
Online Learning and Stochastic

Approximations

Léon Bottou
AT&T Labs–Research

Red Bank, NJ07701

Abstract

The convergence of online learning algorithms is analyzed using the
tools of the stochastic approximation theory, and proved under very
weak conditions. A general framework for online learning algorithms is
first presented. This framework encompasses the most common online
learning algorithms in use today, as illustrated by several examples.
The stochastic approximation theory then provides general results de-
scribing the convergence of all these learning algorithms at once.

Revised version, May 2018.

1 Introduction

Almost all of the early work on Learning Systems focused on online algo-
rithms (Hebb, 1949) (Rosenblatt, 1957) (Widrow and Hoff, 1960) (Amari,
1967) (Kohonen, 1982). In these early days, the algorithmic simplicity of
online algorithms was a requirement. This is still the case when it comes to
handling large, real-life training sets (Le Cun et al., 1989) (Müller, Gunzinger
and Guggenbühl, 1995).

The early Recursive Adaptive Algorithms were introduced during the same
years (Robbins and Monro, 1951) and very often by the same people (Widrow
and Stearns, 1985). First developed in the engineering world, recursive adap-
tation algorithms have turned into a mathematical discipline, namely Stochas-
tic Approximations (Kushner and Clark, 1978) (Ljung and Söderström, 1983)
(Benveniste, Metivier and Priouret, 1990).

Although both domains have enjoyed the spotlights of scientific fashion at
different times and for different reasons, they essentially describe the same el-
ementary ideas. Many authors of course have stressed this less-than-fortuitous
similarity between learning algorithms and recursive adaptation algorithms
(Mendel and Fu, 1970) (Tsypkin, 1971).

The present work builds upon this similarity. Online learning algorithms
are analyzed using the stochastic approximation tools. Convergence is char-
acterized under very weak conditions: the expected risk must be reasonably
well behaved and the learning rates must decrease appropriately.

1

2 Léon Bottou

The main discussion describes a general framework for online learning al-
gorithms, presents a number of examples, and analyzes their dynamical prop-
erties. Several comment sections illustrate how these ideas can be generalized
and how they relate to other aspects of learning theory. In other words, the
main discussion gives answers, while the comments raise questions. Casual
readers may skip these comment sections.

2 A Framework for Online Learning Systems

The starting point of a mathematical study of online learning must be a
mathematical statement for our subjective understanding of what a learning
system is. It is difficult to agree on such a statement, because we are learning
systems ourselves and often resent this mathematical reduction of an essential
personal experience.

This contribution borrows the framework introduced by the Russian school
(Tsypkin, 1971; Vapnik, 1982). This formulation can be used for understand-
ing a significant number of online learning algorithms, as demonstrated by
the examples presented in section 3.

2.1 Expected Risk Function

In (Tsypkin, 1971; Tsypkin, 1973), the goal of a learning system consists of
finding the minimum of a function J(w) named the expected risk function.
This function is decomposed as follows:

J(w)
△
= Ez Q(z, w)

△
=

∫

Q(z, w) dP (z) (2.1)

The minimization variable w is meant to represent the part of the learning
system which must be adapted as a response to observing events z occurring
in the real world. The loss function Q(z, w) measures the performance of
the learning system with parameter w under the circumstances described by
event z. Common mathematical practice suggests to represent both w and z

by elements of adequately chosen spaces W and Z.

The occurrence of the events z is modeled as random independent obser-
vations drawn from an unknown probability distribution dP (z) named the
grand truth distribution. The risk function J(w) is simply the expectation
of the loss function Q(z, w) for a fixed value of the parameter w. This risk
function J(w) is poorly defined because the grand truth distribution dP (z)
is unknown by hypothesis.

Consider for instance a neural network system for optical ZIP code recog-
nition, as described in (Le Cun et al., 1989). An observation z is a pair (x, y)
composed of a ZIP code image x and its intended interpretation y. Param-
eters w are the adaptable weights of the neural network. The loss function

Online Learning and Stochastic Approximations 3

Q(z, w) measures the economical cost (in hard currency units) of delivering
a letter marked with ZIP code z given the answer produced by the network
on image x. This cost is minimal when the network gives the right answer.
Otherwise the loss function measures the higher cost of detecting the error
and re-routing the letter.

Comments

Probabilities are used in this framework for representing the unknown truth
underlying the occurrences of observable events. Using successive observations
zt, the learning system will uncover a part of this truth in the form of param-
eter values wt that hopefully decrease the risk functional J(wt). This use of
probabilities is very different from the Bayesian practice, where a probability
distribution represents the increasing knowledge of the learning system. Both
approaches however can be re-conciliated by defining the parameter space W as
a another space of probability distributions. The analysis then must carefully
handle two different probability distributions with very different meanings.

In this framework, every known fact about the real world should be removed
from distribution dP (z) by properly redefining the observation space Z and of
the loss function Q(z, w). Consider for instance that a known fraction of the ZIP
code images are spoiled by the image capture system. An observation z can be
factored as a triple (κ, x, y) composed of an envelope x, its intended ZIP code y,
and a binary variable κ indicating whether the ZIP code image is spoiled. The
loss function can be redefined as follows:

J(w) =

∫

Q(z, w) dP (κ, x, y)

=

∫
(
∫

Q(z, w) dP (κ|x, y)

)

dP (x, y)

The inner integral in this decomposition is a new loss function Q′(x, y, w) which
measures the system performance on redefined observations (x, y). This new loss
function accounts for the known deficiencies of the image capture system. This
factorization technique reveals a new probability distribution dP (x, y) which is
no longer representative of this a priori knowledge.

This technique does not apply to knowledge involving the learning system
itself. When we say for instance that an unknown function is smooth, we mean
that it pays to bias the learning algorithm towards finding smoother functions.
This statement does not describe a property of the grand truth distribution.
Its meaning is attached to a particular learning system. It does not suggests a
redefinition of the problem. It merely suggests a modification of the learning
system, like the introduction of a regularization parameter.

2.2 Gradient Based Learning

The expected risk function (2.1) cannot be minimized directly because the
grand truth distribution is unknown. It is however possible to compute an

4 Léon Bottou

delay

wt wt+1

−γJL

^∆

Figure 1: Batch Gradient Descent. The parameters of the learn-
ing system are updated using the gradient of the empirical risk
ĴL defined on the training set.

approximation of J(w) by simply using a finite training set of independent
observations z1, . . . , zL.

J(w) ≈ ĴL(w)
△
=

1

L

L
∑

n=1

Q(zn, w) (2.2)

General theorems (Vapnik, 1982) show that minimizing the empirical risk
ĴL(w) can provide a good estimate of the minimum of the expected risk J(w)
when the training set is large enough. This line of work has provided a way
to understand the generalization phenomenon, i.e. the ability of a system
to learn from a finite training set and yet provide results that are valid in
general.

2.2.1 Batch Gradient Descent

Minimizing the empirical risk ĴL(w) can be achieved using a batch gradient
descent algorithm. Successive estimates wt of the optimal parameter are com-
puted using the following formula (figure 1) where the learning rate γt is a
positive number.

wt+1 = wt − γt∇w ĴL(wt) = wt − γt
1

L

L
∑

i=1

∇w Q(zi, wt) (2.3)

The properties of this optimization algorithm are well known (section 4.2).
When the learning rate γt are small enough, the algorithm converges to-
wards a local minimum of the empirical risk ĴL(w). Considerable convergence
speedups can be achieved by replacing the learning rate γt by a suitable def-
inite positive matrix (Dennis and Schnabel, 1983).

Each iteration of the batch gradient descent algorithm (figure 1) however
involves a burdening computation of the average of the gradients of the loss
function ∇w Q(zn, w) over the entire training set. Significant computer re-
sources must be allocated in order to store a large enough training set and
compute this average.

Online Learning and Stochastic Approximations 5

delay
wt

wt+1

t
z

World −γJ∆

Figure 2: Online Gradient Descent. The parameters of the learn-
ing system are updated using information extracted from real
world observations.

2.2.2 Online Gradient Descent

The elementary online gradient descent algorithm is obtained by dropping the
averaging operation in the batch gradient descent algorithm (2.3). Instead of
averaging the gradient of the loss over the complete training set, each iteration
of the online gradient descent consists of choosing an example zt at random,
and updating the parameter wt according to the following formula.

wt+1 = wt − γt∇w Q(zt, wt) (2.4)

Averaging this update over all possible choices of the training example zt
would restore the batch gradient descent algorithm. The online gradient de-
scent simplification relies on the hope that the random noise introduced by
this procedure will not perturbate the average behavior of the algorithm.
Significant empirical evidence substantiate this hope.

Online gradient descent can also be described without reference to a train-
ing set. Instead of drawing examples from a training set, we can directly use
the events zt observed in the real world, as shown in figure 2. This formu-
lation is particularly adequate for describing adaptive algorithms that simul-
taneously process an observation and learn to perform better. Such adaptive
algorithms are very useful for tracking a phenomenon that evolves in time.
An airplane autopilot, for instance, may continuously learn how commands
affect the route of the airplane. Such a system would compensate for changes
in the weather or in petrol weight.

Comments

Formulating online gradient descent without reference to a training set presents
a theoretical interest. Each iteration of the algorithm uses an example zt drawn
from the grand truth distribution instead of a finite training set. The average
update therefore is a gradient descent algorithm which directly optimizes the
expected risk.

6 Léon Bottou

This direct optimization shortcuts the usual discussion about differences be-
tween optimizing the empirical risk and the expected risk (Vapnik, 1982; Vapnik,
1995). Proving the convergence of an online algorithm towards the minimum of
the expected risk provides an alternative to the Vapnik proofs of the consistency
of learning algorithms. Discussing the convergence speed of such an online algo-
rithm provides an alternative to the Vapnik-Chervonenkis bounds.

This alternative comes with severe restrictions. The convergence proofs pro-
posed here (section 5) only address the convergence of the algorithm towards
a local minimum. We can safely conjecture that a general study of the con-
vergence of an online algorithm towards a global minimum should handle the
central concepts of the necessary and sufficient conditions for the consistency of
a learning algorithm (Vapnik, 1995).

2.3 General Online Gradient Algorithm

The rest of this contribution addresses a single general online gradient algo-
rithm algorithm for minimizing the following cost function C(w).

C(w)
△
= EzQ(z, w)

△
=

∫

Q(z, w) dP (z) (2.5)

Each iteration of this algorithm consists of drawing an event zt from distri-
bution dP (z) and applying the following update formula.

wt+1 = wt − γtH(zt, wt) (2.6)

The learning rates γt are either positive numbers or definite positive matrices.
The update term H(z, w) fulfills the following condition.

E
z
H(z, w) = ∇w C(w) (2.7)

The distribution function dP (z) can be understood as the grand truth
distribution. The cost function C(w) minimized by this algorithm is then
equal to the expected risk J(w). This setup addresses the adaptive version of
the online gradient descent, without reference to a training set.

All results however remain valid if we consider a discrete distribution func-
tion defined on a particular training set {z1, . . . , zL}. The cost function C(w)
minimized by this algorithm is then equal to the empirical risk ĴL. This second
setup addresses the use of online gradient descent for optimizing the training
error defined on a finite training set.

Comments

Typography conscious readers will notice the subtle difference between the ob-
servable events z used in the cost function (2.5) and the events z drawn before
each iteration of the algorithm (2.6). In the simplest case indeed, these two vari-
ables represent similar objects: a single example is drawn before each iteration

Online Learning and Stochastic Approximations 7

of the online gradient descent algorithm. The framework described above also
applies to more complex cases like mini-batch or noisy gradient descent. Mini-
batch gradient descent uses several examples for each iteration, collectively re-
ferred to as zt. Noisy gradient descent uses a noisy update term ∇wC(wt) + ξt.
The analysis presented in this contribution holds as long as the update term
fulfills condition (2.7).

Finally the examples zt are assumed to be independently drawn from a sin-
gle probability distribution function dP (z). In practice however, examples are
often chosen sequentially in a training set. There are tools indeed for dealing
with examples zt drawn using a Markovian process (Benveniste, Metivier and
Priouret, 1990).

3 Examples

This section presents a number of examples illustrating the diversity of learn-
ing algorithms that can be expressed as particular cases of the general online
gradient descent algorithm (section 2.3). More classical algorithms can be
found in (Tsypkin, 1971).

Some algorithms were designed with a well defined cost function, like the
adaline (section 3.1.1) or the multi-layer perceptron (section 3.1.2). Other al-
gorithms did not initially refer to a particular cost function, but can be refor-
mulated as online gradient descent procedures, like K-Means (section 3.2.2)
or LVQ2 (section 3.2.3). The cost function then provides a useful characteriza-
tion of the algorithm. Finally, certain algorithms, like Kohonen’s topological
maps (Kohonen, 1982), are poorly represented as the minimization of a cost
function. Yet some authors have found useful to coerce these algorithms into
an online gradient descent anyway (Schumann and Retzko, 1995).

3.1 Online Least Mean Squares

3.1.1 Widrow’s Adaline

The adaline (Widrow and Hoff, 1960) is one of the few learning systems
designed at the very beginning of the computer age. Online gradient descent
was then a very attractive proposition requiring little hardware. The adaline
could fit in a refrigerator sized cabinet containing a forest of potentiometers
and electrical motors.

The adaline (figure 3) learning algorithm adapts the parameters of a single
threshold element. Input patterns x are recognized as class y = +1 or y = −1
according to the sign of w′x + β. It is practical to consider an augmented
input pattern x containing an extra constant coefficient equal to 1. The bias
β then is represented as an extra coefficient in the parameter vector w. With

8 Léon Bottou

World

w’.x
x

y(x)^

y

γ

Figure 3: Widrow’s Adaline. The adaline computes a binary in-
dicator by thresholding a linear combination of its input. Learning
is achieved using the delta rule.

this convention, the output of the threshold element can be written as

ŷw(x)
△
= sign(w′x) = sign

∑

i

wixi (3.1)

During training, the adaline is provided with pairs z = (x, y) representing in-
put patterns and desired output for the adaline. The parameter w is adjusted
after using the delta rule (the “prime” denotes transposed vectors):

wt+1 = wt + γt(yt − w′
txt) xt (3.2)

This delta rule is nothing more than an iteration of the online gradient descent
algorithm (2.4) with the following loss function:

Qadaline(z, w)
△
= (y − w′x)

2
(3.3)

This loss function does not take the discontinuity of the threshold element
(3.1) into account. This linear approximation is a real breakthrough over the
apparently more natural loss function (y − ŷw(x))

2. This discontinuous loss
function is difficult to minimize because its gradient is zero almost everywhere.
Furthermore, all solutions achieving the same misclassification rate would
have the same cost C(w), regardless of the margins separating the examples
from the decision boundary implemented by the threshold element.

3.1.2 Multi-Layer Networks

Multi-layer networks were initially designed to overcome the computational
limitation of the threshold elements (Minsky and Papert, 1969). Arbitrary
binary mappings can be implemented by stacking several layers of thresh-
old elements, each layer using the outputs of the previous layers elements
as inputs. The adaline linear approximation could not be used in this frame-
work, because ignoring the discontinuities would make the entire system linear

Online Learning and Stochastic Approximations 9

regardless of the number of layers. The key of a learning algorithm for multi-
layer networks (Rumelhart, Hinton and Williams, 1986) consisted of noticing
that the discontinuity of the threshold element could be represented by a
smooth non-linear approximation.

sign(w′x) ≈ tanh(w′x) (3.4)

Using such sigmoidal elements does not reduce the computational capabilities
of a multi-layer network, because the approximation of a step function by
a sigmoid can be made arbitrarily good by scaling the coefficients of the
parameter vector w.

A multi-layer network of sigmoidal elements implements a differentiable
function f(x, w) of the input pattern x and the parameters w. Given an input
pattern x and the desired network output y, the back-propagation algorithm,
(Rumelhart, Hinton and Williams, 1986) provides an efficient way to compute
the gradients of the mean square loss function.

Qmse(z, w) =
1

2
(y − f(x, w))2 (3.5)

Both the batch gradient descent (2.3) and the online gradient descent (2.4)
have been used with considerable success. On large, redundant data sets, the
online version converges much faster then the batch version, sometimes by
orders of magnitude (Müller, Gunzinger and Guggenbühl, 1995). An intuitive
explanation can be found in the following extreme example. Consider a train-
ing set composed of two copies of the same subset. The batch algorithm (2.3)
averages the gradient of the loss function over the whole training set, causing
redundant computations. On the other hand, running online gradient descent
(2.4) on all examples of the training set would amount to performing two
complete learning iterations over the duplicated subset.

3.2 Non Differentiable Loss Functions

Many interesting examples involve a loss function Q(z, w) which is not differ-
entiable on a subset of points with probability zero. Intuition suggests that
this is a minor problems because the iterations of the online gradient descent
have zero probability to reach one of these points. Even if we reach one of
these points, we can just draw another example z.

This intuition can be formalized using the general online gradient descent
algorithm (2.6). The general algorithm can use any update term H(z, w)
which fulfills condition (2.7). We assume here that the cost function C(w)
is made differentiable when the loss function Q(z, w) is integrated with the
probability distribution dP (z).

The following update term amounts to drawing another example whenever

10 Léon Bottou

Retina
Associative area

x

w’ x

(w’ x)sign

Treshold element

Figure 4: Rosenblatt’s Perceptron is composed of a fixed prepro-
cessing and of a trainable threshold element.

we reach a non differentiable point of the loss function.

H(z, w) =

{

∇wQ(z, w) when differentiable
0 otherwise

(3.6)

For each parameter value w reached by the algorithm, we assume that the loss
function Q(z, w) is differentiable everywhere except on a subset of examples
z with probability zero. Condition (2.7) then can be rewritten using (3.6) and
explicit integration operators.

∫

H(z, w) dP (z) =
∫

∇wQ(z, w) dP (z)
?
= ∇w

∫

Q(z, w) dP (z) (3.7)

The Lebesgue integration theory provides a sufficient condition for swapping
the integration (

∫

) and differentiation (∇w) operators. For each parameter
value w reached by the online algorithm, it is sufficient to find an integrable
function Φ(z, w) and a neighborhood ϑ(w) of w such that:

∀z, ∀ v∈ ϑ(w), |Q(z, v)−Q(z, w)| ≤ |w − v|Φ(z, w) (3.8)

This condition (3.8) tests that the maximal slope of the loss function Q(z, w)
is conveniently bounded. This is obviously true when the loss function Q(z, w)
is differentiable and has an integrable gradient. This is obviously false when
the loss function is not continuous. Given our previous assumption concern-
ing the zero probability of the non differentiable points, condition (3.8) is a
sufficient condition for safely ignoring a few non differentiable points.

3.2.1 Rosenblatt’s Perceptron

During the early days of the computer age, the perceptron (Rosenblatt, 1957)
generated considerable interest as a possible architecture for general pur-
pose computers. This interest faded after the disclosure of its computational

Online Learning and Stochastic Approximations 11

limitations (Minsky and Papert, 1969). Figure 4 represents the perceptron
architecture. An associative area produces a feature vector x by applying
predefined transformations to the retina input. The feature vector is then
processed by a threshold element (section 3.1.1).

The perceptron learning algorithm adapts the parameters w of the thresh-
old element. Whenever a misclassification occurs, the parameters are updated
according to the perceptron rule.

wt+1 = wt + 2γtytxt (3.9)

This learning rule can be derived as an online gradient descent applied to the
following loss function:

Qperceptron(z, w) = (sign(w′x)− y)w′x (3.10)

Although this loss function is non differentiable when w′x is null, is meets
condition (3.8) as soon as the expectation E(x) is defined. We can therefore
ignore the non differentiability and apply the online gradient descent algo-
rithm:

wt+1 = wt − γt(sign(w
′
txt)− yt) xt (3.11)

Since the desired class is either +1 or −1, the weights are not modified when
the pattern x is correctly classified. Therefore this parameter update (3.11)
is equivalent to the perceptron rule (3.9).

The perceptron loss function (3.10) is zero when the pattern x is correctly
recognized as a member of class y = ±1. Otherwise its value is positive and
proportional to the dot product w′x. The corresponding cost function reaches
its minimal value zero when all examples are properly recognized or when the
weight vector w is null. If the training set is linearly separable (i.e. a threshold
element can achieve zero misclassification) the perceptron algorithm finds a
linear separation with probability one. Otherwise, the weights wt quickly tend
towards zero.

3.2.2 K-Means

The K-Means algorithm (MacQueen, 1967) is a popular clustering method
which dispatches K centroids w(k) in order to find clusters in a set of points
x1, . . . , xL. This algorithm can be derived by performing the online gradient
descent with the following loss function.

Qkmeans(x, w)
△
=

K

min
k=1

(x− w(k))2 (3.12)

This loss function measures the quantification error, that is to say the error
on the position of point x when we replace it by the closest centroid. The
corresponding cost function measures the average quantification error.

12 Léon Bottou

W(1)
W(2)

W(3)

Figure 5: K-Means dispatches a predefined number of cluster
centroids in a way that minimizes the quantification error.

This loss function is not differentiable on points located on the Voronöı
boundaries of the set of centroids, but meets condition (3.8) as soon as the
expectations E(x) and E(x2) are defined. On the remaining points, the deriva-
tive of the loss is the derivative of the distance to the nearest centroid w−.
We can therefore ignore the non-differentiable points and apply the online
gradient descent algorithm.

w−
t+1 = w−

t + γt(xt − w−
t) (3.13)

This formula describes an elementary iteration of the K-Means algorithm. A
very efficient choice of learning rates γt will be suggested in section 3.3.2.

3.2.3 Learning Vector Quantization II

Kohonen’s LVQ2 rule (Kohonen, Barna and Chrisley, 1988) is a powerful
pattern recognition algorithm. Like K-Means, it uses a fixed set of reference
points w(k). A class y(k) is associated with each reference point. An unknown
pattern x is then recognized as a member of the class associated with the
nearest reference point.

Given a training pattern x, let us denote w− the nearest reference point
and denote w+ the nearest reference point among those associated with the
correct class y. Adaptation only occurs when the closest reference point w−

is associated with an incorrect class while the closest correct reference point
w+ is not too far away:

if

{

x is misclassified (w− 6= w+)

and (x− w+)2 < (1 + δ)(x− w−)2

then

{

w−
t+1 = w−

t − εt(x− w−
t)

w+
t+1 = w+

t + εt(x− w+
t)

(3.14)

Online Learning and Stochastic Approximations 13

Decision
boundary

Class 1 reference points

Class 2 reference points

Figure 6: Kohonen’s LVQ2 pattern recognition scheme outputs
the class associated with the closest reference point to the input
pattern.

Reference points are only updated when the pattern x is misclassified. Fur-
thermore, the distance to the closest correct reference point w+ must not
exceed the distance to the closest (incorrect) reference point w− by more
than a percentage defined by parameter δ. When both conditions are met,
the algorithm pushes the closest (incorrect) reference point w− away from
the pattern x, and pulls the closest correct reference point w+ towards the
pattern x.

This intuitive algorithm can be derived by performing an online gradient
descent with the following loss function:

Qlvq2(z, w)
△
=















0 if x is well classified (w+ = w−)

1 if (x− w+)2 ≥ (1 + δ)(x − w−)2

(x−w+)2−(x−w−)2

δ(x−w−)2
otherwise

(3.15)

This function is a continuous approximation to a binary variable indicating
whether pattern x is misclassified. The corresponding cost function therefore
is a continuous approximation of the system misclassification rate (Bottou,
1991). This analysis helps understanding how the LVQ2 algorithm works.

Although the above loss function is not differentiable for some values of
w, it meets condition (3.8) as soon as the expectations E(x) and E(x2) are
defined. We can therefore ignore the non-differentiable points and apply the
online gradient descent algorithm:

if

{

x is misclassified (w− 6= w+)

and (x− w+)2 < (1 + δ)(x− w−)2

then

{

w−
t+1 = w−

t − γtk1(x− w−
t)

w+
t+1 = w+

t + γtk2(x− w+
t)

(3.16)

with k1 =
1

δ(X − w−)2
and k2 = k1

(X − w+)2

(X − w−)2
(3.17)

14 Léon Bottou

This online gradient descent algorithm (3.16) is equivalent to the usual LVQ2
learning algorithm (3.14). The two scalar coefficients k1 and k2 merely modify
the proper schedule for the decreasing learning rates γt.

3.3 Quasi-Newton Online Algorithms

Both theoretical and empirical evidences demonstrate that batch gradient
descent algorithms converge much faster when the scalar learning rates γt are
replaced by definite positive symmetric matrices that approximate the inverse
of the Hessian of the cost function. The so-called super-linear algorithms
achieve very high terminal convergence speed: the number of correct figures
in the numerical representation of the solution increases exponentially (Dennis
and Schnabel, 1983).

The same techniques are also effective for speeding up online gradient algo-
rithms. The results however are much less impressive than those achieved with
batch algorithms. No online gradient descent algorithm can achieve super-
linear convergence (cf. comments to section 4). The terminal convergence of
an online gradient algorithm is limited by the size of the learning rates. As
will be shown in sections 4 and 5, decreasing the learning rates too quickly
can prevent convergence.

The accuracy of a super-linear algorithm however is largely irrelevant to
a learning system. Severe approximations, such as using a finite training set,
would spoil the benefits of such an algorithm. Practitioners prefer techniques
blessed with robust convergence properties, such as the Levenberg-Marquardt
algorithm (Dennis and Schnabel, 1983). Furthermore, storing and processing
a full learning rate matrix quickly becomes expensive when the dimension
of the parameter vector w increases. Less efficient approximations have been
designed (Becker and Le Cun, 1989) and have proven effective enough for
large size applications (Le Cun et al., 1989).

3.3.1 Kalman Algorithms

The Kalman filter theory has introduced an efficient way to compute an
approximation of the inverse of the Hessian of certain cost functions. This
idea is easily demonstrated in the case of linear algorithms such as the adaline
(section 3.1.1). Consider online gradient descent applied to the minimization
of the following mean square cost function:

C(w) =
∫

Q(z, w) dP (z) with Q(z, w)
△
= (y − w′x)2 (3.18)

Each iteration of this algorithm consists of drawing a new pair zt = (xt, yt)
from the distribution dP (z) and applying the following update formula:

wt+1 = wt −H−1
t ∇wQ(zt, wt) = wt +H−1

t (yt − w′
txt) xt (3.19)

Online Learning and Stochastic Approximations 15

where Ht denotes the Hessian of the online empirical cost function. The online
empirical cost function is simply an empirical estimate of the cost function
C(w) based on the examples z1, . . . , zt observed so far.

Ct(w)
△
=

1

2

t
∑

i=1

Q(zi, w) =
1

2

t
∑

i=1

(yi − w′xi)
2 (3.20)

Ht

△
= ∇2

wCt(w) =
t

∑

i=1

xix
′
i (3.21)

Directly computing the matrixH−1
t at each iteration would be very expensive.

We can take advantage however of the recursion Ht = Ht−1 + xtx
′
t using the

well known matrix equality:

(A +BB′)−1 = A−1 − (A−1B) (I +B′A−1B)−1 (A−1B)′ (3.22)

Algorithm (3.19) then can be rewritten recursively using the Kalman matrix
Kt = H−1

t−1. The resulting algorithm (3.23) converges much faster than the
delta rule (3.2) and yet remains quite easy to implement:









Kt+1 = Kt −
(Ktxt)(Ktxt)

′

1 + x′
tKtxt

wt+1 = wt +Kt+1 (yt − w′
txt) xt

(3.23)

Comments

This linear algorithm has an interesting optimality property (Tsypkin, 1973).
Because the cost function (3.20) is exactly quadratic, it is easy to prove by
induction that (3.23) minimizes the online empirical cost Ct(w) at each iteration.
Assuming that wt is the minimum of Ct−1(w), the following derivation shows
that wt+1 is the minimum of Ct(w).

∇wCt(wt+1) = ∇wCt(wt)−Ht (wt+1 − wt)

= ∇wCt−1(wt) +∇wQ(zt, wt)−HtH
−1
t ∇wQ(zt, wt)

= 0

Although this property illustrates the rapid convergence of algorithm (3.23), it
only describes how the algorithm tracks an empirical approximation (3.20) of
the cost function. This approximation may not provide very good generalization
properties (Vapnik, 1995).

Non linear least mean square algorithms, such as the multi-layer networks
(section 3.1.2) can also benefit from non-scalar learning rates. The idea consists
of using an approximation of the Hessian matrix. The second derivatives of the
loss function (3.5) can be written as:

1

2
∇2

w (y − f(x,w))2 = ∇wf(x,w)∇
′
wf(x,w) − (y − f(x,w))∇2

wf(x,w)

≈ ∇wf(x,w)∇
′
wf(x,w) (3.24)

16 Léon Bottou

Approximation (3.24), known as the Gauss Newton approximation, neglects the
impact of the non linear function f on the curvature of the cost function. With
this approximation, the Hessian of the empirical online cost takes a very simple
form.

Ht(w) ≈
t

∑

i=1

∇wf(xi, w)∇
′
wf(xi, w) (3.25)

Although the real Hessian can be negative, this approximated Hessian is always
positive, a useful property for convergence. Its expression (3.25) is reminiscent
of the linear case (3.21). Its inverse can be computed using similar recursive
equations.

3.3.2 Optimal Learning Rate for K-Means

Second derivative information can also be used to determine very efficient
learning rates for the K-Means algorithm (section 3.2.2). A simple analysis
of the loss function (3.12) shows that the Hessian of the cost function is a
diagonal matrix (Bottou and Bengio, 1995) whose coefficients λ(k) are equal
to the probabilities that an example x is associated with the corresponding
centroid w(k).

These probabilities can be estimated by simply counting how many ex-
amples n(k) have been associated with each centroid w(k). Each iteration of
the corresponding online algorithm consists in drawing a random example
xt, finding the closest centroid w(k), and updating both the count and the
centroid with the following equations:

[

nt+1(k) = nt(k) + 1
wt+1(k) = wt(k) +

1
nt+1(k)

(xt − wt(k))
(3.26)

Algorithm (3.26) very quickly locates the relative position of clusters in the
data. Terminal convergence however is slowed down by the noise implied
by the random choice of the examples. Experimental evidence (Bottou and
Bengio, 1995) suggest that the best convergence speed is obtained by first
using the online algorithm (3.26) and then switching to a batch super-linear
version of K-means.

4 Convex Online Optimization

The next two sections illustrate how nicely the convergence of online learn-
ing algorithm is analyzed by the modern mathematical tools designed for
stochastic approximations. This particular section addresses a simple convex
case, while focusing on the mathematical tools and on their relation with
the classical analysis of batch algorithms. This presentation owes much to a
remarkable lecture by Michel Metivier (Metivier, 1981).

Online Learning and Stochastic Approximations 17

4.1 General Convexity

The analysis presented in this section addresses the convergence of the gen-
eral online gradient algorithm (section 2.3) applied to the optimization of a
differentiable cost function C(w) with the following properties:

• The cost function C(w) has a single minimum w∗.

• The cost function C(w) satisfies the following condition:

∀ε > 0, inf
(w−w∗)2>ε

(w − w∗)∇wC(w) > 0 (4.1)

Condition (4.1) simply states that the opposite of the gradient −∇wC(w) al-
ways points towards the minimum w∗. This particular formulation also rejects
cost functions which have plateaus on which the gradient vanishes without
making us closer to the minimum.

This condition is weaker than the usual notion of convexity. It is indeed
easy to think of a non convex cost function which has a single minimum and
satisfies condition (4.1). On the other hand, proving that all differentiable
strictly convex functions satisfy this condition is neither obvious nor useful.

4.2 Batch Convergence Revisited

The convergence proof for the general online learning algorithm follow ex-
actly the same three steps than the convergence proofs for batch learning
algorithms. These steps consist of (a) defining a Lyapunov criterion of con-
vergence, (b) proving that this criterion converges, and (c) proving that this
convergence implies the convergence of the algorithm. These steps are now
illustrated in the cases of the continuous gradient descent and the batch gra-
dient descent.

4.2.1 Continuous Gradient Descent

The continuous gradient descent is a mathematical description of the ideal
convergence of a gradient descent algorithm. A differential equation defines
the parameter trajectory w(t) as a continuous function of the time.

dw

dt
= −∇wC(w) (4.2)

Step a. The convergence proof begins with the definition of a Lyapunov
function, i.e. a positive function which indicates how far we are from the
target.

h(t)
△
= (w(t)− w∗)2 (4.3)

18 Léon Bottou

Step b. Computing the derivative of h(t) shows that the Lyapunov function
h(t) is a monotonically decreasing function.

dh

dt
= 2(w − w∗)

dw

dt
= −2(w − w∗)∇wC(w) ≤ 0 (4.4)

Since h(t) is a positive decreasing function, it has a limit when t → ∞.

Step c. Since the monotonic function h(t) converges when t grows, its gra-
dient tends towards zero.

dh

dt
= −2(w − w∗)∇wC(w) −→

t→∞
0 (4.5)

Let us assume that the Lyapunov function h(t) converges to a value greater
than zero. After a certain time, the distance h(t) = (w(t)−w∗)2 would remain
greater than some positive value ε. This result is incompatible with condition
(4.1) and result (4.5). The Lyapunov function h(t) therefore converges to zero.
This result proves the convergence of the continuous gradient descent (4.2).

w(t) −→
t→∞

w∗ (4.6)

4.2.2 Discrete Gradient Descent

The batch gradient descent algorithm has been introduced in section 2.2.1 in
the context of learning algorithms. The cost function C(w) is minimized by
iteratively applying the following parameter update:

wt+1 = wt − γt∇wC(w) (4.7)

Equation (4.7) is a discrete version of the continuous gradient descent (4.2).
Although the discrete dynamics brings new convergence issues, the analysis
of the convergence follows the same three elementary steps.

Step a. The convergence proof begins with the definition of a Lyapunov
sequence, i.e. a sequence of positive numbers whose value measure how far we
are from our target.

ht

△
= (wt − w∗)2 (4.8)

Lemma. It is useful at this point to introduce a sufficient criterion for the
convergence of a positive sequence (ut). Intuitively, a sequence (ut) converges
when it is bounded and when its oscillations are damped. The oscillations
can be monitored by summing the variations ut − ut−1 whenever ut > ut−1.
These positive variations are represented with thick lines in figure 7. When
the infinite sum of the positive variations converges, we are certain that the
oscillations are damped. If all terms of the sequence are positive, this condition
also ensures that the sequence is bounded.

Online Learning and Stochastic Approximations 19

Figure 7: The convergence of the infinite sum of the positive
increases (thick lines) is a sufficient (although not necessary) con-
dition for the convergence of a positive sequence ht. This condition
ensures (i) that the sequence is bounded, and (ii) that the oscil-
lations are damped.

This intuition is easily formalized by decomposing a term ut of a sequence
using the sum S+

t of the positive variations:

S+
t

△
=

t−1
∑

i=1

(ui+1 − ui)+ with (x)+
△
=

{

x if x > 0
0 otherwise

(4.9)

and the sum S−
t of the negative variations:

S−
t

△
=

t−1
∑

i=1

(ui+1 − ui)− with (x)−
△
=

{

0 if x > 0
x otherwise

(4.10)

If the sum of the positive variations converges to S+
∞, this decomposition

provides an upper bound for the positive sequence ut.

0 ≤ ut = u1 + S+
t + S−

t ≤ u1 + S+
∞ + S−

t < u0 + S+
∞ (4.11)

Furthermore, since ut ≥ 0, the same decompositions also provides a lower
bound for the sum of the negative variations S−

t .

0− u1 − S+
∞ ≤ S−

t ≤ 0 (4.12)

Since S−
t is a bounded monotonically decreasing sequence, it converges to a

limit S−
∞. Since both sequences S+

t and S−
t converge, the sequence ut converges

to u∞ = u1 + S+
∞ + S−

∞.

∀t, ut ≥ 0
∞
∑

t=1

(ut+1 − ut)+ < ∞











=⇒ ut −→
t→∞

u∞ ≥ 0 (4.13)

20 Léon Bottou

The convergence of the infinite sum of the positive variations is therefore a
sufficient condition for the convergence of the sequence. Since the positive
variations are positive, it is sufficient to prove that they are bounded by the
summand of a convergent infinite sum.

Step b. The second step consists in proving that the Lyapunov sequence
(ht) converges. Using the the definition (4.8) and from the gradient descent
algorithm (4.7), we can write an expression for the variations of the Lyapunov
criterion.

ht+1 − ht = −2γt (wt − w∗)∇wC(wt) + γ2
t (∇wC(wt))

2 (4.14)

The convexity criterion (4.1) ensures that the first term of this expression
is always negative. Unlike the continuous variations (4.4), this expression
contains a positive second term which reflects the discrete dynamics of the
algorithm.

Additional conditions must be introduced in order to contain the effects
of this second term. The first condition (4.15) states that the learning rates
γt decrease fast enough. This is expressed by the convergence of the infinite
sum of the squared learning rates.

∞
∑

i=1

γ2
t < ∞ (4.15)

The second condition (4.16) ensures that the size of gradients do not grow
too fast when we move away from the minimum. This linear condition is met
as soon as the eigenvalues of the Hessian matrix are bounded.

(∇wC(w))2 ≤ A+B(w − w∗)2 A,B ≥ 0 (4.16)

Such a condition is required because the polynomial decrease of the learn-
ing rates would be too easily canceled by exponentially growing gradients.
We can now transform equation (4.14) using the bound on the size of the
gradients (4.16).1

ht+1 − (1+γ2
tB)ht ≤ −2γt (wt − w∗)∇wC(wt) + γ2

tA ≤ γ2
tA (4.17)

We now define two auxiliary sequences µt and h′
t:

µt

△
=

t−1
∏

i=1

1

1+γ2
iB

−→
t→∞

µ∞ > 0 and h′
t

△
= µtht (4.18)

The convergence of µt to µ∞ > 0 is easily verified by writing logµt and using
condition (4.15). Multiplying both the left-hand-side and the right hand side
of (4.17) by µt, we obtain:

(h′
t+1 − h′

t) ≤ γ2
t µtA (4.19)

1Thanks to Wei Wen for pointing out a sign typo in inequalities (4.17). April 2017.

Online Learning and Stochastic Approximations 21

Since the right hand side of (4.19) is positive, the positive variations of h′
t are

at most equal to γ2
t µtA, which is the summand of a convergent infinite sum.

According to lemma (4.13), the sequence h′
t converges. Since µt converges to

µ∞ > 0, this convergence implies the convergence of ht.

Step c. We now prove that the convergence of the Lyapunov sequence implies
the convergence of the discrete gradient descent algorithm. Since the sequence
ht converges, equation (4.17) implies the convergence of the following sum:

∞
∑

i=1

γi(wi − w∗)∇wC(wi) < ∞ (4.20)

We must introduce an additional condition on the learning rates γi. This
condition limits the rate of decrease of the learning rates. Such a condition is
required, because decreasing the learning rates too quickly could stop the pro-
gression of the algorithm towards the minimum. This condition is expressed
by the divergence of the infinite sum of the learning rates:

∞
∑

i=1

γi = ∞ (4.21)

Condition (4.21) is intuitively natural if we imagine that the current param-
eter is far away from the minimum in an area where the gradient is approx-
imately constant. Successive updates γt∇wC(wt) should be allowed to move
the parameter to arbitrary distances.

Conditions (4.20) and (4.21) play in fact the same role as (4.5) in the
continuous case. However, unlike the continuous case, we do not know that ht

is monotonically decreasing and we cannot conclude from these two conditions
alone that

(wt − w∗)∇wC(wt) −→
t→∞

0 . (4.22)

However, we can still reach the conclusion because we know that ht converges.
Reasoning by contradiction, let us assume that ht = (wt − w∗)2 converges to
a value greater than zero and therefore, after a certain time, remains greater
than some ǫ > 0. Assumption (4.1) implies that (wt − w∗)∇wC(wt) then
remains greater than a strictly positive quantity. Since this would cause the
sum (4.20) to diverge. Since this is not the case, we can conclude on that ht

converges to zero,
wt −→

t→∞
w∗ . (4.23)

Thanks to (4.16), this convergence also implies that (4.22) holds.2

Besides the existence of a single minimum w∗ and the general convexity
criterion (4.1), we had to introduce three additional conditions to obtain this

2Thanks to Francesco Orabona for pointing out that the original version of this section
of the proof was poorly written (May 2018).

22 Léon Bottou

convergence. Two conditions (4.15) and (4.21) directly address the learning
rate schedule. The last condition (4.16) states that the growth of the gradients
is limited.

Comments

Condition (4.16) states that the gradient should not increase more than linearly
when we move away from the minimum. Bounding the eigenvalues of the Hessian
is an easy way to make sure that this condition holds. More general theorems
however only require a polynomial bound on the size of the gradient (Benveniste,
Metivier and Priouret, 1990).

The proof presented in this section addresses the case of decreasing learning

rates. A different approach to step (b) leads to convergence results for the case
of constant learning rates. Instead of bounding the second term of the variations
(4.14) we can compare the sizes of both terms. Assuming condition (4.16) with
A = 0, it appears that choosing a constant learning rate smaller than

√

2/B
makes the variations (4.14) negative. This result is consistent with the usual
criterion since the minimal value of B is the square of the highest eigenvalue of
the Hessian matrix.

This analysis also provides convergence speed results: bounding the right
hand side of (4.14) gives a measure of how quickly the Lyapunov sequence
decreases. As expected, the best bounds are obtained when (wt − w∗) and
γt∇wC(wt) are aligned. This can be achieved by choosing a learning rate matrix
γt which approximates the inverse of the Hessian. Such a non scalar learning
rates only introduces minor changes in the proofs. The learning rate matrix must
be symmetric and definite positive. Conditions (4.15) and (4.21) then must refer
to the highest and lowest eigenvalues of the learning rate matrix.

4.3 Lyapunov Process

Convergence proofs for the general online gradient algorithm (section 2.3) can
be established using the same approach. It is obvious however that any online
learning algorithm can be mislead by a consistent choice of very improbable
examples. There is therefore no hope to prove that this algorithm always
converges. The best possible result then is the almost sure convergence, that
is to say that the algorithm converges towards the solution with probability
1.

Each iteration of the general gradient descent algorithm consists of drawing
an event zt from distribution dP (z) and applying the update formula

wt+1 = wt − γtH(zt, wt) (4.24)

where the update term H(zt, wt) fulfills the condition

E
z
H(z, wt) = ∇wC(wt) (4.25)

Online Learning and Stochastic Approximations 23

and where the learning rates γt are positive numbers or definite positive ma-
trices. The main discussion in this section addresses scalar learning rates.
Using a learning rate matrix introduces only minor changes discussed in the
comments.

Step a. The first step in the proof consists in defining a Lyapunov process
which measures how far we are from the solution.

ht

△
= (wt − w∗)2. (4.26)

Although definition (4.26) looks similar to the discrete batch gradient case
(4.8), the notation ht in (4.26) denotes a random variable that depends on
all the previous choices of example events zt.

Step b. As in the batch gradient case, an expression for the variations of ht

can be derived using equations (4.24) and (4.26).

ht+1 − ht = −2γt(wt − w∗)H(zt, wt) + γ2
t (H(zt, wt))

2 (4.27)

The convergence proof for the discrete gradient descent (section 4.2.2) relies
on lemma (4.13) to establish the convergence of the Lyapunov criterion. The
lemma defines a sufficient condition based on the variations of the criterion.
Expression (4.27) however explicitly refers to the random example zt. Using
lemma (4.13) here would be an attempt to prove that the algorithm converges
for all imaginable choice of the examples, including the most improbable, such
as continuously drawing the same example.

The correct approach consists in removing this dependency by taking the
conditional expectation of the variations (4.27) given all the information Pt

that was available just before iteration t.

Pt

△
= zo, . . . , zt−1, w0, . . . , wt, γ0, . . . , γt (4.28)

This conditional expectation of the variations gives sufficient information to
apply the quasi-martingale convergence theorem.

4.4 Quasi-Martingales

The quasi-martingale convergence theorem is in fact very similar to the lemma
(4.13) presented in section 4.2.2. The following discussion only presents the
theorem without proof and exposes its analogy with this lemma. Proofs can
be found in (Metivier, 1983) or (Fisk, 1965).

Given all the past information Pt, we wish to define a deterministic cri-
terion for distinguishing the “positive variations” from the “negative varia-
tions” of a process ut. The sign of the variation ut+1−ut is not an acceptable
choice because it depends on ut+1 which is not fully determined given Pt.

24 Léon Bottou

This problem can be solved by considering the conditional expectation of the
variations.

δt
△
=

{

1 if E (ut+1 − ut | Pt) > 0
0 otherwise

(4.29)

The variable δ defined in (4.29) defines which variations are considered posi-
tive. The convergence of the infinite sum of the positive expected variations
is a sufficient condition for the almost sure convergence of a positive process
ut.

∀t, ut ≥ 0
∞
∑

t=1

E(δt(ut+1 − ut)) < ∞











=⇒ ut

a.s.
−→
t→∞

u∞ ≥ 0 (4.30)

This result is a particular case of theorem 9.4 and proposition 9.5 in (Metivier,
1983). The name quasi-martingale convergence theorem comes from the fact
that condition (4.30) also implies that the process ut is a quasi-martingale
(Fisk, 1965). Comparing theorem (4.30) and lemma (4.13) explains easily
why quasi-martingales are so useful for studying the convergence of online
algorithms. This fact has been known since (Gladyshev, 1965).

4.5 Convergence of Online Algorithms (Convex Case)

This convergence result allow us to proceed with step (b) of our proof.

Step b (continued). The following expression is obtained by taking the
conditional expectation of (4.27) and factoring the constant multipliers.

E (ht+1 − ht | Pt) = − 2 γt(wt − w∗) E (H(zt, wt) | Pt)

+ γ2
t E

(

H(zt, wt)
2 | Pt

)

(4.31)

This expression can be further simplified using condition (4.25).

E (ht+1 − ht | Pt)

= − 2 γt(wt − w∗) E
z
(H(z, wt)) + γ2

t Ez
(H(zt, wt)

2)

= − 2 γt(wt − w∗)∇wC(wt) + γ2
t Ez

(H(zt, wt)
2) (4.32)

The first term of this upper bound is negative according to condition 4.1. As
in section 4.2.2, two additional conditions are required to address the discrete
dynamics of the algorithm. The first condition (4.33), similar to (4.15), states
that the learning rates are decreasing fast enough.

∞
∑

i=1

γ2
t < ∞ (4.33)

The second condition (4.34) serves the same purpose than condition (4.16).
This term bounds the growth of the second moment of the update H(z, w).

E
z
(H(z, w)2) ≤ A +B(w − w∗)2 A,B ≥ 0 (4.34)

Online Learning and Stochastic Approximations 25

We can now transform equation (4.32) using this condition.

E
(

ht+1 − (1+γ2
tB)ht | Pt

)

≤ −2γt (wt − w∗)∇wC(wt) + γ2
tA (4.35)

We now define two auxiliary sequences µt and h′
t as in (4.18). Multiplying

both the left-hand-side and the right hand side of (4.32) by µt, we obtain:

E
(

h′
t+1 − h′

t | Pt

)

≤ γ2
t µtA (4.36)

A simple transformation then gives a bound for the positive expected varia-
tions of h′

t.

E(δt (h
′
t+1 − h′

t)) = E(δt E
(

h′
t+1 − h′

t | Pt

)

) ≤ γ2
t µtA (4.37)

Since this bound is the summand of a convergent infinite sum, theorem (4.30)
implies that h′

t converges almost surely. Since the sequence µt converges to
µ∞ > 0, the Lyapunov process ht also converges almost surely.

Step c. We now prove that the convergence of the Lyapunov process implies
the convergence of the discrete gradient descent algorithm. Since ht converges,
equation (4.35) implies the convergence of the following sum:

∞
∑

i=1

γi(wi − w∗)∇wC(wi) < ∞ a.s. (4.38)

We must introduce an additional condition on the learning rates γi which
limits the rate of decrease of the learning rates. This condition is similar to
condition (4.21).

∞
∑

i=1

γi = ∞ (4.39)

We can then reason by contradiction as shown for the discrete gradient
descent case. We know that ht converges with probability 1. Assume that ht

converges to a quantity greater than zero with nonzero probability. Assump-
tion (4.1) then implies that (wt − w∗)∇wC(wt) eventually remains greater
than a strictly positive quantity. Since this would cause the divergence of the
sum (4.38), we can conclude

wt

a.s.
−→
t→∞

w∗ . (4.40)

As in the discrete gradient case, we also have

(wt − w∗)∇wC(wt)
a.s.
−→
t→∞

0 . (4.41)

Besides the general convexity criterion (4.1), we had to introduce three
additional conditions to obtain this convergence. Two conditions (4.33) and
(4.39) directly address the learning rate schedule as in the batch gradient
case. The last condition (4.34) is similar to condition (4.16) but contains an
additional variance term which reflects the stochastic dynamics of the online
gradient descent.

26 Léon Bottou

Comments

Equations (4.14) and (4.32) look very similar. The second term of the right hand
side of (4.32) however refers to the second moment of the updates instead of the
norm of the gradients. This term can be decomposed as follows:

γ2tEz(H(z, w))2 = γ2t (∇wC(w))2 + γ2t varzH(z, w) (4.42)

The second term of this decomposition depends on the noise implied by the
stochastic nature of the algorithm. This variance remains strictly positive in
general, even at the solution w∗. This fact is the main explanation for the dy-
namical differences between batch gradient descent and online gradient descent.

Let us assume that the algorithm converges. The first term of the right hand
side of (4.32) tends towards zero, as well as the first term of (4.42). We can
therefore write an asymptotic equivalent to the expected variation the Lyapunov
criterion:

E (ht+1 − ht | Pt) ≍
t→∞

γt (γtvarzH(z, w∗)− (wt − w)∇wC(w)) (4.43)

This result means that the quantities γtvarzH(z, w∗) and (wt − w)∇wC(w) keep
the same order of magnitude during the convergence. Since the latter quantity
is related to the distance to the optimum (cf. comments to section 4.2.2) the
convergence speed depends on how fast the learning rates γt decrease. This
decrease rate is in turn limited by condition (4.39).

This analysis can be repeated with non scalar learning rates approximating
the inverse of the Hessian. This algorithm converges faster than using a scalar
learning rate equal to the inverse of the largest eigenvalue of the Hessian. This
result of course assume that these learning rates still fulfill criterions (4.33) and
(4.39), as in the batch gradient descent case (cf. comments to section 4.2.2).

The final comment expands section 3.2 discussing online gradient descent
with non differentiable functions. The proof presented in this section never uses
the fact that ∇wC(w) is actually the gradient of the cost C(w). All references
to this gradient can be eliminated by merging conditions (4.1) and (4.25):

∀ε > 0, inf
(w−w∗)2>ε

(w − w∗) EzH(z, w) > 0 (4.44)

This condition (4.44), together with the usual conditions (4.33), (4.39) and
(4.34), is sufficient to ensure the convergence of algorithm (4.24). This result
makes no reference to a differentiable cost function.

5 General Online Optimization

This section analyzes the convergence of the general online gradient algorithm
(section 2.3) without convexity hypothesis. In other words, the cost function
C(w) can now have several local minima.

Online Learning and Stochastic Approximations 27

There are two ways to handle this analysis. The first method consists of
partitioning the parameter space into several attraction basins, discussing the
conditions under which the algorithm confines the parameters wt in a single
attraction basin, defining suitable Lyapunov criterions (Krasovskii, 1963), and
proceeding as in the convex case. Since the online gradient descent algorithm
never completely confines the parameter into a single attraction basin, we
must also study how the algorithm hops from one attraction basin to another.

A much simpler method quickly gives a subtly different result. Instead of
proving that the parameter wt converges, we prove the cost function C(wt)
and its gradient ∇wC(wt) converge. The discussion presented below is an
expanded version of the proof given in (Bottou, 1991).

Note: Sections 5.1 and 5.2 have been revised in October 2012.3

5.1 Assumptions

The convergence results rely on the following assumptions:

i) The cost function C(w) is three times differentiable with continuous
derivatives.4 It is bounded from below, i.e. C(w) ≥ Cmin. We can as-
sume, without loss of generality, that C(w) ≥ 0.

ii) The usual conditions on the learning rates are fulfilled.

∞
∑

t=1

γ2
t < ∞,

∞
∑

t=1

γt = ∞ (5.1)

iii) The second, third, and fourth moments of the update term should not
grow too fast with the norm of the parameters. These conditions are
slightly more restrictive than condition (4.34) in order to better control
the distribution tails.

For k = 2, 3, 4 E
z
(‖H(z, w)‖k) ≤ Ak +Bk‖w‖

k (5.2)

iv) When the norm of the parameter w is larger than a certain horizon D,
the opposite of the gradient −∇wC(w) points towards the origin.

inf
w2≥D

w∇wC(w) > 0 (5.3)

Assumption (5.3) prevents the possibility of plateaus on which the parameter
vector can grow indefinitely without ever escaping. Beyond a certain horizon,
the update terms always moves wt closer to the origin on average.

3Thanks to Silvère Bonnabel (silvere.bonnabel@mines-paristech.fr).
4Weakening this nontrivial assumption demands serious efforts (Fort and Pages, 1995).

28 Léon Bottou

This condition is easy to verify in the case of the K-Means algorithm (sec-
tion 3.2.2) for instance. The cost function is never reduced by moving cen-
troids beyond the envelope of the data points. Multi-layer networks (section
3.1.2) however do not always fulfill this condition because the sigmoid has flat
asymptotes. In practice however, it is common to choose desired values that
are smaller than the sigmoid asymptotes, and to add a small linear term to
the sigmoid which makes sure that rounding errors will not make the sigmoid
gradient negative. These well known tricks in fact ensure that condition (5.3)
is fulfilled. A similar discussion applies to the LVQ2 algorithm (section 3.2.3).

5.2 Global Confinement

The first part of the analysis consists in taking advantage of assumption (5.3)
and proving that the parameter vector wt is almost surely confined into a
bounded region. The proof again relies on the same three steps.

Step a. We define a suitable criterion:

ft
△
= ϕ(w2

t) (5.4)

with

ϕ(x)
△
=

{

0 if x < D ,

(x−D)2 if x ≥ D .

Step b. Note that the definition of ϕ implies that

ϕ(y)− ϕ(x) ≤ (y − x)ϕ′(x) + (y − x)2 .

This inequality becomes an equality when both x and y are greater than D.
Applying this inequality to the difference ft+1 − ft,

ft+1 − ft ≤ (− 2γtwtH(zt, wt) + γ2
t H(zt, wt)

2)ϕ′(w2
t)

+ (4γ2
t (wtH(zt, wt))

2 − 4γ3
t wtH(zt, wt)H(zt, wt)

2

+ γ4
tH(zt, wt)

2H(zt, wt)
2) .

(5.5)

Thanks to the inequality of Cauchy-Schwartz, we can write

ft+1 − ft ≤ −2γtwtH(zt, wt)ϕ
′(w2

t) + γ2
t ‖H(zt, wt)‖

2 ϕ′(w2
t)

+4γ2
t ‖wt‖

2‖H(zt, wt)‖
2 + 4γ3

t ‖wt‖‖H(zt, wt)‖
3

+γ4
t ‖H(zt, wt)‖

4 .

Taking the expectation

E (ft+1 − ft | Pt) ≤ −2γtwt∇wC(wt)ϕ
′(w2

t) + γ2
t Ez

(‖H(z, wt)‖
2)ϕ′(w2

t)

+4γ2
t ‖wt‖

2E
z
(‖H(z, wt)‖

2) + 4γ3
t ‖wt‖Ez

(‖H(z, wt)‖
3)

+γ4
t Ez

(‖H(z, wt)‖
4) .

Online Learning and Stochastic Approximations 29

Thanks to assumption (5.2), there are positive constants A0 and B0 such that

E (ft+1 − ft | Pt) ≤ −2γtwt∇wC(wt)ϕ
′(w2

t) + γ2
t (A0 +B0‖wt‖

4) ,

and therefore positive constants A and B such that

E (ft+1 − ft | Pt) ≤ −2γtwt∇wC(wt)ϕ
′(w2

t) + γ2
t (A+Bft) .

When w2
t < D, the first term of the right hand side of this inequality is null

because ϕ′(w2
t) = 0. When w2

t ≥ D, the first term of the right hand side of
this inequality is negative because of assumption (5.3).

Therefore we can write:

E (ft+1 − ft | Pt) ≤ γ2
t (A +Bft) (5.6)

We now proceed along the well known lines. We first transform the bound
on the expected variations as in (4.35). We define two auxiliary quantities µt

and f ′
t as in (4.18). The expected variations of f ′

t are bounded as shown in
equation (4.36). We can then bound the positive expected variations of f ′

t .

E(δt(f
′
t+1 − f ′

t)) ≤ E(δtE
(

f ′
t+1 − f ′

t | Pt

)

) ≤ γ2
t µtA (5.7)

Theorem (4.30) then implies that f ′
t converges almost surely. This convergence

implies that ft converges almost surely.

Step c. Let us assume that ft converge to a value f∞ greater than 0. When
t is large enough, this convergence implies that both w2

t and w2
t+1 are greater

than D. Inequality (5.5) is then an equality. This equality implies that the
following infinite sum converges almost surely:

∞
∑

i=1

γtwt∇wC(wt)ϕ
′(w2

t) < ∞ a.s. (5.8)

Since
∑

γt = ∞ and limϕ′(w2
t) > 0, this result is not compatible with as-

sumption (5.3). We must therefore conclude that ft converges to zero.

Global confinement. The convergence of ft means that the norm w2
t of the

parameter vector wt is bounded. In other words, assumption (5.3) guarantees
that the parameters will be confined in a bounded region containing the origin.

This confinement property means that all continuous functions of wt are
bounded (we assume of course that the parameter space has finite dimen-
sion). This include w2

t , Ez
(H(z, w))2 and all the derivatives of the cost func-

tion C(wt). In the rest of this section, positive constants K1, K2, etc. . . are
introduced whenever such a bound is used.

30 Léon Bottou

5.3 Convergence of Online Algorithms (General Case)

We now proceed with the analysis of the general online gradient algorithm.
Step a. We define the following criterion:

ht

△
= C(wt) ≥ 0 (5.9)

Step b. We can then bound the variations of the criterion ht using a first
order Taylor expansion and bounding the second derivatives with K1.

| ht+1 − ht + 2γtH(z, wt)∇wC(wt) | ≤ γ2
tH(z, wt)

2K1 a.s. (5.10)

This inequality can be rewritten as:

ht+1 − ht ≤ −2γtH(z, wt)∇wC(wt) + γ2
tH(z, wt)

2K1 a.s. (5.11)

We now take the conditional expectation using (2.7):

E (ht+1 − ht | Pt) ≤ −2γt(∇wC(wt))
2 + γ2

tEz
(H(z, wt))K1 (5.12)

This result leads to the following bound:

E (ht+1 − ht | Pt) ≤ γ2
tK2K1 (5.13)

The positive expected variations of ht are then bounded by

E(δt (ht+1 − ht)) = E(δt E (ht+1 − ht | Pt)) ≤ γ2
tK2K1 (5.14)

Since this bound is the summand of a convergent infinite sum, theorem (4.30)
implies that ht = C(wt) converges almost surely.

C(wt)
a.s
−→
t→∞

C∞ (5.15)

Step c. The last step of the proof departs from the convex case. Proving
that C(wt) converges to zero would be a very strong result, equivalent to
proving the convergence to the global minimum. We can however prove that
the gradient ∇wC(wt) converges to zero almost surely.

By taking the expectation of (5.12) and summing on t = 1 . . .∞, we see
that the convergence of C(wt) implies the convergence of the following infinite
sum:

∞
∑

t=1

γt(∇wC(wt))
2 < ∞ a.s (5.16)

This convergence does not imply yet that the squared gradient ∇wC(wt)
converges. We now define a second criterion:

gt
△
= (∇wC(wt))

2 (5.17)

Online Learning and Stochastic Approximations 31

very bad

good

ok

poor

Figure 8: Extremal points include global and local minima. They
also include poor solutions like saddle points and asymptotic
plateaus. Every user of multi-layer network training algorithms
is well aware of these possibilities.

The variations of gt are easily bounded using the Taylor expansion procedure
demonstrated for the variations of ht.

gt+1 − gt ≤ −2γtH(z, w)∇2
wC(wt)∇wC(wt) + γ2

t (H(z, w)2K3 a.s. (5.18)

Taking the conditional expectation and bounding the second derivatives by
K4:

E (gt+1 − gt | Pt) ≤ 2γt(∇wC(wt))
2K4 + γ2

tK2K3 (5.19)

We can then bound the positive expected variations of gt:

E(δt(gt+1 − gt)) = E(δtE (gt+1 − gt | Pt))

≤ γt(∇wC(wt))
2K4 + γ2

tK2K3 (5.20)

The two terms on the right hand side are the summands of convergent infinite
sums (5.16) and (5.1). Theorem (4.30) then implies that gt converges almost
surely. Result (5.16) implies that this limit must be zero.

gt
a.s.
−→
t→∞

0 and ∇wC(wt)
a.s.
−→
t→∞

0 (5.21)

5.4 Convergence to the Extremal Points

Let us summarize the convergence results obtained for the general gradient
descent algorithm (section 2.3). These results are based on the four assump-
tions presented in section 5.1.

i) The parameter vectors wt are confined with probability 1 in a bounded
region of the parameter space. This result essentially is consequence of
hypothesis (5.3).

32 Léon Bottou

ii) The cost function C(wt) converges almost surely.

C(wt)
a.s.
−→
t→∞

C∞

iii) The gradient ∇wC(wt) converges almost surely to 0.

∇wC(wt)
a.s.
−→
t→∞

0

The convergence of the gradient is the most informative result. Figure 8 shows
several regions in which the gradient goes to zero. These regions include local
minima, saddle points, local maxima and plateaus.

The confinement result prevents the parameter vector wt to diverge on an
asymptotic plateau. Experience shows that hypothesis (5.3) is very significant.
It is well known indeed that such a divergence occurs easily when the desired
outputs of a multi-layer network are equal to the asymptotes of the sigmoid.

Saddle points and local maxima are usually unstable solutions. A small
isotropic noise in the algorithm convergence can move the parameter vec-
tor away. We cannot however discard these solutions because it is easy to
construct cases where the stochastic noise introduced by the online gradient
descent procedure is not sufficient because it is not isotropic.

This convergence to the extremal points concludes our discussion.

6 Conclusion

The online learning framework presented in this document addresses a signif-
icant subset of the online learning algorithms, including, but not limited to,
adaline, perceptron, multi-layer networks, k-means, learning vector quantiza-
tion, and Kalman style algorithms. This formalism provides a clear statement
of the goal of the learning procedure. It includes provisions for handling non-
differentiable cost functions and quasi-Newton algorithms.

General convergence results are based on the theory of stochastic approx-
imations. The main results address the convergence to the minimum of a
convex cost function, and the convergence to the extremal points of a gen-
eral cost function. The final convergence speed of online learning algorithm
is amenable to a theoretical analysis using the same tools. The possibility of
analyzing long range convergence speed, as achieved in restricted cases (Saad
and Solla, 1996), remains an open question.

Acknowledgments

I am very grateful to both Vladimir Vapnik and Yoshua Bengio. Their com-
ments and suggestions resulted in many improvements to this document.

Online Learning and Stochastic Approximations 33

References

Amari, S.-I. (1967). A theory of adaptive pattern classifiers. IEEE Transac-
tions on Electronic Computers, EC-16:299–307.

Becker, S. and Le Cun, Y. (1989). Improving the Convergence of Back-
Propagation Learning with Second-Order Methods. In Touretzky, D.,
Hinton, G., and Sejnowski, T., editors, Proceedings of the 1988 Connec-
tionist Models Summer School, pages 29–37, San Mateo. Morgan Kauf-
man.

Benveniste, A., Metivier, M., and Priouret, P. (1990). Adaptive Algorithms
and Stochastic Approximations. Springer Verlag, Berlin, New York.

Bottou, L. (1991). Une Approche théorique de l’Apprentissage Connexion-
niste: Applications à la Reconnaissance de la Parole. PhD thesis, Uni-
versité de Paris XI, Orsay, France.

Bottou, L. and Bengio, Y. (1995). Convergence Properties of the KMeans
Algorithm. In Advances in Neural Information Processing Systems, vol-
ume 7. MIT Press, Denver.

Dennis, J. and Schnabel, R. B. (1983). Numerical Methods For Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey.

Fisk, D. L. (1965). Quasi-martingales. Transactions of the American Math-
ematical Society, 120:359–388.

Fort, J. C. and Pages, G. (1995). On the a.s. convergence of the Kohonen
algorithm with a general neighborhood function. The Annals of Applied
Probability, 5(4):1177–1216.

Gladyshev, E. G. (1965). On stochastic approximations. Theory of Probabil-
ity and its Applications, 10:275–278.

Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.

Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Fea-
ture Maps. Biological Cybernetics, 43:59–69.

Kohonen, T., Barna, G., and Chrisley, R. (1988). Statistical pattern recogni-
tion with neural network: Benchmarking studies. In Proceedings of the
IEEE Second International Conference on Neural Networks, volume 1,
pages 61–68, San Diego.

Krasovskii, A. A. (1963). Dynamic of continuous self-Organizing Systems.
Fizmatgiz, Moscow. (in russian).

34 Léon Bottou

Kushner, H. J. and Clark, D. S. (1978). Stochastic Approximation for Con-
strained and Unconstrained Systems. Applied Math. Sci. 26. Springer
Verlag, Berlin, New York.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1989). Backpropagation Applied to Handwritten
Zip Code Recognition. Neural Computation, 1(4):541–551.

Ljung, L. and Söderström, T. (1983). Theory and Practice of recursive iden-
tification. MIT Press, Cambridge, MA.

MacQueen, J. (1967). Some Methods for Classification and Analysis of Mul-
tivariate Observations. In LeCam, L. M. and Neyman, J., editors, Pro-
ceedings of the Fifth Berkeley Symposium on Mathematics, Statistics,
and Probabilities, volume 1, pages 281–297, Berkeley and Los Angeles,
(Calif). University of California Press.

Mendel, J. M. and Fu, K. S. (1970). Adaptive, Learning, and Pattern Recog-
nition Systems: Theory and Applications. Academic Press, New York.

Metivier, M. (1981). Martingale et convergence p.s. d’algorithmes stochas-
tiques. In Outils et modèles mathématiques pour l’automatique et le
traitement du signal, volume 1, pages 529–552. Editions du CNRS, Paris,
France.

Metivier, M. (1983). Semi-Martingales. Walter de Gruyter, Berlin.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

Müller, U., Gunzinger, A., and Guggenbühl, W. (1995). Fast neural net sim-
ulation with a DSP processor array. IEEE Trans. on Neural Networks,
6(1):203–213.

Robbins, H. and Monro, S. (1951). A Stochastic Approximation Model. Ann.
Math. Stat., 22:400–407.

Rosenblatt, F. (1957). The Perceptron: A perceiving and recognizing automa-
ton. Technical Report 85-460-1, Project PARA, Cornell Aeronautical
Lab.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning in-
ternal representations by error propagation. In Parallel distributed pro-
cessing: Explorations in the microstructure of cognition, volume I, pages
318–362. Bradford Books, Cambridge, MA.

Saad, D. and Solla, S. A. (1996). Dynamics of On-Line Gradient Descent
Learning for Multilayer Neural Networks. In Touretzky, D. S., Mozer,
M. C., and Hasselmo, M. E., editors, Advances in Neural Information

Online Learning and Stochastic Approximations 35

Processing Systems, volume 8, pages 302–308, Cambridge, MA. MIT
Press.

Schumann, M. and Retzko, R. (1995). Self Organizing Maps for Vehicle Rout-
ing Problems - minimizing an explicit cost function. In Fogelman-Soulié,
F. and Gallinari, P., editors, Proc. ICANN’95, Int. Conf. on Artificial
Neural Networks, volume II, pages 401–406, Nanterre, France. EC2.

Tsypkin, Y. (1971). Adaptation and Learning in automatic systems. Aca-
demic Press, New York.

Tsypkin, Y. (1973). Foundations of the theory of learning systems. Academic
Press, New York.

Vapnik, V. N. (1982). Estimation of dependences based on empirical data.
Springer Series in Statistics. Springer Verlag, Berlin, New York.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer
Verlag, Berlin, New York.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRE
WESCON Conv. Record, Part 4., pages 96–104.

Widrow, B. and Stearns, S. D. (1985). Adaptive Signal Processing. Prentice-
Hall.

