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THE MATHEMATICS 
OF COMMUNICATION 

An important new theory is based on the statistical 
character of language. In it the concept of entropy 
is closely linked with the concept of information 

by Warren Weaver 

HOW do men communicate, one 
with another? The spoken word, 
either direct or by telephone or 
radio; the written or printed word, trans- 
mitted by hand, by post, by telegraph, or 
in any other way—these are obvious and 
common forms of communication. But 
there are many others. A nod or a wink, 
a drumbeat in the jungle, a gesture pic- 
tured on a television screen, the blinking 
of a signal light, a bit of music that re- 
minds one of an event in the past, puffs 
of smoke in the desert air, the move- 
ments and posturing in a ballet—all of 
these are means men use to convey ideas. 

The word communication, in fact, will 
be used here in a very broad sense to in- 
clude all of the procedures by which one 
mind can affect another. Although the 
language used will often refer specifical- 
ly to the communication of speech, prac- 
tically everything said applies equally to 
music, to pictures, to a variety of other 
methods of conveying information. 

In communication there seem to be 
problems at three levels: 1) technical, 
2) semantic, and 3) influential. 

The technical problems are concerned 
with the accuracy of transference of in- 
formation from sender to receiver. They 
are inherent in all forms of communica- 
tion, whether by sets of discrete symbols 
(written speech), or by a varying signal 
(telephonic or radio transmission of 
voice or music), or by a varying two- 
dimensional pattern (television). 

The semantic problems are concerned 
with the interpretation of meaning by 
the receiver, as compared with the in- 
tended meaning of the sender. This is a 
very   deep   and   involved   situation,   even 

when one deals only with the relative- 
ly simple problems of communicating 
through speech. For example, if Mr. X is 
suspected not to understand what Mr. Y 
says, then it is not possible, by having 
Mr. Y do nothing but talk further with 
Mr. X, completely to clarify this situation 
in any finite time. If Mr. Y says “Do you 
now understand me?” and Mr. X says 
“Certainly I do,” this is not necessarily 
a certification that understanding has 
been achieved. It may just be that Mr. X 
did not understand the question. If 
this sounds silly, try it again as “Czy pan 
mnie rozumie?” with the answer “Hai 
wakkate imasu.” In the restricted field 
of speech communication, the difficulty 
may be reduced to a tolerable size, but 
never completely eliminated, by “expla- 
nations.” They are presumably never 
more than approximations to the ideas 
being explained, but are understandable 
when phrased in language that has pre- 
viously been made reasonably clear by 
usage. For example, it does not take long 
to make the symbol for “yes” in any lan- 
guage understandable. 

The problems of influence or effective- 
ness are concerned with the success with 
which the meaning conveyed to the re- 
ceiver leads to the desired conduct on his 
part. It may seem at first glance undesir- 
ably narrow to imply that the purpose of 
all communication is to influence the 
conduct of the receiver. But with any 
reasonably broad definition of conduct, 
it is clear that communication either af- 
fects conduct or is without any discern- 
ible and provable effect at all. 

One might be inclined to think that 
the  technical   problems   involve   only   the 

engineering details of good design of 
a communication system, while the se- 
mantic and the effectiveness problems 
contain most if not all of the philosophi- 
cal content of the general problem of 
communication. To see that this is not 
the case, we must now examine some im- 
portant recent work in the mathematical 
theory of communication. 

HIS is by no means a wholly new
theory. As the mathematician John
von Neumann has pointed out, the 19th-
century Austrian physicist Ludwig Boltz-
mann suggested that some concepts of
statistical mechanics were applicable to
the concept of information. Other scien-
tists, notably Norbert Wiener of the
Massachusetts Institute of Technology,
have made profound contributions. The
work which will be here reported is that
of Claude Shannon of the Bell Telephone
Laboratories, which was preceded by
that of H. Nyquist and R. V. L. Hartley
in the same organization. This work ap-
plies in the first instance only to the tech-
nical problem, but the theory has broad-
er significance. To begin with, meaning
and effectiveness are inevitably restrict-
ed by the theoretical limits of accuracy in
symbol transmission. Even more signifi-
cant, a theoretical analysis of the techni-
cal problem reveals that it overlaps the
semantic and the effectiveness problems
more than one might suspect. 

A communication system is symboli-
cally represented in the drawing on pages
12 and 13. The information source se-
lects a desired message out of a set of
possible messages. (As will be shown,
this    is    a    particularly    important    func- 
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tion.) The transmitter changes this mes- 
sage into a signal which is sent over the 
communication channel to the receiver. 

The receiver is a sort of inverse trans- 
mitter, changing the transmitted signal 
back into a message, and handing this 
message on to the destination. When I 
talk to you, my brain is the information 
source, yours the destination; my vocal 
system is the transmitter, and your ear 
with the eighth nerve is the receiver. 

In the process of transmitting the sig- 
nal, it is unfortunately characteristic that 
certain things not intended by the infor- 
mation source are added to the signal. 
These unwanted additions may be dis- 
tortions of sound (in telephony, for ex- 
ample), or static (in radio), or distor- 
tions in the shape or shading of a picture 
(television), or errors in transmission 
(telegraphy or facsimile). All these 
changes in the signal may be called noise. 

The questions to be studied in a com- 
munication system have to do with the 
amount of information, the capacity of 
the communication channel, the coding 
process that may be used to change a 
message into a signal and the effects of 
noise. 

First off, we have to be clear about 
the rather strange way in which, in this 
theory, the word “information” is used; 
for it has a special sense which, among 
other things, must not be confused at all 
with meaning. It is surprising but true 
that, from the present viewpoint, two 
messages, one heavily loaded with mean- 
ing and the other pure nonsense, can be 
equivalent as regards information. 

In fact, in this new theory the word 
information relates not so much to what 
you do say, as to what you could say. 
That is, information is a measure of 
your freedom of choice when you select 
a message. If you are confronted with a 
very elementary situation where you 
have to choose one of two alternative 
messages, then it is arbitrarily said that 
the information associated with this situ- 
ation is unity. The concept of informa- 
tion applies not to the individual mes- 
sages, as the concept of meaning would, 
but  rather  to  the  situation  as  a  whole, the 

unit information indicating that in this 
situation one has an amount of freedom 
of choice, in selecting a message, which 
it is convenient to regard as a standard 
or unit amount. The two messages be- 
tween which one must choose in such a 
selection can be anything one likes. One 
might be the King James version of the 
Bible, and the other might be “Yes.” 

THE remarks thus far relate to artifi- 
cially simple situations where the in- 
formation source is free to choose only 
among several definite messages—like a 
man picking out one of a set of standard 
birthday-greeting telegrams. A more 
natural and more important situation is 
that in which the information source 
makes a sequence of choices from some 
set of elementary symbols, the selected 
sequence then forming the message. 
Thus a man may pick out one word after 
another, these individually selected 
words then adding up to the message. 

Obviously probability plays a major 
role in the generation of the message, 
and the choices of the successive sym- 
bols depend upon the preceding choices. 
Thus, if we are concerned with English 
speech, and if the last symbol chosen is 
“the,” then the probability that the next 
word will be an article, or a verb form 
other than a verbal, is very small. After 
the three words “in the event,” the prob- 
ability for “that” as the next word is 
fairly high, and for “elephant” as the next 
word is very low. Similarly, the probabil- 
ity is low for such a sequence of words 
as “Constantinople fishing nasty pink.” 
Incidentally, it is low, but not zero, for 
it is perfectly possible to think of a pas- 
sage in which one sentence closes with 
“Constantinople fishing,” and the next 
begins with “Nasty pink.” (We might 
observe in passing that the sequence un- 
der discussion has occurred in a single 
good English sentence, namely the one 
second preceding.) 

As a matter of fact, Shannon has 
shown that when letters or words chosen 
at random are set down in sequences 
dictated by probability considerations 
alone,  they  tend  to  arrange  themselves   in 

meaningful words and phrases (see illus- 
tration on page 15). 

Now let us return to the idea of infor- 
mation. The quantity which uniquely 
meets the natural requirements that one 
sets up for a measure of information 
turns out to be exactly that which is 
known in thermodynamics as entropy, or 
the degree of randomness, or of "shuf- 
fledness" if you will, in a situation. It is 
expressed in terms of the various proba- 
bilities involved. 

To those who have studied the physi- 
cal sciences, it is most significant that an 
entropy-like expression appears in com- 
munication theory as a measure of infor- 
mation. The concept of entropy, intro- 
duced by the German physicist Rudolf 
Clausius nearly 100 years ago, closely 
associated with the name of Boltzmann, 
and given deep meaning by Willard 
Gibbs of Yale in his classic work on 
statistical mechanics, has become so 
basic and pervasive a concept that Sir 
Arthur Eddington remarked: “The law 
that entropy always increases—the sec- 
ond law of thermodynamics—holds, I 
think, the supreme position among the 
laws of Nature.” 

Thus when one meets the concept of 
entropy in communication theory, he has 
a right to be rather excited. That infor- 
mation should be measured by entropy 
is, after all, natural when we remember 
that information is associated with the 
amount of freedom of choice we have in 
constructing messages. Thus one can say 
of a communication source, just as he 
would also say of a thermodynamic en- 
semble: “This situation is highly organ- 
ized; it is not characterized by a large 
degree of randomness or of choice—that 
is to say, the information, or the entropy, 
is low.” 

We must keep in mind that in the 
mathematical theory of communication 
we are concerned not with the meaning 
of individual messages but with the 
whole statistical nature of the informa- 
tion source. Thus one is not surprised 
that the capacity of a channel of com- 
munication is to be described in terms 
of   the   amount    of    information    it    can 

A COMMUNICATION SYSTEM may be reduced to          a varying electric current, and the channel is a wire. In 
these fundamental elements. In telephony the signal is            speech the signal is varying sound pressure, and the 
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transmit, or better, in terms of its ability 
to transmit what is produced out of a 
source of a given information. 

The transmitter may take a written 
message and use some code to encipher 
this message into, say, a sequence of 
numbers, these numbers then being sent 
over the channel as the signal. Thus one 
says, in general, that the function of the 
transmitter is to encode, and that of 
the receiver to decode, the message. The 
theory provides for very sophisticated 
transmitters and receivers—such, for ex- 
ample, as possess “memories,” so that the 
way they encode a certain symbol of 
the message depends not only upon this 
one symbol but also upon previous sym- 
bols of the message and the way they 
have been encoded. 

We are now in a position to state the 
fundamental theorem for a noiseless 
channel transmitting discrete symbols. 
This theorem relates to a communication 
channel which has a capacity of C units 
per second, accepting signals from an in- 
formation source of H units per second. 
The theorem states that by devising 
proper coding procedures for the trans- 
mitter it is possible to transmit symbols 
over the channel at an average rate 
which is nearly C/H, but which, no mat- 
ter how clever the coding, can never be 
made to exceed C/H. 

VIEWED superficially, say in rough 
analogy to the use of transformers to 
match impedances in electrical circuits, 
it seems very natural, although certainly 
pretty neat, to have this theorem which 
says that efficient coding is that which 
matches the statistical characteristics of 
information source and channel. But 
when it is examined in detail for any 
one of the vast array of situations to 
which this result applies, one realizes 
how deep and powerful this theory is. 
How does noise affect information? 
Information, we must steadily remem- 
ber, is a measure of one’s freedom of 
choice in selecting a message. The great- 
er this freedom of choice, the greater is 
the uncertainty that the message actually 
selected   is   some   particular   one.     Thus 

greater freedom of choice, greater uncer- 
tainty and greater information all go 
hand in hand. 

If noise is introduced, then the re- 
ceived message contains certain distor- 
tions, certain errors, certain extraneous 
material, that would certainly lead to in- 
creased uncertainty. But if the uncer- 
tainty is increased, the information is 
increased, and this sounds as though the 
noise were beneficial! 

It is true that when there is noise, the 
received signal is selected out of a more 
varied set of signals than was intended 
by the sender. This situation beauti- 
fully illustrates the semantic trap into 
which one can fall if he does not remem- 
ber that “information” is used here with 
a special meaning that measures freedom 
of choice and hence uncertainty as to 
what choice has been made. Uncertainty 
that arises by virtue of freedom of choice 
on the part of the sender is desirable un- 
certainty. Uncertainty that arises be- 
cause of errors or because of the influ- 
ence of noise is undesirable uncertainty. 
To get the useful information in the re- 
ceived signal we must subtract the spu- 
rious portion. This is accomplished, in 
the theory, by establishing a quantity 
known as the “equivocation,” meaning 
the amount of ambiguity introduced by 
noise. One then refines or extends the 
previous definition of the capacity of a 
noiseless channel, and states that the 
capacity of a noisy channel is defined to 
be equal to the maximum rate at which 
useful information (i.e., total uncertain- 
ty minus noise uncertainty) can be trans- 
mitted over the channel. 

Now, finally, we can state the great 
central theorem of this whole communi- 
cation theory. Suppose a noisy channel 
of capacity C is accepting information 
from a source of entropy H, entropy cor- 
responding to the number of possible 
messages from the source. If the channel 
capacity C is equal to or larger than H, 
then by devising appropriate coding sys- 
tems the output of. the source can be 
transmitted over the channel with as 
little error as one pleases. But if the chan- 
nel  capacity  C  is  less  than  H, the entropy 

of the source, then it is impossible to 
devise codes which reduce the error 
frequency as low as one may please. 

However clever one is with the coding 
process, it will always be true that after 
the signal is received there remains some 
undesirable uncertainty about what the 
message was; and this undesirable uncer- 
tainty—this noise or equivocation—will 
always be equal to or greater than H 
minus C. But there is always at least one 
code capable of reducing this undesir- 
able uncertainty down to a value that ex- 
ceeds H minus C by a small amount. 

This powerful theorem gives a precise 
and almost startlingly simple description 
of the utmost dependability one can ever 
obtain from a communication channel 
which operates in the presence of noise. 
One must think a long time, and con- 
sider many applications, before he fully 
realizes how powerful and general this 
amazingly compact theorem really is. 
One single application can be indicated 
here, but in order to do so, we must go 
back for a moment to the idea of the 
information of a source. 

Having calculated the entropy (or the 
information, or the freedom of choice) 
of a certain information source, one can 
compare it to the maximum value this 
entropy could have, subject only to the 
condition that the source continue to 
employ the same symbols. The ratio of 
the actual to the maximum entropy is 
called the relative entropy of the source. 
If the relative entropy of a certain source 
is, say, eight-tenths, this means roughly 
that this source is, in its choice of sym- 
bols to form a message, about 80 per 
cent as free as it could possibly be with 
these same symbols. One minus the rela- 
tive entropy is called the “redundancy.” 
That is to say, this fraction of the mes- 
sage is unnecessary in the sense that if 
it were missing the message would still 
be essentially complete, or at least could 
be completed. 

It is most interesting to note that the 
redundancy of English is just about 50 
per cent. In other words, about half of 
the letters or words we choose in writing 
or   speaking   are   under   our   free   choice, 

 

channel the air. Frequently things not intended by the                    static of radio is one example; distortion in telephony 
information source are impressed on the signal.   The                    is another. All these additions may be called noise. 
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and about half are really controlled by 
the statistical structure of the language, 
although we are not ordinarily aware of 
it. Incidentally, this is just about the 
minimum of freedom  (or relative en- 
tropy) in the choice of letters that one 
must have to be able to construct satis- 
factory   crossword  puzzles.   In  a  lan- 
guage that had only 20 per cent of free- 
dom, or 80 per cent redundancy, it would 
be  impossible  to  construct  crossword 
puzzles in sufficient complexity and num- 
ber to make the game popular. 

Now since English is about 50 per 
cent redundant, it would be possible to 
save about one-half the time of ordinary 
telegraphy by a proper encoding process, 
provided one transmitted over a noise- 
less channel. When there is noise on a 
channel, however, there is some real ad- 
vantage in not using a coding process 
that eliminates all of the redundancy. 
For the remaining redundancy helps 
combat the noise. It is the high re- 
dundancy of English, for example, that 
makes it easy to correct errors in spelling 
that have arisen during transmission. 

HE communication systems dealt 
with so far involve the use of a dis- 
crete set of symbols—say letters—only 
moderately numerous. One might well 
expect that the theory would become 
almost indefinitely more complicated 
when it seeks to deal with continuous 
messages such as those of the speaking 
voice, with its continuous variation of 
pitch and energy. As is often the case, 
however, a very interesting mathematical 
theorem comes to the rescue. As a prac- 
tical matter, one is always interested in 
a continuous signal which is built up of 
simple harmonic constituents, not of all 
frequencies but only of those that lie 
wholly within a band from zero to, say, 
W cycles per second. Thus very satisfac- 
tory communication can be achieved 
over a telephone channel that handles 
frequencies up to about 4,000, although 
the human voice does contain higher fre- 
quencies. With frequencies up to 10,000 
or 12,000, high-fidelity radio transmis- 
sion of symphonic music is possible. 

The theorem that helps us is one 
which states that a continuous signal, T 
seconds in duration and band-limited in 
frequency to the range from zero to W, 
can be completely specified by stating 
2TW numbers. This is really a remark- 
able theorem. Ordinarily a continuous 
curve can be defined only approximately 
by a finite number of points. But if the 
curve is built up out of simple harmonic 
constituents of a limited number of fre- 
quencies, as a complex sound is built up 
out of a limited number of pure tones, 
then a finite number of quantities is all 
that is necessary to define the curve com- 
pletely. 

Thanks partly to this theorem, and 
partly to the essential nature of the situ- 
ation,    it    turns    out     that    the    extended 

theory of continuous communication is 
somewhat more difficult and complicated 
mathematically, but not essentially dif- 
ferent from the theory for discrete sym- 
bols. Many of the statements for the 
discrete case require no modification for 
the continuous case, and others require 
only minor change. 

The mathematical theory of communi- 
cation is so general that one does not 
need to say what kinds of symbols are 
being considered—whether written let- 
ters or words, or musical notes, or spoken 
words, or symphonic music, or pictures. 
The relationships it reveals apply to all 
these and to other forms of communi- 
cation. The theory is so imaginatively 
motivated that it deals with the real inner 
core of the communication problem. 

One evidence of its generality is that 
the theory contributes importantly to, 
and in fact is really the basic theory 
of, cryptography, which is of course a 
form of coding. In a similar way, the 
theory contributes to the problem of 
translation from one language to an- 
other,  although   the   complete   story   here 

EDITOR’S NOTE 

The University of Illinois Press 
will shortly publish a memoir on 
communication theory. This will 
contain the original mathematical 
articles on communication by 
Claude E. Shannon of the Bell 
Telephone Laboratories, together 
with an expanded and slightly 
more technical version of Dr. 
Weaver’s article. 

clearly requires consideration of mean- 
ing, as well as of information. Similarly, 
the ideas developed in this work connect 
so closely with the problem of the logical 
design of computing machines that it is 
no surprise that Shannon has written a 
paper on the design of a computer that 
would be capable of playing a skillful 
game of chess. And it is of further per- 
tinence to the present contention that 
his paper closes with the remark that 
either one must say that such a com- 
puter “thinks,” or one must substantially 
modify the conventional implication of 
the verb “to think.” 

The theory goes further. Though 
ostensibly applicable only to problems at 
the technical level, it is helpful and sug- 
gestive at the levels of semantics and 
effectiveness as well. The formal dia- 
gram of a communication system on 
pages 12 and 13 can, in all likelihood, 
be extended to include the central issues 
of meaning and effectiveness. 

Thus when one moves to those levels 
it may prove to be essential to take 
account of the statistical characteristics 
of the destination. One can imagine, as 
an addition to the diagram, another box 
labeled “Semantic Receiver” interposed 
between   the   engineering   receiver  (which 

changes signals to messages) and the 
destination. This semantic receiver sub- 
jects the message to a second decoding, 
the demand on this one being that it 
must match the statistical semantic char- 
acteristics of the message to the statis- 
tical semantic capacities of the totality 
of receivers, or of that subset of re- 
ceivers which constitutes the audience 
one wishes to affect. 

Similarly one can imagine another box 
in the diagram which, inserted between 
the information source and the transmit- 
ter, would be labeled “Semantic Noise” 
(not to be confused with “engineering 
noise”). This would represent distor- 
tions of meaning introduced by the in- 
formation source, such as a speaker, 
which are not intentional but neverthe- 
less affect the destination, or listener. 
And the problem of semantic decoding 
must take this semantic noise into 
account. It is also possible to think of 
a treatment or adjustment of the original 
message that would make the sum of 
message meaning plus semantic noise 
equal to the desired total message mean- 
ing at the destination. 

ANOTHER way in which the theory 
 can be helpful in improving com- 
munication is suggested by the fact that 
error and confusion arise and fidelity de- 
creases when, no matter how good the 
coding, one tries to crowd too much over 
a channel. A general theory at all levels 
will surely have to take into account not 
only the capacity of the channel but also 
(even the words are right!) the capacity 
of the audience. If you overcrowd the 
capacity of the audience, it is probably 
true, by direct analogy, that you do not 
fill the audience up and then waste only 
the remainder by spilling. More likely, 
and again by direct analogy, you force 
a general error and confusion. 

The concept of information developed 
in this theory at first seems disappoint- 
ing and bizarre—disappointing because 
it has nothing to do with meaning, and 
bizarre because it deals not with a single 
message but rather with the statistical 
character of a whole ensemble of mes- 
sages, bizarre also because in these sta- 
tistical terms the words information and 
uncertainty find themselves partners. 

But we have seen upon further ex- 
amination of the theory that this analysis 
has so penetratingly cleared the air that 
one is now perhaps for the first time 
ready for a real theory of meaning. An 
engineering communication theory is 
just like a very proper and discreet girl 
at the telegraph office accepting your 
telegram. She pays no attention to the 
meaning, whether it be sad or joyous 
or embarrassing. But she must be pre- 
pared to deal intelligently with all mes- 
sages that come to her desk. This idea 
that a communication system ought to 
try to deal with all possible messages, 
and  that  the  intelligent  way   to   try   is  to 
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base design on the statistical character 
of the source, is surely not without 
significance for communication in gen- 
eral. Language must be designed, or de- 
veloped, with a view to the totality of 
things that man may wish to say; but not 
being able to accomplish everything, it 
should do as well as possible as often as 
possible. That is to say, it too should 
deal with its task statistically. 

This study reveals facts about the 
statistical structure of the English lan- 
guage, as an example, which must seem 
significant to students of every phase of 
language and communication. It sug- 
gests, as a particularly promising lead, 
the application of probability theory to 
semantic studies. Especially pertinent 
is the powerful body of probability the- 
ory dealing with what mathematicians 
call the Markoff processes, whereby past 
events influence present probabilities, 
since this theory is specifically adapted 
to handle one of the most significant but 
difficult aspects of meaning, namely the 
influence of context. One has the vague 
feeling that information and meaning 
may prove to be something like a pair 
of canonically conjugate variables in 
quantum theory, that is, that informa- 
tion and meaning may be subject to some 
joint restriction that compels the sacri- 
fice of one if you insist on having much 
of the other. 

Or perhaps meaning may be shown to 
be analogous to one of the quantities on 
which the entropy of a thermodynamic 
ensemble depends. Here Eddington has 
another apt comment: 

“Suppose that we were asked to ar- 
range the following in two categories— 
distance, mass, electric force, entropy, 
beauty, melody. 

“I think there are the strongest 
grounds for placing entropy alongside 
beauty and melody, and not with the first 
three. Entropy is only found when the 
parts are viewed in association, and it 
is by viewing or hearing the parts in 
association that beauty and melody are 
discerned. All three are features of ar- 
rangement. It is a pregnant thought that 
one of these three associates should be 
able to figure as a commonplace quan- 
tity of science. The reason why this 
stranger can pass itself off among the 
aborigines of the physical world is that 
it is able to speak their language, viz., 
the language of arithmetic.” 

One feels sure that Eddington would 
have been willing to include the word 
meaning along with beauty and melody; 
and one suspects he would have been 
thrilled to see, in this theory, that en- 
tropy not only speaks the language of 
arithmetic; it also speaks the language 
of language. 

Warren Weaver is Director 
for the Natural Sciences in 
the Rockefeller Foundation. 

 
ARTIFICIAL LANGUAGE results when letters or words are set down sta- 
tistically. 1. Twenty-six letters and one space are chosen at random. 2. 
Letters are chosen according to their frequency in English. 3. Letters are 
chosen according to the frequency with which they follow other letters. 4. 
Letters are chosen according to frequency with which they follow two other 
letters.   Remaining examples do the same with words instead of letters. 
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