$O(f(n)), \Omega(g(n)), \Theta(f(n))$

Introduction

In this lecture we introduce and explain the three functions that are typically used to characterize the growth of algorithms. O(f(n)), or big Oh, is a ceiling saying that the algorithm grows no faster than f(n). $\Omega(g(n))$ is a floor saying that the algorithm grows no slower than g(n). $\Theta(f(n))$ is the defining function for an algorithm. When we can find a ceiling and a floor that employ the same function f(n), we say that the algorithm is $\Theta(f(n))$.

Big-O Notation

DEFINITION 1

Let T and f be functions from the set of integers or the set of real numbers to the set of real numbers. We say that T(n) is O(f(n)) if there are positive constants n_0 and C such that

$$|T(n)| \le C|f(n)|$$

whenever

$$n > n_0$$

[This is read as "T(n) is big-oh of f(n)."]

- The constants C and n_0 in the definition of big- O notation are called witnesses to the relationship T(n) is O(f(n)).
- There are *infinitely many* witnesses to the relationship T(n) is O(f(n)).

Finding C, n_0 , and f(n) for T(n)

Steps: Assume $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n + 10$

- 1. Find f(n). Let f(n) be the fastest growing term in T(n) with its coefficient removed. $f(n) = n^2$
- 2. Find *C*.

2.1.
$$C = C_{min} + \Delta$$
, where $\Delta = 1$ (in many cases).
2.2. $C_{min} = \lim_{n \to \infty} \frac{T(n)}{f(n)} = \lim_{n \to \infty} \frac{\frac{3}{2}n^2 + \frac{5}{2}n + 10}{n^2} = \frac{3}{2}$

- 2.3. In practice, C_{min} is the coefficient of the fastest growing term in T(n).
- 3. $C = \Delta + \frac{3}{2} = 1 + \frac{3}{2} = \frac{5}{2}$
- 4. Find n_0 .
 - 4.1. Solve $|T(n_0)| \le C|f(n_0)|$

$$\frac{3}{2}n_0^2 + \frac{5}{2}n_0 + 10 \le \frac{5}{2}n_0^2$$

$$n_0^2 - \frac{5}{2}n_0 - 10 \ge 0$$

$$n_0 = \left[\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 + 4 \cdot 1 \cdot 10}}\right], n_0 > 0$$

$$n_0 = [4.65], n_0 > 0$$

$$n_0 = 5$$

4.2. Choose an integer value for n_0 . Let $n_0 = 5$.

We have shown that $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n + 10$ is $O(n^2)$ because we have found witnesses $C = \frac{5}{2}$ and $n_0 = 5$.

Figure 1. T(n) is O(f(n))

REMARK

As an estimate of the growth of T(n), O(f(n)) is a conservative estimate because it places a *ceiling* on the growth T(n). When $n > n_0$, $O(f(n)) \ge T(n)$. Let us call O(f(n)), big-O of (n), the Eeyore estimate because the actual running time of a function, given by T(n) will be *less* than the estimate Cf(n) because Eeyore is a pessimist always promising *less* than he actually delivers.

Seek to emulate Eeyore.

Big- Ω Notation **DEFINITION 2**

Let T and f be functions from the set of integers or the set of real numbers to the set of real numbers. We say that T(n) is $\Omega(g(n))$ if there are positive constants n_0 and C such that

$$|T(n)| \ge C|g(n)|$$

whenever

$$n > n_0$$

[This is read as "T(n) is big-Omega of g(n)."]

Finding C, n_0 , and f(n) for T(n)

Steps: Assume $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n - 10$

- 5. Find g(n). Let f(n) be the fastest growing term in T(n) without its coefficient. $f(n) = n^2$
- 6. Find *C*.

6.1.
$$C = C_{min} - \Delta$$
, where $\Delta = 1$ (in many cases).
6.2. $C_{min} = \lim_{n \to \infty} \frac{T(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{3}{2}n^2 + \frac{5}{2}n - 10}{n^2} = \frac{3}{2}$

6.3. In practice, C_{min} is the coefficient of the fastest growing term in T(n).

6.4.
$$C = \frac{3}{2} - \Delta = \frac{3}{2} - 1 = \frac{1}{2}$$

7. Find n_0 .

7.1. Solve $|T(n_0)| \ge C|g(n_0)|$

$$\frac{\frac{3}{2}n_0^2 + \frac{5}{2}n_0 - 10 \le \frac{1}{2}n_0^2}{n_0^2 + \frac{5}{2}n_0 - 10 \le 0}$$

$$n_0 = \left[\frac{-\frac{5}{2} \mp \sqrt{\left(\frac{5}{2}\right)^2 + 4 \cdot 1 \cdot 10}}{2}\right], n_0 > 0$$

$$n_0 = [2.15], n_0 > 0$$

$$n_0 \ge 2$$

7.2. For n > 0, $T(n) \ge Cg(n)$. Select $n_0 = 0$.

We have shown that $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n - 10$ is $\Omega(n^2)$ because we have found witnesses $C = \frac{1}{2}$ and $n_0 = 2$.

Figure 2. T(n) is $\Omega(g(n))$

REMARK

As an estimate of the growth of T(n), $\Omega(g(n))$ is an optimistic estimate because it places a **floor** on the growth of T(n). When $n>n_0$, $T(n)\geq \Omega(g(n))$. Let us call $\Omega(g(n))$, big-omega of (n), the Tigger estimate because the actual running time of a function, given by T(n) will be **greater** than the estimate Cg(n) and Tigger is an optimist always promising **more** than he can deliver.

Big-⊕ Notation DEFINITION 3

Let T and f be functions from the set of integers or the set of real numbers to the set of real numbers. We say that T(n) is $\Theta(f(n))$ if T(n) is O(f(n)) and if T(n) is O(f(n)). When T(n) is O(f(n)), we say that "T is big-Theta of f(n) and we also say that T(n) is of order f(n).

Let us find a function, T(n), that is both O(f(n)) and $\Omega(f(n))$.

Figure 3. T(n) is $\Theta(n)$