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An Introduction to the Theory of Elliptic Curves

The Discrete Logarithm Problem

Fix a group G and an element g ∈ G. The Discrete
Logarithm Problem (DLP) for G is:

Given an element h in the subgroup
generated by g, find an integer m
satisfying h = gm.

The smallest integer m satisfying h = gm is called the
logarithm (or index) of h with respect to g, and is
denoted

m = logg(h) or m = indg(h).

The Discrete Logarithm Problem is used as the underly-
ing hard problem in many cryptographic constructions,
including key exchange, encryption, digital signatures,
and hash functions.
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An Introduction to the Theory of Elliptic Curves

Diffie-Hellman Key Exchange

Public Knowledge: Group G and element g of order n.

BOB ALICE

Choose secret 0 < b < n Choose secret 0 < a < n

Compute B = gb Compute A = ga

Send B −−−−−−−−−→ to Alice

to Bob ←−−−−−−−−− Send A

Compute Ab Compute Ba

Bob and Alice have the shared value

Ab = gab = gba = Ba

And one hopes that computing gab from ga and gb re-
quires solving the discrete logarithm problem.
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An Introduction to the Theory of Elliptic Curves

How Hard is the Discrete Log Problem?

For some groups, DLP is very easy:
• Z/mZ under addition (Euclidean algorithm)
• R∗ or C∗ under multiplication (analytic logarithm)

For some groups, DLP is difficult. The classical example
is: F∗p under multiplication

The best known algorithm to solve DLP in F∗p takes
time

O
(
ec 3
√

(log p)(log log p)2
)

This is called subexponential, since it is faster than
exponential (in log p), but slower than polynomial.
For cryptographic purposes, it would be better to use
a group G for which solving DLP takes time that is
exponential in the order of G.

An Introduction to the Theory of Elliptic Curves – 4–



Elliptic
Curves



Elliptic Curves

What is an Elliptic Curve?

• An elliptic curve is a curve that’s also naturally a
group.

• The group law is constructed geometrically.

• Elliptic curves have (almost) nothing to do with
ellipses, so put ellipses and conic sections out of
your thoughts.

• Elliptic curves appear in many diverse areas of math-
ematics, ranging from number theory to complex
analysis, and from cryptography to mathematical
physics.
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Elliptic Curves

Points on Elliptic Curves

• Elliptic curves can have points with coordinates in
any field, such as Fp, Q, R, or C.

• Elliptic curves with points in Fp are finite groups.

• Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP) is the discrete logarithm problem
for the group of points on an elliptic curve over a
finite field.

• The best known algorithm to solve the ECDLP is
exponential, which is why elliptic curve groups are
used for cryptography.

• More precisely, the best known way to solve ECDLP
for an elliptic curve over Fp takes time O

(√
p
)
.

• The goal of these talks is to tell you something
about the theory of elliptic curves, with an em-
phasis on those aspects that are of interest in cryp-
tography.
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Elliptic Curves

The Equation of an Elliptic Curve

An Elliptic Curve is a curve given by an equation of
the form

y2 = x3 + Ax + B

There is also a requirement that the discriminant

∆ = 4A3 + 27B2 is nonzero.

Equivalently, the polynomial x3 + Ax + B has distinct
roots. This ensures that the curve is nonsingular.

For reasons to be explained later, we also toss in an
extra point, O, that is “at infinity,” so E is the set

E =
{
(x, y) : y2 = x3 + Ax + B

} ∪ {O}.
Amazing Fact: We can use geometry to make the
points of an elliptic curve into a group. The next few
slides illustrate how this is accomplished.
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The Geometry of Elliptic Curves

The Elliptic Curve E : y2 = x3 − 5x + 8

E
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The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

vP
v
Q

E

Start with two points P and Q on E.
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The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve
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vP
v
Q

L

E

Draw the line L through P and Q.
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The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
v
Q

v
R

L

E

The line L intersects the cubic curve E in a third
point. Call that third point R.
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The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
v
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v
R

v

L

E

Draw the vertical line through R.
It hits E in another point.
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The Geometry of Elliptic Curves

Adding Points on an Elliptic Curve

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

vP
v
Q

v
R

v
P ⊕Q

L

E

We define the sum of P and Q on E to be the
reflected point. We denote it by P ⊕Q or just P + Q.
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The Geometry of Elliptic Curves

Adding a Point To Itself on an Elliptic Curve

vP

E

How do we add a point P to itself, since there are
many different lines that go through P ?
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The Geometry of Elliptic Curves

Adding a Point To Itself on an Elliptic Curve

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

vP

HHHHY

L is tangent to E at P

L

E

If we think of adding P to Q and let Q approach P ,
then the line L becomes the tangent line to E at P .
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The Geometry of Elliptic Curves

Adding a Point To Itself on an Elliptic Curve

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

vP

vR

v
2P

HHHHY

L is tangent to E at P

L

E

Then we take the third intersection point R, reflect
across the x-axis, and call the resulting point

P ⊕ P or 2P .
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The Geometry of Elliptic Curves

Vertical Lines and the Extra Point “At Infinity”

E

P

Q = −P
v

v

Let P ∈ E. We denote the reflected point by −P .
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The Geometry of Elliptic Curves

Vertical Lines and the Extra Point “At Infinity”

E

6

L

P

Q = −P
v

v

Vertical lines have

no third intersection

point with E

Big Problem: The vertical line L through P
and −P does not intersect E in a third point!

And we need a third point to define P ⊕ (−P ).
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The Geometry of Elliptic Curves

Vertical Lines and the Extra Point “At Infinity”

E

6

L

O

P

Q = −P
v

v

Create an extra

point O on E

lying at “infinity”

Solution: Since there is no point in the plane that
works, we create an extra point O “at infinity.”

Rule: O is a point on every vertical line.
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The Algebra of Elliptic Curves

Properties of “Addition” on E

Theorem The addition law on E has the following
properties:

(a) P +O = O + P = P for all P ∈ E.
(b) P + (−P ) = O for all P ∈ E.
(c) P + (Q + R) = (P + Q) + R for all P,Q, R ∈ E.
(d) P + Q = Q + P for all P,Q ∈ E.

In other words, the addition law + makes the points
of E into a commutative group.

All of the group properties are trivial to check except
for the associative law (c). The associative law can be
verified by a lengthy computation using explicit formu-
las, or by using more advanced algebraic or analytic
methods.
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The Algebra of Elliptic Curves

A Numerical Example

E : y2 = x3 − 5x + 8

The point P = (1, 2) is on the curve E.
Using the tangent line construction, we find that

2P = P + P =

(
−7

4
,−27

8

)
.

Let Q =
(
−7

4,−27
8

)
. Using the secant line construc-

tion, we find that

3P = P + Q =

(
553

121
,−11950

1331

)
.

Similarly,

4P =

(
45313

11664
,−8655103

1259712

)
.

As you can see, the coordinates are getting very large.
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The Algebra of Elliptic Curves

Formulas for Addition on E

Suppose that we want to add the points

P1 = (x1, y1) and P2 = (x2, y2)

on the elliptic curve

E : y2 = x3 + Ax + B.

Let the line connecting P to Q be

L : y = λx + ν

Explicitly, the slope and y-intercept of L are given by

λ =





y2 − y1

x2 − x1
if P1 6= P2

3x2
1 + A

2y1
if P1 = P2

and ν = y1 − λx1.
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The Algebra of Elliptic Curves

Formulas for Addition on E (continued)

We find the intersection of

E : y2 = x3 + Ax + B and L : y = λx + ν

by solving
(λx + ν)2 = x3 + Ax + B.

We already know that x1 and x2 are solutions, so we can
find the third solution x3 by comparing the two sides of

x3 + Ax + B − (λx + ν)2

= (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3.

Equating the coefficients of x2, for example, gives

−λ2 = −x1 − x2 − x3, and hence x3 = λ2 − x1 − x2.

Then we compute y3 using y3 = λx3 + ν, and finally

P1 + P2 = (x3,−y3).
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The Algebra of Elliptic Curves

Formulas for Addition on E (Summary)

Addition algorithm for P1 = (x1, y1) and P2 = (x2, y2)
on the elliptic curve E : y2 = x3 + Ax + B

• If P1 6= P2 and x1 = x2, then P1 + P2 = O.

• If P1 = P2 and y1 = 0, then P1 + P2 = 2P1 = O.

• If P1 6= P2 (and x1 6= x2),

let λ =
y2 − y1

x2 − x1
and ν =

y1x2 − y2x1

x2 − x1
.

• If P1 = P2 (and y1 6= 0),

let λ =
3x2

1 + A

2y1
and ν =

−x3 + Ax + 2B

2y
.

Then
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The Algebra of Elliptic Curves

Formulas for Addition on E (Summary)

Addition algorithm for P1 = (x1, y1) and P2 = (x2, y2)
on the elliptic curve E : y2 = x3 + Ax + B

• If P1 6= P2 and x1 = x2, then P1 + P2 = O.

• If P1 = P2 and y1 = 0, then P1 + P2 = 2P1 = O.

• If P1 6= P2 (and x1 6= x2),

let λ =
y2 − y1

x2 − x1
and ν =

y1x2 − y2x1

x2 − x1
.

• If P1 = P2 (and y1 6= 0),

let λ =
3x2

1 + A

2y1
and ν =

−x3 + Ax + 2B

2y
.

Then

P1 + P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν).
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The Algebra of Elliptic Curves

An Observation About the Addition Formulas

The addition formulas look complicated, but for exam-
ple, if P1 = (x1, y1) and P2 = (x2, y2) are distinct
points, then

x(P1 + P2) =

(
y2 − y1

x2 − x1

)2

− x1 − x2,

and if P = (x, y) is any point, then

x(2P ) =
x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax + B)
.

Important Observation: If A and B
are in a field K and if P1 and P2 have
coordinates in K, then P1 + P2 and 2P1
also have coordinates in K.
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The Algebra of Elliptic Curves

The Group of Points on E with Coordinates in a Field K

The elementary observation on the previous slide leads
to the important result that points with coordinates in a
particular field form a subgroup of the full set of points.

Theorem. (Poincaré, ≈ 1900) Let K be a field and
suppose that an elliptic curve E is given by an equation
of the form

E : y2 = x3 + Ax + B with A,B ∈ K.

Let E(K) denote the set of points of E with coordi-
nates in K,

E(K) =
{
(x, y) ∈ E : x, y ∈ K

} ∪ {O}.
Then E(K) is a subgroup of the group of all points
of E.
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The Algebra of Elliptic Curves

A Finite Field Example

The formulas giving the group law on E are valid if the
points have coordinates in any field, even if the geomet-
ric pictures don’t make sense. For example, we can take
points with coordinates in Fp.
Example. The curve

E : y2 = x3 − 5x + 8 (mod 37)

contains the points

P = (6, 3) ∈ E(F37) and Q = (9, 10) ∈ E(F37).

Using the addition formulas, we can compute in E(F37):

2P=(35,11), 3P=(34,25),

4P=(8,6), 5P=(16,19),. . .

P+Q=(11,10),. . .

3P+4Q=(31,28),. . .
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The Algebra of Elliptic Curves

A Finite Field Example (continued)

Substituting in each possible value x = 0, 1, 2, . . . , 36
and checking if x3 − 5x + 8 is a square modulo 37, we
find that E(F37) consists of the following 45 points mod-
ulo 37:

(1,±2), (5,±21), (6,±3), (8,±6), (9,±27), (10,±25),

(11,±27), (12,±23), (16,±19), (17,±27), (19,±1), (20,±8),

(21,±5), (22,±1), (26,±8), (28,±8), (30,±25), (31,±9),

(33,±1), (34,±25), (35,±26), (36,±7),O.

There are nine points of order dividing three, so as an
abstract group,

E(F37)
∼= C3 × C15.

Theorem. Working over a finite field, the group of
points E(Fp) is always either a cyclic group or the prod-
uct of two cyclic groups.
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The Algebra of Elliptic Curves

Computing Large Multiples of a Point

To use the finite group E(Fp) for Diffie-Hellman, say,

we need p to be quite large (p > 2160) and we need to
compute multiples

mP = P + P + · · · + P︸ ︷︷ ︸
m times

∈ E(Fp)

for very large values of m.

We can compute mP in O(log m) steps by the usual
Double-and-Add Method. First write

m = m0 + m1 · 2 + m2 · 22 + · · · + mr · 2r

with m0, . . . , mr ∈ {0, 1}.
Then mP can be computed as

mP = m0P + m1 · 2P + m2 · 22P + · · · + mr · 2rP,

where 2kP = 2 · 2 · · · 2P requires only k doublings.
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The Algebra of Elliptic Curves

Computing Large Multiples of a Point (continued)

Thus on average, it takes approximately log2(m) dou-

blings and 1
2 log2(m) additions to compute mP .

There is a simple way to reduce the computation time
even further. Since it takes the same amount of time to
subtract two point as it does to add two points, we can
instead look at a “ternary expansion of m, which means
writing

m = m0 + m1 · 2 + m2 · 22 + · · · + mr · 2r

with m0, . . . , mr ∈ {−1, 0, 1}.
On average, this can be done with approximately 2

3 of
the mi’s equal to 0, which reduces the average number

of additions to 1
3 log2(m) .
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What Does E(K) Look Like?

What Does E(R) Look Like?

We have seen a picture of an E(R). It is also possible
for E(R) to have two connected components.

E

Analytically, E(R) is isomorphic to
the circle group S1 or to two copies
of the circle group S1 × C2.
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What Does E(K) Look Like?

What Does E(C) Look Like?

The points of an elliptic curve with coordinates in the
complex numbers C form a torus, which is the math-
ematical term for the surface of a donut.

We can form a torus by choosing two complex num-
bers ω1, ω2 ∈ C, using them as two sides of a parallelo-
gram, and then identifying the opposite sides.

x

x

x

x

·
·
·
·
·
·
·
·
·
·

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ·
·
·
·
·
·
·
·
·
·

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

6

-
ω1

ω2
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What Does E(K) Look Like?

What Does E(C) Look Like?

The complex numbers ω1 and ω2 are called periods
of E. To describe the group law on E(C), we look at

L = {n1ω1 + n2ω2 : n1, n2 ∈ Z} ⊂ C,

the lattice spanned by ω1 and ω2.

t

v

v

t

t

t

tt

tt

t

t

tt

t

t
6

-

L

ω1

ω2 ω1 + ω2

2ω1

2ω2 ω1 + 2ω2

The lattice L is a regularly spaced array of points in C.
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What Does E(K) Look Like?

What Does E(C) Look Like?

The lattice L is a subgroup of the complex numbers.
The quotient is both a group and a complex manifold,
and there is a a complex analytic isomorphism

C/L

(
℘(z),12℘

′(z)
)

−−−−−−−−−→ E(C),

where the Weierstrass ℘-function is defined by the
Laurent series

℘(z) =
1

z2
+

∑

ω∈L
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

It satisfies ℘(z + ω) = ℘(z) for all ω ∈ L.

Thus ℘(z) is a doubly periodic function, since it
has two independent periods ω1 and ω2. It generalizes
the classical function ez that has the single period 2πi.
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What Does E(K) Look Like?

Points of Finite Order in E(C)

As an abstract group, the group E(C) looks like

E(C) ∼= C/L ∼= S1 × S1.

It is very easy to describe the points of finite order on
the torus S1 × S1.

For any integer N ≥ 1, we write

E(C)N = {P ∈ E(C) : NP = O}
for the set of elements of E(C) of order dividing N .

Exercise If G is an abelian group, prove that GN is a
subgroup of G. Also find a nonabelian counterexample.

Proposition. For all N ≥ 1,

E(C)N
∼= CN × CN

is the product of two cyclic groups of order N .
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What Does E(K) Look Like?

What Does E(Q) Look Like?

The group of rational points E(Q) is a subgroup of the
group of real points E(R), but we can no more draw a
nice picture of E(Q) sitting inside E(R) than we can
draw a nice picture of the rational numbers Q sitting
inside the real numbers R.

Study of the group E(Q) has played and continues to
play a fundamental role in the development of many
areas of number theory.

The modern theory of Diophantine equations, the
solution of polynomial equations using integers or ratio-
nal numbers, was initiated in 1922 when L.J. Mordell
proved a landmark result describing E(Q).
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What Does E(K) Look Like?

What Does E(Q) Look Like?

Theorem. (Mordell, 1922) Let E be an elliptic curve
given by an equation

E : y2 = x3 + Ax + B with A,B ∈ Q.

Then the group of rational points E(Q) is a finitely
generated abelian group. In other words, there is a
finite set of points P1, . . . , Pt ∈ E(Q) so that every
point P ∈ E(Q) can be written in the form

P = n1P1 + n2P2 + · · · + ntPt

for some n1, n2, . . . , nt ∈ Z.

A standard theorem about finitely generated abelian
groups tells us that E(Q) looks like

E(Q) ∼= (Finite Group)× Z× Z× · · · × Z︸ ︷︷ ︸
r copies

.
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What Does E(K) Look Like?

What Does E(Q) Look Like?

E(Q) ∼= E(Q)tors × Z× Z× · · · × Z︸ ︷︷ ︸
r copies

.

The finite group E(Q)tors is called the

Torsion Subgroup of E(Q).

The integer r is called the Rank of E(Q).

The description of all possible torsion subgroups for E(Q)
is very easy, although the proof is extremely difficult.

Theorem. (Mazur, 1977) The torsion subgroup of
the group of rational points E(Q) on an elliptic curve
must be one of the following 15 groups:

CN with 1 ≤ N ≤ 10 or N = 12,
C2 × C2N with 1 ≤ N ≤ 4.

In particular, E(Q)tors has order at most 16.
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What Does E(K) Look Like?

What Does E(Q) Look Like?
The rank is a far more mysterious quantity, although
there is a folklore conjecture.

Conjecture. There exist elliptic curve groups E(Q)
of arbitrarily large rank.

The evidence for this conjecture is fragmentary at best.
An example of rank at least 24 (Martin-McMillen 2000):

y2 + xy + y = x3 − 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116

And here is the only example known of higher rank. It
has rank at least 28 (Elkies 2006):

y2 + xy + y = x3 − 20067762415575526585033208209338542750930230312178956502x

+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429

Slightly more convincing is the fact that there do exist
elliptic curves with coefficients in the field Fp(T ) such
that the rank of E(Fp(T )) is arbitrarily large.
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What Does E(K) Look Like?

What Does E(Z) Look Like?

The ring Z is not a field, so the set

E(Z) = {(x, y) ∈ E(Q) : x, y ∈ Z} ∪ {O}
is usually not a subgroup of E(Q).

Indeed, even if P1 and P2 have integer coordinates, the
formula for P1 + P2 is so complicated, it seems unlikely
that the point P1 + P2 will have integer coordinates.

Complementing Mordell’s Theorem describing E(Q) is
a famous finiteness result for E(Z).

Theorem. (Siegel, 1928) Let E be an elliptic curve
given by an equation

E : y2 = x3 + Ax + B with A,B ∈ Z.

Then E has only finitely many points P = (x, y) with
integer coordinates x, y ∈ Z, i.e., E(Z) is a finite set.
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What Does E(K) Look Like?

What Does E(Z) Look Like?

Siegel actually proves something much stronger.

For each point P ∈ E(Q), write

x(P ) =
a(P )

b(P )
∈ Q as a fraction in lowest terms.

Theorem. (Siegel, 1928)

lim
P∈E(Q)

max{|a(P )|,|b(P )|}→∞

log |a(P )|
log |b(P )| = 1.

Roughly speaking, Siegel’s result says that the numera-
tor and the denominator of x(P ) tend to have approxi-
mately the same number of digits.
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What Does E(K) Look Like?

What Does E(Fp) Look Like?

The group E(Fp) is obviously a finite group. Indeed, it
clearly has no more than 2p + 1 points.

For each x ∈ Fp, there is a “50% chance” that the

value of f (x) = x3 + Ax + B is a square in F∗p. And

if f (x) = y2 is a square, then we (usually) get two points
(x,±y) in E(Fp). Plus there’s the point O.

Thus we might expect E(Fp) to contain approximately

#E(Fp) ≈ 1
2 · 2 · p + 1 = p + 1 points

A famous theorem of Hasse makes this precise:

Theorem. (Hasse, 1922) Let E be an elliptic curve

y2 = x3 + Ax + B with A,B ∈ Fp.

Then ∣∣#E(Fp)− (p + 1)
∣∣ ≤ 2

√
p.
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Elliptic Curves Over Finite Fields

The Order of the Group E(Fp)

The Frobenius Map is the function

τp : E(F̄p) −→ E(F̄p), τp(x, y) = (xp, yp).

One can check that τp is a group homomorphism.

The quantity ap = p + 1−#E(Fp)

is called the Trace of Frobinius, because one way
to calculate it is to use the Frobenius map to get a
linear transformation on a certain vector space V`(E).
Then ap is the trace of that linear transformation.

Hasse’s Theorem says that

|ap| ≤ 2
√

p.

For cryptography, we need E(Fp) to contain a subgroup
of large prime order. How does #E(Fp) vary for dif-
ferent E?
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The Distribution of the Trace of Frobenius

There are approximately 2p different elliptic curves de-
fined over Fp.

If the ap(E) values for different E were uniformly dis-
tributed in the interval from −2

√
p to 2

√
p then we

would expect each value to appear approximately 1
2
√

p
times.

This is not quite true, but it is true that the values ap

between (say) −√p and
√

p appear quite frequently.
The precise statement says that the ap values follow a
Sato-Tate distribution:

Theorem. (Birch)

#
{
E/Fp : α ≤ ap(E) ≤ β

} ≈ 1

π

∫ β

α

√
4p− t2 dt.
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Computing the Order of E(Fp)

If p is small, we can compute x3 + Ax + B for each
p = 0, 1, . . . , p−1 and use quadratic reciprocity to check
if it is a square modulo p. This takes time O(p log p).

Schoof found a deterministic polynomial-time algorithm
that computes E(Fp) in time O(log p)6.

Elkies and Atkin made Schoof’s algorithm more efficient
(but probabilistic), so it is now called the

SEA Algorithm.

The details of SEA are somewhat complicated. Roughly,
one studies the set of all maps of a fixed degree ` from E
to other elliptic curves. These correspond to quotient
curves E/Φ for finite subgroups Φ ⊂ E of order `. One
deduces information about ap modulo `, from which ap

can be reconstructed.
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Elliptic Curves in Characteristic 2

As a practical matter, computers tend to work more
efficiently with fields of characteristic 2 than they do
with fields of (large) prime characteristic.

For this reason, cryptographers often use elliptic curves
defined over a field Fq having q = 2k elements.

In characteristic 2, the curve y2 = x2 + Ax + B is al-
ways singular, so a more general equation is needed:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The formulas giving the group law are a little more com-
plicated, but have the same general form.

A number of people (Sato, Kedlaya, Lauder, Wan, Denef,
Vercauteren,. . . ) have worked on methods more effi-
cient than SEA to count #E(Fq) when q = pk and p is
a small prime.
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Koblitz Curves

For maximum efficiency, a Koblitz curve is used:

E : y2 + xy = x3 + ax2 + 1 with a = 0 or a = 1.

The Koblitz curve E has coefficients in F2. For crypto-
graphic purposes, one takes points in E(Fq) with q = 2k

and k large, say k ≥ 160.

There are security reasons why one might insist that k
be prime. But there are certain efficiency gains available
if k is composite.

A nice feature of the Koblitz curves is that it is easy to
count their points:

#E(F2k) = 2k −
(−1+

√−7
2

)k
−

(−1−√−7
2

)k
+ 1.
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Computing Multiples on Koblitz Curves

The computational advantage of the Koblitz curves lies
in the existence of the group homomorphism

τ : E(Fq) −→ E(Fq), τ (x, y) = (x2, y2).

Exercise Use the fact that squaring is a field automor-
phism of F2 to prove that τ (P + Q) = τ (P ) + τ (Q).

The map τ also satisfies: τ2(P ) + τ (P ) + 2P = O
Using this relation, every integer m has a “τ -adic” ex-
pansion (similar to its binary expansion):

m = m0 + m1τ + m2τ
2 + · · · + mrτ

r

with m0,m1, . . . , mr ∈ {0,±1}.
Then mP can be computed without doubling maps as:

mP = m0P + m1τ (P ) + m2τ
2(P ) + · · · + mrτ

r(P ).
An Introduction to the Theory of Elliptic Curves – 49–



The Elliptic Curve Discrete
Logarithm Problem



The Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem
ECDLP

Let E be an elliptic curve defined over a finite field Fp.

E : y2 = x3 + Ax + B A,B ∈ Fp.

Let S and T be points in E(Fp). Find an integer m so
that

T = mS.

Recall that the (smallest) integer m with this property
is called the Discrete Logarithm (or Index) of T
with respect to S and is denoted:

m = logS(T ) = indS(T ).

Let n be the order of S in the group E(Fp). Then

logS : (Subgroup of E generated by S) −→ Z/nZ.

is a group isomorphism, the inverse of m 7→ mS.
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How To Solve the ECDLP

Exhaustive Search Method

Compute m1S, m2S, m3S, . . . for randomly chosen val-
ues m1,m2,m3 until you find a multiple with mS = T .
Expected running time is O(p), since #E(Fp) = O(p).

Collision Search Method

Compute two lists for randomly chosen values
m1,m2, . . .

List 1: m1S, m2S, m3S, . . .

List 2: T −m1S, T −m2S, T −m3S . . .

until finding a collision

miS = T −mjS.

Expected running time is O(
√

p ) by the birthday para-
dox.
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How To Solve the ECDLP

Pollard’s ρ Method

• The collision method has running time O(
√

p ), but
it takes about O(

√
p ) space to store the two lists.

• Pollards ρ method for discrete logs achieves the
same O(

√
p ) running time while only requiring a

very small amount of storage.
• The idea is to traverse a “random” path through

the multiples mS + nT until finding a collision.
This path will consist of a loop with a tail attached
(just like the letter ρ!!).

• It takes O(
√

p ) steps to arrive on the loop part.
Then we can detect a collision in O(

√
p ) steps by

storing only a small proportion of the visited points.
We choose which points to store using a criterion
that is independent of the underlying group law.
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How Else Can DLP Be Solved?

Pollard’s ρ method works for most discrete log problems.

For an abstract finite group G whose group law is given
by a black box, one can prove that the fastest solution
to the DLP has running time O(

√
#G ).

But for specific groups with known structure, there are
often faster algorithms.

• For Z/NZ, the DLP is inversion modulo N . It
takes O(log N) steps by the Euclidean algorithm.

• For R∗, the DLP can be solved using the standard
logarithm,

if β = αm, then m = log(β)/ log(α).

• For F∗p, there is a subexponential algorithm called
the Index Calculus that runs in (roughly)

O
(
ec 3√log p) steps.
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Does ECDLP Have a Faster Solution?

The principal reason that elliptic curve groups are used
for cryptography is:

For general elliptic curves, the
fastest known method to solve
ECDLP is Pollard’s ρ Method!!

This means that it is not currently feasible to solve
ECDLP in E(Fq) if (say) q > 2160.

A DLP of equivalent difficulty in F∗q requires q ≈ 21000.

Similarly, ECDLP with q ≈ 2160 is approximately as
hard as factoring a 1000 bit number.

Hence cryptographic constructions based on ECDLP
have smaller keys, smaller message blocks, and may also
be faster.
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Solving ECDLP in Special Cases

For “most” elliptic curves, the best known solution to
ECDLP has running time O(

√
p ). But for certain spe-

cial classes of curves, there are faster methods.

It is important to know which curves have fast ECDLP
algorithms so that we can avoid using them.

Elliptic Curves E(Fp) With Exactly p Points

If #E(Fp) = p, then there is a “p-adic logarithm map”
that gives an easily computed homomorphism

logp-adic : E(Fp) −→ Z/pZ.

It is easy to solve the discrete logarithm problem in
Z/pZ, so if #E(Fp) = p, then we can solve ECDLP in
time O(log p).
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The Weil Pairing

An important tool for studying elliptic curves E over
any field is the Weil Pairing. Let

EN = {P ∈ E : NP = O} and µN = {ζ : ζN = 1}.
The Weil pairing is a non-degenerate alternating bilinear
form

eN : EN × EN −→ µN

The alternating property means that eN (P, P ) = 1.

In order to work with the Weil pairing over a finite
field Fq, it is necessary that EN ⊂ E(Fq). (This also
ensures that µN ⊂ Fq.)

The Weil pairing has important applications in both
cryptanalysis and in the construction of certain cryp-
tosystems. There are various equivalent ways to define
the Weil pairing and various algorithms to compute it.
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Divisors and a Definition of the Weil Pairing

If E is an elliptic curve, then any function f (x, y) that
does not vanish identically on E will have zeros and
poles, each of which may occur with multiplicity one or
larger. The divisor of f is the formal sum

div(f ) = n1(P1) + n2(P2) + · · · + nr(Pr),

where f has a zero at Pi of order ni (if ni > 0) and a
pole at Pi of order −ni (if ni < 0).

Given two points P,Q ∈ EN , choose any two points
R, S ∈ E and find functions fP and fQ satisfying

div(fP ) = N(P + R)−N(R),

div(fQ) = N(Q + S)−N(S).

Then

eN (P,Q) =
fP (Q + S)

fP (S)
· fQ(R)

fQ(P + R)
.
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The Tate Pairing

The Weil pairing is alternating. It is often more efficient
to use the Tate pairing, which is symmetric.

The Tate Pairing is a non-degenerate symmetric
bilinear form

E(Fq)N×
E(Fq)

NE(Fq)
−→ F∗q

(F∗q)N
, (P, Q) 7−→ 〈P,Q〉Tate.

We assume that µN ⊂ F∗q , so F∗q/(F∗q)N is cyclic of
order N , since F∗q is a cyclic group.

To compute 〈P,Q〉Tate, find a function fP with divisor

div(fP ) = N(P )−N(O)

and choose any point S ∈ E. Then

〈P, Q〉Tate = fP (Q + S)/fP (S).
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Reducing ECDLP in E(Fp) to DLP in F∗p
The Tate pairing can be used to reduce ECDLP in
E(Fp) to DLP in F∗q for a power q = pt. (MOV method)

Precisely, let q = pt be the smallest power of p satisfying

pt ≡ 1 (mod N), where N = #E(Fp).

Then the field Fq contains a primitive N th root of unity.

Reduction of ECDLP in E(Fp) to DLP in F∗p
• Suppose that S, T ∈ E(Fp) satisfy T = mS.

• Compute 〈S, S〉Tate and 〈S, T 〉Tate as elements of F∗q.
• By linearity, 〈S, T 〉Tate = 〈S,mS〉Tate = 〈S, S〉m

Tate
.

• Solving DLP in F∗q reveals m and solves ECDLP.

Moral: Don’t use curves with small pt (say pt < 21000).
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Tripartite Diffie-Hellman Key Exchange

The Tate pairing is used in a number of important cryp-
tographic constructions. The first was Joux’s method to
do Diffie-Hellman key exchange with three people. (No
four person method is known!)

We begin by fixing:
• A prime p > 21000 and an elliptic curve E/Fp.
• A point S ∈ E(Fp) of order N with p ≡ 1 (mod N).

Three Person Diffie-Hellman Key Exchange

Alice Bob Carl

Choose secret a Choose secret b Choose secret c

Publish A = aS Publish B = bS Publish C = cS

Do 〈B, C〉a
Tate

Do 〈A,C〉b
Tate

Do 〈A,B〉c
Tate

Alice, Bob, and Carl share the value 〈S, S〉abc
Tate
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Reduction Modulo p, Lifting, and ECDLP

Reduction of an Elliptic Curve Modulo p

Let E be an elliptic curve given by an equation

E : y2 = x3 + Ax + B with A,B ∈ Z
We can reduce the coefficients of E modulo a prime p
to get an elliptic curve Ẽ with coefficients in Fp,

Ẽ : y2 = x3 + Ãx + B̃ with Ã, B̃ ∈ Fp.

However, remember we must check that Ẽ is not singu-
lar, which means that we need the discriminant

∆̃ = 4Ã3 + 27B̃2 6= 0 in Fp (also p 6= 2).

We say that E has Good Reduction at p if p does
not divide the discrimiannt ∆ = 4A3+27B2 and we say
that E has Bad Reduction at p if p does divide ∆.

When we talk about reduction modulo p, we will gen-
erally assume that we have good reduction at p.

An Introduction to the Theory of Elliptic Curves – 61–



Reduction Modulo p, Lifting, and ECDLP

Reduction of Points Modulo p
Let P = (x, y) ∈ E(Q) be a rational point on an elliptic
curve. We can reduce the coordinates of P modulo p to
get a point P̃ = (x̃, ỹ) ∈ Ẽ(Fp).

If x and y are in Z, this is fine, but what if they have
denominators? Suppose x = a

b ∈ Q. If p - b, then b̃ has
an inverse in Fp, so we set

x̃ = ãb̃−1 in Fp.

And ỹ is defined similarly.

What happens if p divides the denominator of x or y?
In that case, it divides both denominators and we set

P̃ = Õ = point at infinity on Ẽ.

We have defined a Reduction Modulo p Map

E(Q) −→ Ẽ(Fp), P 7−→ P̃ .
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The Reduction Modulo p Homomorphism
It is hard to overstate the importance of reduction mod-
ulo p. A first indication is:

Theorem. If E has good reduction, then the reduc-
tion modulo p map

E(Q) −→ Ẽ(Fp), P 7−→ P̃ ,

is a group homomorphism.

Example Let E be the elliptic curve

E : y2 = x3 + 2x + 4.

Some points in E(Q) are

P = (2, 4), Q =
(1

4,
17
8

)
, P + Q =

(−54
49,−232

343

)
.

The reduction modulo 11 map E(Q) → Ẽ(F11) gives

P̃ = (2, 4), Q̃ = (3, 9), P̃ + Q̃ = (9, 5) = P̃ + Q.
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Reduction Modulo p and Torsion Points
If E(Q) is infinite, then obviously the homomorphism

E(Q) −→ Ẽ(Fp)

cannot be one-to-one.

Theorem. If gcd(N, p) = 1 and E has good reduc-
tion, then

E(Q)N −→ Ẽ(Fp) is one-to-one.

A similar statement holds if Q is replaced by a number
field. It is difficult to overemphasize the importance of
this theorem.

The theorem gives an efficient way to find E(Q)tors.
Example. E : y2 = x3 − 5x + 2. We compute

∆ = −392 = −23 · 72, #E(F3) = 4, #E(F11) = 14.

Hence #E(Q)tors is at most 2. Since (2, 0) ∈ E(Q)tors
is a point of order 2, this proves that E(Q)tors = C2.
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Reduction Modulo p, Lifting, and ECDLP
Here is a possible approach to solving ECDLP:

(1) Start with points S̃, T̃ ∈ Ẽ(Fp).

(2) Choose an elliptic curve E whose reduction is Ẽ.

(3) Lift S̃, T̃ to points S, T ∈ E(Q).
(4) Find a relation nT = mS in E(Q).

(5) Reduce modulo p to get nT̃ = mS̃.

• It is easy to find a lift E of Ẽ so that S̃ and T̃ have
lifts S, T ∈ E(Q).

• If S and T are linearly dependent in E(Q), then
there are efficient methods for finding a relation.

So what makes it hard to solve ECDLP?
• For some E, it is easy to find S and T , but S and T

are almost always independent.
• For some E, the lifts S and T exist and are always

dependent, but S and T are very hard to find.
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Height Functions

In order to understand lifting (and for many other pur-
poses), it is important to answer the question:

How complicated are the points in E(Q)?

The answer is provided by the Theory of Heights.
The Height of a rational number is defined to be

H
(a

b

)
= max

{|a|, |b|}, for
a

b
∈ Q, gcd(a, b) = 1.

Note. There are only finitely many rational numbers
with height less than a given bound.

On elliptic curves, it is convenient to take the logarithm,
so the Height of a Point on an elliptic curve is

h(P ) = log H(xP ) for P = (xP , yP ) ∈ E(Q).

(If P = O, we set h(P ) = 0.)

Intuition. It takes O(h(P )) bits to store P .
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Properties of the Height Function on an Elliptic Curve
The reason that the height function plays an important
role in studying E(Q) is due to its dual role:
(1) h measures the arithmetic complexity of points.
(2) h’s transformations reflect the group law on E

Theorem. There are constants c1, c2, . . . so that for
all points P, Q, . . . ∈ E(Q):

(a)
∣∣h(nP )− n2h(P )

∣∣ ≤ c1.

(b)
∣∣h(P + Q) + h(P −Q)− 2h(P )− 2h(Q)

∣∣ ≤ c2.

(c) For any c, the set
{
P ∈ E(Q) : h(P ) ≤ c

}
is finite.

Property (a) may be written h(nP ) = n2h(P ) + O(1).

Remember that h(P ) is the logarithm, so this says that
the numerator or denominator of xnP should have ap-
proximately n2 digits.
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The Quadratic Growth of the Height on Elliptic Curves

We illustrate with the elliptic curve and point

E : y2 = x3 + x + 1 and P = (0, 1).

Here is a table of H(xnP ) for n = 1, 2, . . . , 25.
1 1

2 2

3 13

4 36

5 685

6 7082

7 196249

8 9781441

9 645430801

10 54088691834

11 23545957758733

12 3348618159624516

13 3438505996705270765

14 2389279734043328028530

15 3568842156502352911081681

16 9147174028201584695660404993

17 40437302897155037003168469209281

18 144041052884595077187155035625188225

19 4077551427539061268365818617070082487981

20 29247742836717181569573123126609380958628633

21 1644662183623605030943992459758717959368038089933

22 76795559807444450146033952048248025474377706486132570

23 6037390795706541540397642739132383429233648456214266105001

24 816297679393916005694837838808362431503501229559444925278681793

25 242513738949178952234806483689465816559631390124939658301320990605073

26 47803232530993255659471421491008524334965293857886857075847338386784976289

27 67559659782039617237841184516992302782851604142385500859648938761010393239431661

28 32014345486637038681521545788678891610665676156825092102996356573331436095404542962201

29 75366079100860358183774143789438882594269554344230013075428451465317687946832468865183904333

30 235596097713466330738098972552422422374156906907547045290688341377958875910979032848694872594995042

31 949929776724866709094954536710367778326401614961417743163923974793524931042092311077415673676701373662241

32 6939337780803547166840419022721964472182663632045063388197164628060008767530358928827755424306465309623700644865

33 138560009627230805680861712729089150246171433367872626810509092219015283874452951868081163892328387927559567336088640513

34 1470496183658794212496122961743692131111461785062102204982019653166220314029845380022856443720777836633186409902489575338782721

35 107010592458999940561955702180302050658481740392774624430340775789803872514791716886258854994198364978765941985457904860326401460918221

Notice the parabolic shape,
reflecting the quadratic growth
in the number of digits.
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Canonical Heights

Taking a limit gets rid of those pesky O(1)’s.

Theorem. (Néron, Tate). The limit

ĥ(P ) = lim
n→∞

1

n2
h([n]P )

exists and has the following properties:
• ĥ(P ) = h(P ) + O(1).
• ĥ([n]P ) = n2ĥ(P ).
• ĥ(P + Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).
• ĥ(P ) = 0 if and only if P ∈ E(Q)tors.
• More generally, the canonical height ĥ induces a

positive definite quadratic form on the real vector
space

E(Q)⊗ R ∼= Rr, where r = rank E(Q).
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The Height Regulator
The inner product

〈P,Q〉 := ĥ(P + Q)− ĥ(P )− ĥ(Q)

gives E(Q) ⊗ R ∼= Rr the structure of a Euclidean
space, and E(Q)/E(Q)tors

∼= Zr is a lattice in Rr. The
volume of a fundamental domain of this lattice is

RE = Elliptic Regulator of E.

Concretely, let P1, . . . , Pr ∈ E(K) be a basis for the
quotient E(Q)/E(Q)tors. Then

RE = det
(〈Pi, Pj〉

)
1≤i,j≤r.

Efficient methods to compute ĥ(P ) to high accuracy
(e.g., to 10−100), even for elliptic curves whose coeffi-
cients have hundreds of digits, use a local decomposition

ĥ(P ) = λ̂∞(P ) +
∑

λ̂p(P ).
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Using Heights To Compute Relations

Here is an initially plausible way to solve ECDLP via
lifting. Let S̃, T̃ ∈ Ẽ(Fp).

(1) Lift Ẽ and T̃ to a curve E/Q and point T ∈ E(Q).
(2) Do this in such a way that E(Q) has rank 1. (This

can probably be done.)
(3) Lift S̃ to a point S ∈ E(Q).
(4) Compute ĥ(S)/ĥ(T ). This is the square of a ra-

tional number, since S and T are both multiples
of a generator of E(Q). Find that rational num-
ber m2/n2. (In practice, n will be small.)

(5) Then nT = mS, so nT̃ = mS̃.

The problem is Step (3), because usually m = O(p).
Thus the point S ∈ E(Q) satisfies ĥ(S) = O(p2). Re-
member that ĥ(S) is the amount of memory it takes to
store S. Since typically p ≈ 2160, we cannot even store
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Using Heights To Compute Relations

Here is an initially plausible way to solve ECDLP via
lifting. Let S̃, T̃ ∈ Ẽ(Fp).

(1) Lift Ẽ and T̃ to a curve E/Q and point T ∈ E(Q).
(2) Do this in such a way that E(Q) has rank 1. (This

can probably be done.)
(3) Lift S̃ to a point S ∈ E(Q).
(4) Compute ĥ(S)/ĥ(T ). This is the square of a ra-

tional number, since S and T are both multiples
of a generator of E(Q). Find that rational num-
ber m2/n2. (In practice, n will be small.)

(5) Then nT = mS, so nT̃ = mS̃.

Indeed, Neal Koblitz’s talk at the Elliptic Curve
Cryptography Conference in 2000 was entitled:

Miracles of the Height Function:
A Golden Shield Protecting ECC

An Introduction to the Theory of Elliptic Curves – 72–



Canonical Heights on Elliptic Curves

Descent and the Mordell-Weil Theorem

Recall that Mordell’s Theorem (which was later gener-
alized by André Weil) says:

Mordell-Weil Theorem. The group of rational
points E(Q) is a finitely generated abelian group.

The proof proceeds in two steps. The first uses reduction
modulo p to limit the ramification in the field extension
Q

(
[m]−1E(K)

)
and deduce the

Weak Mordell-Weil Theorem. For some m ≥ 2,
the group E(Q)/mE(Q) is a finite.

The second step is prove the implication

Weak Mordell-Weil =⇒ Mordell-Weil.

This descent argument uses height functions and is an
elegant application of the theory of canonical heights.
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Weak Mordell-Weil Theorem =⇒ Mordell-Weil Theorem

Let P1, . . . , Pn ∈ E(Q) be representatives for the finite
set E(Q)/mE(Q).

Claim: E(Q) is generated by the finite set

G =
{

R ∈ E(Q) : ĥ(R) ≤ max
i

ĥ(Pi)
}

.

Proof. Suppose not. Let P ∈ E(Q) be a point of
smallest height not in Span(G). Write P = mQ + Pj
for some index j. Then

m2ĥ(Q) = ĥ(mQ)

= ĥ(P − Pj)

≤ 2ĥ(P ) + 2ĥ(Pj)

< 4ĥ(P ) since Pj ∈ G and P /∈ G.

Since m ≥ 2, we conclude ĥ(Q) < ĥ(P ). Therefore
Q ∈ Span(G), contradicting P /∈ Span(G). QED
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Pollard’s p− 1 Factorization Algorithm

Let N = p1p2 · · · pr be a number to be factored.

Pollard’s p − 1 Factorization Algorithm works
if one of the primes pk dividing N has the property
that pk − 1 itself factors as

pk − 1 = `
e1
1 `

e2
2 · · · `er

r with `1, . . . , `r small.

If `1, . . . , `r ≤ B, then there is a good chance that

gcd
(
2LCM(1,2,...,B) − 1, N

)
will equal pk.

The idea underlying Pollard’s p−1 Algorithm is the fact
that every element of (Z/pZ)∗ has order dividing p−1.

Unfortunately, if no p−1 is “B-smooth”, then Pollard’s
method does not work.
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Using Elliptic Curves for Factorization

Hendrik Lenstra observed that one can replace the mul-
tiplicative group F∗p with an elliptic curve group E(Fp).

More precisely, choose an elliptic curve modulo N and
a point on the curve:

E : y2 = x3 + ax + b, a, b ∈ Z/NZ, S ∈ E(Z/NZ).

Suppose that there is a prime p dividing N for which
the number of points in E(Fp) is B-smooth.

Then there is a good chance that during the computa-
tion of

LCM(1, 2, . . . , B)S mod N,

some inverse (x2−x1)
−1 mod N will not exist, yielding

gcd(x2 − x1, N) = p.
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Properties of Lenstra’s Algorithm

The advantage of Lenstra’s Elliptic Curve Algorithm
over Pollard’s p − 1 Algorithm is the introduction of
many finite groups E(Fp) with many different orders.

The theoretical running time of Lenstra’s Algorithm can
be calculated using a reasonable assumption about the
distribution of B-smooth numbers in short intervals:

Let p the smallest prime dividing N . Then
the expected running time of Lenstra’s algo-
rithm is

O
(
ec
√

(log p)(log log p)
)

.

The fact that the running time depends on the smallest
prime divisor of N makes Lenstra’s algorithm especially
good for factoring “random” numbers, but it is slower
than sieve methods for “RSA-type” numbers N = pq.
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L-Series, Birch–Swinnerton-Dyer, and $1,000,000

The L-Series of an Elliptic Curve

Let E be an elliptic curve given as usual by an equation

y2 = x3 + Ax + B with A,B ∈ Z.

For each prime p, we can reduce E modulo p, count its
points, and compute the trace of Frobenius:

ap = p + 1−#Ẽ(Fp).

The L-Series of E encodes all of the ap values into a
single function:

L(E, s) =
∏

p prime

(
1− ap

ps +
1

p2s−1

)−1

.

The variable s is a complex variable s ∈ C. Using
Hasse’s estimate |ap| ≤ 2

√
p, it is easy to prove that

the product defining L(E, s) converges for Re(s) > 3
2.
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The Analytic Continuation of L(E, s)

Wiles’ Theorem. The function L(E, s) extends to
an analytic function on all of C. Further, there is an
integer N (the Conductor of E) so that the function

ξ(E, s) = Ns/2(2π)−sΓ(s)L(E, s)

satisfies the functional equation

ξ(E, 2− s) = ±ξ(E, s).

A more precise form of Wiles’ Theorem says to write

L(E, s) =

∞∑

n=1

an

ns and set f (E, τ ) =

∞∑

n=1

ane2πinτ .

Then f (E, τ ) is a modular form (weight 2 cusp form)
for Γ0(N). This statement combined with ideas of Frey
and Serre and a theorem of Ribet are used to prove
Fermat’s Last Theorem.
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The Behavior of L(E, s) Near s = 1

It is a truth universally acknowledged that L-series sat-
isfying a functional equation have interesting behavior
at the center of their critical strip. For elliptic curves,
this is at the point s = 1.

A formal (and completely unjustified) calculation yields

L(E, 1) =
∏
p

(
1− ap

p
+

1

p

)−1

=
∏
p

p

#E(Fp)
.

This suggests that if #E(Fp) is large, then L(E, 1) = 0.

Birch and Swinnerton-Dyer observed that if E(Q) is
infinite, then the reduction of the points in E(Q) tend
to make #E(Fp) larger than usual. So they conjectured

L(E, 1) = 0 if and only if #E(Q) = ∞.
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The Conjecture of Birch and Swinnerton-Dyer
More generally, as the group E(Q) gets “larger”, the
size of #E(Fp) seems to get larger, too.

Birch–Swinnerton-Dyer Conjecture.

ords=1 L(E, s) = rank E(Q).

This amazing conjecture says that the order of vanishing
of the function L(E, s), which recall is created entirely
from information about the elliptic curve modulo var-
ious primes p, governs how many rational points are
needed to generate the full group E(Q).

The BSwD conjecture is one of the Clay Millenium
Problems, so its solution is worth $1,000,000.

There is a refined conjecture L(E, s) ∼ c(s− 1)r. The
constant c depends, among other things, on the elliptic
regulator RE.
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Epilogue

The preceding slides have barely touched the vast and
rich mathematical theory of elliptic curves.

And even in the small stream of cryptography, we have
merely skimmed the surface of the subject.

In the vaster realm of mathematics, the theory of ellip-
tic curves appears and reappears in contexts too numer-
ous to list, ranging from Wiles’ proof of Fermat’s Last
Theorem to rings formed from cohomology groups to
noncommutative quantum algebras and beyond.

The annotated bibliography includes a few references
to assist you in learning more about the number theory
and cryptographic applications of elliptic curves.
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The Galois Representation Attached to E
Let E be an elliptic curve defined over Q. Then the
points in the N -torsion subgroup

EN =
{
P ∈ E(C) : NP = O}

have coordinates in the algebraic closure Q̄ of Q.
Each element σ of the Galois group Gal(Q̄/Q) acts
on EN as a homomorphism. Thus we obtain a map

RE,N : Gal(Q̄/Q) −→ {
homomorphisms EN → EN

}
.

Exercise Verify that RE,N is a homomorphism.

The group of homomorphisms from EN
∼= CN × CN

to itself is GL2(Z/NZ), the group of 2-by-2 invertible
matrices with coefficients in Z/NZ.
The map

RE,N : Gal(Q̄/Q) −→ GL2(Z/NZ),

is the Mod N Representation Attached to E.
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Why is the “Trace of Frobenius” a Trace?

Let p be a prime. Then there are Frobenius elements
σp ∈ Gal(Q̄/Q) characterized by the property that

σp(α) ∼= αp (mod p),

where α ∈ Q̄ and p is a prime ideal lying above p.

Evaluating the representation RE,N at σp yields a ma-
trix RE,N (σp) ∈ GL2(Z/NZ).

Of course, the particular matix depends on the choice of
a basis for EN . But the determinant and trace of this
matrix are independent of the choice of basis.

Theorem. For all N ≥ 1,

Trace
(
RE,N (σp)

) ≡ ap (mod N).

This explains why ap is the Trace of Frobenius.
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Miller’s Algorithm to Compute the Tate Pairing

1. Choose a random point S ∈ E(Fq) and compute Q′ = Q + S ∈ E(Fq).

2. Set

n = blog2 Nc − 1, T1 = P, f1 = 1.

3. While n ≥ 1 do:

• Calculate equations of the straight lines L1 and L2 that arise in dou-

bling T1 and set

T1 = 2T1 and f1 =
f 2

1L1(Q
′)L2(S)

L2(Q′)L1(S)
.

• If the nth bit of N is 1 then calculate the equations of the straight lines L1

and L2 that arise when adding T1 to P and set

T1 = T1 + P and f1 =
f1L1(Q

′)L2(S)

L2(Q′)L1(S)
.

• Decrement n by 1.

4. Return f1, which is equal to 〈P,Q〉
Tate

.
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A Fancy Construction of the Tate Pairing
Let G denote the Galois group of F̄q over Fq, and let

EN = {P ∈ E(F̄q) : NP = O}.
Take Galois invariants of the short exact sequence

0 −→ EN −→ E(F̄q)
P→NP−−−−−→ E(F̄q) −→ 0.

Since H1(G,E(F̄q)) = 0, this gives

E(Fq)/NE(Fq) ∼= H1(G,EN )

Let P ∈ E(Fq)N and Q ∈ E(Fq)/NE(Fq). Identify Q

with some ξQ ∈ H1(G,EN ) and use the Weil pairing

to create an element of H1(G, µN ) via the map

eN (P, ξQ) : G −→ µN , σ 7−→ eN (P, ξQ(σ)).

This gives an element of H1(G, µN ). A similar argu-

ment shows that H1(G,µN ) ∼= F∗q/F∗qN .
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Further Reading
• Blake, I. F.; Seroussi, G.; Smart, N. P. Elliptic curves in cryptography. Lon-

don Mathematical Society Lecture Note Series, 265. Cambridge University

Press, Cambridge, 2000. [A good introduction to the subject.]

• Certicom tutorials and white papers <www.certicom.com>. [Certicom is

a company that markets products using elliptic curve cryptography.]

• Cohen, Henri. A course in computational algebraic number theory. Grad-

uate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. [A basic

resource for many algorithms, covers lattice algorithms (LLL) and elliptic

curve algorithms.]

• Cohen, H.. Elliptic and Hyperelliptic Curve Cryptography: Theory and

Practice, Chapman & Hall/CRC, 2005. [Comprehensive study of ECC and

beyond.]

• Cremona, J. E. Algorithms for modular elliptic curves. Cambridge Uni-

versity Press, Cambridge, 1997. [Extensive coverage of mathematical algo-

rithms for elliptic curves, although not specifically for cryptography.]

• Garrett, Paul. Making, Breaking Codes: An Introduction to Cryptology.

Prentice-Hall, 2001. [An undergraduate textbook on cryptography, includes

descriptions of ECC and NTRU.]

• Hankerson, D., Menezes, A.J., Vanstone, S. Guide to Elliptic Curve Cryp-

tography Springer-Verlag, 2004. [A practical guide to ECC.]

An Introduction to the Theory of Elliptic Curves – 87–



Further Reading

Further Reading
• Koblitz, Neal. Elliptic curve cryptosystems. Mathematics of Computation

48 (1987), 203-209. [One of the original articles that proposed the use of

elliptic curves for cryptography. The other is by Victor Miller.]

• Koblitz, Neal. A course in number theory and cryptography. Graduate

Texts in Mathematics, 114. Springer-Verlag, New York, 1994. [Covers

basic cryptography.]

• Koblitz, Neal. Algebraic aspects of cryptography. Algorithms and Com-

putation in Mathematics, 3. Springer-Verlag, Berlin, 1998. [Cryptography

from an algebraic viewpoint.]

• Koblitz, Neal. Miracles of the Height Function — A Golden Shield Protect-

ing ECC, 4th workshop on Elliptic Curve Cryptography (ECC 2000). [Slides

from a talk.] www.cacr.math.uwaterloo.ca/conferences/2000/ecc2000/koblitz.ps

• Menezes, Alfred J.; Van Oorschot, Paul C.; Vanstone, Scott A.. Handbook

of Applied Cryptography (CRC Press Series on Discrete Mathematics and

Its Applications), 1996. [Encyclopedic description of cryptography.]

• Menezes, Alfred. Elliptic curve public key cryptosystems. The Kluwer

International Series in Engineering and Computer Science, 234. Commu-

nications and Information Theory. Kluwer Academic Publishers, Boston,

MA, 1993. [An early description of ECC with implementation methods.]
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Further Reading
• Miller, Victor. Use of elliptic curves in cryptography. Advances in cryp-

tology CRYPTO ’85 (Santa Barbara, CA, 1985), 417–426, Lecture Notes

in Comput. Sci., 218, Springer, Berlin, 1986. [One of the original articles

proposing the use of elliptic curves for crypto. The other is by Neal Koblitz.]

• Silverman, Joseph H. The arithmetic of elliptic curves. Graduate Texts in

Mathematics, 106. Springer-Verlag, New York, 1986. [The number theory

of elliptic curves at a level suitable for advanced graduate students.]

• Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves.

Graduate Texts in Mathematics, 151. Springer-Verlag, New York, 1994.

[Additional topics in the number theory of elliptic curves.]

• Silverman, Joseph H.; Tate, John. Rational points on elliptic curves. Un-

dergraduate Texts in Mathematics. Springer-Verlag, New York, 1992. [An

introduction to the number theoretic properties of elliptic curves at an ad-

vanced undergraduate level.]

• Stinson, Douglas R. Cryptography. Theory and practice. CRC Press Series

on Discrete Mathematics and its Applications. CRC Press, Boca Raton,

FL, 1995. [An excellent introduction to cryptography at the advanced un-

dergraduate or beginning graduate level, includes a description of ECC.]

• Washington, Lawrence. Elliptic Curves: Number Theory and Cryptography

Chapman & Hall/CRC, 2003. [An introduction to elliptic curves and ECC

at an advanced undergraduate/beginning graduate level.]
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