic curve over an integral base S, let D > 1 be an integerprime to 6, and x 2 E(S) a section. If x is disjoint from ker[�D], then oneobtains a unit #D(x) = x�#D 2 O�(S) on the base. In particular, suppose thatx is a torsion section of order N > 1, with (N;D) = 1. Since S is integral, xhas order N at the generic point. Under either of the following conditions itis automatic that x \ ker[�D] = ;:� N is invertible on S (then x has order N in every �bre); or� N is divisible by at least two primes.In the classical setting one takes S to be a modular curve (over C ) and thefunctions #D(x) are the Siegel units, studied extensively (see for example [19]).There are at least two ways to form a logarithmic derivative from the pair(#D; x). The simplest is to formdlog�#D(x)� 2 �(S;
1S)which in the classical setting gives weight 2 Eisenstein series. The otherway, which leads to weight 1 Eisenstein series, is to �rst form the \vertical"logarithmic derivativedlogv #D 2 �(E � ker[�D];
1E=S):



An introduction to Kato's Euler systems 389Since !E=S = x�
1E=S (see x1.1) we obtainDEis(x) = DEis(E=S; x) := x� dlogv #D 2 �(S; x�
1E=S) = �(S;!E=S);a modular form of weight one. Notice that in this construction one can startwith any function whose divisor is D2(e) � ker[�D], since it will be of theform g#D for some g 2 O�(S), and dlogv g = 0.From property 1.2.1(iv) we have(#D)D02� #D0 � [�D] = (#D0)D2� #D � [�D0]and thereforeD02 dlogv #D � [�D0]� dlogv #D = D2 dlogv #D0 � [�D]� dlogv #D0 : (1.3.1)Now [�D]� is multiplication by D on global sections of 
1E=S. Hence (1.3.1)givesD02 � DEis(E=S; x)�D0 � DEis(E=S;D0x)= D2 � D0Eis(E=S; x)�D � D0Eis(E=S;Dx):It follows that for any D � 1 (mod N), the sectionEis(E=S; x) := 1D2 �D � DEis(E=S; x) 2 �(S 
 Z[ 1D(D� 1)];!) (1.3.2)is independent of D. Now if p6 j 2N , there exists D > 1, D � 1 (mod N) with(D; 6) = 1 and p6 jD(D � 1), so one can glue the various Eis(E=S; x) for thedi�erent D to get a section Eis(E=S; x) 2 �(S
Z[1=2N ];!). For any D onethen has DEis(E=S; x) = D2 Eis(E=S; x)�D Eis(E=S;Dx):Suppose E = C =� is an elliptic curve over C , with � = Z!1 + Z!2. Let ube the variable in the complex plane. Using the function �(z;�)D2=�(Dz;�)(Weierstrass �-function) in place of #D givesdlogv #D = �D2�(u;�)�D�(Du;�)�dzand if x 2 E(C ) � feg is the torsion point (a1!1 + a2!2)=N 2 N�1�=�, with(N;D) = 1, thenEis(E=C ; x) = Xmi2aiN +Z 1(m1!1 +m2!2) jm1!1 +m2!2js ����s=0du: (1.3.3)



390 A. J. SchollOn the Tate curve Tate(q) over �N = Z[�N ]((q1=N )) there is the canonicaldi�erential dt=t, and the level N structure(Z=NZ)2! ker[�N ]; (a1; a2) mod N 7! �a1N qa2=N :If x is the point �a1N qa2=N then by explicit di�erentiation of the in�nite productin Theorem 1.2.1(v)Eis(Tate(q)=�N ; x) = �B1�a2N��Xn>0� Xd2Z; djnnd�a2 mod N sgn(d)�a1dN �qn=N�dt=tif 0 � a1 < n, 0 < a2 < n. Here B1(X) = X�1=2 is the Bernoulli polynomial.(In the case a2 = 0 6= a1 the constant term is somewhat di�erent.) Inparticular, Eis(Tate(q)=�N ; x) is holomorphic at in�nity.One can also compute the logarithmic derivative of the unit #D(x) 2 ��N .The result is most interesting if one works with absolute di�erentials, that isin the module of (q-adically separated) di�erentials
̂�N=Z= �N � d(q1=N)� �N=IN � d�Nwhere IN � �N is the annihilator of d�N (and equals the ideal generated bythe di�erent of Q (�N )). The key point is that the logarithmic derivative ofa typical term in the in�nite product for #D(x) isdlog �1� ��a1N q(m�a2=N)�= � ���a1N q(m�a2=N)1� ��a1N q(m�a2=N) (a1 dlog �N + (a2 �mN) dlog q1=N)whereas the corresponding term for the vertical logarithmic derivative isdlog(1� t�1qm)���t=�a1N qa2=N = � ���a1N q(m�a2=N)1� ��a1N q(m�a2=N) dlog t:Comparing gives the following striking congruence:Proposition 1.3.4. If x = �a1N qa2=N 2 Tate(q)(�N), thendlog#D(x) � DEis(Tate(q)=�N ; x)dlog t (a1 dlog �N + a2 dlog q1=N ) mod N:



An introduction to Kato's Euler systems 3912 Norm relations2.1 Some elements of K-theoryFor a regular, separated and noetherian scheme X, the Quillen K-groupsKiX, i � 0, together with the cup-product[ : KiX �KjX ! Ki+jXde�ne a graded ring K�X, which is a contravariant functor in X| for anymorphism f : X 0 ! X of regular schemes there is a graded ring homomor-phism f � : K�X ! K�X 0. If f is proper, then there are also pushforwardmaps f� : KiX 0 ! KiX (group homomorphisms) which satisfy the projectionformula f�(f �a [ b) = a [ f�b: (2.1.1)For i = 1 there is a canonical monomorphismO�(X)! K1X: (2.1.2)For arbitrary f , the restriction of the pullback map f � to the image of (2.1.2)is pullback on functions; if f is �nite and 
at, then the pushforward map f�restricts to the norm map on functions.In this section we are concerned with K2. The cup-product in this case isthe universal symbol mapO�(X)
O�(X) ! K2Xu
 v 7! fu; vgwhich is alternating and satis�es the Steinberg relation: fu; 1� ug = 0 if u,1 � u 2 O�(X). If X = SpecF for a �eld F , then the symbol map inducesan isomorphismK2X = K2F ��! �2F �=(Steinberg relation)by Matsumoto's theorem.Returning for a moment to the general situation, let Y be a smooth (notnecessarily proper) variety over a number �eld F . Write Y = Y 
F Q ,GF = Gal(Q =F ), and let p be prime. Then if Hj+1(Y ;Q p(n)) has no GF -invariants, there is an Abel-Jacobi homomorphismK2n�j�1Y ! H1(GF ; Hj(Y ;Q p)(n)):The condition that H0(GF ; Hj+1(Y ;Q p(n))) = 0 can often be checked just byconsidering weights; if for example Y is proper, then by considering the action



392 A. J. Schollof an unrami�ed Frobenius and using Deligne's theorem (Weil conjectures)one sees that it holds if j + 1 6= 2n.In the case of interest here, Y is a curve and j = 1, and n = 2. Then theAbel-Jacobi map is even de�ned integrally:AJ2 : K2Y ! H1(GF ; H1(Y ;Zp)(2)): (2.1.3)It is constructed as follows. There is a theory of Chern classes from higherK-theory to �etale cohomology: these are functorial homomorphisms, for eachq � 0 and n 2 Z: cq;n : KqY ! H2n�q(Y;Zp(n)):Here the cohomology on the right-hand side is continuous �etale cohomology.These maps are not multiplicative, but can be made into a multiplicative mapby the Chern character construction.. All we need to know here is that if �,�0 2 K1Y then c1;1(�) [ c1;1(�0) = �c2;2(� [ �0) (2.1.4)(see for example [33, p.28]). One writes ch = �c2;2.The �etale cohomology of Y is related to that of Y by the Hochschild-Serrespectral sequence:Ei;j2 = H i(GF ; Hj(Y ;Zp)(n))) H i+j(Y;Zp(n)):Let Y ,! X be the smooth compacti�cation of Y , so that Y = X � Z for a�nite Z � X. The Zp-module H0(Y ;Zp) = H0(X;Zp) is free of rank equalto the number of components of X, and H2(X;Zp) = H0(X;Zp)(�1). Themodule H1(X;Zp) is the Tate module of the Jacobian of X, hence is free.There is an exact sequence0! H1(X;Zp)! H1(Y ;Zp)! H0(Z;Zp)(�1)
�! H2(X;Zp)! H2(Y ;Zp)! 0:The map 
 is the Gysin homomorphism, mapping the class of a point z 2 Zto the class of the component of X to which it belongs. Therefore all themodules Hj(Y ;Zp) are free2. Moreover if � is an eigenvalue of a geometricFrobenius acting on Hj(Y ;Q p) at a prime v 6 j p of good reduction, then � isan algebraic integer satisfyingj�j = 8><>:1 if j = 0,N(v)1=2 or N(v) if j = 1, andN(v) if j = 2.2In the case to be considered later, Y is actually a�ne, in which case one even hasH2(Y ;Zp) = 0.



An introduction to Kato's Euler systems 393Therefore when n = 2 the �rst column fE0;j2 g of the spectral sequence van-ishes. The exact sequence of lowest degree terms then becomes:0! H2(GF ; H0(Y ;Zp)(2))! H2(Y;Zp(2))e2�! H1(GF ; H1(Y ;Zp)(2))! H3(GF ; H0(Y ;Zp)(2)):Composing the \edge homomorphism" e2 with ch = �c2;2 de�nes the Abel-Jacobi homomorphism (2.1.3) | the minus sign is chosen because of (2.1.4).Notice also that the last group H3(GF ; H0(Y ;Zp)(2)) is zero if p is odd, andkilled by 2 in general (see for example [24]).We also need the Chern character into de Rham cohomology. For a Noethe-rian a�ne scheme X = SpecR there are homomorphisms for each q � 0dlog = dlogR : KqR! 
qR=Zsatisfying:(i) dlog(a [ b) = dlog a ^ dlog b;(ii) If b 2 R� � K1R then dlog b = b�1db 2 
1R=Z;(iii) On K0R, dlog is the degree map.(iv) If R0=R is a �nite 
at extension of regular rings, then tr
R0=R � dlogR0 =dlogR � trKR0=R.In (iv), trKR0=R : KqR0 ! KqR is the proper push-forward for SpecR0 ! SpecR(also called the transfer), and tr
R0=R : 
qR0=Z ! 
qR=Z is the trace map fordi�erentials. Since this compatibility does not seem to be documented in theliterature we make some remarks about it. What follows was suggested inconversation with Gillet and Soul�e.To check the compatibility we can work locally on SpecR, and thus assumethat R is local. Therefore R0 is a free R-module of rank d say. Choosing abasis gives a matrix representation � : R0 ,�!Md(R). We get for every n � 1corresponding inclusions GLn(R0) ,�!GLnd(R), which in the limit give aninclusion GL(R0) ,�!GL(R). This induces by functoriality the transfer onKq(�) = �q(BGL(�)+).One way to de�ne the map dlog is to use Hochschild homology (seefor example [22, 1.3.11�.]). There is a simplicial R-module C�(R) withCq(R) = R
q+1 (tensor product over Z), whose homology is Hochschild ho-mology HH�(R). There is also a pair of R-linear maps 
qR=Z "q�! HHq(R) �q�!
qR=Z, whose composite is multiplication by q!. The map �q is given byr0 
 r1 
 � � � 
 rq 7! r0dr1 ^ � � � ^ rq.



394 A. J. SchollThere is a map Dtr : H�(GL(R);Z) ! HH�(R), the Dennis trace (see[22, 8.4.3], which maps r 2 R� � H1(GL(R);Z) to the homology class ofr�1 
 r 2 C1(R). Assume that q! is invertible in R. Then composing onone side with the Hurewicz map Kq(R) ! Hq(GL(R);Z), and on the otherwith (q!)�1�q, de�nes the map dlog: Kq(R) ! 
qR=Z, for any q > 0. It isnot too hard to check directly (an exercise from [22, Ch.8]) that if a, b 2 R�then dlogfa; bg = (ab)�1da ^ db, which is the only part of (i) needed in whatfollows.There is a trace map trHH on Hochschild homology: the representationR0 ,�!Md(R) induces by functoriality a map HH�(R0)! HH�(Md(R)), andby Morita invariance [22, 1.2.4] we have an isomorphism HH�(Md(R) ��!HH�(R).Still under the hypothesis that q! is invertible, the maps "q and (q!)�1�qmake 
qR=Z a direct factor of HHq(R). One can then de�ne the trace maptr
R0=R as the composite (q!)�1�q � trHHR0=R �"q. (This approach to trace maps isdue to Lipman [21] | see also H�ubl's thesis [13].) It now is a simple exerciseto check the compatibility (iv), the essential point being the transitivity [22,E1.2.2] of the generalised trace.We need all of this only for q � 2. This means that in the reciprocity law3.2.3 and all its consequences we need to assume that p is odd.2.2 Level structuresLet E=S be an elliptic curve. Then for every positive integer N which isinvertible on S, there exists3 a moduli scheme S(N), which is �nite and �etaleover S, and which represents the functor on S-schemes TS(N)(T ) = �level N structures on E �S T� : (Z=N)2=T ��! ker[�N ]=T �More generally, for pairs (M;N) of positive integers invertible on S there isa scheme S(M;N) which represents the functorS(M;N)(T ) = �monomorphisms of S-group schemes� : (Z=M � Z=N)=T ,�!E=T �The group GL2(Z=N) acts freely on S(N) on the right, with quotient S.One has S(N;N) = S(N); in general S(M;N) is a quotient of S(N 0) whereN 0 = lcm(M;N). One usually writes S1(N) for S(N; 1), and we will alsowrite S 01(N) for S(1; N). Of course S1(N) and S 01(N) are isomorphic, butthey are di�erent as quotients of S(N). We have a lattice of subgroups ofGL2(Z=NZ), and a corresponding diagram of quotients of S(N):3To avoid overloading the notation we do not include the dependence on E in thenotation.
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�S(N)=S1(N)�S1(N)=S0(N)�S0(N)=S@@@R? ���	 AAAAAU������Over S(N) there is a canonical level N structure �N : (Z=N)2 ��! ker[�N ] �E, and we let yN , y0N 2 E(S(N)) be the images of the generators (1; 0), (0; 1).Then yN already belongs to E(S1(N)), and y0N to E(S 01(N)).S1(N) is canonically isomorphic to the open subscheme of ker[�N ] con-sisting of points in the kernel whose order is exactly N ; andker[�N ] = aM jN S1(M): (2.2.1)The scheme S0(N) parameterises �0(N)-structures on E=S; in other words,S0(N)(T ) is functorially the set of cyclic subgroup schemes of rank N ofE �S T . In the case T = S1(N), the morphism �S1(N)=S0(N) : S1(N)! S0(N)classi�es the cyclic subgroup generated by yN .If M jM 0 and N jN 0 then there is a canonical level-changing map�S(M 0;N 0)=S(M;N) : S(M 0; N 0)! S(M;N)induced by the inclusion Z=M � Z=N ,! Z=M 0 � Z=N 0. One has yM =(M 0=M)yM 0 and likewise for y0.We also recall that all the above moduli schemes can be de�ned for integersM , N which are not invertible on S, using Drinfeld level structures, see [18,passim]. They are �nite and 
at over S.Recall �nally that for a positive integer N which is the product of twocoprime integers � 3, there is a universal elliptic curve with level N structureover the modular curve Y (N)=Z. We shall use the standard notations Y?(N),Y (M;N) without comment.2.3 Norm relations for �(`)-structureNow �x an integer D > 1 which is prime to 6. On each basechange E �S T(where T is one of the above moduli schemes) there is the canonical function



396 A. J. Scholl#(ET =T )D , which by Theorem 1.2.1(ii) is simply the pullback of #(E=S)D . SinceE and D will be �xed in the discussion that follows we shall write all thesefunctions simply as #.Consider the case of prime level `. Write y = y`, y0 = y 0̀ , and abbreviateS? = S?(`) (? = 1 or 0). Fix x 2 E(S) such that D`x does not meet the zerosection of E. Let � : E�S S0 ! eE be the quotient by the canonical subgroupscheme of rank `, generated by y. Let ~x 2 eE(S0) be the compositeS0 x�! E �S S0 ��! eE:Write ~#= #( eE=S0)D 2 �( eE � ker[�D];O�).Lemma 2.3.1. NS1=S(#(x + y)) = #(`x)#(x)�1: (N1)NS(`)=S1(#(x + y0)) = #(`x) Ya2Z=`#(x + ay)�1: (N2)NS1=S0(#(x + y)) = ~#(~x)#(x)�1 (N3)NS(`)=S1(#(x + y0)) = #(`x)~#(~x)�1: (N4)NS0=S(~#(~x)) = #(x)`#(`x): (N5)Proof. (N1) By (2.2.1) there is a Cartesian squareS1 q S (x+y;x)����! E??y ??y[�`]S `x����! EHenceNS1=S(#(x + y))#(x) = NS1qS=S((x+ y; x)�#)= (`x)�[�`]�# since the square is Cartesian= (`x)�# by 1.2.1(iii)= #(`x):(N2) The same argument, applied to the Cartesian squareS(`)q aa2Z=`S1 (x+y0;x+ay)�������! E �S S1??y ??y[�`]S1 `x�������! E �S S1



An introduction to Kato's Euler systems 397(N3) This comes from the Cartesian square:S1 q S0 (x+y;x)����! E �S S0??y ??y�S0 ~x����! eEThe remaining relations (N4) and (N5) are obtained by combining (N1){(N3)and using NS1=S0(#(x + y)) = Ya2(Z=`)�#(x + ay):Lemma 2.3.2. The norm relations (N1){(N5) hold without the hypothesisthat ` is invertible on S.Proof. Choose an auxiliary integer r > 2 prime to `. Then after replacing Sby an �etale basechange there exists a level r structure �r : (Z=r)2 ! ker[�r]on E, with r invertible on S. Let Euniv ! Y (r) be the universal ellipticcurve with level r structure over Z[1=r]. Then there is a unique morphism� : S ! Euniv � ker[�`D] which classi�es the triple (E=S; �r; x): there is aCartesian square E ���! Euniv �Y (r) (Euniv � ker[�`D])??y ??ypr2S ����! Euniv � ker[�`D]such that �r is the inverse image of the canonical level r structure on Euniv,and x is the pullback of the diagonal section Euniv ! Euniv � Euniv.By the basechange compatibility of #D, it is enough to verify the normrelations in this universal setting; but the inclusion Y (r) 
 Z[1=`] ,! Y (r)induces an injection on O�. Thus we reduce to the case in which ` is invertibleon S.Now consider two auxiliary integers D, D0 with (6`;DD0) = 1, and write# = #(E=S)D and #0 = #(E=S)D0 . Following tradition we write N?=? for the push-forward maps �?=?� on K2, but the group operation in K2 will be writtenadditively (for consistency with the higher K-theory case to be consideredbelow).Proposition 2.3.3. In K2S the following identity holds:NS(`)=Sf#(x + y); #0(x0 + y0)g= f#(`x); #0(`x0)g+ `f#(x); #0(x)g �NS0=Sf~#(~x); ~#0(~x0)g



398 A. J. SchollProof. Compute using the projection formula (2.1.1) and the norm relations2.3.1:NS(`)=Sf#(x + y); #0(x0 + y0)g= NS1=Sf#(x + y); NS(`)=S1#0(x0 + y0)g= NS1=Sf#(x + y); #0(`x0)~#0(~x0)�1g by (N4)= NS0=Sf~#(~x)#(x)�1; #0(`x0)~#0(~x0)�1g by (N3)= �NS0=Sf~#(~x); ~#0(~x0)g � (`+ 1)f#(x); #0(`x0)g+ f#(x); NS0=S~#0(~x0)g+ fNS0=S~#(~x); #0(`x0)g= �NS0=Sf~#(~x); ~#0(~x0)g � (`+ 1)f#(x); #0(`x0)g+ f#(x); #0(x0)`#0(`x0)g+ f#(x)`#(`x); #0(`x0)g by (N5)= �NS0=Sf~#(~x); ~#0(~x0)g+ `f#(x); #0(x0)g+ f#(`x); #0(`x0)gNow suppose that S is a modular curve of level prime to `, and E is theuniversal elliptic curve. Therefore S = YH := Y (N)=H for some subgroupH � GL2(Z=N), E = Euniv f�! YH , and S0(`) = YH;` := Y0(`; N)=H. Itis then possible to rewrite the above norm relation using the Hecke and thediamond operators, whose de�nitions we brie
y recall.The centre (Z=N)� � GL2(Z=n) acts on YH and Euniv on the right, de�ningthe diamond operators hai 2 AutYH , haiE 2 Aut E for a 2 (Z=N)�. In mod-ular language, the B-valued points of YH are pairs (X=B; [�n]H), where X=Bis an elliptic curve and [�N ]H is an H-equivalence class of level N structures(Z=N)2 ! X. Then hai : (X=B; [�N ]H) 7! (X=B; [a�N ]H) is an automor-phism of YH. The B-valued points of Euniv are triples (X=B; [�N ]H ; z) withz 2 X(B), and the automorphism haiE of Euniv is given by (X=B; [�N ]H ; z) 7!(X=B; [a�N ]H ; z).Recall also [18, (9.4.1)] that the eN pairing de�nes a morphismeN : YH ! SpecZ[�N ]detH (2.3.4)(E=S; �N) 7�! eN(�N�1=N0 �; �N� 01=N�) (2.3.5)and the restriction of hai� to Z[�N ]detH is then the map � 7! �a2 (sincedethai = a2).The is a commutative diagram [5, (3.17)]Euniv [�`]���! Euniv h`iE���!� Eunivf@@@R f??y f??yYH ����!h`i YH



An introduction to Kato's Euler systems 399and if x : YH ! Euniv is any N -torsion section, h`iE � `x = x � h`i. Thereforeby the basechange property 1.2.1(ii),#D(`x) = (`x)�#D = (`x)�h`i�E#D = h`i�#D(x) = h`�1i�#D(x):The scheme S0 is the quotient YH;` := Y0(N`;N)=H, and Y0(N`;N) classi�estriples (X;�N ; C) with C � X a subgroup of rank `. One then has thestandard diagram [5, (3.16)] wEEuniv cE :=pr1 ���� Euniv �YH YH;`� �?����! ]Euniv v���!� Euniv �YH YH;` cE���! Euniv??y ??y ??y ??y ??yYH  ���c YH;` YH;` ����!w YH;` ���!c YH??y ??ySpecZ[�N ]H � 7!�`���! SpecZ[�N ]Hin which the �rst, third and fourth squares in the top row are Cartesian. TheHecke operator T` is by de�nition the correspondence c�(cw)� on YH , and thecorrespondence cE�(cEwE)� on Euniv. All the horizontal arrows are compatiblewith the level N structure on Euniv and the quotient level N structure on]Euniv, hence cE � wE � x = x � c � w, and therefore~#(~x) = (� � x)�~#= (� � x)�(cE � v)�#= (c � w)�#(x)using as always the basechange property 1.2.1(ii). ThereforeT`f#(x); #0(x0)g = c�(c � w)�f#(x); #0(x0)g = NS0(`)=Sf~#(~x); ~#0(~x0)g:Finally write z = x + y`, z0 = x0 + y 0̀ , so that `x = `z and x = (`z) � h`�1i.Observe that the norm relation is invariant under the action of GL2(Z=`), sothat y`, y 0̀ can be replaced by any basis for the `-torsion of E. This yieldsthe following reformulation of 2.3.3:Proposition 2.3.6. If S = YH is a modular curve of level prime to ` and z,z0 are torsion sections of E=S(`) whose projections onto ker[�`] are linearlyindependent, thenNS(`)=Sf#(z); #0(z0)g = (1� T` � h`i� + `h`i�)f#(`z); #0(`z0)g:



400 A. J. Scholl2.4 Norm relations for �(`n)-structureWe now consider norm relations in the tower fS(`m; `n)g.Lemma 2.4.1. If m > 1, n � 0 and x 2 E(S(`m; `n)) is any section, thenNS(`m;`n)=S(`m�1 ;`n) : #(x + y`m) 7! #(`x + y`m�1): (N6)Proof. If ` is invertible on S this follows from the Cartesian squareS(`m; `n) x+y`m�����! E??y ??y[�`]S(`m�1; `n) `x+y`m�1�����! EIn the general case one reduces to the universal situation exactly as in 2.3.2.Proposition 2.4.2. If (6`;DD0) = 1 and m, n > 1 then for all x, x0 2E(S(`m�1; `n�1)),NS(`m;`n)=S(`m�1 ;`n�1) : f#(x + y`m); #0(x0 + y 0̀n)g7! f#(`x + y`m�1); #0(`x0 + y 0̀n�1)g:Proof. This follows from the lemma sinceNS(`m;`n)=S(`m�1 ;`n�1)f#(x + y`m); #0(x0 + y 0̀n)g= NS(`m;`n�1)=Sf#(x + y`m); NS(`m;`n)=S(`m;`n�1)#0(x0 + y 0̀n)g= NS(`m;`n�1)=Sf#(x + y`m); #0(`x0 + y 0̀n�1)g= f#(`x + y`m�1); #0(`x0 + y 0̀n�1)gIf E=S is a modular family over S = YH of level prime to `, then E(YH)is �nite of order prime to `. ThereforeE(YH(`m; `n))torsion = (Z=`m � Z=`n)� (prime to `);so there is a well-de�ned projection onto (Z=`)2 = ker[�`]. Computing as in2.3.6 we get:Proposition 2.4.3. Suppose that S = YH is a modular curve of level primeto ` and that z, z0 are torsion sections of E over YH(`m; `n), with m, n > 1.If the projections of fz; z0g into ker[�`] are linearly independent, thenNYH(`m;`n)=YH(`m�1 ;`n�1)f#(z); #0(z0)g = f#(`z); #0(`z0)g:



An introduction to Kato's Euler systems 4012.5 Norm relations for products of Eisenstein seriesWe shall repeat the construction of the last paragraph for products of theform DEis(E=S; x) � D0Eis(E=S; x0) 2 �(S;!2E=S):If g : S 0 ! S is a �nite and 
at morphism of smooth T -schemes and E 0 =E �S S 0 then there are trace mapstrg = trS0=S : g�OS0 ! OS; g�
1S0=T ! 
1S=Tas well as a trace map on modular forms, de�ned to be the compositetrg = trS0=S : �(S 0; !
kE0=S0) = �(S 0; g�!
kE=S)= �(S; g�OS0 
OS !
kE=S) trg�! �(S; !
kE=S):The Kodaira-Spencer map (x1.1) and the trace are not compatible.Proposition 2.5.1. The diagrams below commute:!
2E0=S0 KSE0=S0�����! 
1S0=Tx??o x??g�g�!
2E=S g�KSE=S�����! g�
1S=T !
2E0=S0 KSE0=S0���������! 
1S0=Tx??o ??ytrgg�!
2E=S deg(g)�g�KSE=S���������! g�
1S=TProof. The �rst commutes because of the functoriality of the Kodaira-Spencermap. Then applying trg � g� = deg g gives the second.Lemma 2.5.2. The notation as in Lemma 2.4.1,trS(`m;`n)=S(`m�1 ;`n) : DEis(x+ y`m) 7! `�1DEis(`x+ y`m�1):Proof. Since [�`]�#D = #D, we have tr[�`] : dlog#D 7! dlog#D. But on globalsections of 
1E=S, tr[�`] is multiplication by `. Therefore the diagram�(E � ker[�D];
1) (x+y`n)������! �(S(`n; `n�1);!)tr[�`]??y ??y` trS(`n;`n�1)=S(`n�1)�(E � ker[�D];
1) (`x+y`n�1 )��������! �(S(`n�1);!)commutes, which gives the result.Corollary 2.5.3. The notations being as in 2.4.3, let g be the projectiong : YH(`m; `n)! YH(`m�1; `n�1). Thentrg : DEis(z) � D0Eis(z0) 7! `�2DEis(`z) � D0Eis(`z0) (2.5.4)trg : KS�DEis(z) � D0Eis(z0)� 7! `2KS�DEis(`z) � D0Eis(`z0)� (2.5.5)Proof. Follows from the preceding two lemmas, since deg(g) = `4.



402 A. J. SchollA Appendix: Higher K-theory of modularvarietiesA.1 Eisenstein symbolsLet f : E ! S be an elliptic curve, and assume from now on that S is a regularscheme. For any integer k > 0, write Ek for the �bre product E �S � � � �S E| it is an abelian scheme of dimension k over S.In [2], Beilinson discovered a family of canonical elements of Kk+1(Ek).More precisely, he de�ned a canonical mapQ [Etors ]degree=0 ! Kk+1(Ek)
 Qwhich he called the Eisenstein symbol. Here we make a modi�ed constructionwhich gives a norm-compatible system.Let �k be the semidirect product of the symmetric groupSk and �k2, whichacts on Ek as follows:� Sk acts by permuting the copies of E;� the ith copy of �2 acts as multiplication by �1 in the ith factor of theproduct.There is a character "k : �k ! �2 which is the identity on each factor �2 andthe sign character on the symmetric group.�k has a natural realisation in GLk(Z) as the set of all permutation matri-ces with entries �1. Geometrically it is the group of orthogonal symmetriesof a cube in n-space. In terms of this representation, "k is just determinant.For any Z[�k]-module M , write M("k) for the "k-isotypical component ofM 
 Z[1=2 � k!].For x 2 E(S) we shall consider the inclusionix : Ek ! Ek+1(u1; : : : ; uk) 7! (x� u1; u1 � u2; : : : ; uk�1 � uk; uk):whose image is the subscheme�(v1; : : : ; vk+1) ���� k+1X1 vi = x� � Ek+1:For any integer D 6= 0 such that x is disjoint from ker[�D], we de�ne thefollowing open subschemes of Ek:Uk0D;x = i�1x (E � ker[�D])k+1)UkD;x = \
2�k 
(Uk0D;x):



An introduction to Kato's Euler systems 403Observe that Uk0D;x and UkD;x are stable under translation by ker[�D]k, andthere is an �etale covering [�D] : UkD;x ! Uk1;Dx:We prove below the following lemma.Lemma A.1.1. If z 2 E(S) is any section disjoint from e, the inclusionUk1;z ,! (E � f�zg)k induces an isomorphismK�(E � f�zg)k("k) ��! K�Uk1;z("k):Using this lemma we de�ne K-theory elements, whenever (6; D) = 1:#[k]D = pr�1(#D) [ � � � [ pr�k+1(#D) 2 Kk+1(E � ker[�D])k+1(1)#[k]D (x) = i�x(#[k]D ) 2 Kk+1Uk0D;x(2)#[k]D (x) = 1#�k X
2�k "k(
)
�((1)#[k]D (x)) 2 Kk+1(UkD;x)("k)(3)#[k]D (x) = [�D]�(2)#[k]D (x) 2 Kk+1(E � f�Dxg)k("k)We call (i)#[k]D (x) Eisenstein symbols. For k = 0 we simply de�ne ix to be thesection x 2 E(S), and the Eisenstein symbol then becomes a Siegel unit:(i)#[0]D (x) = #D(x) 2 O�(S):If �1; : : : ; �k+1 : eE ! E are isogenies of degree prime to D, then by repeatedapplication of 1.2.1(iii) one get the norm-compatibility(�1; : : : ; �k+1)�(#[k]D ) = #[k]D (A.1.2)Actually this is only of interest when all the �i are equal.Proof of Lemma A.1.1. For any T=SUk1;z(T ) = �(u1; : : : ; uk) 2 E(T )k ���� for all i, ui 6= e;�z;for all i 6= j, ui�uj 6= 0.�The complementary divisor Ek � Uk1;z is the union of the two divisorsV k = f(ui) j for some i, ui = eg [ �(ui) j for some i 6= j, ui � uj = e	andW kz = f(ui) j for some i, ui = �zgAs S is regular, the K-groups in the lemma can be computed in K 0-theory.From the localisation sequence, it is then enough to show that K 0�(V k �W kz )("k) vanishes. This is a special case of the following:



404 A. J. SchollLemma A.1.3. Let V 0 � V k be any �k-invariant open subscheme. ThenK 0�(V 0)("k) is trivial.Proof. De�ne a sequence of reduced closed subschemesV k = V k[1] � V k[2] � � � � � V k[k+1] = ;inductively, by writing V k[r+1] for the smallest closed subset of V k[r] such thatV k[r]�V k[r+1] is smooth over S. Write V 0[r] = V k[r] \V 0. Then from the de�nitionof V k it is easy to see that:(i) V k[r] is a union of closed subsets each given by the vanishing of a certaincollection of expressions ui, ui � uj, which are permuted by �k;(ii) This gives a decomposition of V 0[r] � V 0[r+1] as a disjoint union `V 0[r]�,of open and closed pieces, permuted by �k, in such a way that for each� there is some 
� 2 �k which acts trivially on V 0[r]� and for which"k(
�) = �1.This forces K 0�(V 0[r] � V 0[r+1])("k) = 0 for each r � 1. In fact, ifc =X c� 2 K 0�(V 0[r] � V 0[r+1])
 Z[1=2 � k!]=M� K 0�(V 0[r]�)
 Z[1=2 � k!]then 
��(c) = "k(
�)c = �c, whereas the �-component of 
��(c) is evidently+c� by (ii). Now using the long exact sequencesK 0�(V 0[r+1])! K 0�(V 0[r])! K 0�(V 0[r] � V 0[r+1])! : : :inductively (beginning with r = k � 1) we deduce that K 0�(V 0)("k) = 0.A.2 Norm relations in higher K-groupsHere we �nd norm relations for the Eisenstein symbols and for cup-products,analogous to those in sections 2.3 and 2.4.For the �(`)-structure norm relations, we use the same notation as in 2.3.In addition, write �̂ : eE ! E �S S0 for the isogeny dual to �, and �k, �̂k forthe isogenies on Ek, eEk. Consider the push-forward for the morphisms:[�`]� �S1=S : Ek �S S1 ! Ek�k � �S1=S0 : Ek �S S1 ! eEk�̂k � �S0=S : eEk ! EkFix i 2 f1; 2; 3g and abbreviate #[k]D (x) = (i)#[k]D (x). The symbol ~#[k]D willdenote the analogue on eEk of #[k]D .



An introduction to Kato's Euler systems 405Lemma A.2.1. The following relations hold in Kk+1:([�`]� �S1=S)�#[k]D (x + y) = #[k]D (`x)� [�`]�#[k]D (x) (EN1)(�k � �S1=S0)�#[k]D (x + y) = ~#[k]D (~x)� �k�#[k]D (x) (EN3)(�̂k � �S0=S)� ~#[k]D (~x) = `[�`]�#[k]D (x) + #[k]D (`x): (EN5)Proof. Here (EN1) and (EN3) are to be understood on UkD;x, and (EN5) on(~�k)�1(UkD;x). The relations (EN1) and (EN3) are proved just as (N1) and(N3), by considering the Cartesian diagrams:Ek �S S1 q Ek (ix+y;ix)�����! Ek+1([�`]��S1=S;[�`])??y ??y[�`]Ek i`x���! Ek+1and Ek �S S1 q Ek �S S0 (ix+y;ix)�����! Ek+1 �S S0(�k��S1=S0 ;�k)??y ??y�k+1eEk i~x���! eEk+1and using the norm-compatibility (2.5.4). Applying �̂k��S0=S to (EN3) gives(EN5).We now consider cup-products of the form #[k]D [ #D0 in Kk+2. Considerthe factorisation of multiplication by `:Ek �S S(`)� �6id��S(`)=S1������! Ek �S S1 �k��S1=S0������! eEk �̂k��S0=S�����! Ek[�`]��S(`)=SWe compute:(�k � �S(`)=S0)�[#[k]D (x + y) [ #D0(x0 + y0)]= (�k � �S1=S0)�[#[k]D (x+ y) [ (#D0(`x0)� ~#D0(~x0))] by (N4)= (~#[k]D (~x)� �k�#[k]D (x)) [ (#D0(`x0)� ~#D0(~x0)) by (EN3)We need to compute the image of this cup-product under (�̂k��S0=S)�. Taking



406 A. J. Schollthe terms in turn:(�̂k � �S0=S)� :~#[k]D (~x) [ #D0(`x0) 7! ([�`]�#[k]D (x)` + #[k]D (`x)) [ #D0(`x0) by (EN5)�k�#[k]D (x) [ ~#D0(~x0) 7! [�`]�#[k]D (x) [ (`#D0(x0) + #D0(`x0)) by (N5)�k�#[k]D (x) [ #D0(`x0) 7! (`+ 1)([�`]�#[k]D (x) [ #D0(`x0)) as deg �S0=S = `+ 1Combining these gives the required generalisation of 2.3.3:Proposition A.2.2.([�`] � �S(`)=S)�(#[k]D (x+ y) [ #D0(x0 + y0)) = #[k]D (`x) [ #D0(`x0)� (�̂k � �S0=S)�(~#[k]D (~x) [ ~#D0(~x0)) + `([�`]�#[k]D (x) [ #D0(x0)):Having got this far the analogue of 2.4.2 presents no further di�culty:Proposition A.2.3. If n > 1 and x, x0 2 E(S(`n�1)) then([�`] � �S(`n)=S(`n�1))�(#[k]D (x+ y`n) [ #D0(x0 + y 0̀n))= #[k]D (`x+ y`n�1) [ #D0(`x0 + y 0̀n�1):3 The dual exponential map3.1 NotationsIn this section K will denote a �nite extension of Q p with ring of integerso. We �x an algebraic closure K of K. Write o for the integral closure ofo in K, and GK for the Galois group of K over K. We normalise all p-adicvaluations such that v(p) = 1. Let Kb be the completion of K, and write bofor its valuation ring. Fix a uniformiser �K of o.We �x for each n > 0 a primitive pn-th root of unity �pn in K such that�ppn+1 = �pn. Write Kn = K(�pn) and denote by on the valuation ring of Kn.Put dn = the relative di�erent of Kn=K.For a topologicalGK-moduleM write H i(K;M) for the continuous Galoiscohomology groups [38].The cyclotomic character �cycl : GK ! Z�p is de�ned by g(�pn) = ��cycl(g)pn ,for every g 2 GK and n > 0. Its logarithm is a homomorphism from GK toZp, often viewed as an element of H1(K;Zp).We normalise the reciprocity law of local class �eld theory in such a waythat if L=K is unrami�ed, then the norm residue symbol (�K ; L=K) equalsthe geometric Frobenius (inverse of the Frobenius substitution x 7! xq). Thisimplies that for any u 2 o� we have �cycl(u;Kab=K) = NK=Qp (u).



An introduction to Kato's Euler systems 4073.2 The dual exponential map for H1 and an explicitreciprocity lawLet V be a continuous �nite-dimensional representation of GK over Q p . Sup-pose that V is de Rham (for generalities about p-adic representations, seefor example [12]). Let DR(V ) = (BdR 
Qp V )GK be the associated �lteredK-vector space, with the decreasing �ltration DRi(V ) (induced from the �l-tration on BdR). Then Kato has de�ned a dual exponential map [16, xII.1.2]exp� : H1(K; V )! DR0(V )which is the composite:H1(K; V )! H1(K;B0dR 
Qp V ) = H1(K;Fil0(BdR 
K DR(V ))) ' DR0(V ):The last isomorphism comes from Tate's computation [37] of the groupsH i(K;Kb(j)):H i(K;Kb(j)) = 0 unless j = 0 and i = 0 or 1; andK = H0(K;Kb) [ log�cycl�����!� H1(K;Kb) (3.2.1)together with the isomorphisms BjdR=Bj+1dR ' Kb(j).The group H1(K; V ) classi�es extensions 0 ! V ! V 0 ! Q p(0) ! 0 ofp-adic Galois representations, and the extension V 0 is de Rham if and onlyif its class lies in ker(exp�). (This follows from [3], remark before 3.8 andLemma 3.8.1.) In particular, the kernel of exp� is the Bloch-Kato subgroupH1g (K; V ) � H1(K; V ).In some cases one can de�ne and study the dual exponential map withoutreference to BdR. For example, if V = H1(A;Q p(1)) for an abelian varietyA=K, it can be de�ned just using the exponential map for the analytic groupA(K). More generally, if the �ltration on DR(V ) satis�es DR1(V ) = 0, thenone only needs to use the Hodge-Tate decompositionKb 
Qp V ��!Mi2ZKb(�i)
K griDR(V ) (3.2.2)since then by (3.2.1) exp� is the natural map from H1(K; V ) toH1(K;Kb 
Qp V ) ����!(3.2.2) Mi H1(K;Kb(�i)
K griDR(V ))=H1(K;Kb)
K DR0(V ) � ���(3.2.1) DR0(V )



408 A. J. SchollIn what follows we shall be concerned with the case V = H1(YK;Q p)(1) for asmooth o-scheme Y , which is the complement in a smooth proper o-schemeX of a divisor Z with relatively normal crossings. WriteH idR(Y=o) = H i(X;
�X=o(Z))(the hypercohomology of the de Rham complex of di�erentials with logarith-mic singularities along Z). Then DR(V ) is just de Rham cohomology with ashift of �ltration:DR�1(V ) = DR(V ) = H1dR(Y=o)
o KDR0(V ) = H0(X;
1X=o(logZ))
o K = Fil1H1dR(Y=o)
o KDR1(V ) = 0Moreover the Hodge-Tate decomposition has an explicit description, essen-tially thanks to the work of Fontaine [11] and Coleman [4]. To compute exp�one just needs to know the projection�1 : Kb 
Qp V ����!(3.2.2) Kb 
o H0(X;
1X=o(logZ))�Kb(1)
o H1(X;OX)�! Kb 
o H0(X;
1X=o(logZ)):It is the limit of the maps given by the diagramH1(YK;�pn) XXXXXXXXXXXXz(1)���!� H0Zar(YK;O�=pn) (2) ���� H0Zar(Yo;O�=pn)�1 (mod pn) ??ydlogH0(X;
1X=o(logZ))
 o=pnRemarks. (i) The isomorphism labelled (1) comes about as follows. Gener-ally, let S be a scheme on which m is invertible, with �m � OS. An elementof H1(S;�m) is an isomorphism class of �nite �etale coverings S 0 ! S, Galoiswith group �m. Given such an S 0=S, there is an open (Zariski) covering fUigof S and units fi 2 O�(Ui) such that S 0�Ui = Ui[ mpfi]. It is easy to see thatffig is a well-de�ned element of H0(YK;O�S=m), and moreover that the mapthus obtained �ts into an exact sequenceH1Zar(S;�m)! H1�et(S;�m) (1)�! H0Zar(S;O�S=m)! H2Zar(S;�m):If S is irreducible (as is the case here) then every non-empty Zariski opensubset is connected, so �m is 
asque for the Zariski topology, and the map(1) is an isomorphism.



An introduction to Kato's Euler systems 409(ii) The inclusion j : YK ,! Yo induces an isomorphism H0(Yo;O�=pn) ��!H0(YK;O�=pn) denoted (2) in the diagram. To see this, consider the e�ectof multiplication by pn on the exact sequence0! O�Yo ! j�O�YK v�! QYk ! 0(the last map is the p-adic valuation along the special �bre, taking valuesin the constant sheaf Q). This shows that O�Yo=pn ��! (j�O�YK )=pn. It istherefore enough to show that (j�O�YK )=pn ��! j�(O�YK=pn), because thenH0(Yo;O�=pn) ��! H0(Yo; j�(O�YK=pn)) = H0(YK;O�=pn):By passing to the direct limit, we can replace K by a �nite extension ofK. Now consider more generally an open immersion U ,! S, where S is aseparated noetherian scheme which is integral and regular in codimension 1.Suppose that m is invertible on U , and that �m � OU . Then Rij��m = 0 fori > 0 as �m is Zariski 
asque. The exact sequences0! �m ! O� ! (O�)m ! 00! (O�)m ! O� ! O�=m! 0:give a short exact sequence0! (j�O�U)=m! j�(O�U=m)! mR1j�O�U ! 0:But because S is regular in codimension one, the divisor sequence1! O�S ! K�S div�! acodim(x)=1 ix�Z! 0is exact, and therefore R1j�O�U = 0.(iii) The simplest case (which is, however, not enough for our purposes) iswhen Y = X is proper, when this recipe reduces to that given by Coleman:an element of H1(XK ;�pn) = PicXK[pn] is the class [D] of a divisor D onXK such that pnD = div(g) is principal. One can assume that the divisor ofg on Xo is precisely the closure Dc of D. Put! = dlog g 2 H0(Xo;
1Xo=o(suppDc)):Then because the residues of ! at suppD are � 0 (mod pn), one has! (mod pn) 2 H0(X;
1X=o)
 o=pnand this de�nes �1([D]) (mod pn) = ! (mod pn). (Coleman even de�nes sucha map in the case of bad reduction.) Unfortunately we know of no referencefor this description of the Hodge-Tate decomposition in the non-proper case.



410 A. J. SchollNow assume that X is a smooth and proper curve over o, and that Yis a�ne. Then Z is a �nite �etale o-scheme. Recall (see also the followingsection) that the di�erent dn = dKn=K is the annihilator in on of 
on=o. IfK=Q p is unrami�ed, then on = o[�pn] and therefore 
on=o is generated bydlog �pn, and moreover dn = pn(�p � 1)�1on.Theorem 3.2.3. Suppose that K=Q p is unrami�ed (and that p > 2). Thereexists an integer c such that for every n > 0 the following diagram commutesup to pc-torsion:K2(Y 
 on)
 �
�1pn ch�������! H2(Y 
Kn;�pn)dlog??y ??yHochschild-SerreH0(X 
 on;
2X
on=o(logZ))(�1) H1(Kn; H1(Y 
K;�pn))


 ??y�1 (mod pn�1)
1on=o(�1)
 Fil1H1dR(Y=o) H1(Kn; o=pn�1)
o Fil1H1dR(Y=o)dlog �pn
[�pn ]�1 7!1??yo x??[(1=pn) log�cyclon=dn 
o Fil1H1dR(Y=o) �������! on=pn�1 
o Fil1H1dR(Y=o)Corollary 3.2.4. (The explicit reciprocity law) The following diagram com-mutes:lim �n �K2(Y 
 on)
 �
�1pn � HS � ch������! lim �n H1(Kn; H1(Y 
K;�pn))dlog??y ??ylim �n H0(X 
 on;
2X
on=o(logZ))(�1) lim �n�mH1(Km; H1(Y 
K;�pn))


 ??yolim �n 
1on=o(�1)
 Fil1H1dR(Y=o) H1(Km; H1(Y 
K;Zp)(1))??y ??yexp�lim �n on=dn 
o Fil1H1dR(Y=o) ( 1pn trKn=Km)n�m����������! Km 
o Fil1H1dR(Y=o)Remarks. (i) The assumption that K=Q p is unrami�ed is not essential forthe proof, and is only included to simplify the statement. In general thesituation is completely analogous to 3.3.15 below. The case p = 2 is excludedonly because we do not know a reference for the compatibility of the tracemaps in this case, cf. x2.1.



An introduction to Kato's Euler systems 411(ii) The maps \Hochschild-Serre" comes from the Hochschild-Serre spec-tral sequence with �nite coe�cients (cf. x2.1); since Y is a�ne, H2(Y 
K;�pn) = 0.(iv) For a discussion of the map dlog, see x2.1. A priori its target is thegroup H0(Y 
 on;
2X
on=o)(�1). We just explain why its image is containedin the submodule of di�erentials with logarithmic singularities along Z. Bymaking an unrami�ed basechange, one is reduced to the case when Z is aunion of sections. Let A be the local ring of X 
 on at a closed point of Z,and t a local equation for Z. Then by the localisation sequence, one seesthat K2A[t�1] is generated by K2A and symbols fu; tg with u 2 o�n, anddlogfu; tg = u�1du ^ dlog t.Proof. First we explain precisely what are the transition maps in the variousinverse systems in the diagram. In the Galois cohomology groups they aregiven by corestriction and reduction mod pn. The �nite 
at morphisms Y 
on+1 ! Y 
 on induce compatible trace maps (cf. x2.1)K2(Y 
 on+1)! K2(Y 
 on) and 
2Y
on+1=o ! 
2Y
on=owhich are the maps in the �rst and second inverse systems in the left-handside of the diagram. In the system (
1on=o)n the transition maps are trace,and in the remaining system (on=dn)n the maps are 1p trKn+1=Kn. (For thecompatibility of these various maps, see 3.3.12 below.)From the discussion above, the diagram below commutes:H1(Km; H1(Y 
K;Q p)(1)) �1�����! H1(Km; Kb 
o Fil1H1dR(Y=o))exp�??y kKm 
o Fil1H1dR(Y=o) ������![ log�cycl H1(Km; Kb)
o Fil1H1dR(Y=o)To deduce the corollary from the theorem it is thus only necessary to takeinverse limits and use the commutativity (cf. Proposition 3.3.10 below) of thefollowing diagram Kn 1pn log�cycl������! H1(Kn; Kb)1pn�m trKn=Km??y ??ycorKm 1pm log�cycl������! H1(Km; Kb): (3.2.5)
Remarks. (i) Consider the special case Y = A 1 � f0g = Spec o[t; t�1]. Let(un) 2 lim � o�n be a universal norm. By applying the corollary to the norm-compatible symbols fun; tg 2 K2(Y 
 on) one recovers a form of Iwasawa's



412 A. J. Schollcyclotomic explicit reciprocity law, which will be proved more directly in3.3.15 below.(ii) Theorem 3.2.3 is proved in section 3.4 below. It is much easier than thegeneral cases considered by Kato in [17], �rst because one is not working withcoe�cients in a general formal group, and secondly because the assumptionthat X=o is smooth makes for considerable simpli�cations. In the non-smoothcase there is an analogous statement which is needed to compute the imageof Kato's Euler system when p divides the conductor.3.3 Fontaine's theoryWe shall review here some of the theory of di�erentials for local �elds devel-oped by Fontaine [11], and as a warm-up for the next section, show how itgives a version of Iwasawa's explicit reciprocity law.Recall (see for example [34, xIII.6{7]) that if K 0=K is a �nite extensionthen its valuations ring o0 equals o[x] for some x 2 o0. This implies that themodule of K�ahler di�erentials 
o0=o is a cyclic o0-module, generated by dx,and that its annihilator is the relative di�erent dK0=K .The module 
o=o equals the direct limit of 
o0=o taken over all �nite ex-tensions of K in K. In particular, it is torsion.Theorem 3.3.1. [11] There is a short exact sequence of o-modules0! a(1)! K(1) �! 
o=o ! 0where a = ao=o is the fractional idealao=o = (�p � 1)�1d�1K=Qpo � Kand where � : K(1) := Zp(1)
K ! 
o=o is the unique o-linear map satisfying�([�pm]m 
 p�n) = dlog �pn = d�pn�pnfor any n � 0.Remark 3.3.2. In particular, for any n � 0 the annihilator of dlog �pn 2 
o=ois pna \ o.From 3.3.1 we get the fundamental canonical isomorphismbao=o(1) ��! Tp
o=o (3.3.3)which is o-linear, and maps (�pn)n 2 Zp(1) � ba(1) to (dlog �pn)n.



An introduction to Kato's Euler systems 413Suppose that K 00=K 0=K are �nite extensions. Then there is an exactsequence of di�erentials
o0=o 
o0 o00 ! 
o00=o ! 
o00=o0 ! 0(the \�rst exact sequence", [23, 26.H]), which is exact on the left as well bythe multiplicativity of the di�erent (or alternatively by the argument in thefootnote on page 420). Passing to the direct limit over K 00 gives a short exactsequence 0! 
o0=o 
o0 o! 
o=o ! 
o=o0 ! 0 (3.3.4)At this point, recall that for any short exact sequence 0! X ! Y ! Z ! 0of abelian groups, there is an inverse system of long exact sequences0! pnX ! pnY ! pnZ ! X=pn ! Y=pn ! Z=pn ! 0: (3.3.5)If the inverse systems pnM (for M = X, Y , Z) satisfy the Mittag-Le�ercondition (ML) then the inverse limit sequence0! TpX ! TpY ! TpZ ! lim �X=pn ! lim �Y=pn ! lim �Z=pn ! 0is also exact (a special case of EGA 0, 13.2.3). Note that (pnM) satis�es (ML)in two particular cases:� the torsion subgroup of M is p-divisible (then pnM ! pn�1M is surjec-tive);� the p-primary torsion subgroup of M has �nite exponent (then (pnM)is ML-zero).Applying these considerations to (3.3.4), since 
o=o and 
o=o0 are divisible and
o0=o is killed by a power of p, we get an exact sequence0! Tp
o=o ! Tp
o=o0 ! 
o0=o 
o0 o! 0: (3.3.6)Now pass to continuous Galois cohomology. This gives a long exact sequencesince the surjection in (3.3.6) has a continuous set-theoretic section (this isobvious here as 
o0=o
o0o is discrete). We are only interested in the connectingmap, and de�ne � to be the composite homomorphism:� = �K0 : 
o0=o ,�!H0(K 0;
o0=o 
o0 o) connecting������! H1(K 0; Tp
o=o):The map \reduction mod pn" : Tp
o=o ! pn
o=o induces a map on cohomol-ogy, which when composed with �K0 gives�K0 (mod pn) : 
o0=o ! H1(K 0; pn
o=o):



414 A. J. SchollLemma 3.3.7. (i) The following diagram commutes:o0� Kummer������! H1(K 0;�pn)dlog??y ??ydlog
o0=o �K0 mod pn������! H1(K 0; pn
o=o)(ii) For any nonzero x 2 o0�K0(dx) (mod pn) = x dlog(Kummer(x))Proof. (i) Simply compute: if u 2 o0� then �x a sequence (um) in o� withu0 = u, upm+1 = um. The composite dlog �\Kummer" maps u to the class ofthe cocycle g 7! dlog(ug�1n ) 2 pn
o=o:Now compute the e�ect of �K0 on dlog u: �rst lift dlog u in the exact sequence(3.3.6) to the element (dlog um)m 2 Tp(
o=o0), then act by g � 1 to get thedesired cocycle. So the commutativity is trivial.(ii) If x is a unit this is equivalent to (i). For the general case one simplycalculates as in (i).Lemma 3.3.8. Let n � 1 and assume that �pn � K 0. If p 6= 2, then thediagram o0=pn(1) [ 1pn log�cycl�������! H1(K 0; ao=o=pn)(1)1
[�pn ]7!dlog �pn??y o??y(3.3.3)
1o0=o �K0 mod pn�������! H1(K 0; pn
1o=o)commutes. For p = 2 it commutes mod 2n�1.Proof. All the maps are o0-linear, so it is enough to compute the image of1
 [�pn]. We have �cycl(g) � 1 (mod pn) for all g 2 GK , hence log�cycl(g) �0 (mod pn) and so if p 6= 2 then1pn log�cycl(g) � 1pn (�cycl(g)� 1) mod pn:In the proof of 3.3.7 one can take um = �pm+n for all m � 0, and then�K0(dlog �pn) 2 H1(K 0; Tp(
o=o)) is represented by the cocycleg 7! (dlog �g�1pm+n)m 2 Tp(
o=o)



An introduction to Kato's Euler systems 415and �g�1pm+n = ��cycl(g)�1pm+n = �(�cycl(g)�1)=pnpm . Applying the inverse of (3.3.3) mapsthis to the class of the cocycleg 7! 1pn (�cycl(g)� 1)
 (�pm)m 2 ao=o(1)� 1pn log�cycl(g) mod pn:The reader will make the necessary modi�cations when p = 2.We now need some elementary facts about cyclotomic extensions of local�elds. Our chosen normalisation of the reciprocity law of local class �eldtheory identi�es the homomorphismslog�cycl 2 H1(K;Zp) = Homcts(Gal(K=K);Zp)and log �NK=Qp : K� �! Zp:As observed in the proof of the previous lemma, if �pm � K then log�cycl �0 (mod pm).Lemma 3.3.9. Suppose that �pm � K. Then for any �nite extension K 0=Kthe diagram o0 [ 1pm log�cycl�������! H1(K 0;bo)trK0=K??y ??ycoro �������![ 1pm log�cycl H1(K;bo)commutes.Proof. The statement follows from the projection formula for cup-product ingroup cohomology, since on H0 the corestrictioncor : H0(K 0;bo) = o0 �! H0(K;bo) = oequals trK0=K.Recall that Kn := K(�pn). Let ` be the largest integer such that �p` � K.Then if n > m � `, direct calculation givestrKn=Km �o[�pn]� = (pn�mo[�pm] if m > 0pn�1o if m = 0.De�ne, for any n > m � 0tn;m := 1pn�m trKn=Km : Kn ! Km:



416 A. J. SchollProposition 3.3.10. If n > m � max(`; 1) the diagramo[�pn] [ 1pn�1 log�cycl��������! H1(Kn;bo)tn;m??y ??ycoro[�pm] [ 1pm�1 log�cycl���������! H1(Km;bo)is commutative. If n > ` = 0, the diagramo[�pn] [ 1pn�1 log�cycl��������! H1(Kn;bo)ptn;0??y ??ycoro [ log�cycl�����! H1(K;bo)is commutative.Proof. For n = 1, the second diagram commutes by 3.3.9 with K 0 = K1. Bytransitivity of trace and corestriction, the lemma will be proved if we verifythe commutativity of the �rst diagram for n = m+ 1 > 1. Take the diagramof 3.3.9 for Km+1=Km and factorise:'
&-

o[�pm+1] [p�m log�cycl����������������������! H1(Km+1;bo)??ytrKm+1=Km ??ycor1p trKm+1=Km po[�pm] [p�m log�cycl��������! H1(Km; om) ���! H1(Km;bo)ox??�p [p1�m log�cyclo[�pm] �������*The bottom triangle commutes since H1(Km; om) = Homcts(Gal(K=Km); om)is torsion-free. Hence the entire diagram is commutative, and going roundthe outside gives what we need.Now consider dn = dKn=K. From the de�nition of d�1n as the largest fractionalideal of Kn whose trace is contained in o, it is an easy exercise to checkd�1n � p�no[�pn]:By [37, Propn. 5] the di�erence vp(dn)�n is bounded, so for some c indepen-dent of n, pcon � o[�pn] � on:



An introduction to Kato's Euler systems 417Since 
on=o is cyclic with annihilator dn, the homomorphismo[�pn]=pn x7!xdlog �pn�������! 
on=o (3.3.11)is well-de�ned, and its kernel and cokernel are killed by a bounded power ofp, by remark 3.3.2.Proposition 3.3.12. Let n > m � max(`; 1). Then the diagramo[�pn] � dlog �pn�����! 
on=otn;m??y ??ytro[�pm] � dlog �pm������! 
om=ocommutes.Proof. It is enough to compute what happens when m = n � 1. Taking1; �pn; : : : ; �p�1pn as basis for o[�pn] over o[�pn�1], for 1 � j < ptr(�jpn dlog �pn) = tr(j�1d�jpn) = j�1d(tr �jpn) = 0and for j = 0 tr(dlog �pn) = dlog(NKn=Kn�1�pn) = dlog �pn�1:Therefore passing to the inverse limit gives a homomorphismlim �t�;� o[�pn] = lim �t�;� o[�pn]=pn �! lim �tr 
on=o (3.3.13)which becomes an isomorphism when tensored with Q . (If K=Q p is unram-i�ed, then (3.3.13) is itself an isomorphism.) By [38, Proposition 2.2], thecanonical map H1(Km;Zp)! lim �n H1(Km;Z=pn) is an isomorphism. Invert-ing both of these arrows yields a diagramQ 
 lim �norm o�n Kummer�������! Q 
 lim �n H1(Kn;�n)dlog??y ??y�pn 7!1Q 
 lim �trace 
on=o Q 
 lim �n H1(Kn;Z=pn)dlog �pn 7!1??yo ??ycorQ 
 lim �t�;� o[�pn]=pn Q 
 lim �n H1(Km;Z=pn)(tn;m)n??y ??yKm ��������![ 1pm log�cycl H1(Km; Kb)
(3.3.14)



418 A. J. Schollwhere down the right-hand side all the inverse limits are with respect to thecorestriction maps and reduction mod pn. We then have the following versionof the classical explicit reciprocity law of Artin-Hasse and Iwasawa. Withoutloss of generality we can assume m chosen so that �pm+1 6� K.Theorem 3.3.15. The diagram (3.3.14) is commutative.Proof. At �nite level, replacing Z=pn with o=pn, one has the diagram:o�n Kummer�������! H1(Kn;�pn) �
	�dlog??y dlog??y
1on=o �Kn mod pn�������! H1(Kn; pn
o=o) �pn 7!117!dlog �pnx?? 17!dlog �pnx??o[�pn]=pn [ 1pn log�cycl�������! H1(Kn; o=pn)tn;m??y ??ycoro[�pm]=pn [ 1pm log�cycl�������! H1(Km; o=pn):This is for m > 0; for m = 0 the bottom arrow should read p�1o=pn !H1(K; p�1o=pn). The top two squares commute by 3.3.7, 3.3.8 respectively.The bottom square commutes up to p-torsion by (3.2.5). All maps are com-patible with passing to the inverse limit. As remarked after equation (3.3.11),the left-hand map labelled \1 7! dlog �pn" has cokernel and kernel killed bya bounded power of p, and by (3.3.3) the same is true for the one on theright. Therefore passing to the limit and tensoring with Q one obtains thetheorem.Remark. One can use 3.3.7(ii) to describe the image of an arbitrary elementof K�n under the Kummer map in a similar way.Here is the relation with the usual form of the explicit reciprocity law. Letu = (un)n 2 lim � o�n be a universal norm. Its image down the left hand sideof the diagram (3.3.14) equals (with an obvious abuse of notation)�(u) := limn!1 1pn�m trKn=Km  dlog undlog �pn! 2 Km:Going round the other way, use the expression of the Kummer map in termsof the Hilbert symbol, which we write as a bilinear map [�;�]n : K�n�K�n !Z=pn given by ( pnpx)(a;Kabn =Kn)�1 = � [x;a]npn



An introduction to Kato's Euler systems 419Thus un is mapped to the cocycle in H1(Kn;Z=pn) which takes the normresidue symbol (a;Kabn =Kn) to [un; a]n. By the compatibility of the normresidue symbol with norm and corestriction, one gets that the image of thefamily u in H1(Km;Zp) is represented by the cocycle (i.e. homomorphism)(a;Kabm =Km) 7�! limn!1[un; a]n 2 ZpTherefore the reciprocity law says that this homomorphism, and the homo-morphism g 7�! p�m�(u) log�cycl(g)represent the same cohomology class in H1(Km; Kb).Proposition 3.3.16. [35, III.A7 ex. 2] Let cK : HomQp (K;K) ! K be theunique map such that for all T 2 HomQp (K;K) and all x 2 K,tr([�x] � T ) = trK=Qp (x cK(T )):Then the diagram HomQp (K;K) cK���! K� log??y ���Homcts(o�; K) o�����log�cycllocal CFTx??o ??yHomcts(GabK ; K) ���! H1(GK; Kb)is commutative.Remark. Because of the normalisation of the reciprocity law of local class�eld theory used here (see x3.1), this di�ers from the statement in [35] by asign.Now the compositeHomQp (K;Q p) ,�!HomQp (K;K) cK�����! Kis the inverse of the isomorphism K ��! HomQp (K;Q p) given by the traceform. Therefore, for every a 2 o�m,limn!1[un; a]n = p�m trKm=Qp (�(u) log a)which is the \limit form" of the classical explicit reciprocity law [20, Ch. 9,Thm. 1.2].



420 A. J. Scholl3.4 Big local �eldsThis section reviews the generalisation by Hyodo [14, esp. x4] and Faltings[10, x2] of Fontaine's theory to local �elds with imperfect residue �eld. Weconsider �elds L � Q p such that:L is complete with respect to a discrete valuation, andits residue �eld ` satis�es [` : `p] = pr <1. (3.4.1)Fix such a �eld L, and write A for its ring of integers. If R � A is anysubring, de�ne b
A=R := lim �
A=R=pn
A=R:Fix also an algebraic closure L of L, and let A be the integral closure of A inL. For any B with A � B � A and any subring R � B setb
B=R = lim�!A0 b
A0=A0\Rthe limit running over all �nite extensions A0=A contained in B.Let K � L be a �nite extension of Q p , with ring of integers o and uni-formiser �K. Then �K is prime in A if and only if A=o is formally smooth(by [23], (28.G) and Theorems 62, 82).Let L0=L be a �nite extension with valuation ring A0. Then A0 is �niteover A (being the normalisation of a complete DVR in a �nite extension),and is a relative complete intersection (by EGA IV 19.3.2). Therefore the�rst exact sequence of di�erentials is exact on the left as well40! A0 
A 
A=o ! 
A0=o ! 
A0=A ! 0:4More generally, if A0=A is a relative complete intersection of integral domains which isgenerically smooth, then for any R � A the �rst exact sequence is exact on the left. Foran elementary proof, write A0 as the quotient B=I of a polynomial algebra B over A by anideal I generated by a regular sequence. Then one has a split exact sequence0! 
A=R 
B ! 
B=R ! 
B=A ! 0 (1)as well as exact sequences, for ? = A or R,I=I2 ! 
B=? 
B A0 ! 
A0=? ! 0: (2)Applying the tensor product 
BA0 to (1), and using (2) and the snake lemma, gives theexact sequence NA0=A ! A0 
A 
A=R ! 
A0=R ! 
A0=A ! 0:where NA0=A = ker(I=I2 ! 
B=A 
B A0). Since A0=A is generically smooth the mapI=I2 ! 
B=A is generically an injection, hence NA0=A is torsion. Now I=I2 is projectivesince I is a regular ideal; therefore NA0=A = 0.



An introduction to Kato's Euler systems 421As in (3.3.5), we get an exact sequence of inverse systemspn
A0=A ! A0 
A 
A=o=pn ! 
A0=o=pn ! 
A0=A=pn ! 0:Since 
A0=A is a �nite A0-module, the inverse system (pn
A0=A) is ML-zero,and so passing to the inverse limit gives an exact sequence:0! A0 
A b
A=o ! b
A0=o ! 
A0=A ! 0: (3.4.2)Proposition 3.4.3. (i) b
A=o is a �nite A-module, generated by elements ofthe form dy, y 2 A�.(ii) If T1; : : : Tr 2 A are elements whose whose images in ` form a p-basis,then fdlogTig is a basis for the vector space b
A=o 
A L.(iii) If �K is prime in A, then b
A=o is free over A.Proof. By [23] pp. 211{212, A is a �nite extension of a complete DVR Bin which p is prime. Then A0 = Bo is a complete DVR with uniformiser�K , and A=A0 is �nite and totally rami�ed. Let k = o=�Ko. One knows(loc. cit., Thm. 86) that the image of fdTig is an `-basis for 
`=k, and therefore(by Nakayama's lemma) b
A0=o = LA0 � dTi = LA0 � dlogTi, proving (iii).To deduce (i) and (ii), it is enough to apply the exact sequence (3.4.2) toA=A0=o.Taking the direct limit of (3.4.2) over all �nite extensions L0=L, one getsan exact sequence 0! A
A b
A=o ! b
A=o ! 
A=A ! 0of A-modules. Now apply (3.3.5) again. Since x dy = pzp�1x dz if y = zp,one sees (using 3.4.3(i)) that b
A=o and 
A=A are divisible. Therefore, sinceb
A=o is �nitely generated, one can pass to the limit to get an exact sequenceof Ab-modules 0! Tp(b
A=o)! Tp(
A=A) �! Ab
A b
A=o ! 0: (3.4.4)Because b
A=o is a �nite A-module, the map � has a continuous set-theoreticsection (write b
A=o = P �N with P free and N torsion; over Ab
 P one hasa continuous linear section of � by freeness, and Ab
N is discrete, so over itone can take any section).One then has Hyodo's generalisation [14, (4-2-2)] of 3.3.1 (see also [10,x2b)]):



422 A. J. SchollProposition 3.4.5. Let ao=o be as in 3.3.1 above, and put aA=o = ao=oA � L.Then there is an exact sequence of A-modules and Galois-equivariant maps0! aA=o(1) ��! L(1) ��! b
A=o ��!Lr ! 0where � is given by the same formula as in 3.3.1, and where the map � is asplit surjection, with right inverseLr ! b
A=o(a1=pn; : : : ; ar=pn) 7!X ai dlog(T p�ni ) (ai 2 A):Remark. Hyodo states this only in the case K = Q p , but his proof works ingeneral. The key point (which underlies Faltings' approach to p-adic Hodgetheory) is that the extension L=L(�p1; T p�1i ) is almost unrami�ed (cf. theproof of Proposition 3.4.12 below), which shows that b
A=o is generated as anAb-module by the forms dlog �pn, dlogT p�ni .Corollary 3.4.6. There is a unique isomorphismbaA=o(1) ��! Tp(b
A=o) (3.4.7)which maps (�pn)n 2 Zp(1) to (dlog �pn)n.Remark. Comparing (3.3.3) and (3.4.7) we have in particularpnb
A=o = pn
o=o 
o A: (3.4.8)Now consider as before the connecting homomorphism attached to theGalois cohomology of (3.4.4), for a (not necessarily �nite) extension L0=Lcontained in L: �L0=L : b
A=o 
A bA0 ! H1(L0; Tpb
A=o) (3.4.9)For L0 = L we write �L for �L0=L. If L0=L is �nite the maps �L0 , �L0=L arerelated by a commutative diagramb
A=o 
A A0 HHHHHjcanonical??y �L0=Lb
A0=o �L0���! H1(L0; Tpb
A=o) (3.4.10)(because the exact sequence (3.4.4) is functorial in A). If L0=L is in�nite,we de�ne �L0 : b
A0=o ! H1(L0; Tpb
A=o) as the direct limit of the maps �L00 , for�nite subextensions L � L00 � L0; the analogue of (3.4.10) still holds.The following lemma is proved just the same way as 3.3.7.



An introduction to Kato's Euler systems 423Lemma 3.4.11. For any algebraic extension L0=L, the following diagramcommutes: A0� Kummer������! H1(L0;�pn)dlog??y ??ydlogb
A0=o �L0 mod pn������! H1(L0; pnb
A=o)Proposition 3.4.12. Let L1=L be an algebraic extension which contains allp-th power roots of unity, with valuation ring A1, and whose residue �eldextension is separable. Suppose that r = 1, so that [l : lp] = p. Then forj � 2, Hj(L1; Tpb
A=o) is killed by the maximal ideal m1 � A1, and thekernel and cokernel of�L1=L : b
A=o 
AdA1 ! H1(L1; Tpb
A=o)are killed by a power of p.Proof. Initially there is no need to make any assumption on r. Choose unitsT1; : : : ; Tr 2 A� whose images in l form a p-basis. Consider the extensionsM = L(T p�1i ; : : : T p�1i ) and M1 = ML1. Let B, B1 be the valuationrings of M , M1. Then the residue �eld of M is perfect, so Tate's theory[37] applies; in particular, the groups H i(M1; Ab) are m1-torsion for i > 0.Therefore, using the Hochschild-Serre spectral sequence and the fact thatm21 = m1, the in
ation mapHj(M1=L1;dB1) = Hj(M1=L1; H0(M1; Ab))! Hj(L1; Ab) (3.4.13)is an isomorphism up to m1-torsion. Now by Kummer theory and the hy-pothesis on the residue �elds, Gal(M1=L1) ' Zp(1)r (the isomorphism beingdetermined by the choice of fTig). Therefore if r = 1Hj(M1=L1;dB1(1)) = 0 for all j > 1, and (3.4.14)H1(M1=L1;dB1(1)) ' �dB1�Zp(1): (3.4.15)Now by 3.4.6 there exists a (non-canonical!) isomorphism of Gal(L=L1)-modules Tpb
A=o ' Ab. Combining this and equations (3.4.14) and (3.4.13),one sees that that Hj(L1; Tpb
A=o) is killed by m1 for all j > 1.For the second part, we compute the coinvariants in (3.4.15). First observethat the ring A0 = A[T p�n] is �nite over A, and that �AA0 is a maximal ideal



424 A. J. Schollin it. Therefore A0 is a discrete valuation ring, hence is the valuation ring ofL(T p�n). It follows that any element of dB1 has the formb = Xa2Qp=Zp baT awhere T = T1 and ba 2dA1, with ba ! 0 as jajp !1. Let 
 2 Gal(M1=L1)be the topological generator for which 
(T 1=pr) = �prT 1=pr , for each r � 1. Ifb is divisible by (1� �p), then b = b0 + (1� 
)b0, whereb0 = X06=x=pr2Qp=Zp(1� �xpr)�1bx=prT x=pr 2dB1:From this one sees that the inclusiondA1 �dB1 induces an injectiondA1 ,�!H1(M1=L1;dB1(1)) (3.4.16)whose cokernel is killed by (1� �p). Now there is a diagramdA1 (3.4.16)����! H1(M1=L1;dB1(1))��� ??yin
17!dlog T ����� H1(L1; Ab(1))??y ??y(3.4.7)b
A=o 
dA1 �L1=L���! H1(L1; Tpb
A=o)in which the vertical arrows have kernel and cokernel killed by a power ofp (by 3.4.3, 3.4.6 and (3.4.13)). It remains to check that it is commutative,which having got this far is an easy exercise.A similar computation can be carried out for all r > 1, using the isomor-phism Gal(M1=L1) ' Zp(1)r and the Koszul complex. In this way Hyodocomputed the cohomology of Lb(j) over L, generalising Tate's result. His �nalresult (not needed here) is:Theorem 3.4.17. [14, Theorem 1] There are canonical isomorphismsHq(L; Lb(j)) ��! 8><>:b
qA=o 
 Q if j = qb
q�1A=o 
 Q if j = q � 10 otherwisecompatible with cup-product. For j = q � 1 = 0 it is given by cup-productwith log�cycl and for q = j = 1 by (3.4.7) and (3.4.9).



An introduction to Kato's Euler systems 4253.5 Proof of Theorem 3.2.3Theorem 3.2.3 is proved by reducing to the setting of the previous section.Recall that X is a smooth and proper curve over the ring of integers o ofa �nite unrami�ed extension K=Q p . Assume that X is connected and that�(X;OX) = o (otherwise �rst replace K by an unrami�ed extension). Let� 2 X be the generic point of the special �bre. Write also:A =[OX:�; L = �eld of fractions of A;Ln = L(�pn); An = integral closure of A in Ln;The �elds L, Ln satisfy the hypothesis (3.4.1), with r = 1. There is an obviouslocalisation map � : SpecA! Y . Note that since A=o is formally smooth weactually have An = A
 on; and by 3.4.3, b
A=o is a free A-module of rank 1.Now use the fact that the map�� : Fil1H1dR(Y=o) = H0(X;
1X=o(logZ))! b
A=ois injective and its cokernel is torsion-free (this holds because the �bres ofX=o are connected). This means that the diagram in Theorem 3.2.3 canbe localised to SpecA without losing information. We shall write down thelocalised diagram and then explain why it implies 3.2.3.Proposition 3.5.1. There exists an integer c such that for every n > 0 thefollowing diagram commutes up to pc-torsion:(K2(An)
 �
�1pn )0 ch���������! H2(Ln;�pn)0dlog??y ??yHochschild-Serre
2An=o(�1) H1(Kn; H1(LK;�pn))

 


1on=o(�1)
o b
A=o H1(Kn; (Ao)�=pn)dlog �pn
[�pn ]�1 7!1??yo ??ydlogon=dn 
o b
A=o [(1=pn) log�cycl���������! H1(Kn; b
A=o 
 o=pn�1)Remarks. (i) Since A=o is formally smooth, the valuation ring of LK is simplyAo.(ii) We have writtenH2(Ln;�pn)0 = ker �res : H2(Ln;�pn)! H2(LK;�pn)�(K2(An)
 �
�1pn )0 = ker �ch : K2(An)
 �
�1pn ! H2(LK;�pn)� :



426 A. J. SchollThe map marked \Hochschild-Serre" is then the �rst edge-homomorphismfrom the Hochschild-Serre spectral sequence.(iii) Concerning the bottom right-hand corner: the natural map isdlog : (Ao)�=pn ! b
Ao=o=pnbut as A=o is formally smoothb
Ao=o = (b
A=o 
 o) � (
o=o 
o A)and the second summand is divisible.(iv) To deduce Theorem 3.2.3 from the proposition, it is enough, by whathas already been said, to show that there is a map from the diagram in3.2.3 to the diagram above. Since the composite K2(Y 
 on) ! K2(An) !H2(LK; �
2pn ) factors through H2(Y 
 K;�
2pn ) = 0, one obtains the mapK2(Y 
 on) ! K2(An)0. The only remaining thing to check is that thediagram H1(Kn; H1(Y 
K;�pn)) ���! H1(Kn; H1(LK;�pn))��� 


����1 (mod pn) H1(Kn; (Ao)�=pn)??y ??ydlogH1(Kn; o(1)=pn)
o Fil1H1dR(Y=o) ���! H1(Kn; b
A=o 
 o=pn)commutes, but this follows from the description of �1 given in x3.2.Proof of 3.5.1. We reduce the diagram to the (smaller) diagrams in the fol-lowing three lemmas. By (3.4.7), pnb
A=o is free over A=pn of rank one, andby pnb

2A=o we mean its tensor square as A=pn-module.Lemma 3.5.2. For any m, n the diagram below commutes:K2(Am) ch���! H2(Lm;�
2pn )dlog??y ??yb
2Am=o ^2�Lm���! H2(Lm; pnb

2A=o)in which the unlabelled arrow is induced by dlog: �pn ! pnb
A=o.Proof. Since Am is local the symbol A�m
A�m ! K2(Am) is surjective. Sincethe Chern character is compatible with cup-product, the compatibility followsby Lemma 3.4.11.



An introduction to Kato's Euler systems 427This reduces the computation to Galois cohomology. WriteH2(Ln; pnb

2A=o)0 = ker hH2(Ln; pnb

2A=o)! H2(LK; pnb

2A=o)i :Lemma 3.5.3. (i) The composite mapb
2An=o ^2�Ln���! H2(Ln; pnb

2A=o) �! H2(LK; pnb

2A=o)equals zero.(ii) The following diagram is commutative:
on=o 
 b
A=o= b
2An=o ^2�Ln�������! H2(Ln; pnb

2A=o)0�Kn=K
id??y ���H1(Kn; pnb
o=o 
o b
A=o) Hochschild-Serre���H1(id
�LK=L)??y ??yH1(Kn; pnb
o=o 
o H1(LK; pnb
A=o)) H1(Kn; H1(LK; pnb

2A=o))(iii) The map H1(id
�LK=L) has kernel and cokernel killed by a boundedpower of p.Proof. (i) The cup-product ^2�Ln factorises as
on=o 
 b
A=o �Kn
�Ln=L������! H1(Kn; pn
o=o)
H1(Ln; pnb
A=o)! H2(Ln; pnb

2A=o)and so its composition with the restriction to LK is zero (it factors throughH1(K; pn
o=o)
H1(LK; pnb
A=o) = 0).(ii) The bottom equality comes from (3.4.8). The commutativity is ageneral fact. We have groups� = Gal(L=Ln) � � = Gal(L=LK); �=� = Gal(LK=Ln) = Gal(K=Kn)and two exact sequences of �-modules0! A ! B ! C ! 00! A0 ! B0 ! C 0 ! 0given by (3.3.6) and (3.4.4) respectively. On the �rst � acts trivially. So we



428 A. J. Schollhave the following diagramH0(�=�; C)
H0(�; C 0) �
�0������! H1(�=�; A)
H1(�; A0)��� ??y[�
id ����� ker�res : H2(�; A
 A0)! H2(�; A
 A0)�??y ??yHSH1(�=�; A)
H0(�; C 0) H1(�=�; H1(�; A
 A0))[??y x??H1(�=�; A
H0(�; C 0)) H1(id
�0)������! H1(�=�; A
H1(�; A0))and it is a simple, if tedious, exercise to check this commutes.(iii) Follows from Proposition 3.4.12 applied to L1 = LK.Lemma 3.5.4. The following diagram commutes:H1(LK;�
2pn ) dlog
dlog��������������! H1(LK; pnb

2A=o)Kummerx??o 


(Ao)�=pn(1) pnb
o=o 
o H1(LK; pnb
A=o)dlog??y x??id
�LK=Lo=pn(1)
 b
A=o x
�pn
! 7!xdlog �pn
!��������������! pn
o=o 
o b
A=oProof. This follows from Lemma 3.4.11.As K=Q p is unrami�ed, we have a = ao=o = (�p�1)�1o by 3.3.1, so dno = pnaand o=dno ,�! a=pn.We now can make a big diagram:(K2An 
 Z=pn)0 �! H2(Ln;�
2pn )0 �����! H1(Kn; H1(LK;�
2pn ))??y ??y ??yb
2An=o �����! H2(Ln; pnb

2A=o)0 �����! H1(Kn; H1(LK; pnb

2A=o))

 


on=o 
 b
A=o��!H1(Kn; pn
o=o 
o b
A=o) (�)!H1(Kn; pn
o=o 
o H1(LK; pnb
A=o))o??ydlog �pn 7!1
�pn ox??on=dn(1)
 b
A=o (y)!H1(Kn; a=pn(1)
o b
A=o)  ��� H1(Kn; (Ao)�=pn)(1)
�
�

 �
o



An introduction to Kato's Euler systems 429To save space we have not labelled most of the arrows: they can be foundin the corresponding places in the subdiagrams 3.5.2{3.5.4, apart from thearrow labelled (y), which is [(1=pn) log�cycl. The top left square commutesby 3.5.2, and the top right square by functoriality of the Hochschild-Serrespectral sequence. The rectangle in the middle commutes by 3.5.3, and thebottom left square by 3.3.8. The remaining part of the diagram (the right-hand hexagon) commutes by 3.5.4Going round the outside of the diagram in both directions gives two maps(K2An 
 Z=pn)0 �! H1(Kn; a=pn(1)
o b
A=o)and it is enough to show that their di�erence is killed by a bounded powerof p. This follows from the commutativity of the diagram, since the kernel ofthe arrow marked (�) is killed by a bounded power of p, by 3.5.3(iii).4 The Rankin-Selberg methodIn this section we calculate the projection of the product of two weight oneEisenstein series onto a cuspidal Hecke eigenspace, using the Rankin-Selbergintegral. In order to separate the Euler factors more easily, we work semi-adelically, regarding modular forms as functions on (C �R)�GL2(A f ). Thepassage from classical to adelic modular forms is well-known, but we reviewthe correspondence brie
y in x4.2 since there is more than one possible nor-malisation. The same applies to the discussion of Eisenstein series in sectionx4.3.4.1 NotationsG denotes the algebraic group GL2, with the standard subgroupsP = �� �0 �� ; U = �1 �0 1� ; Z = ��a 00 a��If R is a ring andH isG or any of the above subgroups, writeHR for the groupof R-valued points of H. If R � R then H+R denotes fh 2 HR j det(h) > 0g.The ring of �nite adeles of Q is A f = Ẑ
ZQ . If � =Q�p : A �f =Q �>0 ! C � isa character (continuous homomorphism) andM is a multiple of the conductorof �, then �modM : (Z=MZ)� ! C � denotes the associated (not necessarilyprimitive) Dirichlet character: for a 2 Ẑ�, �(a) = �modM(a mod M). Ofcourse this means that if (p;M) = 1 then �modM(p mod M) = �p(p)�1.Write �nite idelic and p-adic modulus as j�jf , j�jp, and archimedeanabsolute value as j�j1. If there can be no confusion we drop the subscripts.



430 A. J. SchollWrite also Hf , Hp in place of HA f , HQp , and de�ne the standard congruencesubgroupsGp � Kp = GZp � K0(p�) = nh 2 Kp j h � �� �0 �� mod p�o� K1(p�) = nh 2 Kp j h � �1 �0 �� mod p�o:Haar measure on all the groups encountered is to be normalised in the usualway: on Q p the additive measure dx gives Zp measure 1, and on Q �p themultiplicative measure d�x gives Z�p measure 1. On Gf , Gp the subgroupsGẐ, Kp have measure 1.Fix additive characters  p : Q p ! C � ,  f = Q p : A f ! C � by requiring p(x=pn) = e2�ix=pn for every x 2 Z.H denotes the upper-half plane, and H� = C � R. The group GR acts onH� by linear fractional transformations. Putj(
; �) = det 
 � (c� + d)�1 if � 2 H�, 
 = �a bc d� 2 GRso that j(
; �)(1;��)
�1 = (1;�
(�)).Write S(A 2f ) for the space of locally constant functions A 2f ! C of compactsupport. The group Gf acts on S(A 2f ) by the rule(g�)(x) = �(g�1x); � 2 S(A 2f ); x 2 A 2f : (4.1.1)If � 2 A �f and � 2 S(A 2f ), write [�]� for the function[�]� : x 7! �(��1x): (4.1.2)So in particular, if � is the characteristic function of an open compact subsetX � A 2f , then [�]� is the characteristic function of �X.4.2 Adelic modular formsIn the adelic setting, a holomorphic modular form of weight k is a functionF : H� �Gf ! Cwhich is holomorphic in the �rst variable, and satis�es:(i) For every 
 2 GQ , F (
(�); 
g) = j(
; �)�kF (�; g);(ii) There exists an open compact subgroup K � Gf such that F (�; gh) =F (�; g) for all h 2 K;



An introduction to Kato's Euler systems 431(iii) F is holomorphic at the cusps.Any modular form F has a Fourier expansionF (�; g) = Xm2Q am(g)e2�im� ; � 2 H; g 2 Gfwhere am(g) = 0 when m < 0 (this is the meaning of condition (iii)). PutA(g) = a1(g), the Whittaker function attached to F . Then A is a locallyconstant function on Gf which satis�esA��1 b0 1� g� =  f (�b)A(g) for all b 2 A f . (4.2.1)One can recover the remaining Fourier coe�cients (apart from the constantterm) from A(g) byam(g) = mkA��m 00 1� g� if 0 < m 2 Q .It is convenient to introduce the normalised Whittaker functionA�(g) = A(g)jdet gj�k=2f : (4.2.2)The group Gf acts on adelic modular forms by right translation, and thetranslates of F by Gf generate an admissible representation, call it �. Fromthe de�nition � is isomorphic to the representation generated by A(g); therepresentation generated by A�(g) is isomorphic to the twist �
 jdetj�k=2f . If� is irreducible it has a factorisation � = 
0�p, and the centre of Gf acts onthe space of � via a character. With the normalisation used here, there is a(�nite order) character " : A �f =Q �>0 ! C � with "(�1) = (�1)k such that��a 00 a� = "(a)jajkf for all a 2 A �f .This means thatA���a 00 a� g� = "(a)A�(g) for all a 2 A �f and g 2 Gf .If F comes from a newform on �1(N) then A(g) is factorisable: there arefunctions Ap : Gp ! C , satisfying Ap(1) = 1, QAp(gp) = A(g) for all g =(gp) 2 Gf and such thatAp��a 00 a��1 b0 1� g� = "p(a)jajkp p(�b)Ap(g) for all a 2 Q �p and b 2 Q p :(4.2.3)



432 A. J. SchollSuppose Ap is Kp-invariant. Then �p is unrami�ed, and its local L-functionis given byL(�p; s) =Xr�0 Ap�pr 00 1� pr(k�s) =Xr�0 A�p�pr 00 1� pr(k=2�s)= 1(1� �pp�s)(1� �0pp�s)where �p + �0p = pk=2A�p�p 00 1� and �p�0p = "p(p)pk�1(this is the normalisation of L-functions which gives the functional equationfor s$ k � 1� s; it di�ers from that of Jacquet-Langlands by a shift).Complex conjugation of Fourier coe�cients de�nes an involution of thespace of modular forms. In representation theoretic terms, this becomes theisomorphism �� ' � 
 "�1: (4.2.4)If � : A �f =Q �>0 ! C � is any character of �nite order and F is an adelic modularform of weight k, so isF 
 � : (�; g) 7! �(det g)F (�; g): (4.2.5)To go from adelic to classical modular forms, let K(n) be the standard leveln subgroup of GẐ. ThenGQnH� �Gf=K(n) = GZnH� �GẐ=K(n) ' Y (n)(C ):where the last isomorphism is normalised in such a way that the point (�; h) 2H� � GL2(Z=nZ) corresponds to the elliptic curve E� = C =(Z + �Z) withlevel structure ��;h : v 7!(1=n;��=n) � h � v(Z=nZ)2!( 1nZ+ �nZ)=(Z+ �Z) = ker[�n]E� :Write z for the coordinate on E� , and let F be an adelic modular form whichis invariant under K(n). It corresponds to the classical modular form over C(E� ; ��;h) 7�! F (�; ~h)du
k 2 H0(E� ;!
k)where h 2 GZ=nZ and ~h 2 GẐ is any lifting of h.The map (2.3.4) eN : Y (N)! SpecQ (�N ) is then given on complex pointsby eN : (�; g) 7!  f (� det g=N) if g 2 GẐ(the sign depends on the normalisation of the eN -pairing).



An introduction to Kato's Euler systems 4334.3 Eisenstein seriesHere we establish notations for Eisenstein series in the framework of theprevious section. The results quoted can be obtained easily from those foundin classical references (probably [31, Chapter VII] is closest to what is foundhere).Let � 2 S(A 2f ), with the action (4.1.1) of Gf . The seriesEk;s(�)(�; g) = X06=m2Q2(g�)(m)(m1 �m2�)�kjm1 �m2� j�2sis absolutely convergent for k+2Re(s) > 2, with a meromorphic continuation,and satis�esEk;s(�)(
�; 
g) = j(
; �)�kjj(
; �)j�2sEk;s(�)(�; g) for all 
 2 GQ.The functions Ek(�) := Ek;0(�) are holomorphic (and therefore modular ofweight k) if k � 3 or k = 1; if k = 2 they are holomorphic provided thatRA 2f � = 0.The map � 7! Ek;s(�) is Gf -equivariant. In particular, if � = d 2 Q � , thenin the notation of (4.1.2)Ek;s([d]�) = d�kjdj�2s1 Ek;s(�): (4.3.1)One can rewrite the Eisenstein series as a sum over the group. If f : Gf ! Cis a locally constant function satisfyingf ��a b0 d� g� = a�kjaj�2s1 f(g) for all a, d 2 Q � , b 2 A f (4.3.2)then de�ne Ek;s;f(�; g) = X
2P+QnG+Qf(
g)j(
; �)kjj(
; �)j2s: (4.3.3)The relation between the two de�nitions is that Ek;s(�) = Ek;s;f withf(g) = Xx2Q�(g�)�x0� x�kjxj�2s1 :Moreover every Ek;s;f is an Ek;s(�) for some �.In the normalisation used here, the Whittaker function of Ek(�) isB(g) = (2�i)k(k � 1)! lims!0 Xy2Q� y�kjyj1�2s1 ZA f  f (�x=y)(g�)�xy� dx



434 A. J. Schollwhich can be obtained without too much di�culty from the classical formulae| see e.g. [31, pp.156{7 & 164�.].One can decompose the Eisenstein series under the action of the centre ofGf . It is more convenient to replace f and B by the normalised functions(cf. (4.2.2) above)f �(g) = f(g)jdet gj�(k+2s)=2f ; B�(g) = B(g)jdet gj�k=2fand then to write f �(g) =X� f ��(g); B�(g) =X� B��(g)where the functions f ��(g), B��(g) are zero unless �(�1) = (�1)k, in whichcase f ��(g) = ZA �f =Q�>0 �(a)f ���a�1 00 a�1� g� d�a= 2jdet gj�(k+2s)=2f ZA �f �(x)jxjk+2sf (g�)�x0� d�xandB��(g) = ZA �f =Q�>0 �(a)B���a�1 00 a�1� g� d�a= 2 (2�i)k(k � 1)! jdet gj�k=2f ZA f�A �f �(y)jyjk+2s�1f  f (�x=y)(g�)�xy� dx d�y����s=0If � =Q�p is factorisable, with �p equal to the characteristic function of Z2pfor almost all p, then the expressions above factorise and one hasf ��(g) = 2Yp f ��p(gp); B��(g) = 2 (2�i)k(k � 1)!Yp B��p(gp) for g = (gp) 2 Gfwhere the functions f ��p, B��0p are given by local integralsf ��p(gp) = jdet gpj�(k+2s)=2p ZQ�p �p(x)jxjk+2sp (gp�p)�x0� d�x (4.3.4)



An introduction to Kato's Euler systems 435B��p(gp) = jdet gpj�k=2p ZQp�Q�p �p(y)jyjk+2s�1p  p(�x=y)(gp�p)�xy� dx d�y����s=0= jdet gpj�k=2p ZQp�Q�p �p(y)jyjk+2sp  p(�x)(gp�p)�xyy � dx d�y����s=0(4.3.5)In fact the integral in (4.3.5) is a �nite sum, because the x-integral is a �nitelinear combination of integrals of the formZt+p�Zp  p(�x=y) dxwhich vanish if y is su�ciently close to 0. So one can omit s from the formula.Because of (4.3.2) and (4.2.3) the functions f ��p and B��p are determinedby their restrictions to the subgroup�Q �p 00 1�Kp � Gpand these are given byf ��p ��m 00 1� h� = �p(m)jmj(k+2s)=2f ��p(h) (4.3.6)B��p ��m 00 1� h� = jmj�k=2+1p ZQp�Q�p �p(y)jyjk�1p  p(�mx=y)(h�p)�xy� dx d�y(4.3.7)= jmj�k=2+1p ZQp�Q�p �p(y)jyjkp p(�mx)(h�p)�xyy � dx d�y(4.3.8)4.4 The Rankin-Selberg integralLet F , G be adelic modular forms of weights k+ l, k respectively, at least oneof which is a cusp form, and let El;s;f be the Eisenstein series (4.3.3). Theproduct 
 = El;s;fGFyk+l+s�2jdet gj�k�l�sd� ^ d��is a left G+Q -invariant form on H�Gf , and the aim of this and the followingsections is to compute the inner producthEl;s;fG;F i := ZG+QnH�Gf 
 dg



436 A. J. Schollwhich is a Rankin-Selberg integral.Proposition 4.4.1. Let A(g), B(g) be the Whittaker functions of F and G.ThenhEl;s;fG;F i = � i�(k + l + s� 1)(4�)k+l+s�1� ZA �f�GẐf ��m 00 1� h�B ��m 00 1� h�A��m 00 1� h�jmj�k�l�s�1d�mdh:Proof. A very similar calculation is done in [30, x5]; here we simply write theequations with little comment:hEl;s;fG;F i = ZG+QnH�Gf X
2P+QnG+Qf(
g)j(
; �)ljj(
; �)j2s�G(�; g)F (�; g)yk+l+s�2jdet gj�k�l�sf d� ^ d�� dg= �2i ZP+QnH�Gf f(g)G(�; g)F (�; g)yk+l+s�2jdet gj�k�l�sf dx dy dg= �2i ZP+QnH�Gf f(g) Xm2Q�>0 BA��m 00 1� g�� e�4�myyk+l+s�2jdet gj�k�l�sf dx dy dg= �2i ZZQUQnH�Gf f(g)B(g)A(g)e�4�yyk+l+s�2jdet gj�k�l�sf dx dy dg= �2i�(k + l + s� 1)(4�)k+l+s�1 ZZQNQnR�Gf f(g)B(g)A(g)jdet gj�k�l�sf dx dgTo get the �nal result, use the parameterisation� : A f � A �f �GẐ=f�1g �! Gf=ZQ(b;m; h) 7�! �1 b0 1��m 00 1� hin terms of which integration is given byZGf=ZQ�(g) dg = ZA f�A �f�GẐ=f�1g (���)(b;m; h)jyj�1db d�mdh



An introduction to Kato's Euler systems 437Since f(g)B(g)A(g) is invariant by g 7! �1 b0 1� g, the integral in the last lineabove splits as a productZQnR�A f dx db ZA �f�GẐ=f�1g fBA��m 00 1� h� d�mdhand the �rst factor equals 1 by choice of Haar measure.Now suppose:� F is a cusp form, belonging to an irreducible � = 
0�p, with centralcharacter ", whose Whittaker function A(g) =QAp(gp) is factorisable;� G = Ek(�0) is an Eisenstein series and f = f� for factorisable functions� =Q�p, �0 =Q�0p 2 S(A 2f ).Then the integral in the previous proposition can be decomposed under theaction of the centre and then factorised, giving:Proposition 4.4.2. Under the above hypotheses:hEl;s(�)Ek(�0); F i = C X�;�0 Yp Ip(�p; �0p)where C = ik�1�(k + l + s� 1)2k+2l+2s�4(k � 1)! andIp(�p; �0p) = ZQ�p�Kp f ��pB��0pA�p��m 00 1� h� jmj�1d�mdhand f ��p, B��0p are as in (4.3.4), (4.3.5) above. The sum is over all pairs ofcharacters �, �0 : A �f =Q �>0 ! C � such that ��0 = " and �(�1) = (�1)l.Remark 4.4.3. It will become clear in the computation that follows that thesum over characters is actually a �nite sum.4.5 Local integralsWrite char�XY � for the characteristic function of a subset X � Y � A 2f .The next proposition will compute the local integral Ip(�p; �0p) for almostall primes.



438 A. J. SchollProposition 4.5.1. Suppose that�p = �0p = �0p := char�ZpZp�and that Ap is Kp-invariant, with Ap(1) = 1. ThenIp(�p; �0p) = (L(�p; k + l + s� 1)L(�p 
 �0�1p ; l + s) if �p is unrami�ed0 otherwise:Remark 4.5.2. Since �p has aKp-invariant vector, " is unrami�ed at p. There-fore since ��0 = ", either both or neither of �p, �0p are unrami�ed.Proof. (See [15, x15.9].) If �p = �0p = �0p then by (4.3.6) for h 2 Kp, m 2 Q �pf ��p ��m 00 1� h� = �p(m)jmj(l+2s)=2 ZZp�f0g �p(x)jxjl+2sd�x= (L(�p; l + 2s) if �p is unrami�ed0 otherwise:Moreover by (4.3.7)B��0p ��m 00 1� h� = jmj1�k=2 ZZp�Zp�f0g �0p(y)jyjk�1 p(�mx=y)dx dywhere the x-integral equals 1 is m=y 2 Zp and vanishes otherwise. The y-integral then vanishes if �0p��Z�p 6= 1, givingB��0p ��m 00 1� h� = 8>><>>:p�rk=2 P0�j�r�0p(p)jp(r�j)(k�1)if r = vp(m) � 0 and �0p is unrami�ed0 otherwise: (4.5.3)Thus Ip(�p; �0p) = 0 unless both �, �0 are unrami�ed at p, which we nowassume. Then f ��p, B��0p are Kp-invariant andIp(�p; �0p) =Xr2Zprf ��pB��0pA�p�pr 00 1�= L(�p; l + 2s)Xr�0 �(p)rpr(1�l=2�s)B��0pA�p�pr 00 1� :



An introduction to Kato's Euler systems 439Now from (4.5.3)Xr�0 B��0p �pr 00 1� T r = 1(1� �0p(p)p�k=2T )(1� pk=2�1T )and therefore by [15, Lemma 15.9.4] one getsIp(�p; �0p) = L(�p; l + 2s)L(��p 
 �p�0p; k + l + s� 1)L(��p 
 �p; l + s)L("�1p �0p�2p; l + 2s) :Since " = ��0 and �� ' � 
 "�1 (4.2.4) the result follows.Corollary 4.5.4. Under the hypotheses of Proposition 4.4.2, let S be a �niteset of primes such that, for every p =2 S, �p = �0p = �0p, Ap is Kp-invariantand Ap(1) = 1. ThenhEl;s(�)Ek(�0); F i =C � LS(�; k + l + s� 1)X�;�0 LS(� 
 �0�1; l + s)Yp2S Ip(�p; �0p)where the sum is over characters �, �0 unrami�ed outside S, with ��0 = "and �(�1) = (�1)l.Here LS denotes the L-function with Euler factors at all p 2 S removed.At other primes we use the following choice for �p:Proposition 4.5.5. Let t 2 Q p with vp(t) = �� < 0. Suppose that�p = �1;tp := char�t + ZpZp �:Let m 2 Q �p , h = �a bc d� 2 Kp. Thenf ��p ��m 00 1� h� = 8>>><>>>:�1� 1p��1p�(l+2s�1)�p(amt)jmjl=2+sif cond�p � � and h 2 K0(p�)0 otherwise:Proof. Straightforward calculation from (4.3.4).At the bad primes for F we are going to choose �0p in such a way as tomake the local factor be simply a constant.



440 A. J. SchollThe standard way to achieve this is to use a suitable Atkin-Lehner operatorto replace the coe�cient of qn in the q-expansion by zero whenever pjn. Inrepresentation-theoretic language, this means to use the vector in the Kirillovmodel which is the characteristic function of Z�p. (See [6, Thm. 2.5.6], andalso compare [30, 4.5.4].) For Eisenstein series it is easy to write down aparameter �0p which does the trick, although possibly this does not give thebest constant in 4.6.3 below.Proposition 4.5.6. Suppose�0p = �2;t0p := char�t0 + ZpZ�p �� 1pchar�t0 + p�1ZpZ�p �
where t0 2 Q �p, vp(t0) = �� � 0. Then for all h = �a bc d� 2 K0(p�+1)\K0(p2)B��0p ��m 00 1� h� = 8>><>>:�0p(�amt0) Zp��Z�p�0p(y)�1 p(y) d�yif cond�0p � � and m 2 Z�p0 otherwise:Remark. In the special case � = 0, this becomes�0p = �2;1p = char�ZpZ�p�� 1pchar�p�1ZpZ�p �and for all h 2 K0(p2) and all m 2 Q �pB��0p ��m 00 1� h� = (1 if �0p is unrami�ed and jmj = 10 otherwise:Proof. First consider what happens when �0p = char�t0 + ZpZ�p �. For everyh 2 K0(p�+1) one has h�0p = char�at0 + ZpZ�p �which givesB��0p ��m 00 1� h� = jmj1�k=2 Z(at0+Zp)�Z�p�0p(y) p(�mx=y) dx d�y (4.5.7)



An introduction to Kato's Euler systems 441and the x-integral vanishes for m =2 Zp, and equals  p(�amt0=y) otherwise.Therefore for m 2 Zp (4.5.7) becomesjmj1�k=2 ZZ�p �0p(y) p(�amt0=y)d�y= jmj1�k=2�0p(�amt0) Zmt0Z�p �0p(y)�1 p(y) d�yNow if B : Gp ! C is any Whittaker function (i.e. satis�es (4.2.1) and islocally constant) which is invariant under K1(p�), some � � 1, then thefunction eB = B � 1p Xx mod p�1 p�1x0 1 �Bsatis�es, for every h 2 K0(p�) \K0(p2),eB ��m 00 1� h� = charZ�p(m)B��m 00 1� h� :Since (t0 + p�1Zp)� Z�p = ax mod p�1 p�1x0 1 ��(t0 + Zp)� Z�p�the result follows.From Propositions 4.5.5 and 4.5.6 one obtains:Proposition 4.5.8. Suppose that Ap is invariant under K1(p�) and thatAp(1) = 1. Let t, t0 2 Q �p with vp(t) = ��, vp(t0) = �� and � > � � 0,� � 2. Then if �p = �1;tp and �0p = �2;t0p ,Ip(�p; �0p) = 8>>><>>>:�1� 1p2��1p�(l+2s�2)�p(t)�0p(�t0) Zp��Z�p�0p(y)�1 p(y) d�yif cond�0p � �0 otherwise:Remark. Since " = ��0 one has cond�0p � � =) cond�p � �.Proof. If cond�0p > � then Ip(�p; �0p) = 0. Otherwise, if h 2 K0(p�) andAp is K1(p�)-invariant, one has A�p(h) = "p(a)A�p(1) = �p�0p(a)A�p(1), so that



442 A. J. SchollIp(�p; �0p) equals�1� 1p��1p�(l+2s�1) Zp��Z�p�0p(y)�1 p(y) d�y ZK0(p�) �p(at)�0p(�at0)A�p(h) dh= volK0(p�)�1� 1p��1p�(l+2s�1) Zp��Z�p�0p(y)�1 p(y) d�y�p(t)�0p(�t0)A�p(1)and volK0(p�) = [Kp : K0(p�)]�1 = (1 + 1=p)�1p��.There is just one more case to consider, in order to compute the image ofthe Euler system in the cyclotomic tower.Proposition 4.5.9. Suppose that�0p = (�1;t0p )tr = char� Zpt0 + Zp�; vp(t0) = �� < 0:Then for all m 2 Q �p and h = �a bc d� 2 K0(p�),B��0p ��m 00 1� h� = 8>>><>>>:�1� 1p��1p�(k�2)jmj(1�k=2)�0p(dt0) p(�mb=d)if cond�0p � � and vp(m) � ��0 otherwise:Proof. One has h�0p = char�bt0 + Zpdt0 + Zp� and dt0 +Zp = dt0(1 + p�Zp), thereforeby (4.3.7)B��0p = jmj�k=2+1 Zdt0(1+p�Zp) �0p(y)jyjk�1� Zbt0+Zp  p(�mx=y) dx�d�y= (0 if vp(m) < ��jmj�k=2+1�0p(dt0)p�(k�1) Z1+p�Zp�0p(y) p(�mb=dy) d�y if vp(m) � ��.If vp(m) � �� and y 2 1 + p�Zp then  p(�mb=dy) =  p(�mb=d) and theresult follows.Corollary 4.5.10. Suppose there exists a character �p : Q �p ! C � such that�p 
 ��1p is unrami�ed, and that A�p is the twist of the spherical vector; thatis, A�p 
 ��1p : g 7! �p(det g)�1Ap(g) is Kp-invariant and Ap(1) = 1. Put�p = �1;tp ; �0p = (�1;t0p )tr with vp(t) = vp(t0) = �� < 0:



An introduction to Kato's Euler systems 443Then if �0p��1p is unrami�ed and cond�p � �,Ip(�p; �0p) = �1� 1p��1�1� 1p2��1p�(k+l+2s�4)�p(t)�0p(t0)L(�p 
 �0�1p ; l + s)and otherwise Ip(�p; �0p) = 0.Proof. The central character "p = �p�0p of �p is �2p times an unrami�ed char-acter, so one of �p��1p , �0p��1p is unrami�ed if and only if both are. ByPropositions 4.5.5 and 4.5.9, Ip(�p; �0p) = 0 whenever cond�p or cond�0p > �.OtherwiseIp(�p; �0p) = �1� 1p��2p�(k+l+2s�3)�p(t)�0p(t0)� ZQ�p�K0(p�) �p(am)�0p(d)jmjs+(l�k)=2A�p��m 00 1� h� d�mdh= �1� 1p��2p�(k+l+2s�3)�p(t)�0p(t0)� Xr�0 �p(p)rp�r(l�k+2s)=2�p(p)�rA�p 
 ��1p �pr 00 1�� ZK0(p�) �p(a)�0p(d)�(deth) dh:The integral in the last expression vanishes unless �p��1p and �0p��1p are un-rami�ed, in which case Ip(�p; �0p) becomes�1� 1p��1�1� 1p2��1p�(k+l+2s�4)�p(t)�0p(t0)�Xr�0(�p��1p )(p)rA�p 
 ��1p �pr 00 1�p�r(l�k+2s)=2 (4.5.11)= �1� 1p��1�1� 1p2��1p�(k+l+2s�4)�p(t)�0p(t0)L(��p 
 �p; l + s)giving the desired expression from (4.2.4).Remark 4.5.12. One can do exactly the same computation merely assumingthat A�p
 ��1p is K1(p�)-invariant; Ip(�p; �0p) vanishes unless �0p��1p is unram-i�ed, in which case one gets the formula (4.5.11).



444 A. J. Scholl4.6 Putting it all togetherWe change notation slightly from the previous sections. Begin with a cuspform F of weight k+ l, generating an irreducible � = 
0�p, and whose Whit-taker function A(g) =QAp(gp) factorises, with Ap(1) = 1 for all p. Let " bethe character of the centre of Gf on A�. Assume that the following data isgiven:(i) Disjoint �nite sets of primes S and T , such that if p =2 S then Ap isKp-invariant. (In particular this means that " is unrami�ed outside S.)(ii) A character � : A �f =Q �>0 ! C � , unrami�ed outside T .(iii) For each p 2 S, elements tp, t0p 2 Q �p with vp(tp) = ��p, vp(t0p) = ��p,such that �p > �p � 0, �p � 2, and Ap is K1(p�p)-invariant.(iv) For each p 2 T , elements tp, t0p 2 Q �p with vp(tp) = vp(t0p) = ��p where�p � max(cond�p; 1).Put N =Yp2S p�p; M =Yp2S p�p ; R =Yp2T p�p:Denote by t, t0 the �nite ideles whose components at primes p 2 S [T are tp,t0p, and which are 1 elsewhere. Pick y 2 Z such thaty � �p�pt0pNtp mod p�p for all p 2 S (4.6.1)(note that the right-hand side belongs to Z�p) | thus y is well-de�ned modM .The integral to compute ishEl;s(�)Ek(�0)
 ��1; F i = hEl;s(�)Ek(�0); F 
 �iwhere F 
 �(�; g) = �(det g)F (�; g)is the twist of F by �, and �, �0 are given as follows:� For p 2 S, �p = �1;tpp and �0p = �2;t0pp .� For p 2 T , �p = �1;tpp and �0p = (�1;t0pp )tr� For p =2 S [ T , �p = �0p = �0p.



An introduction to Kato's Euler systems 445We can then assemble the previous calculations. Put � = "�� and �0 = ���1for a variable character � | thus ��0 = "�2, the central character of A� 
 �.Then only those � satisfying the following conditions contribute to the sum:� �(�1) = (�1)k�(�1);� If p =2 S then �p is unrami�ed;� If p 2 S then cond �p � �p.So cond �jM , cond "jN and cond �jR. This gives:hEl;s(�)Ek(�0); F 
 �i = C � LS[T (� 
 �; l + k + s� 1)� X�(�1)=(�1)k�(�1)cond �jM LS[T (� 
 �; l + s) Yp2S[T Ip(�p; �0p)by 4.5.4, 4.5.8 and 4.5.9, whereYp2S Ip(�p; �0p) = N l+2s�2Yp2S�1� 1p2��1�p(tp)�0p(�t0p) Zp��pZ�p�0p(y)�1 p(y) d�ywith Yp2S �p(tp)�0p(�t0p) =Yp2S �p(p)��p��p"p(tp)�p(�tp=t0p)= �modM(y)Yp2S"p(tp)�p(p)�p�p(MN)�1;andYp2T Ip(�p; �0p) =Rk+l+2s+4Yp2T �1� 1p��1�1� 1p2��1�p(tp)�0p(t0p)L(�p 
 �p; l + s)and for each p 2 T , �p(tp)�0p(t0p) = "p(tp)�p(tpt0p). This giveshEl;s(�)Ek(�0); F 
 �i =C �N l+2s�2Rk+l+2s�4 Yp2S[T�1� 1p2��1Yp2T �1� 1p��1� "(t)Yp2T �p(MNtpt0p) � LS[T (� 
 �; l + k + s� 1)� X�(�1)=(�1)k�(�1)cond �jM �YpjM �p(p)�p Zp��pZ�p�0p(y)�1 p(y) d�y� �modM(y) � LS(� 
 �; l + s)�: (4.6.2)



446 A. J. SchollIn the third line of this expression, the product over pjM can be rewritten interms of a classical Gauss sum as'(M)�1 Xx2(Z=MZ)� �modM(x)e2�ix=M :(Here ' is Euler's totient function.) The sum over characters � in (4.6.2) thenbecomes (combining odd and even characters)12'(M)�1 Xcond �jM Xx2(Z=MZ)� Xm�1(m;N)=1 �1 + (�1)k��(�1)�� �modM(xy�1m�1)e2�ix=Mamm�l�s= Xm�1(m;N)=1 12 � f(my=M) + (�1)k�(�1) f (�my=M)� amm�l�sby the character orthogonality relations.For � 2 A f writeLS(�; s;�) = Xm�1(m;N)=1 f(m�)amm�sfor the twisted Dirichlet series.Theorem 4.6.3. Under the above hypotheseshEl;s(�)Ek(�0)
 �; F i = CN l+2s�2Rk+l+2s#GL2(Z=RZ)�1� "(t)Yp2T �p(MNtpt0p)Yp2S�1� 1p2��1LS[T (� 
 �; l + k + s� 1)� �LS(�; l + s; y=M) + (�1)k�(�1)LS(�; l + s;�y=M)�with C as in Proposition 4.4.2.5 The Euler systems5.1 Modular curvesWe can at last give Kato's construction of an Euler system in the Galoiscohomology of the modular curve Y (N) over a family of abelian extensionsof Q . We assume throughout that p is a prime not dividing N .



An introduction to Kato's Euler systems 447Pick auxiliary integers D, D0 > 1 which are prime to 6Np, and putR0p = fsquarefree positive integers prime to NpDD0gRp = fr = r0pm j r0 2 R0p; m � 1gWe suppose that, for each r 2 Rp, we are given points zr, z0r 2 Euniv(Y (Nr)) '(Z=Nr)2, such that:� If r and rs 2 Rp, then sz(0)rs = z(0)r | i.e., one has elements of the inverselimit (zr)r; (z0r)r 2 lim �r2Rp ker[�Nr] ' Z2p� Y6̀ jNpDD0Z=`of torsion points on the universal elliptic curve.� For every r 2 Rp, the points Nzr and Nz0r generate ker[�r] (in partic-ular, the orders of zr, z0r are multiples of r).� If r = pm then the orders of zr, z0r are divisible by a prime other thanp.Remarks. (i) The �rst condition implies that there exists e 2 Z�p such thatfor every r = r0pm 2 Rp, the Weil pairing of zr and z0r iseNr(zr; z0r) = �er�10pm � (prime-to-p root of 1): (5.1.1)(ii) The third condition is really only added for convenience. It ensuresthat for every r the points z(0)r are not of prime power order, which meansthat they do not meet the zero section of Euniv=Y (Nr) in any characteristic.It follows from (ii) that the modular units #D(zr), #D0(z0r) actually belongto O�(Y (Nr)=Z), for any r 2 Rp. De�nee�r = f#D(zr); #D0(z0r)g 2 K2�Y (Nr)�and also �r = NY (Nr)=Y (N)
Q(�r)e�r 2 K2�Y (N)
 Q (�r)�;by what was just said, these belong to the images of K2 of the models overSpecZ.Let T` = T`;Y (N), hai = haiY (N) denote the Hecke correspondence and dia-mond operators as in x2.3 above. If (`; r) = 1 write Frob` 2 Gal(Q (�r)=Q) forthe geometric Frobenius automorphism, so that Frob` = '�1` where '` : �r 7!�r̀ is the arithmetic Frobenius substitution. For every �nite �eld extension



448 A. J. SchollL0=L write simply NL0=L for the norm map K2(Y (N)
L0)! K2(Y (N)
L).Notice that if 6̀ jNr thenNY (Nr)=Y (N)
Q(�r) � T`;Y (Nr) = (T`;Y (N) 
 '`) �NY (Nr)=Y (N)
Q(�r)NY (Nr)=Y (N)
Q(�r)h`iY (Nr) = (h`iY (N) 
 '2̀) �NY (Nr)=Y (N)
Q(�r)since T` acts as '` on the constant �eld and h`i acts as '2̀, by x2.3. Thereforefrom 2.3.6 and 2.4.3 one obtains:Theorem 5.1.2. Let r 2 Rp. Then:(i) NQ(�rp)=Q(�r)�rp = �r.(ii) If ` is prime and (`; NDD0r) = 1 thenNQ(�`r)=Q(�r)�`r = (1� T`h`i� 
 Frob` + `h`i� 
 Frob2̀) �r:Now write Tp;N = H1(Y (N)
Q Q ;Zp(1))and consider, for r = r0pm, the homomorphismslim �n�mK2(Y (N)
 Q(�r0pn))
 �
�1pn??yAJlim �n�mH1(Q(�r0pn); H1(Y (N)
Q Q ;�pn))??ycorlim �n�mH1(Q (�r0pm); H1(Y (N)
Q Q ;�pn))

H1(Q (�r);Tp;N )By 5.1.2(i), the family f�r0pn 
 [�pn]�1; n � mg is an element of the �rstgroup. (This twisting of elements of K2 was used �rst by Soul�e.) Let�r = �r(Y (N)) 2 H1(Q(�r);Tp;N )be its image. On the one hand, Gal(Q (�r)=Q) acts on H1(Q(�r);Tp;N ), sinceTp;N is a Gal(Q =Q)-module; on the other, the level N Hecke operators T`,h`i act by functoriality. Also Frob` acts as `�1 on �pn. By Theorem 5.1.2 theclasses �r therefore satisfy Euler system-like identities:



An introduction to Kato's Euler systems 449Corollary 5.1.3. (i) For all r 2 Rp, corQ(�rp)=Q(�r)�rp = �r.(ii) If ` is prime and r, `r 2 Rp thencorQ(�`r)=Q(�r)�`r = (1� `�1T`h`i�Frob` + `�1h`i�Frob2̀) �r:In the next section we will pass to an elliptic curve and get an Euler systemin the sense of x2 of [29].Recall from x1.3 the de�nition of the weight 1 Eisenstein series (for anyN and any D > 1 which is prime to 6N)DEis(z) = z� dlogv #D 2 H0(X(N);!):de�ned for any 0 6= z 2 Euniv(Y (N)) = (Z=NZ)2. The form DEis(z) extendsto X(N)Z provided the order of z is divisible by at least 2 primes.Recall from x1.1 the Kodaira-Spencer isomorphismKSN := KSY (N) : H0(X(N);!
2) ��! H0(X(N);
1X(N)=Q(log cusps))identifying holomorphic modular forms of weight 2 and di�erentials with atworst simple poles at cusps. Let Y (N)ord be the complement in Y (N)=Z of the(�nite) set of supersingular points in characteristic dividing N . The schemeY (N)ord is smooth over Z[�N ] by [18, Cor. 10.9.2].Proposition 5.1.4. The Kodaira-Spencer map divided by N extends to ahomomorphism of sheaves on Y (N)ord1NKSN : !
2Euniv=Y (N)ord ! 
1Y (N)ord=Z[�N ]with logarithmic singularities at the cusps.Proof. The Kodaira-Spencer map takes the modular form f(q1=N) (dt=t)
2 tothe di�erential f(q1=N) dq=q = Nf(q1=n) dlog(q1=N). So on q-expansions it isdivisible by N . The result follows by the q-expansion principle.Remark. One knows that (always assuming that N is the product of twocoprime integers, each � 3) the scheme X(N) is regular. Therefore the mor-phism eN : X(N)! SpecZ[�N ] is a local complete intersection (being a 
atmorphism of �nite type between regular schemes, EGA IV 19.3.2). Thereforethe sheaf of relative di�erentials extends to an invertible sheaf on X(N)=Z,namely the relative dualising sheaf (sheaf of regular di�erentials), and one canthen show that (1=N)KSN extends to an isomorphism of invertible sheaveson all of X(N)=Z 1NKSN : !2 ! 
regX(N)=Z[�N ](log cusps):This is not needed in what follows.



450 A. J. SchollBecause Y (N)ord is smooth over Z[�N ], one has
2Y (N)ord=Z= 
1Y (N)ord=Z[�N ] 
 
1Z[�N ]=Zand 
1Z[�N ]=Z is killed by N and generated by dlog(�N).Proposition 5.1.5. Let z, z0 2 Euniv(Y (N)=Z) be disjoint from ker[�DD0].In 
2Y (N)ord=Z the identitydlogf#D(z); #D0(z0)g = 1NKSN�DEis(z) � D0Eis(z0)�
 dlog eN(z; z0)holds.Proof. This can be checked on q-expansions. Suppose that on the completionof Y (N) along a cusp we have �xed an isomorphism of Euniv with the Tatecurve Tate(q) over Z[�N ]((q1=N )), and that z, z0 are the points z = �a1N qa2=N ,z0 = �b1N qb2=N . Applying the congruence 1.3.4 and the fact that eN (z; z0) =�a2b1�a1b2N one get the desired result. (We have normalised the eN -pairing asin [18, (2.8.5.3)].)We can now give Kato's description of the image of the Euler system f�rgunder the dual exponential map (see x3.2 above)exp�p : H1(Q (�r);Tp;N )! Q p 
Q Q (�r)
Q Fil1H1dR(Y (N)=Q)recalling that Fil1H1dR(Y (N)=Q ) = H0(X(N);
1X(N)=Q(log cusps)).De�ne the following di�erentials on the modular curve in terms of theweight 1 Eisenstein series:e!r = 1NrKSNr�DEis(zr) � D0Eis(z0r)� 2 H0(X(Nr);
1(log cusps)):!r = trX(Nr)=X(N)
Q(�r) e!r 2 H0(X(N)
 Q (�r);
1(log cusps)) (5.1.6)Theorem 5.1.7. For every r 2 Rp,exp�p �r = er !rwhere e 2 Z�p is as in (5.1.1).Proof. By 5.1.5 we have in H0(X(Nr)ord;
2X(Nr)=Z(log cusps)) the identitydlog e�r = e!r 
 dlog eNr(zr; z0r):Now take r = r0pm and tensor with Zp. Then by (5.1.1)dlog e�r = r�10 e e!r 
 dlog �pm 2 H0(X(Nr)ord 
 Zp;
2(log cusps)):



An introduction to Kato's Euler systems 451Taking the trace to X(N) 
 Q(�r) gives, using the compatibility (x2.1) oftrace and transfer dlog�r = r�10 e !r 
 dlog �pm:Let on be the ring of integers of Q p(�pn). By the explicit reciprocity law3.2.3, exp�p �r = limn!1 r�10 epn trY (N)
on=Y (N)
om !r0pn:But since trY (Nr0pn)=Y (Nr) e!r0pn = pn�me!r by 2.5.3, this gives the desiredformula.5.2 Elliptic curvesSuppose that E=Q is a modular elliptic curve of conductor NE, with a Weilparameterisation 'E : X0(NE)! E:Choose a prime p not dividing 2NE, and write Tp(E) = H1(E;Zp)(1) | ofcourse, this is the same as the Tate module of E, but it is better to think interms of cohomology, especially if we were to work more generally with anyweight 2 eigenform (with character). Let the L-series of E beL(E; s) =Xn�1 ann�s(again, this is best thought of here as the L-series attached to the motiveh1(E)). Let N be any positive multiple of NE with (N; p) = 1. (The actualchoice of N is to be made later.) Consider the composite morphism'E;N : X(N)! X0(NE) 'E�! E:There are Galois-equivariant maps of restriction and direct imageH1(X(N)
Q Q ;Zp(1)) restriction�����! H1(Y (N)
Q Q ;Zp(1)) = Tp;N??y'E;N�H1(E 
Q Q ;Zp(1))= Tp(E)Now the Manin-Drinfeld theorem (or rather its proof) implies that there isan idempotent �cuspN in the Hecke algebra (with rational coe�cients) which



452 A. J. Schollinduces for every p a left inverse to the map labelled \restriction". So forsome positive integer hE (independent of p) the composite maphE 'E;N� � �cuspN : Tp;N ! Tp(E)is well-de�ned. Choose D, D0 prime to 6Np, and systems (zr), (z0r) as in theprevious section.Theorem 5.2.1. De�ne for r 2 Rp�r(E) := (hE 'E;N� � �cuspN )�r(Y (N)) 2 H1(Q(�r); Tp(E)):Then the family f�r(E)g is an Euler system for Tp(E); that is,� For every r 2 Rp, corQ(�rp)=Q(�r)�rp(E) = �r(E);� If ` is prime and (`; NDD0r) = 1 thencorQ(�`r)=Q(�r)�`r(E) = (1� `�1a`Frob` + `�1Frob2̀) �r(E):where Frob` 2 Gal(Q (�r)=Q) is the geometric Frobenius.Remark. Actually, Rubin considers cohomology classes not over Q (�r) butrather over the sub�eld Qm�1(�r0), where r = r0pm and Qm�1=Q is the uniqueextension of degree pm�1 contained in the cyclotomic Zp-extension of Q . Toget an Euler system in the precise sense of [29, x2], one should thereforetake the corestriction of �r(E) to Qm�1(�r0). Note that his formula for thenorm relation di�ers from that here, as we are using geometric Frobenius: asNekov�a�r has explained to us, the relation (ii) can be rewritten more concep-tually as cor(�`r) = Q`(Frob`)�r, where Q`(x) = det(1� Frob`x j Tp(E)�(1)).Writing P`(x) = Q`(`�1x) one gets the same formula as in loc. cit.Proof. The �rst statement follows directly from the corresponding statement5.1.3(i) for �rp(Y (N)). The second follows from 5.1.3(ii) together with thefact that h`i = 1 and T` = a` on Tp(E).On di�erentials, the projector �cuspN is the identity on cusp forms andannihilates Eisenstein series. Put!cuspr = �cuspN (!r) 2 H0(X(N)
 Q(�r);
1):Then Theorem 5.1.7 gives:exp�p �r(E) = ehEr 'E;N�(!cuspr ): (5.2.2)To compute this in terms of the L-function, use the Rankin-Selberg integralfrom x4. Fix a di�erential !E on E=Q such that '�E!E is a newform onX0(NE), which we write as 2�iF (�; g)d� for a weight 2 cusp form F whoseWhittaker function satis�es:



An introduction to Kato's Euler systems 453� Aq isKq-invariant if q 6 jNE, and isK0(q�)-invariant if ordq(NE) = � > 0;� Aq(1) = 1 for all q.This means that Aq(q) = q�2aq for every q 6 jNE, and that L(E; s) = L(�; s)where � is the representation of Gf generated by F .At this point it would be wise to recall that we have in x3.1 normalisedthe reciprocity law of local class �eld theory to take uniformisers to geometricFrobenius. This gives the classical isomorphism:Ẑ� ,�! A �Q global CFT������! Gal(Q ab=Q )a 7�! (�n 7! �an)If � is any idele class character of conductor M , with associated Dirichletcharacter �modM : (Z=MZ)�! C � , we then haveL(� 
 ��1; s) = L(E; �modM ; s) := X(m;M)=1 am�modM(m)m�sWe also de�ne the incomplete and twisted L-seriesLN (E; �modM ; s) := X(m;MN)=1 am�modM(m)m�sLN (E; s;�) := X(m;N)=1 e2�im�amm�sas in x4 above. Now put� �E = number of connected components of E(R);� 
+E = fundamental real period of !E;� 
�E = �E� fundamental imaginary period of !Eso that ZE(C ) !E ^ �!E = 
+E
�E 2 iRThe set of complex points SpecQ(�r)(C ) is the set of primitive rth roots ofunity fe2�ix=rg in C , which we identify with (Z=rZ)�. Write �x : Q (�r) ,�! Cfor the corresponding embedding �r 7! e2�ix=r. Suppose � : A �f =Q �>0 ! C � is



454 A. J. Scholla character of conductor dividing r. Then we can computeXx2(Z=rZ)� ZE(C ) �mod r(x) � �x'E;N�(!cuspr ) ^ �!E= ZY (N)(C )�(Z=rZ)� �mod r(x) � �x!cuspr ^ '�E;N �!E= ZY (N)(C )�(Z=rZ)� �mod r(x) � �x!r ^ '�E;N �!E(since cusp forms and Eisenstein series are orthogonal)= ZY (Nr)(C ) (�modNr � eNr) � e!r ^ '�E;Nr�!E (5.2.3)where the map eNr : YNr(C ) ! SpecQ (�Nr)(C ) = (Z=NrZ)� is that de�nedin (2.3.4).At this point we need to choose the parameters zr, z0r of the Euler system�r in such a way that the expression (5.2.3) can be computed using Theorem4.6.3. In fact it will be necessary to replace �r(E) by a certain linear combi-nation of Euler systems. The choices to be made are best broken down intoa number of steps:Step 1: Fix a prime p with p6 jNE, and " 2 f�1g. We will restrict tocharacters � with �(�1) = ".Step 2: If � = y=M 2 Q , the value of the twisted Dirichlet series at s = 1is a period integralLMNE(E; 1;�) = � i1Z� X(n;MNE)=1anqn 2�i d�and one knows that this is a rational multiple of a period along a closed pathin X(N)(C ), for suitable N . Moreover the cusp form P(n;N)=1 anqn dq=q isobtained from the eigenform '�!E by applying a suitable Hecke operator. Itfollows that for any � 2 Q ,LMNE(E; 1;�)� "LMNE(E; 1;��) (5.2.4)is a rational multiple of 
"E. Moreover, one can �nd � with denominatorprime to any chosen integer for which (5.2.4) is nonzero, by [36].We choose an � = y=M with M > 0 and (M; y) = (M; p) = 1, and forwhich (5.2.4) is non-zero. By what has been just said, there will be a �nite



An introduction to Kato's Euler systems 455collection of such y=M which will cover all possible choices of p. We thentake N = YqjMNE q�q ; �q = max(2; ordq(NE); ordq(M) + 1):Step 3: Fix auxiliary integers D, D0 > 1 with (DD0; 6pNE) = 1 and D �D0 � 1 (mod M). Let r = r0pm 2 Rp; thus m � 1 and r0 > 0 is squarefreeand coprime to pDD0N . In the notation of x4.6 we put R = r, T = fqjrg,S = fqjNg and choose the ideles t, t0 2 A �f to have local componentstq = (1 if q 6 jNr(Nr)�1 if qjNr ; t0q = 8><>:1 if q 6 jMr�r�1yjM jq if qjM(Mr)�1 if qjrThen (4.6.1) holds, and t 2 (Nr)�1Ẑ�, t0 2 (Mr)�1Ẑ�. In x4.6 this data thendetermines functions �, �0 2 S(A 2f ). Let � 2 Ẑ� be the �nite unit idele�q = (D if qjNr;1 otherwiseand set, by analogy with (1.3.2),D� = D2��D[�]�in the notation of (4.1.2). Likewise de�ne �0 and D0�0 in the obvious way.Since (Nr;D) = 1, if cond(�)jr we have�(�) = YqjNr �q(D) = �mod r(D): (5.2.5)Step 4: We have � = char[(t + Ẑ) � Ẑ] = char[(Nr)�1 + Ẑ� Ẑ]. Choosezr 2 Euniv(Y (Nr)) to be the point which in complex coordinates is1Nr 2 ( 1NrZ+ �NrZ)=(Z+ �Z) ' (Z=NrZ)2:For di�erent r the points zr are compatible: `z`r = zr. We then can use (1.3.3)to write the Eisenstein series in terms of the complex parameterisation asDEis(zr) = E1(D�) du: (5.2.6)



456 A. J. SchollStep 5: The function �0 has local components�0q = 8>>><>>>:char[Zq � Zq] if q 6 jNr;char[Zq � (1=Mr + Zq)] if qjr;char�t0q + ZqZ�q �� q�1char�t0q + q�1ZqZ�q � if qjN .The last expression can be rewritten aschar�t0q + ZqZq �� [q]char�q�1t0q + q�1ZqZq �� q�1char�t0q + q�1ZqZq �+ q�1[q]char�q�1t0q + q�2ZqZq �:Now by (4.3.1) there exist a �nite set of points z0r;j 2 Euniv(Y (Nr)) andconstants bj 2 N�1Z which are independent of r, such thatXj bj � D0Eis(z0r;j) = E1(D0�0) duand `z 0̀r;j = z0r;j. Moreover the di�erences z0r;j � z0r;i will be N -torsion, and incomplex coordinates Nz0r;j will be the point(�Nt0 mod Ẑ)� 2 (1rZ+ �rZ)=(Z+ �Z) ' (Z=rZ)2:It follows thateNr(zr; z0r;j) = ��(Mr0)�1pm � (prime-to p root of 1)and thus that the constant e of (5.1.1) equals (�M�1) 2 Z�p.Step 6: Put e�r;j = f#D(zr); #D0(z0r;j)g, and let �r;j(E) be the associatedEuler system for Tp(E). The required Euler system is thencr =Xj bj�r;j(E) 2 H1(Q(�r); Tp(E)):We can now compute the dual exponential of cr. Put e!r;j for the di�er-ential on Y (Nr) constructed from (zr; z0r;j). The Kodaira-Spencer map takes(dt=t)
2 to dq=q, and therefore du
2 to (2�i)�1d� . ThereforeXj bj � e!r;j = (2�i)�1Nr E1(D�)E1(D0�0) d�:
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2Gal(Q(�r)=Q)=(Z=rZ)��mod r(
) exp�p c
r= ��M�1hEr
+E
�E Xj bj ZY (Nr)(C ) (�modNr � eNr) � e!r;j ^ '�E;Nr�!E�!E= �hE#GL2(Z=NrZ)MNr2
+E
�E hE1(D�)E1(D0�0)
 �; F i!E:By Theorem 4.6.3, taking k = l = 1 and s = 0,hE1(�)E1(�0)
 �; F i = C 0r�2#GL2(Z=rZ)�1Yqjr �q(MNtqt0q)�1� LNr(E; �mod r; 1)�LN (E; 1; y=M)� �(�1)LN (E; 1;�y=M)�for some C 0 2 Q � , depending only on E, M and N . Moreover, using (5.2.5)and the hypothesis that D � D0 � 1 (mod M),hE1(D�)E1(D0�0)
 �; F i = C 0r2#GL2(Z=rZ)�1�Yqjr �q(MNtqt0q)�1DD0(D � �mod r(D)�1)(D0 � �mod r(D0)�1)� LNr(E; �mod r; 1)�LN (E; 1; y=M)� �(�1)LN (E; 1;�y=M)�:Now for qjr we have tqt0q = (MNr2)�1, soQqjr �q(MNtqt0q) = 1 since cond(�)jr.Combining everything one gets the �nal result:Theorem 5.2.7. Let E=Q be a modular elliptic curve of conductor NE. Fixa non-zero 1-form !E 2 
1(E=Q), with real and imaginary periods 
+E, 
�E.Let p be a prime not dividing NE. Then there is an integer M prime top, and for every pair of integers D, D0 > 1 with (DD0; 6pNE) = 1 andD � D0 � 1 (mod M) an Euler system:cr = cr(E; p;D;D0) 2 H1(Q(�r); Tp(E)); r = r0pm, r0 squarefree andprime to pMNE, m � 1such that for each r and each character � : Gal(Q(�r)=Q) ' (Z=rZ)� ! C �with �(�1) = �1X
2Gal(Q(�r)=Q)�(
) exp�p c
r =C�E DD0(D � �(D)�1)(D0 � �(D0)�1) LrMNE(E; �; 1)
�E !Efor some constant C�E , depending only on E.In the special case r = pm this is (with minor modi�cations of notation)Theorem 7.1 of [29].
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