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1. KOLMOGOROV'S COMPLEXITY MEASURE 

Kolmogorov [2] has proposed a definition of randomness for which strong argu- 
ments can be given that it is coextensive with our corresponding intuitive concept. 
It is based on the theory of algorithms developed simultaneously in a variety of 
equivalent formulations by the logicians in the middle of the thirties. When justifying 
the definitions to be given we shall lean heavily on the thesis of Church that the precise 
mathematical notion, that of a partial recursive function, is an adequate formalization 
of our intuitive concept of an effectively computable function. In the following the 
terms algorithm and computable function will be used as synonyms for partial 
recursive function. We shall also have to consider sets which can be generated or, 
equivalently, effectively enumerated. The corresponding technical notion is that of a 
recursively enumerable set. 

Without restriction of generality all objects which we shall consider will be taken 
to be binary strings. Other objects can always be given binary codes. In particular, we 
suppose when convenient that natural numbers are written in the dual system. The 
length n of a binary string x =- xx2 ... x,n will be denoted by / (x). 

Our aim is to define a measure of the computational complexity of an object y 
when an object x is already given to us. It will be denoted by K(y I x) and is intuitively 
to be understood as the minimal number of binary units which, for a given x, is 
required to define y. Equivalently, we might consider K (y I x) to be the additional 
amount of information, measured as usual in bits, contained in y when we have already 
received the message x. Note that this is a measure of the amount of information 
contained in an individual object, a notion which is devoid of sense in the usual 
measure theoretic information theory. 

The relation between computational complexity and randomness is simple. Consider 
a large finite population, for example the set of all binary strings of length 104. Four 
pages of random numbers contain approximately that many digits. Given the popula- 
tion we define the random elements to be those whose complexity is as large as 
possible. It turns out that almost all elements actually have a complexity which is 
approximately equal to the maximal value. 

Formally we proceed as follows. Let A be an algorithm transforming a pair of 
binary strings p, x for which it is defined into a binary string y = A (p, x). We shall 
think of p as a program which, fed into the machine A, causes it to compute y by 
means of the given data x. The conditional complexity of the object y for given x with 
respect to A is defined as the shortest length of a program p which computes it, 

min I (p) 
KA(yIx)= A(p,x)= y 

+ oo if there is no p such that A (p, x) = y. 

This complexity measure depends essentially on the underlying method of pro- 
gramming A. However, Kolmogorov [2] has shown that there exists an algorithm A 

1 Paper read at the European Meeting of Statisticians, London, 1966 



266 

which, roughly speaking, is asymptotically at least as efficient as any other competing 
algorithm B. 

A partial recursive function A can be constructed with the property that, for any 
partial recursive function B, there exists a constant c such that 

KA (y I x) < KB(Y I X) + c 
for all x and y. 

This is the basic theorem. It is a simple corollary of the fact that there exists a 
Godel numbering of the partial recursive functions. Given a computable function f 
for which 

00 

2 2-f(n) < 1 
n=l 

we can even choose A such that the constant c appearing in the theorem equalsf (b) 
where b denotes the G6del number of the partial recursive function B. Letting f be 
such that the sum above converges very slowly, we see that c need only be slightly 
larger than the number of bits required to define B. For example, one might choose 
f(n) to be the smallest integer > log n + 2 log log n for n > 3, f(1) = 2 andf (2) = 
3. Here and in the following the logarithms are taken to the base 2. 

An algorithm whose existence is guaranteed by the theorem will be called asymp- 
totically optimal. It is of course not unique, but given two such algorithms A and B 

I KA (y )-KB (Y x) I < c 

for some constant c, so that for large quantities of information the difference becomes 
negligible. In the following we shall fix once and for all an asymptotically optimal 
algorithm, speaking simply of the conditional complexity of y given x. Accordingly, 
we shall drop the index and write 

K(y I x). 

This is the searched for mathematical definition of the number of bits required 
to define y when x is already given to us. 

Inserting the empty string for x in K (y I x) we obtain a quantity to be denoted 

K(y) 

which we shall call the complexity of y or the amount of information contained in y. 
It is intuitively not astonishing that the measures we have introduced have an 

asymptotical character. Indeed, it can hardly have any sense to say that 00000 is 
more or less complex than 01011, whereas a sequence of a thousand zeros should 
be less complex than a sequence of the same length obtained by coin tossing. 

The theorem just stated allows us to estimate the complexity from above. To obtain 
inequalities in the opposite direction the following lemma is constantly applied. 

For a fixed x the number of elements y with 

KA (y I x) < 
is less than 2c. 

KA (y I x) < c if and only if there exists a program p such that A (p, x) = y and 
I (p) < c. It only remains to note that the total number of programs p with I (p) < c 
equals 2c - 1. 

Let us now return to the problem of making mathematically precise the notion of 
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randomness. Consider the population of all binary strings x1x2 ... xn of length n. 
It is completely specified by the number n and we accordingly consider the conditional 
complexity K (xlx2... x. I n) as a measure of the randomness of the element 
x1x2 . .. xn in the specified population. It is a simple consequence of the basic theorem 
that 

K(xlx2... n I n) <n+ c 

for some constant c. Just compare the asymptotically optimal algorithm with the 
reproducing algorithm B (p, x) = p for which KB (y I x) = (y) so that KB (X1x2 ... 
x I n) = n. On the other hand the lemma tells us that the number of sequences of 
length n for which 

K (xlx2 ... n I| n) > n - c 

is greater than (1 - 2-c) 2". In particular there exists a sequence xx2 ... x with 
K (XlX2... x, I n) > n, and for large values of n the overwhelming majority of 
sequences have a complexity which is approximately equal to n. These are the random 
elements of the population. 

Random sequences cannot be constructed. More precisely, if an algorithm for 
every n produces a binary string x1x2 ... x, of length n, then 

K(xx2 ... n I n) < c 

for some constant c depending on the algorithm. To see this, let B be defined by 
B( , n) - x1x2... x,, the first argument equalling the empty string. Then KB (x1x2 ... 

x, I n) = 0 and it only remains to apply the basic theorem. 
The non constructability of random sequences is connected with the fact that the 

complexity measure is not computable. For suppose that K (y I x) were a computable 
function of x and y. Whatever be the natural number n, we could then calculate 
K (xx2 . . . x, I n) for all sequences xx2 ... x, of that length, thus finding effectively 
one for which 

K(x,x2... x, I n) > n. 

This is in contradiction with the preceding paragraph. 
Chaitin [1] has, apparently without knowledge of Kolmogorov [2], made the fol- 

lowing proposal. Patternless finite binary sequences of a given length are sequences 
which in order to be computed require programs of approximately the same length 
as the longest programs required to compute any binary sequences of that given 
length. His formal development, which is based on a certain type of Turing machines, 
differs, however, essentially from Kolmogorov's. 

2. TESTS FOR RANDOMNESS 

What is the relation between the complexity measure and the various statistical tests 
which have been proposed for tables of random numbers? If the definition given by 
Kolmogorov is adequate, we ought to be able to prove that the sequences of maximal 

complexity pass all the familiar randomness tests. We shall see that, as a matter of 
fact, the random sequences can equivalently be defined to be those sequences which 

pass a certain universal test. Roughly speaking, this universal test is such that if a 

sequence passes it, then it passes every conceivable test, neglecting a change in the 
level of significance. The difference n-K(xx2 ... x, In) may be interpreted as 
minus the logarithm of the critical level with respect to the universal test. 

Since we are always interested merely in the order of magnitude of the level of 
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significance, we shall restrict our attention to levels s = 2-, m = 1, 2,.... As an 
example consider the test which rejects if the number of zeros no differs too much from 
the number of ones nl, 

no + n = n, nl = xl + x2 + ... + x. 

It is given by the following prescription. 
Reject the hypothesis that xlx2... x, is random on the level s = 2-" provided 

Inl -no I >f(m,n). 

Here f is determined by the requirement that the number of sequences of length n 
for which the inequality holds should be < 2"-" and that it should not be possible 
to diminishf without violating this condition. 

Generally, a randomness test is given by a prescription which, for every level of 
significance s, tells us for what sequences x1x2... x, the hypothesis should be re- 
jected. Let Ur denote the critical region on the level s = 2-m. The conditions to be 
satisfied by the family of critical regions are as usual, firstly, that 

U1 D U2 D ...* U, ... 

and, secondly, that the number of sequences of length n contained in Um is to be 

< 2n-m 

for all m and n. The whole family of critical regions will be denoted by U so that 
Um appears as the section of U at m. 

Supporting ourselves on Church's thesis we now formalize the fact that the test is 
given by an effective prescription by assuming the family of critical regions U to be 
recursively enumerable. Every test which has been proposed for practical use is of this 
type and on the basis of Church's thesis it seems safe to say that this is the most general 
definition we can imagine as long as we confine ourselves to tests which can actually 
be carried out and are not pure set theoretic abstractions. Anyway, in the following 
we shall understand by a test U a recursively enumerable set whose sections satisfy 
the two conditions above. 

We are now able to prove a theorem which is closely related to the basic one of the 
previous section. Their interrelation will soon be established. 

A test U can be constructed with the property that, for any test V, there exists a 
constant c such that 

VM+ U,, m = 12,.... 

Just as for Kolmogorov's theorem the proof is achieved by proving that the tests can 
be G6del numbered. And, again, given a computable functionf with 

0o 

2-(n) < 1 
n=l 

we can choose U such that the constant c appearing in the theorem equalsf(v) where 
v denotes the G6del number of V. 

A test with the property stated in the theorem will be called universal. For any test 
U it is convenient to introduce the critical level 

my (x) = max m, 
X Um 

where we have taken Uo to be the set of all binary strings. With this convention 
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0 < mU (x) < 1(x). 

Note that we have committed ourselves to a slight abuse of language since mu (x) 
is actually minus the logarithm of the critical level of x with respect to U. The defining 
property of a universal test U is that for any test V there exists a constant c such that 

mvy ) m(x) m (x) c. 

Henceforth we shall fix a universal test and drop the index, speaking of m (x) simply 
as the critical level of x. It is a measure of the irregularity of x, a low value of m (x) 
being tantamount to a high degree of randomness. 

The following theorem which, together with the previous one, was proved by Martin- 
Lof [3] shows the relation between the critical level and Kolmogorov's complexity 
measure. 

There exists a constant c such that 
l (x) - K(x I (x)l)- m(x) I c 

for all binary strings x. 

Let us now return to the specific test considered in the beginning of this section 
which rejects if the relative frequency differs too much from 1/2. By comparing it 
with the universal test we obtain the inequality 

I n - no I <f(m (xx2 ... xn) + c, n) 

which shows how to estimate the difference between the frequencies of zeros and ones 
by means of the critical level or, equivalently, the complexity. According to the theorem 
of de Moivre and Laplace the right hand member is of the order of magnitude 
-/n provided m (xx2 ... Xn) is bounded. 

In order to show that our investigations are not of a purely theoretical character 
we have to say something about the size of the constants which appear as soon as a 

specific test is compared with the universal one by means of the basic theorem. They 
depend on the skill with which we construct our G6del numbering. Using Godel's 

original technique with prime factor representations and so on, they would apparently 
be of an astronomical size. Working in Post's canonical systems the situation is more 

hopeful. To write down in a straightforward manner the test which rejects if the 

frequencies of zeros and ones differ too much, we need not more than 103 bits. This 
is still quite a lot but note that merely three lines in an ordinary book contain ap- 
proximately that amount of information. Since Post's canonical systems are not 

specially adapted for the definition of tests, it is likely that the constants can be further 

pressed down. 
We have seen that the complexity measure is non computable. Likewise, it is 

important to understand that the universal test which we have constructed is a 

recursively enumerable set which is not recursive. This means that, given a binary 
string and a level of significance, we cannot in general decide whether we should 

accept or reject the hypothesis. We merely know that if it is false on the given level, 
which means that the sequence is non random, then we shall get to know this sooner 
or later by systematically going through all tests. In the opposite case the process will 
extend indefinitely without our reaching any decision. 

The definition of a test which we have given by means of recursive function theory 
and the fact that we have taken into account the Godel numbers of the tests provides 
us with an at least conceptually satisfactory solution of a basic problem of statistics. 
In order that it be permissible to apply a statistical test it is currently required that it 
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must have been decided upon without knowledge of the outcome of the experiment. 
This important non mathematical clause is related to and just as obscure as von Mises' 
"Auswahl ohne Benutzung der Merkmalunterschiede der auszuwahlenden Elemente" 
which forms part of his definition of a "Kollektiv" and for which he was severely 
criticized. It is introduced to avoid the following paradox. Given any outcome of a 
statistical experiment there exists a test which rejects on the lowest possible level of 
significance, namely the test whose critical region consists of that outcome only. From 
the usual set theoretical point of view there is no essential difference between such a 
critical region and those which we intuitively accept as reasonable. The principle cited 
above is an effort to exclude unreasonable tests such as the mentioned one on the 
basis that they depend on the outcome of the experiment. The worst thing with the 
clause is not that it is a non mathematical one but that it is unacceptable to a 
practically working statistician. When testing for example a table of random numbers, 
we must scrutinize it with all our ingenuity to find out whether it has some very 
improbable properties. 

The construction of the universal test above amounts to the following. Suppose we 
choose to work on the level of significance - = 2-m. We should carry out all possible 
tests, whether or not they have been suggested by the outcome of the experiment. Only, 
when using a specific test V, we are to work on the smaller level of significance 

g 2-f (v) = 2-(m+f (v)) 

where v is the G6del number of the test V. Heref is a computable function such that 

00 

? 2-s(n) <1 
n= 1 

Iff is suitably chosen, f (v) equals approximately the number of bits required to 
define V. We see now that we cannot reject a random sequence by means of the 
unreasonable test defined above, since its G6del number is too large. Indeed, if the 
random sequence to be tested is of length n, we need more than n bits to define the 
test, and the modified level of significance will be < 2-n so that nothing can be 
rejected. 

3. THE ENTROPY IN EHRENFEST'S MODEL OF DIFFUSION 

The complexity measure of Kolmogorov provides us with a new definition of the 
statistical mechanical entropy. To be specific, we shall consider the Ehrenfest model of 
diffusion. A large number of balls numbered from 1 to n are distributed in two 
containers. The microstate of the system is given by the sequence x1x2 ... x,, where 
Xm = 0 or 1 is the number of the container in which the mth ball is situated. In all 
there are 2" different microstates. 

We shall consider quantities like 

n =- X1 + X2 + . . + Xn 

and refer to the value of n, = 0, 1, .. ., n as the macrostate of the system. Suppose 
now that we have observed the system to be in a certain macrostate. The Boltzmann 
entropy is then defined as the logarithm of the number of microstates which realize 
the given macrostate. Thus, if nothing is known about the system except its size n, 
the entropy equals 

log 2" = n, 
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whereas for a given value of n1 we obtain 

log( n) 
tnl 

Intuitively the entropy is to be a measure of the disorder of the system. The Boltz- 
mann entropy, say in the second version, has the strange property that a configuration 
like 

00000000000000000000000000000001111111111111111111 

has the same entropy as a chaotic one 

10011000110101111000000001011010000010000100001110 

since they correspond to the same macrostate. Think of the number of balls n as 
being of the order of magnitude 1023 instead of 50. 

It is proposed to replace the Boltzmann entropy by the conditional complexity of 
the configuration x1x2 ... xn given the macrostate of the system. Thus in the first 
case we obtain 

K(xx2 .. .Xn In) 
and in the second 

K(X1x2 .. Xn I no, n1), no + n1 = n. 

The entropy is now a function of the unknown microstate of the system and not 
merely of the macrostate. 

The importance of Boltzmann's expression is that it gives the maximum value of the 
entropy. Indeed, Kolmogorov's theorem tells us that 

K(xx2 ... Xn I n) < n + c 
and 

K (xX2 ... Xn I no,) nl) ) + c, 

where c is some constant, say of the order of magnitude 102 and hence truly negligible 
in comparison with 1023. 

A statistical mechanical system is said to be in equilibrium provided the entropy 
given the observed macrostate is maximal. Usually the macrostate corresponds to a 

given value of the energy. In the Ehrenfest model the equilibrium conditions are 

K(lX2 ... x,, I n) ~ n 
and 

K(x1 x2 .... x l n ) log ( 
n 

depending on whether we merely know the size n of the system or have in addition 
observed the quantity n,. 

The fundamental principle of statistical mechanics can now be expressed as follows. 
Since nothing is known about the mechanical system except its macrostate given by 
the values of a small number of physical quantities, we so to say express our lack 
of knowledge by assuming the microstate, which we cannot observe, to be as difficult 
as possible to define. From this assumption of maximal entropy the theorems of 
statistical mechanics are deduced. A typical example of how this is done was givwn in 
the previous section where we proved that 

I nl - no I f (n - K(XX2 . . . Xn I n) + c, n). 
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Here the assumption of maximal entropy 

K(xx2 ... xnI |n) n 

leads to the conclusion that I n1 - no I is of the order of magnitude /n. 
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RESUME 

La mesure de complexite de Kolmogoroff est employee, premierement, pour preciser la notion 
d'une sequence fortuite finie et, deuxiemement, pour donner une nouvelle d6finition de l'entropie d'un 
systeme mecanique statistique. 


