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In Philosophy 101, we learned that, if Person A posits the

existence of some phenomenon, it is incumbent on Person

A to prove its existence rather than it being Person B’s job to

disprove it. For example, if I assert that there are pink unicorns

with purple polka dots hiding deep in the forest, I cannot sim-

ply say, “Well, prove that they don’t exist.” For the scientific

world to accept my claim, I have to bring one back, dead or

alive. Is it ever legitimate to violate this injunction and try to

prove the nonexistence of something? In this paper, we’ll take

a look at trying to prove that something does not exist. In par-

ticular, we will examine the steps necessary to show that 2

treatments are equivalent—that, in essence, a difference be-

tween them does not exist. Let’s start off, though, by looking

at “normal” science.

In most instances, we design studies to show statistical signifi-

cance. That is, we want to prove that one treatment is more

effective or has fewer side effects than another, or we want to

demonstrate that a relation exists between 2 variables, such as

a history of sexual or physical abuse and the probability of

having a psychiatric diagnosis (1). We begin by positing a null

hypothesis that there is no difference between the groups or

that there is no correlation between the variables, and then we

do everything in our power to disprove it. If fortune deigns to

smile upon us, and the statistical test has a P level less than or

equal to 0.05, we conclude that we can reject the null hypo-

thesis and therefore accept the alternative—that the treat-

ments do differ or that the variables are correlated. The techni-

cal name for this is “null-hypothesis significance testing”

(NHST). In NHST, if P is greater than 0.05, we do not say that

we can accept (or prove) the null hypothesis; rather, we use

the convoluted locution that we “have failed to disprove the

null.”
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Introductory statistics classes teach us that we can never prove the null hypothesis; all we

can do is reject or fail to reject it. However, there are times when it is necessary to try to

prove the nonexistence of a difference between groups. This most often happens within the

context of comparing a new treatment against an established one and showing that the new

intervention is not inferior to the standard. This article first outlines the logic of

“noninferiority” testing by differentiating between the null hypothesis (that which we are

trying to nullify) and the “nill” hypothesis (there is no difference), reversing the role of the

null and alternate hypotheses, and defining an interval within which groups are said to be

equivalent. We then work through an example and show how to calculate sample sizes for

noninferiority studies.

(Can J Psychiatry 2003;48:756–761)

Information on author affiliations appears at the end of the article.

Highlights

� Equivalence or noninferiority testing is used when we want to show that one treatment is not

significantly worse than another.

� To do this, we reverse the meanings of the null and alternative hypotheses, and similarly the

meanings of type I and type II error, and of power.

� In some circumstances, we need many more subjects to prove noninferiority than we need to

show a difference.



The reason for this, as I have said, harkens back to David

Hume and the philosophy of science, which asserts that we

cannot prove the nonexistence of something (unless, of

course, it violates one of the laws of nature, such as the notions

of perpetual motion machines, travel that is faster than light,

or politicians who tell the truth). To use our original example,

no one has ever seen such a unicorn (at least while sober), but

we cannot prove that it does not exist. Although it is highly

unlikely, a unicorn may walk out of the forest tomorrow,

much as the coelacanth was discovered in 1938, after it was

thought to have been extinct for millions of years. Using an

example closer to home, 6 randomized controlled studies

failed to find that ASA had any beneficial effect in preventing

reinfarctions. However, Canner’s metaanalysis demonstrated

that ASA reduced mortality by 10% (2), and it is now incon-

ceivable that post–myocardial infarction patients would not

be told to take it. The 6 studies didn’t prove that the null

hypothesis is true—that there is no difference between ASA

and placebo—they simply failed to reject it; that is, all 6 suf-

fered from a type II error, in failing to reject the null hypothe-

sis when in fact it is false. There is a qualitative difference

between “highly unlikely” and “impossible” that can never be

breached, no matter how many studies have negative out-

comes. Therefore, a negative result often means that we

should just try harder next time.

The only problem with this philosophical purity is that, as

noted, there are times when we do want to demonstrate a lack

of difference. This occurs most often in evaluating “me too”

drugs—drugs that are supposedly as good as existing ones but

that may be cheaper or have fewer side effects. Here, the first

task is to show that they are no less effective—in other words,

to “prove” the null hypothesis of no difference. Similar situa-

tions exist when an outpatient program is compared with an

inpatient one, or time-limited therapy with is compared with

therapy without a limit on the number of sessions, or a lower

dosage of a drug is compared with a higher dosage (3). In all

these cases, it would be sufficient to show that the less expen-

sive or less invasive therapies are not worse than the alterna-

tive; it is not necessary to prove superiority in terms of

outcome for them to be accepted as replacements. As we shall

see, showing superiority vs noninferiority or equivalence

does not simply demonstrate opposite sides of the same coin.

The Statistical Theory

How do we reconcile the competing demands of wanting to

prove equivalence on the one hand with the difficulty, if not

impossibility, of proving the null hypothesis on the other?

First, we have to correct a common misperception about the

null hypothesis (H0). In almost all situations, the null hypothe-

sis is written as

H0: µ1 = µ2 or H0: �1 = �2 [1]

when we are comparing means (µs) or proportions (�s); that

is, the means or proportions of the 2 groups are the same, vs

the alternative hypothesis (HA):

HA: µ1 �µ2 or HA: �1 � �2 [2]

that the 2 means or proportions are different. The mistake is to

think that the null hypothesis always has to mean “no differ-

ence.” In fact, the null hypothesis is the hypothesis to be nulli-

fied, or disproven. Cohen refers to the hypothesis of no

difference by the delightful name of the “nill hypothesis” (4).

In most cases, the null and the nill hypotheses are the same;

however, this needn’t necessarily be the case, and we will use

this distinction in testing for equivalence.

A second point is that not all differences are created equal, and

there are some we can safely ignore. Because of sampling

error, there will always be a difference between groups, no

matter how similar they may be. Further, if we simply increase

the sample size sufficiently, we will always be able to show

that this difference is statistically significant. For example,

let’s assume that School 1 has a mean IQ score of 100, School

2 has a mean IQ score of 103, and the standard deviation is the

usual 15 points. Most people would agree that this 3-point dif-

ference is clinically trivial. However, if we draw a sample of

400 students from each school, we will probably find that this

difference is statistically significant. With larger sample sizes,

we can find statistical significance with even smaller

differences.

These 2 points—that the null hypothesis doesn’t always mean

no difference and that some differences may be statistically

significant but clinically trivial—form the basis of testing for

equivalence. First, rather than saying that the 2 means (or pro-

portions, or whatever parameter we’re interested in) have to

be absolutely identical, we establish an equivalence interval

within which we would say that the groups are “close

enough.” For instance, let’s assume that, for sociophobic

patients, Treatment A results in a mean score of 10 on a scale

of social comfort (that is, M1 = 10), where a higher score

reflects greater comfort. How much lower can the score be

with a different therapy (Treatment B) for us to say that the

difference between the groups (which we call delta, or �) is

clinically unimportant—1 point lower? 2 points? 3 points?

This is not a statistical question but, rather, a clinical one,

based on our knowledge of the condition, the scale, and the

intervention. If the new treatment is significantly faster,

cheaper, or—if it’s a drug—has a better side effect profile, we

may be willing to accept a lower score (that is, somewhat

poorer adjustment) than if the new therapy does not offer

these advantages. As Kendall and others (5) point out, though,

there’s a trade-off in the choice of this interval. The smaller its

value, the more similar the treatments must be but the harder it

is to demonstrate equivalence statistically. Conversely, it is

easier to show equivalence with wider intervals, but then we
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have to accept bigger differences between the 2 groups and

still say they’re not different.

There are 2 approaches to equivalence testing. The 2-tailed

approach tries to show that the 2 means or proportions are sim-

ilar to each other; that is, that one is neither much larger nor

much smaller than the other. The 1-tailed method is far more

common and tests whether the second mean or proportion is

different only in 1 direction. This is also referred to as

noninferiority testing, because it is often used to see whether a

new therapy isn’t any worse than usual treatment. We don’t

care whether it’s better—in fact, we’d be ecstatic—we merely

want to insure that it’s not significantly worse. The 2-tailed

method is certainly theoretically important. However, on a

practical level, it is much more likely that we would be inter-

ested in showing that the new treatment is not worse than the

standard (noninferiority testing), so we will restrict ourselves

to that situation.

The first step is to use our clinical judgement to define the

equivalence interval, which we designate as �. Using the pre-

vious example, assume that we’d accept a difference of 20% at

most, which translates into � = 2 points. That means that the

mean for the new treatment (M2) cannot be less than 8 if it is to

be deemed noninferior.

Now let’s bring the first point into play and redefine the null

hypothesis. Instead of the usual nill hypothesis of no differ-

ence, we say that the null hypothesis is

H0: µ1 - µ2 > � [3]

(or in English, the first mean is more than � points greater than

the second), and the alternative hypothesis is

HA: µ1 - µ2 � � [4]

(that is, the difference between the means is less than �, which

also covers the possibility that µ2 is larger than µ1). Note that if

�= 0, these are simply the null and alternative hypotheses for a

1-sided t-test.

This means that, if we can reject the null hypothesis, we are

left by default with the alternative hypothesis that the differ-

ence between the means (or proportions) is probably correct.

The test for this (a t-test if the sample sizes are small or a z-test

if they are above 10 or so) looks very similar to the usual one,

with the exception of � in the numerator:
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and where df = (n1 + n2 – 2), the n is the sample size in each

group, and the s is the standard deviation. If we are dealing

with proportions rather than means, then we simply replace

M1 with p1 and M2 with p2 in Equation [5] (the proportions in

each group), and use Equation [7] for the standard error
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An Example

Let’s work through an example. Assume that we specified

ahead of time that we would consider 2 treatments for

sociophobia equivalent if the new one worked for at least 85%

as many patients as did the usual therapy. What we actually
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Figure 1 Hypothetical results of a new and standard therapy



find is that, with 20 patients per group, 75% improve on the

standard therapy, A (that is, pA = 0.75), and 70% improve with

the new treatment, B (pB = 0.70). Since 15% of 0.75 is 0.083,

we set � to be 0.083. Thus, the null hypothesis is

H0 : pA – pB > 0.083

and the alternative hypothesis is

HA : pA – pB 
 0.083

Spelled out, the null hypothesis is that the proportion of suc-

cessful patients in the standard therapy group is more than

0.083 better than the proportion of successful patients in the

new treatment group; the alternative hypothesis is that the dif-

ference in proportions is less than or equal to 0.083. This is

shown in Figure 1.

Using Equation [7], we find that the standard error of the dif-

ference between these 2 proportions is 0.141, and therefore

t ( )
( . – . )– .

.
.38

075 070 0083

0141
0234� �

Since this is smaller than the critical value of 1.645 that we

would need to reject a 1-tailed hypothesis at the 0.05 level, we

cannot reject the null hypothesis, and we have to conclude that

the 2 treatments are not equivalent.

Sample Size and Power

In the example we just worked through, it would seem at first

glance that the 2 treatments should have come out as equiva-

lent. We said that we would accept a 15% difference from the

effectiveness of the standard treatment or roughly 0.083 less

effectiveness than that demonstrated for Treatment A, 0.75.

The success rate for Treatment B, 0.70, seems to be this much

less; in fact, the difference is only 1 subject per group (that is,

15/20 for A vs 14/20 for B). Why do these results seem to be

counterintuitive?

Simply examining raw differences overlooks 2 important

points. First, we cannot just look at the difference between the

2 groups. As is always the case, the means or proportions that

emerge from a study are sample estimates of the true popula-

tion parameters. Because of this, they deviate from the real

values to some degree. The amount of this deviation is related

to the variability in what is being measured (for example, the

standard deviation) and the sample size, and these have to be

taken into account when we test to see whether the difference

is statistically significant.

The second point is that, in testing for equivalence, we reverse

the usual meanings of the null and alternative hypotheses.

This means that we have to alter both our interpretations of

type I and type II errors and what we mean by power. In both

NHST and equivalence testing, a type I error occurs when we

conclude that the null hypothesis is false when in fact it is true;

a type II error occurs when we erroneously conclude that the

null hypothesis is true when it is not. Power is the ability to

reject the null hypothesis when it is false.

In noninferiority testing, though, the null hypothesis is that the

standard treatment is better than the new one. This means that

1. A type I error occurs when we say that the 2 treatments are

equivalent, when in fact the standard treatment is better.

2. A type II error occurs when we conclude that the standard

treatment is better, when it fact the treatments are equivalent.

3. Power is the probability of accepting that the groups are

equivalent when in fact they are equivalent (6).

The issue, then, is the power of the test. As we would expect,

with only 20 subjects per group, the power of the tests we just

ran is low. The reality is that equivalence testing is at times

less powerful than testing for a difference. That is, we would

need more subjects to test when a given difference is within

the equivalence interval than when we test to see whether the 2

groups differ from each other.

To determine why this is so, let’s take a look at the equations

to calculate sample size (7). For the equivalence of 2 means,

the equation is

n
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(If we are testing whether the 2 means or proportions are iden-

tical, then the denominator becomes simply �2.) These are

very similar to the usual equations for sample size determina-

tion (8) with 2 differences, one that has a small effect on the

sample and one that has a potentially large effect. The differ-

ence with the small effect is that we now want to minimize the

type II error rather than the type I error, as in NHST. Conse-

quently, the values of � and � are reversed, in that we set � at

0.05 and � at 0.10 or 0.20. The difference that has a potentially

large effect is the � in the denominator.

If we use Equation [9] to figure out the required sample size

for the example (setting � = 0.20, � = 0.05, and therefore

power = 0.95), we will find it to be 2255 subjects per group!

Conversely, with only 20 subjects per group, the power of the

test to detect a difference of 0.083 between these proportions

is less than 30%.

The sample size to test for equivalences is not always larger

than that for testing for differences; again, it depends on the

value of �. Table 1 gives the sample sizes needed to test for

noninferiority for various combinations of proportions in the

standard treatment group, ps, and the experimental group, pe,
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with � = 0.20 and � = 0.05. For comparison, the last column is

the sample size required for the traditional NHST that ps > pe.

When � = 2 (ps – pe), the sample sizes are about equal for both

types of tests. When � < 2 (ps – pe), the sample size for equiva-

lence testing is larger than for difference testing. When�> 2 (ps

– pe), it is smaller. Note that, when� is larger than 2 (ps – pe), the

change in sample size is relatively small. However, when � is

smaller than 2 (ps – pe), the sample size increases rapidly and

exponentially. The same relation holds for testing the

noninferiority of means, with Ms and Me replacing ps and pe.

Summary

At times, despite all philosophical injunctions to the contrary,

we have to prove that there are no unicorns. The solution, as

we’ve seen, is to reverse the meanings of the null and alternate

hypotheses and try to show that the null hypothesis of a
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Table 1 Sample size per group for 1-tailed equivalence testing on proportions

ps pe � ps � pe

0.10 0.15 0.20 0.25

0.90 0.90 117 54 31 21 –

0.85 545 140 64 37 540

0.80 625 159 72 157

0.75 691 175 79

0.70 745 49

0.80 0.80 200 89 51 33 –

0.75 860 216 96 54 862

0.70 914 229 102 231

0.65 956 238 109

0.60 984 64

0.70 0.70 260 116 65 42 –

0.65 1080 270 120 67 1084

0.60 1109 276 122 281

0.55 1126 280 128

0.50 1130 74

0.60 0.60 296 132 74 47 –

0.55 1203 300 133 74 1208

0.50 1207 300 133 305

0.45 1199 298 136

0.40 1178 77

0.50 0.50 309 137 77 49 –

0.45 1288 306 135 76 1233

0.40 1207 300 133 305

0.35 1174 292 134

0.30 1130 74

0.40 0.40 296 132 74 47 –

0.35 1154 288 128 71 1159

0.30 1109 276 122 281

0.25 1053 262 120

0.20 984 64

0.30 0.30 260 116 65 42 –

0.25 982 246 109 62 986

0.20 914 229 102 231

0.15 835 209 95

0.10 745 49

Notes: ps = proportion in standard group; pe = proportion in experimental group. � = 0.20, � = 0.05 for equivalence testing; � = 0.05, � = 0.20 for ps > pe.



difference can be rejected. This leaves us, by elimination, with

the alternative—that there is no difference (or at least, that the

difference is small enough for us to ignore). The issue is that

the closer the groups must be to be considered equivalent, the

larger the sample size required. This is entirely analogous to

the situation for the traditional NHST: larger sample sizes are

needed to detect smaller differences between groups. In both

cases, sample size is like magnification with a microscope: the

smaller the object that’s being observed, the more magnifica-

tion we need.
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Résumé : Les licornes existent vraiment : une leçon consistant à « confirmer »
l’hypothèse nulle

Les cours d’introduction aux statistiques nous enseignent que nous ne pouvons jamais confirmer

l’hypothèse nulle; nous ne pouvons que la rejeter ou refuser de la rejeter. Cependant, il y a des occasions

où il est nécessaire de tenter de prouver l’inexistence d’une différence entre les groupes. Cela se produit le

plus souvent lorsqu’on compare un nouveau traitement avec un traitement établi, et que l’on démontre

que la nouvelle intervention n’est pas inférieure à la régulière. Cet article présente d’abord la logique des

tests de « non-infériorité » en distinguant l’hypothèse nulle (celle que nous tentons d’annuler) de

l’hypothèse « rien » (il n’y a aucune différence), en inversant les rôles des hypothèses nulles et autres, et

en définissant un intervalle dans lequel on détermine que les groupes sont équivalents. Nous présentons

ensuite un exemple et indiquons comment calculer les tailles d’échantillons pour des études de

non-infériorité.


