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Passive Scalar Transport: Dispersion, Patterning,
and Mixing

Many microfluidic systems are used to manipulate the distribution of chemical species.
Chemical separations, for example, physically separate components of a multispecies
mixture so that the quantities of cach component can be analyzed or so that useful
species can be concentrated or purified from a mixture. Many biochemical assays, for
example DNA microarrays, require that a reagent be brought into contact with the en-
tirety of a functionalized surface, i.e., that the reagents in the system be well mixed.
Studies of homogeneous kinetics in solution require that a system become well mixed
on a time scale faster than the kinetics of the reaction. In contrast to these, extracting
functionality from a spatial variation of surface chemistry often depends on the ability to
pattern surface chemistry with flow techniques, which requires that components of the
solution remain unmixed.

These topics all motivate discussion of the passive sealar transport equation. This
convection—diffusion equation governs the transport of any conserved property that is
carried along with a fluid flow, moves with the fluid, and does not atfect that fiuid flow.
Chemical species and temperature are two examples of properties that can be handled
in this way, as long as (1) the chemical concentration or temperature variations are low
enough that transport properties such as density or viscosity can safely be assumed uni-
form, and (2) we neglect electric fields, which can cause migration of chemical species
relative to the fluid.

We start by introducing the scalar convection—-diffusion equation, which describes
species transport, and discuss the physics of mixing, We then note that, owing to the
nature of microfabrication techniques and the species of interest in biochemical anal-
ysis systems, many microfluidic species transport systems reside in the limit of low
Reynolds number (laminar) but high Peclet number {minimal diffusion). This limit
makes it straightforward to isolate chemical species in microdevices, enabling laminar
flow-patterning techniques, which can be analyzed with simple 1D arguments that are a
minor extension of the hydraulic circuit analyses presented in Chapter 3. Unfortunately,
this same situation leads to challenges when species must be mixed, leading to the so-
called microfluidic mixing problem. The challenges of mixing in these systems has given
rise to interest in chaotic advection, which uses flow fields with special properties that can
exponentially increase the scalar mixing by using a deterministic flow field to amplify the
random effects of species diffusion. In chemical separation systems, we are intercsted in
the mixing of species in the axial direction, because mixing in this direction decreases the
resolution of a chemical separation. This motivates our study of Taylor-Aris dispersion,
in which the dispersive nature of the flow leads to a significant increase in the effective
diffusion of the scalar in the axial direction.
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4.1 PASSIVE SCALAR TRANSPORT EQUATION

The following sections describe the sources of passive scalar fluxes and show how these
fluxes, when applied to a control volume, lead to the conservation equations for scalars.

4,1.1 Scalar fluxes and constitutive properties

The two mechanisms that lead to flux of scalars into or out of a control volume are dif-
fusion and convection. Diffusion refers to the net migration of a fluid property owing to
random thermal fluctuations in the fluid system. Although we typically treat the fluid as
a continuum and ignore any properties on the atomistic scale, the molecules nonetheless
exhibit extensive motion on the molecular scale, and the essentially random nature of
this motion leads to random fluctuzations in the distribution of a passive scalar. The net
effect is a flux of the scalar in the direction opposite to the local scalar gradient.

In the ideal solution limit (which is applicable for temperature and most chemical
species at the conditions used for most microfluidic devices; see Subsection B.3.5), Fick’s
law is a constitutive relation that links the flux density of a scalar to both the gradient of
the scalar and the diffusivity of the scalar in the solvent:

Fick’s law for scalar }diﬁf = —-DVc, (4_])
flux density

where }d-ﬂ is the diffusive scalar flux density (i.e., the net amount of the scalar diffusing
across a surface per unit area per time), D [m?/s] is the diffusivily of the scalar in the
fluid, and ¢ is the scalar, which in this text is often the concentration ¢; of a chemical
species, Fick’s law is a macroscopic representation of the summed effect of the random
motion of species owing to thermal fluctuations. Fick’s law is analogous to the Fourier
law for thermal energy flux caused by a temperature gradient as well as to the Newtonian
model for momentum flux induced by a velocity gradient; the species diffusivity D is
analogous to the thermal diffusivity a = k/pc, [m*/s] and the momentum diffusivity
n/p [m?/s].

In addition to the random fluctuations of a scalar that are due to thermal motion,
the deferministic transport of the scalar that is due to fluid convection also leads to a
convective species flux:

convective scalar _}conv = gc s (4'2)
flux density

where }'conv is the convective scalar flux density (i.e., the net amount of the scalar con-
vecting across a surface per unit area per time) and # is the velocity of the fluid.

4.1.2 Scalar conservation equation

Given the preceding fluxes, the conservation equation for a scalar ¢ can be written as

3 -
2 ch=gfj-ﬁdA, (4.3)
at Sy 5



4.1 Passive Scalar Transport Equation
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Species fluxes for a Cartesian control volume.

where ¥ is a control volume with differential element dV, § is its control surface with
differential element d A, # is a unit outward normal vector, and } 15 the total scalar flux
density owing both to diffusion and convection. Application of the fluxes just described
to a differential control volume (such as the Cartesian control volume shown in Fig. 4.1)
leads to the differential form of the scalar convection-diffusion equation, written for
uniform D as

passive scalar N ] S ]

convection- : o ac . ' I

diffusion equation, ) i : —+8#-Ve=DVi. 0 (4.4)
uniform fiuid i : Bt : :

properties

Compared with the Navier-Stokes equations for momentum transport, the passive scalar
transport equation is simpler owing to its linear dependence on # and the absence of the
pressure term. Nondimensionalization of this equation for a flow with steady boundary
conditions (see Subsection E.2.2) leads to the following form:

nondimensional o N

scalar convection— ] . . . .BC* . % % 1 %2 % : :

diffusion equation, P +u VT = HP_C;V <, (4.5)
uniform fluid )

properiies

in which starred properties have been nondimensionalized and the Peclet number Pe =
Ut/ D. This nondimensional form highlights that the relative magnitude of the convec-
tive fluxes compared with the diffusive fluxes is proportional to the Peclet number. Thus
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x =0

Initial condition for 1D diffusion between two semi-infinite half-spaces at two different scalar concentrations.
Grayscale indicates initial concentration.

a system with high Peclet number has negligible diffusion and scalars move about pri-
marily by fluid convection, whereas a system with low Peclet number has a large amount
of diffusion and the scalar distzibution is spread out quickly by diffusive processes.

PHYSICS OF MIXING

We find it useful to discuss the mixing process in terms of e¢ach of the two secondary pro-
cesses that are governed by the passive scalar convection—diffusion equation. Although
these phenomena are inseparable, we find we gain considerable insight by isolating these
processes and examining their functional dependences. We thus decompose mixing into
two processes: (1) diffusion across scalar gradients and (2) shortening of diffusion length
scales by motion of the fluid. These phenomena are the diffusive and convective actions
of the governing equation.

Diffusion across scalar gradients. Consider an infinite 1D domain, where the scalar for
all x < 0 at 7 =0 is given by ¢ = ¢, and the scalar for all x > at ¢ = 0 is given by
¢ = 0. Consider quiescent fluid (Fig. 4.2). The governing equation for this passive scalar
diffusion problem is given by

Bc 8%
— = D— 4.6
ot ox2 (4.6)
and the solution, achieved by similarity transform (see Exercise 4.5), is
1 x
¢ = ~cyerfc . 4.7
2 (2\/ Dt ) @7

This solution illustrates the action of diffusion in eliminating scalar gradients. For
1 — o0, the solution approaches ¢ = ¢,,/2 everywhere. An illustration of this solution is
shown in Fig. 4.3. The distance £ = +/Dr is the distance at which the solution has diffused
t0 2o erfc(l) 22 1, which is approximately halfway toward the equilibrium solution. The
expression ¢ = +/Dt is commonly used as the diffusion length scale of this system. The
diffusion length scale characterizes how far into the domain the species has diffased as a
function of time. For a given time ¢, £4ir = +/ Di denotes the characteristic length over
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Thustration of pure 1D diffusion of a passive scalar with diffusivity 1 x 107! m?/s,

which diffusion has occurred. Similarly, for a given reservoir size R, the time required
for diffusion to mix two components in that reservoir is proportional to fgg = R/ D. In
microscale systems, this time can be long — for example, the time required for a solution
of bovine scrum albumin (a protein found in cow blood) to diffuse across a quiescent
100 ;2m channel is about 2 min, and if we were somehow able to measure the time re-
quired for a dilute suspension of neutrally buoyant 10-m cells to diffuse itself across a
quiescent 100-um channel, we would measure approximately 30 years.

This 1D diffusion problem relates directly to microscale flows of interest. Consider
the fluid flow in Fig. 4.4, in which two fluids are brought into contact and diffusion
transverse to flow occurs while the fluids are convected downstream. In the limit where
the channels are shallow relative to their width, the transverse distribution of depth-
averaged species in this case is identical to the 1D diffusion problem previously specified,

,..
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A two-input, one-output microfluidic device that replicates the 1D pure diffusion solution from Section 4.2, The
channel depth is assumed small relative to the width.



4.3

Ch. 4. Passive Scalar Transport: Dispersion, Patterning, and Mixing

with only one difference — this is a steady flow with a steady species distribution, and the
distribution varies with y/U (the time since the fluid entered the channel) rather than
with the time since the experiment started.

Shortening diffasion length scales. Solutions to the 1D diffusion equation show that
species mix over a distance £gg = ' Dt, which requires that the time for diffusion to
mix scalars over a length R be proportional to R?/ D, and this time for many practical
microfluidic systems is quite long. The system shown in Fig. 4.4 has convection, but this
convection is normal to the scalar gradients and does not affect the transverse diffusion
process. Thus the geometry in Fig. 4.4 is ideal if the mixing is to be minimized so as to
keep the two fluid components separate. If mixing is to be maximized, the convection
must somehow enhance the process by shortening of diffusion length scales. Although
convection and diffusion are inseparable, we nonetheless find it useful to describe mix-
ing as a two-step process consisting of (1) convective stirring of fluid over a time ¢ until
the spatial separation between components 1 and 2 is reduced to a characteristic length
¢, and (2) diffusive spreading of the scalar field over a length scale +/Df. The charac-
teristic time to mix is then given by the time ¢ such that the length £ created by the
stirring is of the same order as the diffusive length scale +/Dr. In the absence of convec-
tion, the time is given by R?*/D. If convection actively stirs the fluid and quickly reduces
the length scales over which diffusion must occur, the mixing time is much less than
R?/D. This is why we stir things to mix them up, for example, stirring cream added to
colfee or chocolate syrup added to milk. The fluid flow generated by the spoon tends
to shorten the diffusion length scales, and makes the mixing occur much more quickly.
Two types of kinematic structures that shorten diffusion length scales include the baker’s
transformation (stretch and fold), denoted schematically in Fig. 4.5, and a twist map or
vortex, denoted schematically in Fig. 4.¢ and demonstrated experimentally in Fig. 4.7.
In both cases, the motion of fluid reduces the characteristic size of the scalar domains.
These flow structures occur naturally in high- Re flows but are absent in many low- Re
flows. Thus mixing is often a slow process in micrefluidic devices unless system geome-
tries are designed specifically to generate flow structures that shorten diffusion length
scales,

MEASURING AND QUANTIFYING MIXING AND RELATED PARAMETERS

Quantifying mixing typically involves some characterization of the spatial inhomogene-
ity of a scalar distribution. We typically measure the effectiveness of a mixing scheme by
monitoring the mixing time or the mixing distance, depending on the application, and
evaluating how this mixing time or distance depends on the Peclet number.

Diffusive mixing regime. As an example, consider a flow of two miscible streams of fluid
through a channel of width L at a characteristic velocity U. The Peclet number for this
flow is 7L/ D. The characteristic time for diffusive mixing (as illustrated in the solution
of the preceding diffusion equation) is I2/D or Pe% and the characteristic length is
UIL?/D or Pe L. Thus, for a purely diffusive mixing process, the characteristic length
or time for mixing is proportional to the Peclet number. For example, for a selution of
bovine serum albumin (D =1 x 107') flowing at & = 100 um/s through a channel of
width 100 pm, the Peclet number Pe = 100, which means that the fluid remains largely
unmixed until the flow has traveled a distance 100 times the width of the channel, i.e.,
1cm.



i 4.3 Measuring and Quantifying Mixing and Related Parameters

fane
i
sfarting . ending
distribution  STeteh fold distribution
affer after after after
tart 1 2 3 4
sta stretch/ ‘stretch/ stretch/ stretch/
fold folds folds folds

Schematic of the baker’s transformation and its role in shortening the lenpth scales over which diffusion must
act. Note how repeated stretching (extensional strain) and folding (rofation) leads to narrow sheets. Diffusion
need act only over these short length scales to mix these fows.

Chaotic mixing regime. Chaotic mixing is a term commonly used in the low-Re mixing
literature and indicates mixing processes with flows that lead to an exponential decay of
the characteristic length over which diffusion must act. The term chaotic mixing implies
that (1) trajectorics in the flow become separated by a distance that grows exponentialty
with time, or, alternatively, that (2) that the interfacial area between two fluids grows
exponentiafly with time. This, in turn, implies that the net effect of diffusion, which is
inherently random on a macroscopic scale, is deterministically amplified by the fluid
flow, Thus a deterministic ffuid flow can lead to a chaotic mixing result if the fluid flow

after after after after
start 1000° -2000° 3000° 4000°
rotation rotation rotation rotation

: Schematic of a vortex or whorl and its role in shortening the length scales over which diffusion must act, This
sort of flow is often described mathematically by twist maps. Note again the presence of narrow sheets over
which diffusion must act.



! Ch. 4. Passive Scalar Transport: Dispersion, Patterning, and Mixing

100 um

! Cross sections of the dye distribution in a microfiuidic channel designed to create staggered, time-dependent
whorls or twist maps. From [35)], used with permission.

amplifies the random aspect of the molecular diffusion. For chaotic mixing processes,
the characteristic mixing time or length is proportional to In Pe. This regime is possible
only far away from walls, and thus this scaling is observable only if the majority of the
observed mixing is happening far from walls.

Chaotic Batchelor regime. The chaotic Batchelor regime implies the situation in which
the flow is partially chaotic but the mixing is eventually limited by the nonchaotic flow
near the wall. In this limit, the characteristic mixing time or length is proportional to Pes.
Although the difference between the characteristic times of pure diffusion and chaotic
mixing (with or without boundaries) is enormous, the effect of boundaries on the Peclet
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4.4 The Low-Reynolds-Number, High-Peclet-Number Limit

| Diffusivities for dilute analytes in water ai 25°C.

Particle diffusivities calculated feom the
Stokes—Einstein refation D= &y T'/67ma, where
a is the particle radius,

Analyte D

Na't 1%10-?
bovine serum albumin, 66 kDa 1x10710
1¢ nm particle 1xio1
1 pm particle 1 %1071
10 um particle _ 1x107%

number dependence of chaotic mixing is important from an engineering standpoint only
if the Peclet number range under investigation is of the order of 1 x 10* or more.

THE LOW-REYNOLDS-NUMBER, HIGH-PECLET-NUMBER LIMIT

From the previous section, we sce that mixing can be efficient if Pe is low, in which case
diffusion occurs quickly, or if the kinematics of the flow field leads to a repetitive process
that shortens the length scales over which diffusion must act. However, if Pe is high
and the kinematic structure of the flow field does little to shorten diffusion length scales,
then mixing is negligible. In low-Re systems with simple, steady boundary conditions,
the laminar flow kinematically does not shorten diffusion length scales. Thus flows in
most microfluidic devices do not lead to a shortening of diffusion length scales unless
specifically designed to do so.

The high-Peclet-number limit

We find from Subsection E.2.2 that the mass transfer Peclet number for a dilute species i
is given by Pe = Uf/D;, where D); is the binary diffusivity of the species i in the solvent,
£ is a characteristic length, and U is a characteristic velocity. Here, £ should characterize
the length over which species must diffuse, and U should characterize the velocity trans-
verse to this diffusion. Table 4.1 shows diffusivities for some example ions, molecules,
and particles — from this table, we can see that the diffusivities of particles and macro-
melecules can be quite small, and because many of the species of interest are large and
slowly diffusing, the Peclet number is often large for these flows.

The low-Reynolds-number limit

The results of the previous section all are relevant if the flow has a characteristic direc-
tion and diffusion acts transverse to that to distribute chemical species. This is typically
true if flow moves in an orderly, laminar fashion through long, narrow channels (as are
typical of many microfluidic chips). In this case, flow is unidirectional and the Peclet
number governs diffusion. However, if the flow has no characteristic direction, but rather
turns about, especially if the flow varies with time, the transport of chemical species is a
function of both (1) diffusion, as specified by the mass transter Peclet number, and (2)
the flow itself (as specified by the Reynolds number). Note from Appendix E that the
Reynolds number is given by Re = p Ul /v, where U is the velocity, £ is a characleristic
length, and v and p are the dynamic viscosity and density of the fluid. The flow is almost
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Fenvtemr flow
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do not apphy

Domain geometries as predicted by inlet flow rates.

always in the low- Re limit in microfluidic devices, and thus in the laminar regime — this
means the flow is stable and any shortening of diffusion length scales must come from
complex geometric boundary conditions, and does not occur naturally from flow insta-
bility as is the case in large, high- Re systems.

LAMINAR FLOW PATTERNING IN MICRODEVICES

In the high- Pe, low- Re limit, laminar flow patterning can be used to control the spa-
tial position of chemical species because multiple solutions can be brought into contact
without their chemical components mixing. Simple arguments regarding the flow rate of
each solution dictate the area occupied by each component when traveling through a
microfluidic channel. TFhis is common for microscale flows. For nanoscale flows, Pe and
Re are often both small.

Consider a microchannel system as a resistor network with nodes, as described in
Chapter 3. Consider two channels that generate miscible input flows into a node, the
first with flow rate (@ of a solution of species A4 and the second with flow rate O; of a
solution of species B, If the mixing between these two species is siow and the channel is
shallower than it is wide, then there will be a clear interface between the two streams, and
the location of the interface between these two solutions can be predicted with simple
flow arguments.

Far from the channel junction or node, the depth-averaged velocity is uniform across
the width of the channel (but of course varies strongly along the depth axis). In this case,
we can use conservation of species to infer what the cross-sectional areas of each flow
is. From this argument, we can show that the fraction of the channel filled with species
A is given by /(0 + ). Similar relations can be derived for the other species, or
for each species in a multicomponent system. An example configuration is shown in
Fig. 4.8,

Practically speaking, this result means that, if the device and fluids are designed
properly, meaning that the channels are wider than they are deep, the Reynolds number
is low, and the mass transfer Peclet number is high, then we can control the distribution
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of the species in a channel simply by controlling the input flow rates of each, either
through control of channel depths, channel widths, or input pressures.

Consider a 100-um-wide channel with a depth of 10 gm. Two inlets into the channel
allow influx of flow. Inlet 1 has a selution of deionized water, and inlet 2 has a solution
of a chemical species with diffusivity D = 1 x 107 m? /s in water. The mean velocity
in the main channel is 7 = 100 pm/s. Define coordinate x as the distance along the
main channel. Estimate for what x can one assume that the system is mostly mixed.

SOLUTION: The Peclet number for this system is given by %€/ D, where the proper £
is the length over which species must mix, i.e., 100 pm. Thus Pe = 1000. The system
is mixed for x 3 Pe?, or x >» 10 cm. This length is longer than the size of most
microfluidic chips.

Calculate Pe and Re for flow through a circular microchannel with diameter d =
10 jum. Consider water as the liquid (n/p = 1 x 10-% m?/s) and assume that the mean
velocity is 100 ;zm/s. Assume the chemical species is at low concentration and has a
binary diffusion coefficient in water of I} = 1 x 1072 m?/s.

SOLUTION: Pe =1 x 10, Re =1 x 1073, This flow is in the high- Pe, low- Re limit.

The microfluidics community often uses the terms “laminar flow™ or “the technique
of laminar flow” to imply laminar flow patterning — the control of species distributions
in a channel in the limit in which flow rates directly control interfacial positioning. This
is common shorthand that has permeated the community, though it obscures an impor-
tant distinction — laminar flow implies a specific flow regime at low Re characterized by
stable sheetlike flow structures, whereas laminar flow patterning implies a technique for
controlling the location of fluids in long, narrow channels at low Re and high Pe.

TAYLCR-ARIS DISPERSION

The flow in Fig. 4.4 illustrates a 1D diffusion process across gradients transverse to the
flow direction. However, many microfluidic devices manipulate boluses of fluid, for ex-
ample, for chemical separation. In this case, we wish to explore the gxigl diffusion and
dispersion of an isolated bolus of fluid as the flow moves through a long narrow mi-
crochannel.

We are concerned with the effects of cross-sectional variations in velocity and how
these variations affect the measured cross-sectionally averaged concentration, This av-
eraged concentration, for example, is measured by the detector in an electrophoretic
separation apparatus. Taylor—Aris dispersion describes how axial convection, axial dif-
fusion, and transverse diffusion combine to control analyte transport in pressure-driven
flow through a microchannel. An illustration of how pressure-driven flow leads to dis-
persion is shown in Fig. 4.9.
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Schematic of Taylor—Ats dispersion in a Poiseuille flow: (a) inttial bolus of fluid, (b} fluid after elapsed time ¢
in the absence of diffusion, (c) fluid after elapsed time r with a finite axial diffusion. A slight broadening of the
distribution is seen, but the effect of diffusion is minor compared with the dispersive effect of the low. (d) Fluid
after elapsed time ¢ with fnite radial and transverse diffusion. The radiai ditfusion reduces the dispersive effects
by causing the scalar to sample both slow- and fast-moving regions of the flow.

Consider Poiseuille flow through a circular microchannel of length L and radius R.
The two governing parameters for this flow are the Peclet number Pe = HR/D and the
length ratic I/ R. The symbol u denotes the average velocity in the Poiseuille flow, which
is given (for a circular microchannel) by

R (4.8)

The Peclet number characterizes the relative importance of species convection to species
diffusion, and the length ratio characterizes the relative importance of radial diffusion
to axial diffusion.

Pare Conrvection. If Pe >3 I/R, diffusion can be ignored, as illustrated in Fig. 4.9(b).
In this case, which is uncommon in microfluidic devices, the width w of a thin injected
sample bolus containing I moles per unit area can be shown to grow linearly with time,
and the averaged concentration within the bolus decreases inversely with time:

w =20, {4.9)
and
r
C= —. (4.10)
w

These relations are valid only for [arge times. This fluid flow is inherently dispersive — the
transverse variation of velocity leads to a spreading of the cross-section-average scalar
distribution.

Convection—diffusion. If Pe « L/R, we can solve the 2D convection—diffusion problem
and show that an averaged 1D equation can be written:

ac _oc 8*c
— + B— = Dop—r 411
o e T P (@11
in which the effective diffusivity Deg is given by
vity P€2
Dg=D1+ ) (4.12)
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When scalars are transporied along circular microchannels, Taylor—Aris dispersion
controls the effective axial diffusivity, leading to an effective diffusivity given by

| Pt |
= D{14+25) . 416
D= D1+ 5 ) @)

SUPPLEMENTARY READING

This chapter presumes the existence of a diffusivity but largely ignores its atomistic
foundations. The physics of random walk processes [33, 36] are illusirative for those who
want to build their macroscopic picture of diffusivity from a microscopic foundation. The
diffusivity itself and Fick’s law are an appropriate model for diffusion if the system is in
the dilute solution limit and if thermal gradients are low. Diffusion becomes more com-
plicated if (a) concentration gradients exist simultaneously with thermal gradients, in
which case thermodiffusion or Soret effects occur; or (b) the system is a dense solution,
in which case the diffusivity is a function of the concentrations of all species components,
rather than being a binary property of the species and the solvent. The Maxwell-Stefan
formulation, which treats these details, is described in [37]. Species transport can also
be driven by electric fields, and directed species transport motivates use of the Nernst—
Planck transport equations, These issues are ignored in this chapter but discussed in
detail in Chapter 11. '

An extensive literature on the physics of mixing exists, and detailed terminology
exists to describe chaotic advection and its application to mixing. Two examples of im-
portant terminology that have been omitted here include Poincaré maps and Lyapunov
exponents, which characterize the space explored by chaotic trajectories and the expo-
nential rate at which trajectories separate. Ottino [38] is the standard reference in the
area of kinematics of mixing, and covers these terms and other key mixing concepts.
Strogatz [39] is an excellent general reference for those interested broadly in the chaos
of nonlinear systems.

This chapter largely ignores description of modern microfluidic mixing geometries,
which are described in other texts [3, 6, 7] and in reviews [40, 41, 42], but the reader
would benefit from examining papers on microfluidic mixing [35, 43, 44] and laminar flow
patterning [45, 46] directly. Transport in DNA microarrays is an area in which mixing
issues are of current interest [£7, 48, 4%, 50, 51] and that links the material in this chapter
with that of Chapter 14.

This chapter’s description of laminar flow patterning description is a special case
of a Hele-Shaw flow analysis, which is described in a more general sense in Chapter 8.
Taylor—Aris dispersion is a classical topic that is covered in many texts, including Prob-
stefnn [29] and Chang and Yeo [52]. The Lévéque problem of diffusion in shear flow,
largely omitted here except for the exercises, is discussed in {53, 54].

EXERCISES

Calculate Pe for the following sets of characteristic parameters:
(a) U =100 um/s, £ =10 gm,and D = le — 9 m*/s.

(b) U =100 um/s, £ = 10 ym, and D = le — 11 m?/s.

(c) U =100 um/s, £ =10 pm, and D = le — 13 m?/s.
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4.7 Summary

where A is a constant that depends on the geometry and flow boundary conditions. This
constant is given by A = 48 for Hagen—Poiseuille flow and A = 30 for Couette flow, and,
although it varies with channel geometry, this constant is of the order of 50 for all stan-
dard microchannel geometries. The effective diffusivity leads to an effective diffusive
growth of the bandwidth with a w « 13 dependence:

w = 4vI 2/ Degt . (4.13)

The 1 in Eq. (4.12) comes from the diffusive compoanent, and the other term is a dis-
persive component. Diffusion plays two roles in this equation. Axial diffusion leads to
the unity term in this equation and tends to increase the effective diffusion (albeit signifi-
cantly only if Pe is small). Radial diffusion leads to the use of the Taylor-Aris dispersion
relation and a w o ¢ 7 rather than a linear dependence. Whereas axial diffusion causes
band broadening, radial diffusion minimizes band broadening. Radial diffusion causes
analyte molecules to sample both fast-moving and slow-moving parts of the Poiseuille
flow, so each molecule sees an average velocity rather than the widely varying, radially
dependent x velocities.

SUMMARY

In this chapter, we present the passive scalar transport equation:

e
a—f i Ve = DY, (4.14)

which can be nondimensionalized to the following form:

ac 1
—af; HE V= VT (4.15)

This nondimensional form highlights the Peclet number Pe = [7£/D, which indicates
the relative magnitude of the convective fluxes compared with the diffusive fluxes in the
system.

Mixing is driven by diffision processes, which proceed over a characteristic length
proportional to +/Dt. Flow processes can facilitate mixing by changing the characteristic
length over which this diffustve mixing must occur, Microfluidic devices often use flows
with low Re and high Pe, leading to slow mixing. The net effect is that scalars in microflu-
idic systems are often unmixed over time scales relevant to experiments. This attribute
facilitates laminar flow patterning but interferes with processes that require mixing, The
situation is often different in nanoscale devices, in which Pe is often also small. When
mixing is slow, chaotic advection facilitates mixing by shortening the required diffusion
length scales, but this sort of advection occurs only if specifically designed for with care-
fully crafted microfluidic geometries.



