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ABSTRACT: In the majority of modern rock tunnels the deformation and hence the stability of
the tunnel is controlled by a combination of reinforcement and support systems. The reinforce-
ment consists of rockbolts or cables which modify the properties of the rock mass in much the
same way as reinforcement does in concrete. The support systems generally involve steel sets or
lattice girders fully embedded in shotcrete and these provide resistance to control the conver-
gence of the tunnel. This paper describes the methods that can be used to optimize the design of
tunnels using a combination of reinforcement and support methods. Particular attention is given
to tunnels in very weak rock or soil in which large deformations can occur. Two case histories
are presented to illustrate the integration of geotechnical and structural design methods. The first
is a 12 m span two lane highway tunnel, excavated by top heading and benching in a very weak
rock mass and the second involves a 25 km long, 5.5 m diameter water supply tunnel through
the Andes in Venezuela.

1 INTRODUCTION

Current practice in tunnel reinforcement and lining design tends to vary a great deal, depending
upon national or owner imposed design requirements, local tradition and practice and the expe-
rience of the tunnel designer. There are no universally accepted guidelines on how to assess the
safety of a tunnel or the acceptability of a design and this means that engineering judgment and
experience play a very large role in the design of tunnel reinforcement and linings.

There is a general desire to define a factor of safety for tunnel design but this has proved to be
an extremely difficult task and there are very few methods that are considered acceptable. One
of these methods, described by Kaiser (1985), and Sauer et al (1994), involves the use of support
capacity diagrams and, indeed, there are a few tunnel design companies that use this methodolo-
gy. However, the available papers are generally lacking in detail and there is no mention of this
method in design guidelines such as the Tunnel Lining Design Guide published by the British
Tunnelling Society (2004). Consequently, the average tunnel designer is left with few options
other than the use of tunnel classification systems (Barton et al, 1974, Bieniawski, 1973), gener-

The 2008 Kersten Lecture
Integration of geotechnical and structural design in tunneling

Evert Hoek
Consulting Engineer, Vancouver, British Columbia, Canada

Carlos Carranza-Torres
CCT Rock Engineering, Minneapolis, Minnesota USA

Mark Diederichs
Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario,
Canada

Brent Corkum
Rocscience Inc., Toronto, Canada



2

al empirical guidelines and the advice of experienced tunnel consultants. The main difficulty
with this approach is to decide when the design is acceptable (Hoek, 1992).

In an effort to remedy some of these problems, the authors have set out to present two rela-
tively complex case histories in sufficient detail that tunnel designers can follow the use of sup-
port capacity diagrams as a tunnel design tool. Based on a paper by Carranza-Torres and Diede-
richs (2009), the derivation of the equations used to define these support capacity curves are
presented in an appendix and it is relatively simple to program these equations in a spreadsheet.

The support capacity diagrams presented in this paper are based on elastic analyses and the
authors recognize that this is a simplification compared to much more sophisticated non-linear
models that are used in structural engineering. However, given the uncertainties associated with
the loads imposed on tunnel linings, this simplification is considered to be justified. These loads
depend upon the adequacy of the geological model, the properties of the rock mass surrounding
the tunnel, the in situ stresses and the groundwater conditions. All of these contributing factors
are open to a wide range of interpretations, particularly during the design stages in a tunnelling
project. Consequently, the aim in developing the elastic support capacity diagrams presented in
this paper is to provide the tunnel designer with a set of tools of comparable accuracy to the in-
put data.

2 CASE HISTORY 1 – A SHALLOW TUNNEL AND ADJACENT OPEN CUT

This case history, assembled from a number of actual tunnel designs, involves a 12 m span
highway tunnel excavated by drill and blast methods using a top heading and bench approach.
Once the tunnel has been excavated and a final concrete lining has been cast in place, an open
cut is excavated close to and downhill from the tunnel to accommodate a second carriageway.

The overall geometry of the slope, the tunnel and the adjacent cut is shown in Figure 1. The
rock mass is a gently dipping interbedded sedimentary sequence of jointed sandstone, bedded
sandstone and a series of shear zones parallel to bedding. The properties of the individual rock
units, based on a nearby tunnel in a similar rock mass, are listed in Table 1 and the correspond-
ing Mohr envelopes are plotted in Figure 2.

Figure 1. Geometry of the original slope showing the rock layers, the location and geometry of
the tunnel and slope excavations and the original water table.
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Table 1. Rock mass properties

Property Jointed sandstone Bedded sandstone Shear zones

Peak Residual Peak Residual Peak Residual

Cohesive strength c - MPa 2.0 1.5 1.4 1.2 0.8 0.8

Friction angle  - degrees 52 50 50 47 40 40

Rock mass modulus E - MPa 9500 4000 650

Poisson’s ratio 0.25 0.25 0.3

Permeability – m/sec 1 x 10-6 1 x 10-6 1 x 10-7

Figure 2. Mohr failure envelopes for individual rock units.

Note that the friction angles shown in Table 1 may appear to be unusually high, particularly to
soil mechanics readers. This is because the tunnel is very shallow and the average confining
stress in the rock mass surrounding the tunnel is only about 1 MPa. Under these conditions the
Mohr failure envelopes are strongly curved, as shown by the dashed lines in Figure 2 (Hoek et
al, 2002) and the Mohr Coulomb parameters are estimated from tangents to the curved enve-
lopes.
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2.1 In situ stress conditions

The vertical stress acting on the rock mass in which this tunnel will be excavated is given by the
product of the depth below surface and the unit weight of the rock. Horizontal stress magnitudes
and directions can vary greatly, depending upon the tectonic history of the area, the variation in
stiffness of different rock units in the rock mass and the local topography. As a starting point for
this analysis it has been assumed that the ratio of vertical to horizontal stresses parallel to the
tunnel axis is 2:1 and that the ratio normal to the tunnel axis is 1.5:1.

If no in situ stress measurements are available in the vicinity of the tunnel then it is prudent
for the tunnel designer to check the sensitivity of the design to variations in these ratios between
0.5:1 and 2:1. If the design proves to be sensitive to horizontal stress variations then steps
should be taken to have in situ stress measurements made before the design proceeds to comple-
tion. An alternative is to leave sufficient flexibility in the contract to allow design changes dur-
ing construction and to rely on the back analysis of tunnel convergence measurements to deter-
mine the in situ stresses acting on the tunnel.

2.2 Groundwater conditions

The excavation of the tunnel and the slope for the adjacent carriageway result in changes in the
groundwater conditions in the slope. These changes have a significant impact on the effective
stresses in the rock mass surrounding the tunnel. Consequently, a full analysis of these ground-
water conditions is a starting point for this analysis of the tunnel stability.

Assuming a permeability of 1 x 10-7 m/sec for the shear zones and 1 x 10-6 m/sec for the
jointed and bedded sandstones (see Table 1), a finite element analysis of the groundwater condi-
tions in the slope was carried out. The resulting water tables, for different stages of tunnel and
slope excavation, are shown in Figure 3. In this analysis it was assumed that the tunnel acts as a
drain except for an extreme long term condition in which the tunnel drains are blocked.

In the finite element analysis of the tunnel lining that follows the pore water pressures and the
resulting effective stresses, from the groundwater analysis described above, have been incorpo-
rated into the tunnel stability model.

Figure 3. Water tables at different stages of tunnel and slope excavation and assuming long
term blockage of the tunnel drains.
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2.3 Lining requirements

The client’s requirements for the lining of the tunnel are as follows:

1. An initial lining consisting of steel sets or lattice girders embedded in shotcrete, with the
addition of rockbolts if required, sufficient to stabilize the tunnel during construction
and until the final lining is placed.

2. A drainage layer consisting of porous geotextile fabric, connected to drainage pipes in
the final tunnel invert.

3. A waterproof membrane to prevent water entering into the space behind the final con-
crete lining.

4. A cast in place concrete lining and invert capable of resisting loads imposed by the sur-
rounding rock mass for both short and long term operation of the tunnel. The factor of
safety of the final reinforced concrete lining should exceed 2.0 for normal operating
loads and 1.5 for unusual and long term loads.

A typical tunnel lining, designed to meet such requirements, is illustrated in Figure 4.

Figure 4. Construction of a complete tunnel lining consisting
of an initial lining of lattice girders embedded in shotcrete, a
geotextile drainage layer, a waterproof plastic membrane and a
cast-in-place concrete final lining.

2.4 Top heading versus full face excavation

An important issue that has to be considered by any drill and blast tunnel designer is whether to
specify excavation of the tunnel using a top heading and bench approach or a full face excava-
tion method. Small diameter tunnels, less than say 6 m span, are invariably driven by full face
methods since stabilization of the face, if required, is relatively simple. At the other end of the
spectrum, large underground caverns are almost always excavated in multiple stages from a top
heading or from side drifts. The 12 m span transportation tunnel considered in this example falls
in the range where either top heading and bench or full face excavation can be used. Full face
excavation has many advantages in terms of geometrical simplicity and, in ground of adequate
strength, greater rates of tunnel excavation. Consequently, where possible it is the preferred me-
thod of tunneling.
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One of the technical factors that controls the choice of which method to use is the stability of
the tunnel face. When the stresses in the rock mass surrounding a tunnel exceed the strength of
the rock mass a zone of failure or a “plastic” zone is formed around the tunnel. As shown in the
derivation of longitudinal displacement profiles for tunnels in Appendix 1, when the radius of
the plastic zone around a tunnel exceeds twice the radius of the tunnel, the zone of failure
around the tunnel interacts with the failed rock ahead of the tunnel face to form a continuous
bullet shaped plastic zone. This three-dimensional plastic zone becomes increasingly difficult to
stabilize as the ratio of stress to available rock mass strength increases.

Stabilizing the plastic zone ahead of the tunnel face is generally achieved by means of fully
grouted fiberglass dowels parallel to the tunnel axis. The reason for using fiberglass dowels is
that they can be cut off as the tunnel advances and they do not damage conveyor belts in the
muck disposal system. These dowels are typically placed in a grid pattern of 1 m x 1 m and their
total length is approximately equal to the span of the tunnel. For 12 m long dowels an overlap of
3 to 4 m is generally used to ensure that there is continuous support of the face.

Lunardi (2000) discusses the action of face reinforcement in considerable detail and the au-
thors have no disagreement with his statement that “…. In order to prevent instability of the
face, and therefore the cavity (tunnel), preconditioning measures must be adopted, appropriately
balanced between the face and the cavity, of an intensity adequate to the actual stress conditions
relative to the strength and deformation properties of the medium”. The preconditioning to
which he refers includes the placement of fiberglass dowels, forepoles and other devices that
control the deformation of the rock mass ahead of the tunnel face. Achieving an appropriate bal-
ance between the face and the tunnel cavity requires a three dimensional analysis of the bullet
shaped plastic zone discussed above.

In addition to the stability of the face, consideration has also to be given to the deformations
that control the stability of the tunnel itself. Depending upon the in situ stress field and the cha-
racteristics of the rock mass surrounding the tunnel, these deformations may be more important
than those in the rock ahead of the face. In such cases, the control of the tunnel deformations
will determine the choice between top heading and bench and full face excavation.

Practical considerations related to the size of the tunnel, availability of specialized equipment
required for the installation of pre-reinforcement, local contracting experience and the prefe-
rence of the owner can also play an important role in choosing between top heading and bench
and full face excavation methods.

In the tunnel under consideration in this model (Figure 1), the owner considered that the risk
of losing control of the face due to the presence of the weak shear zones is unacceptably high.
Consequently the use of a top heading and bench approach has been specified, in spite of the
fact that it may have been possible to drive this tunnel by full face excavation.

2.5 Analysis of face stability

The analysis of the stability of a top heading or a full face tunnel face requires a three dimen-
sional analysis. In simple cases this can be done by means of an axi-symmetric application of a
two-dimensional numerical analysis (see Figure A1.3 in Appendix 1). In more complex cases,
such as that under consideration in this example, a full three-dimensional analysis is required.

The purpose of the three-dimensional analysis is to simulate in the most realistic possible way
the mechanical process of excavation and support and reinforcement installation behind the face
and, if applicable, on the face itself to investigate whether the face shows signs of instability. In
these three-dimensional models, face instability normally manifests itself as caving of the face
resulting in a plastic failure zone that extends ahead of the face or, if the tunnel is relatively shal-
low as in this example, towards the ground surface. Excessively large displacements can occur
and the numerical model tends not to converge (i.e., reach an asymptotic value) as the excava-
tion sequence progresses.

Figure 5 shows the three-dimensional numerical model used to analyze the stability of the
face in this example. Note that only half of the model, as defined by a vertical plane cutting
through the tunnel axis, is represented in this figure. The model considers excavation of the top
heading through the interbedded sedimentary sequence introduced in Figure 1. Mechanical
properties of the different rock types are those indicated in Figure 2 and Table 1. The in situ
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stress conditions prior to excavation assumed for the model are those discussed in Section 2.1,
while the groundwater conditions correspond to the worst case scenario, that of the original wa-
ter table (configuration A) in Figure 3.

As indicated in Figure 5, the three-dimensional model simulates the mechanical process of
advancing the top heading in increments of 2 meters, corresponding to the design blast round
length of 2 m, and installing shotcrete and rockbolts at a distance of 2 meters behind the face,
corresponding to the design length of installation of support and reinforcement behind the face.
The geometrical and mechanical characteristics of the support and reinforcement used are the
same considered in the two-dimensional numerical analyses to be discussed in later sections. In
addition, the model simulates the process of installation of a set of 60 fiberglass dowels in a cir-
cumferential pattern at the face, with an approximate spacing of 1 meter between dowel heads.
In this case, the dowels are installed at intervals of 8 meters on the face, leading to a minimum
overlap length of 4 meters between two sets of dowels. The geometrical and mechanical proper-
ties of fiberglass dowels are normally provided by the manufacturer; this example considers do-
wels of 18 mm diameter, with a Young's modulus of 40,000 MPa and a tensile strength of 1000
MPa.

Figure 5. View of the three-dimensional numerical model used to analyze stability of the tunnel
face.

A total of 15 excavation stages have been considered in this example leading to a total length of
sequential advance of 30 meters. For the last stage (indicated in Figure 5) the stability conditions
at the face have been inspected. Figure 6 represents contours of resulting magnitude of dis-
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placements at this stage. Displacements at the face are below one millimeter. The resulting plas-
tic failure zone is also of limited extent of less than 50 centimeters and does not show any ten-
dency to develop into a caving zone towards the ground surface. Comparison of equivalent re-
sults from a model without fiberglass dowels installed at the face reveals that these dowels do
indeed make a mechanical contribution to the stability of the tunnel face. Both the extent of
plastic zone and resulting displacements at the face, when no fiberglass dowels are considered,
are at least twice the values shown in Figure 6.

It is doubtful whether fiberglass dowel reinforcement is actually required in this example and
it is probable that the top heading could be advanced safely without reinforcement or with a
simpler restraint in the form of a face buttress (Hoek, 2001). However, the calculations pre-
sented in Figures 5 and 6 demonstrate the procedure that can be used to analyze the need for
face reinforcement and the stabilization that can be achieved by the installation of such rein-
forcement.

Figure 6. Representation of contours of magnitude of displacements for the last stage of excava-
tion in the three-dimensional model of Figure 5.
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2.6 Characteristic curve and longitudinal deformation profile

The next step in the design procedure is to determine the point at which the support in the tunnel
is installed and activated. In a 12 m span tunnel this would normally be at a distance of between
2 and 4 m behind the face and a distance of 2 m has been chosen for this analysis.

In using a two dimensional analysis of the rock-support interaction it is necessary to simulate
the three-dimensional tunnel advance by means of some deformation control process. This
means that the deformation that takes place at a distance of 2 m behind the face must be known
and controlled to allow the support to be installed and activated. This can be done by calculating
the characteristic curve for the rock mass surrounding the tunnel by progressively reducing ei-
ther an internal support pressure or by progressively decreasing the deformation modulus of an
inclusion in the tunnel. In complex situations, such as that under consideration here, the modulus
reduction method is preferred since it automatically accommodates variations in the surrounding
stress field due to a non-circular tunnel shape and progressive failure in the rock mass as the
tunnel deforms.

Figure 7 shows the characteristic curve for this tunnel and the stepwise reduction of the mod-
ulus of the inclusion in the tunnel. The analysis required to generate the characteristic curve also
shows the extent of failure around the tunnel and this is important in calculating the longitudinal
deformation profile in the next stage of the analysis.

Figure 7. Characteristic curve for the unsupported, undrained tunnel excavated by a full face
method. Note that any monitoring point can be chosen on the tunnel boundary since, although
the magnitude of the deformations will vary, the shape of the excavation curve will remain con-
stant.
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Figure 8. Longitudinal deformation profile for a 12 m span tunnel where the radius of the plastic
zone is less than twice the radius of the tunnel.

Figure 8 gives a plot for the longitudinal deformation profile for the tunnel in this example. As
shown in Appendix 1, this profile depends upon the ratio of the radius of the plastic zone to the
radius of the tunnel and, for this example, this ratio is approximately 2:1. Figure A1.5 in Appen-
dix 1 shows that the tunnel closure at the face is approximately one quarter of the final closure at
many meters behind the face. The deformation profiles are calculated from equations A1.6 and
A1.7.

From Figure 8 it can be seen that installation and activation of the support at a distance of 2 m
behind the advancing face corresponds to a deformation of 0.011 m. Using this value in Figure
7, the modulus of the inclusion required to limit the tunnel deformation to this value is approx-
imately 100 MPa. Hence, in constructing the two dimensional model to simulate the three-
dimensional effects of the advancing face, an inclusion with a modulus of 100 MPa has been
used for the first stage of the calculation. Excavation of this inclusion activates the installed
support system and allows it to react to the additional deformation that occurs as the tunnel ad-
vances.

2.7 Analysis of top heading with a flat floor

For large span tunnels the top heading shape preferred by contractors is illustrated in Figure 9.
This consists of an arched roof and a flat floor. The flat floor is simple to excavate and it pro-
vides an excellent road base for construction traffic. In good rock at low to moderate stress le-
vels, this top heading shape is acceptable. The suitability of this top heading profile for this ex-
ample is investigated below.
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Figure 9. A simple top heading shape in good quality interbedded sandstones and siltstones.
The tunnel arch is supported by means of rockbolts and a layer of shotcrete and no face support
is required. The flat floor requires no special treatment other than good drainage of surface wa-
ter accumulations.

Figure 10. Reinforcement and support for the top heading arch consisting of stan-
dard Swellex rockbolts on a 2 m x 2 m grid and 3 bar lattice girders spaced at 1 m
centers and embedded in a 20 cm thick shotcrete lining (Not to scale).
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Figure 10 gives a cross section through a typical support system used for the initial support of a
large span tunnel. This consists of 3 bar lattice girders embedded in a 20 cm thick shotcrete
layer. The lattice girders are spaced at 1 m intervals along the tunnel and rockbolts are installed
between every second girder at a spacing of 2 m. In this case the rockbolts are 4 m long standard
Swellex bolts on a 2 m x 2 m grid spacing.

An important issue that has to be considered in the design of this support system is the time-
dependent properties of the shotcrete layer. As described above, the support system is installed 2
m behind the face and activated immediately. The rockbolts and lattice girders respond to the
deformation of the rock mass surrounding the tunnel as soon as the tunnel advances but the
shotcrete is only 1 day old at this stage and it has not yet developed its full capacity. While it
does not carry its full share of the load, because its stiffness is low, this load may be sufficient to
induce failure in the shotcrete.

Choosing the shotcrete properties is not quite as simple as one would think. Many tunnel de-
signers turn to structural codes such as the American Concrete Code (ACI 318 - Building Code
and Commentary) and follow the recommendations set out in these documents. However, in
their Guidelines for Tunnel Lining Design the Technical Committee on Tunnel Lining Design of
the Underground Technology Research Council states the following:

“Structural codes should be used with caution. Most codes have been written for above
ground structures on the basis of assumptions that do not consider ground-lining interaction.
Accordingly, the blind application of structural design codes is likely to produce limits on the
capacity of linings that are not warranted in the light of the substantial contributions from the
ground and the important influence of construction method on both the capacity and cost of lin-
ings.

Specific load factors are not recommended in these guidelines. The loading conditions should
be evaluated by a careful, systematic review of the geologic and construction influences. It is
important that the evaluation of ground loads and structural details be coordinated to select a
factor of safety.”

In the support capacity calculations given in this paper the authors have adopted a policy of
using the ultimate uniaxial compressive and tensile strengths of shotcrete and concrete and cal-
culating a range of factors of safety. This eliminates the complication of hidden or unknown
load factors or safety factors and, by including a family of factor of safety plots in the support
capacity diagrams, the user is presented with a clear picture of performance of the lining being
designed.

Melbye and Garshol (2000) give shotcrete mix designs and uniaxial strength results, many
from in situ cores, for 35 tunneling projects around the world. These results are plotted in Figure
11 and it can be seen that the 28 day strength varies from 25 to 86 MPa. This variation depends
upon the mix design, whether the wet or dry shotcrete method was used, whether the shotcrete
was applied manually or by robot and upon local factors such as haulage distance between the
batch plant and the face. It is the responsibility of the tunnel designer to discuss all of these is-
sues with the shotcrete supplier in order to determine the optimum shotcrete product for a par-
ticular site.

For the model under consideration the sequence of loading and the corresponding shotcrete
properties are defined in Figure 12 and Table 2 in which the age dependent properties have been
assembled from a number of tunnel case histories. In constructing the numerical model used to
analyze this case these properties have been incorporated into the shotcrete lining at the stages
of excavation shown.

In the case of the top heading with an unsupported and unreinforced flat floor, as illustrated in
Figure 13, the heave of the floor induces bending in the lower parts of the lining arch. These
bending moments can overload the 3 day old shotcrete and they can also permit deformations
sufficient to allow failure propagation in the adjacent rock mass. This failure may have a detri-
mental influence on the loading of the lower legs of the arch when the bench is excavated.

In order to study the response of the support system to the excavation sequence and conse-
quent tunnel deformations, a set of support capacity diagrams have been plotted in Figure 14.
Note that the rockbolts are not part of the support system since they act as reinforcement and al-
ter the properties of the rock mass surrounding the tunnel. Nevertheless these bolts play an im-
portant role in stabilizing the tunnel arch and in supporting the shotcrete shell.
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Figure 11. Uniaxial compressive strength development with time for
shotcrete linings in tunnels around the world. After Melbye and Garshol
(2000).

Figure 12. Assumed time dependent properties for shotcrete.

Table2. Excavation sequence and shotcrete properties

Compressive
strength csh

Tensile

strength tsh

Deformation
modulus Esh

Day 1 – installation and activation of
support

21.0 MPa - 2.6 MPa 24,000 MPa

Day 3 –top heading convergence at
about 10 m behind the face

31.0 MPa - 4.0 MPa 30,000 MPa

Day 28+ - excavation of bench which
may be as much as 1 year after top
heading excavation

41.4 MPa - 5.0 MPa 36,000 MPa
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Figure 13. Bending moment distribution in the lining of the top heading
with a flat unsupported floor on day 3 after installation of the support.

The derivation of the equations required to calculate these figures is given in Appendix 2. The
calculation process results in a set of moment versus axial thrust and moment versus shear force
diagrams for the lattice girders and the shotcrete. In the case of the shotcrete, the diagrams are
calculated for 1 day, 3 day and 28 day strengths as defined in Table 2. From the numerical anal-
ysis, the axial forces, bending moments and shear forces in the installed top heading arch sup-
port are distributed onto the lattice girders and the shotcrete shell by means of equations A2.24
to A2.29 in Appendix 2. The resulting values, for the 1 day and 3 day loading conditions, are
plotted as points in Figure 14.

Because of the shallow depth of the tunnel the axial loads carried by the support system are
very low. Similarly, bending moments and shear forces in the lattice girders are small. However,
the bending moments in the shotcrete lining are sufficient to exceed the capacity of the shotcrete
at ages of 1 day and 3 days, as shown in the moment versus axial thrust diagram for the shot-
crete, assuming a factor of safety of 1. This analysis illustrates that, for the in situ stresses, rock
mass properties, excavation sequence and lining properties chosen, a top heading with a flat un-
reinforced and unsupported floor is not an appropriate choice.

The excessive bending moments in the lower portions of the top heading arch can be ad-
dressed in a number of ways including the installation of stressed anchors to limit the bending of
the upper arch legs, increasing the thickness of the shotcrete shell, placing additional reinforce-
ment in the lower arch legs or placing a temporary invert to limit the floor heave and the “pinch-
ing” of the arch. In this example, the placement of a temporary shotcrete invert will be investi-
gated.

Examining Figure 14 may suggest to the reader that, since the loads carried by the lattice
girders are so small, the shotcrete could be dispensed with and the lattice girders used on their
own to carry the loads. This would be a serious mistake since these capacity plots are only valid
when the lattice girders and the shotcrete act as a composite structure. The shotcrete, even when
very young, provides lateral confinement for the lattice girders and this is essential to prevent
buckling failure of these slender structures in the wide span tunnel.
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Figure 14. Support capacity diagrams for a 20 cm shotcrete lining, reinforced with 3 bar lattice
girders, placed in a top heading excavation with a flat floor (see Figure 9).

2.8 Analysis of top heading with a curved shotcrete invert

A temporary shotcrete invert, such as that illustrated in Figure 15, is generally constructed from
unreinforced shotcrete, typically 20 cm thick, so that it can be broken easily during benching.
Backfill is placed over this invert in order to form a road surface for construction traffic.

It is important that a smooth connection is provided between this invert and the top heading
arch legs in order to prevent the formation of stress concentration points. The shear capacity of
the connection between the arch legs and the shotcrete invert can be deficient if the shotcrete is
placed at different times. This problem can be overcome by adding reinforcement, such as that
illustrated in Figure 16, to ensure that the loads in the arch are transferred into the invert. This
reinforcement should be designed so that it can either be cut off or bent downward and incorpo-
rated into the lower arch legs when the temporary shotcrete invert is excavated.

A numerical analysis of top heading lining with a curved shotcrete invert covered by backfill
results in the bending moment shown in Figure 17 and the corresponding support capacity plots
given in Figure 18. In this case the analysis has been extended to include the removal of the
bench and the placement and activation of the lower arch legs and the tunnel bottom invert.
Since the structure of the arch legs is identical to the top heading arch it is permissible to plot the
points for these two components on the same support capacity diagrams.
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Figure 15. Top heading and bench excavation in a weak rock tunnel where a temporary shot-
crete invert was used to control floor heave.

Figure 16. Additional reinforcement at the junction be-
tween the top heading arch legs and the temporary
shotcrete invert.
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Figure 17. Bending moment distribution in a top heading lining
with a curved shotcrete invert covered by backfill (see Figure 15).

Figure 18. Support capacity plots for the 20 cm
thick unreinforced shotcrete invert in Figure 17.
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Figure 17 shows that the results of this analysis of the top heading arch are similar to those for
the top heading with the flat floor, shown in Figure 13, except that the bending moments in the
arch are reduced by the placement of the shotcrete invert. The support capacity plots for the un-
reinforced invert, given in Figure 18, show that the bending moments induced in the invert are
just sufficient to induce tensile cracking in the 1 day and 3 day old shotcrete. While this would
be a problem elsewhere it is considered to be acceptable here since the shotcrete invert is con-
strained by the overlying backfill and some minor cracking will be of little consequence. How-
ever, if the designer is uneasy about this cracking or if the client is reluctant to accept any indi-
cation of failure, the invert can be made thicker or it can be reinforced with polypropylene fibers
to increase its capacity.

The support capacity plots for the shotcrete arch and lower legs for the case of the curved
shotcrete invert are shown in Figure 19. The Moment-Axial thrust points for the shotcrete all fall
well within the capacity curves for the corresponding age of shotcrete. This confirms that the
use of the shotcrete invert has reduced the bending moments that resulted in problems in the top
heading excavated with a flat floor (Figure 14).

A check on the invert on the bottom of the tunnel shows no overstressing and, hence, the
complete lining is stable and the design can proceed to the installation of the final lining. Note
that, if there is a large time delay (say for more than 1 year) between the excavation of the tun-
nel and the installation of the final lining, it may be necessary to recalculate the lining forces for
a reduced rock mass strength to allow for time-dependent deterioration.

Figure 19. Support capacity diagrams for a 20 cm shotcrete lining, reinforced with 3 bar lattice
girders, placed in a top heading excavation with a curved shotcrete invert (see Figure 15).
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2.9 Final lining design

The next step after the excavation and stabilization of the full tunnel profile is the installation of
a final lining. The typical geometry of this lining was shown in Figure 4 and it is given in detail
in Figure 20. In this example it is assumed that the final lining itself consists of 30 cm thick cast-
in-place concrete reinforced by means of 20 mm diameter steel reinforcing rods spaced at 18 cm
x 22 cm apart.

For simplicity the properties of the cast in place concrete final lining are assumed to be the
same as those of the initial shotcrete lining, as defined in Table 2. Because the final lining is in-
stalled in a stable tunnel it carries no initial load except for its self-weight. Hence, only the 28
day properties are relevant in the following calculations. Loads are imposed on the final lining
as a result of stress changes, changes in the groundwater conditions, changes in the characteris-
tics of the initial support system or deterioration of the rock mass surrounding the tunnel. All of
these changes are assumed to occur in this example and the consequences will be examined in
the analysis that follows.

Figure 20. Geometry of composite final lining consisting of a 20 cm thick ini-
tial shotcrete lining, a drainage layer, a waterproof membrane and a 30 cm thick
cast concrete lining (Not to scale).

After the installation of the final lining the open cut for the adjacent highway carriageway is ex-
cavated as defined in Figure 1. This results not only in changes in the stress field surrounding
the tunnel but also changes in the groundwater conditions as defined by curve C in Figure 3. In
designing the final lining these changes have to be accommodated and a factor of safety in
excess of 2.0 has to be provided by the lining for these “normal” loading conditions.

The long term loading conditions, for which a factor of safety of 1.5 has been specified for
this example, include corrosion of all the rockbolts, blockage of the tunnel drains and deteriora-
tion of the rock mass surrounding the tunnel. Other extraordinary long term-loading conditions
may apply in specific cases and these should also be included. Basically, the aim of the designer
should be to ensure that the tunnel will remain stable and operational under all possible condi-
tions that could occur during its service life.

The participation of the initial shotcrete lining has been a matter of contention for many years.
Until relatively recently tunnel designers in some countries were required to ignore the contribu-
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tion of all initial reinforcement and shotcrete linings in calculating the support capacity of the fi-
nal lining. However, this very conservative approach has changed and the International Tunnel-
ling Association’s Guidelines for the Design of Tunnels (1988) gives the following recommen-
dation: “An initial lining of shotcrete may be considered to participate in providing stability to
the tunnel only when the long-term durability of the shotcrete is preserved. Requirements for
achieving long-term durability include the absence of aggressive water, the limitation of con-
crete additives for accelerating the setting (liquid accelerators), and avoiding shotcrete shadows
behind steel reinforcement”.

Figure 21. Changes in stress and groundwater conditions as a result of excava-
tion of the open cut for an adjacent carriageway can result in propagation of
failure zones in the rock mass.

Figure 22. Distribution of bending moments and deformations of the final tunnel
profile after installation of the final lining and excavation of the adjacent cut.
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The extent of rock mass failure surrounding the tunnel, after installation of the final lining and
excavation of the adjacent open cut is shown in Figure 21. Note that some rock mass failure of
the surface occurs as a result of surface subsidence and stress relief due to the open cut excava-
tion. While this is not significant in the design of the tunnel lining it does highlight the need for
the designer to check on surface subsidence and slope stability issues. In shallow tunnel such as
this one, caving to surface can be a critical issue and it has to be checked very carefully during
the sequential excavation of the tunnel.

The bending moments and the deformations induced in the final lining are shown in Figure
22. Note that the presence of the two shear zones has a significant influence of these distribu-
tions, particularly on the right hand side of the tunnel arch. As shown in the support capacity
plots in Figure 23, these bending moments are the most significant forces to be considered in the
lining design since all other forces are very low.

Detailed plots of the moment-thrust relationships for the final lining for three model stages
are given in Figure 24. These show that the lining carries practically no load at the time of in-
stallation. The forces in the lining change slightly when the adjacent open cut is excavated and
they change by a significant amount when the long term loads are applied. These loads are in-
duced by a reduction of the residual strength of the failed rock surrounding the tunnel, an elimi-
nation of all rockbolts and changes in the groundwater conditions as a result of blockage of the
drains. The factor of safety for the lining for these long term loads is approximately 2.0.

Figure 23. Support capacity plots for the final concrete lining.
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Figure 24. Detail of moment versus axial thrust devel-
opment in the final concrete lining from the installation
of the lining, the excavation of the open cut and long-
term loading conditions.
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Figure 25. Minimum Moment-Thrust capacity for the reinforced con-
crete final lining calculated by the structural program Response 2000
(Bentz, 2000) for a factor of safety of 2.0.

Figure 25 gives a minimum moment-thrust capacity diagram for the reinforced final lining for a
factor of safety of 2.0, generated using the structural program Response 2000 (Bentz, 2000).
This is a sectional analysis program that will calculate the strength and ductility of a reinforced
concrete cross-section subjected to shear, moment, and axial load. All three loads are considered
simultaneously to find the full load-deformation response using the modified compression field
theory (Vecchio and Collins, 1986).

The total moment-thrust points for the final lining under long-term loading conditions are also
plotted in Figure 25. The relationship of these points to the capacity curve, defined by cracking
of the concrete, is similar to that illustrated in Figure 24 for the concrete component of the lin-
ing. This comparison serves as a confirmation that, at least for the low load considered in this
example, the elastic support capacity plots derived in Appendix 2 are an appropriate tool to use
for reinforced concrete lining design.

The separation of the forces in the concrete (or shotcrete) and the steel reinforcement, as has
been done in Figures 19 and 23, gives information on the contribution made by each of these
components and on the combination of forces that control the design process. In this example
the bending moments in the concrete are by far the most important forces and, when combined
with the relative low tensile strength of concrete, they determine the performance of the lining.

3 CASE HISTORY 2 – A DEEP TUNNEL IN WEAK GROUND

This case history is based on the Yacambú-Quibor tunnel currently under construction in the
Northern Andes in Venezuela. Aspects of this project are described by Guevara (2004). Design
and construction details are simplified for the purposes of this example. This analysis involves
new construction within the central portion of a 25 km tunnel, 5.2 m in diameter, in highly vari-
able metamorphic rock at depths of up to 1200 m below surface (Figure 26).
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a) longitudinal topographic profile (north to the right)

b) tunnel wall side view (to scale – tunnel diameter is 5.2m).

Figure 26. a) Longitudinal topographical profile along tunnel alignment. Major regional
faults are shown. Ellipses indicate zones of interest for this case study. b) Two typical
tunnel wall maps showing high variability in geological structure and fabric alignment.

The tunnel is designed for water transport, under moderate velocity and head, from a rainforest
region in the south to an agricultural centre to the north. The tunnel will include the facilities to
drain and inspect the tunnel with vehicle access after construction and during service life.

The design problem discussed here relates to a typical tunnel profile in highly deformed
graphitic phyllite (Figure 27). The deformation in the rock mass is the result of the tectonic
processes inherent in the Andes Mountains and is also the result of the proximity of the tunnel to
a large regional fault related to the intersection of three major crustal plates. The fault passes
through the tunnel as seen in Figure 26. A second fault has been identified on surface but it is
not known whether this will be intersected at tunnel depth. This analysis is related to the section
of tunnel identified in this figure where the average depth of overburden is approximately 1150
m. The in situ stresses at depth are assumed to be approximately equal (30 MPa) in all directions
as a result of the low shear resistance due to the fact that the tectonic history of the rock mass
has reduced its properties to their residual values.

Tests on intact core samples of this rock gave uniaxial compressive strength values of 15 MPa
to 110 MPa (Salcedo, 1983). The high variability in results is due to the orientation of the phyl-
litic foliation with respect to the loading direction. As seen in Figure 27, the rock mass in the
tunnel is tightly folded and no particular orientation of fabric presents itself over a significant
portion of the tunnel profile. On the scale of the tunnel, therefore, isotropic rock mass strength
can be assumed. Back analyses of monitored sections of the excavated tunnel confirm that the
average uniaxial compressive strength of the intact graphitic phyllite is approximately 50 MPa
and this value has been assumed for this analysis.

The rock mass was assessed using the Geological Strength Index (GSI) system (Marinos and
Hoek, 2001) and rock mass strength parameters, according to Hoek et al. (2002), are shown in
Figure 28. A GSI value of 25 is assigned to the rock mass over this section of the tunnel. As the
rock mass is already in a deformed (residual) state, it is assumed to act plastically in response to
stress change and deformation. The long term strength of the rock mass is assumed to corre-
spond to moderate disturbance according to the GSI system with a Disturbance factor D = 0.2.
The deformation modulus of the rock mass is estimated to be 1650 MPa, based on the method-
ology of Hoek and Diederichs (2006).
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Figure 27. Graphitic phyllite in the tunnel face. Note the tight secondary folding and
high variability of fabric orientation – rock hammer in center is 45cm long.

Figure 28: Rock mass strength parameters for Case 2 analysis. In
situ stress = 28MPa.
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Tunnelling in these conditions is extremely difficult (Hoek and Marinos, 2000). Preliminary
analysis of an unsupported tunnel in this rock mass at this depth indicates closure in excess of
50%. The key to liner design is to sequence the installation of support to avoid overload while
still maintaining a safe working environment at and near the face.

Numerous challenges have been encountered over the long history of this construction project
(a complete history of which is beyond the scope of this paper) and, due to the high cost of an
additional concrete lining, it has been decided that the support system installed during construc-
tion will act as the final lining. In addition to resisting cracking and spalling this liner must con-
trol displacements to preserve the minimum tunnel size required for vehicular access during op-
eration.

After several iterations in liner design over the years, each with its own lessons, the current
design was adopted. A circular profile with steel arches (W6 X 20) at 1 m intervals, embedded
in 60 cm of shotcrete applied in two passes of 20 cm and 40 cm thickness, is specified. There is
a requirement to install support early to provide a safe working space at the face. Activation of
the full lining, however, has to be delayed to prevent an unacceptable build-up of internal loads
due to the high closure rates near the tunnel face. Premature installation of the final lining could
result in buckling of the primary support system, associated expansion of the plastic zone and
increase in final closure.

Specifications for the support were based, in part, on analytical convergence-confinement
calculations (Carranza-Torres and Fairhurst, 2000). In this analysis, illustrated in Figure 29, the
liner is treated as a single 60 cm thick concrete shell enclosing one W6 x 20 steel set per metre.
The relationship between wall displacement and location along the tunnel (the linear displace-
ment profile) is estimated based on the methodology described in Appendix 1 for a normalized
plastic zone radius Pr of 6.5. Installation of the full liner near the face results in a low short term
factor of safety and an unacceptable long term factor of safety of approximately 1.0. This long-
term factor of safety is increased to approximately 1.4 with the installation of sliding joints. This
prediction for the supported tunnel is conservative as it ignores the overall displacement reduc-
tion due to rock-support interaction.

Figure 29. Convergence confinement analysis (according to method of Carranza-
Torres and Fairhurst, 2000) for short and long term ground response (unsupported).
Liner load development for 60 cm shotcrete section with W6 x 20 steel section.
Dashed support load curve represents delayed loading due to sliding joint.
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Sliding joints, shown in Figure 30, allow controlled convergence (closure) of the steel sets with-
out excessive loading of the steel. These joints provide resistance against moments but allow
slip at low axial loads until the gap is closed. At this time the liner builds up load as a closed cir-
cle. The sliding joint is fabricated on site using two heavy steel plates constraining the set
flanges through the tensioning of bolts as shown in the inset in Figure 30. The opposing steel
sections are clamped by this device with a controlled gap (in this case 25 to 30 cm). This tech-
nique has proved to be very effective at Yacambú-Quibor. Alternative yielding support systems
have also been widely used in squeezing ground conditions in Europe (Schubert, 1996).

Figure 30. Circular steel arches (W6 X 20) with two sliding joints (detail in inset).

The original design called for the complete steel set to be erected near the face and a 20 cm layer
of shotcrete sprayed over the sets with 1 m gaps left over the sliding joints as shown in Figure
31. The two sliding joints are installed just below the spring line for a total circumferential clo-
sure of 60 cm (2 x 30 cm). Once the gap is closed by tunnel deformation, the gap is filled with
shotcrete and an additional 40 cm of shotcrete, reinforced by means of circumferential rebar, is
applied to the inside of the liner. The effect of the sliding gap is illustrated by the dashed support
response line in Figure 29. This simple convergence-confinement analysis does not consider
moments and neglects the interaction between support layers. In addition the stabilizing effect of
the liner and the resultant reduction in rock mass displacement are not considered. Nevertheless,
this analysis correctly indicates the need for delayed loading of the liner.

Due do difficulties with face instability, the contractor found it necessary to implement the
support system in two stages with a short 1.5 m bench (from floor to springline) maintained to
buttress the face. The upper semicircular section of the steel set is installed at the face to provide
a primary safety system. The arch sections rest on the bench and are covered in shotcrete. The
bench is then excavated approximately 1.5 m from the face and the circular arch, including the
pair of sliding joints, is completed. The first 20 cm shotcrete layer is completed at this stage
(Figure 32a).

A reinforcement cage is assembled adjacent to the initial shotcrete lining as seen in Figure 31.
Once joint closure is achieved (within 5 to 15m of the face) the gap is closed with shotcrete to
complete the final 40 cm thick final lining. The final lining section is illustrated in Figure 32b.
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Figure 31. Initial Liner composed of circular steel arch and 20 cm of shotcrete. Inset shows de-
tail of sliding joint with shotcrete gap. Note rebar in place to reinforce final shotcrete layer.

a) b)

Figure 32. a) Configuration of mid-height bench (partially disintegrated in this photograph) and
upper steel arch installed ahead of lower section and sliding joint. b) Final 60 cm section with
outer shotcrete and steel set composite section and inner reinforced shotcrete section. The tunnel
is to the left and rock mass is to the right of the section.
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The following analysis represents a more rigorous consideration of the interactions between the
liner components and the construction sequence. The first step in the design process is to deter-
mine the normalized maximum unsupported failure radius via a simple plane strain analysis of
the unsupported tunnel. In this case, the ratio of maximum plastic radius to tunnel radius is 6.5.

Next, the longitudinal deformation profile can be calculated using the methodology given in
Appendix 1. Alternatively, since the stresses are isotropic and the tunnel is circular, an axisym-
metric model (Figure 33b) can be used for this purpose. A longitudinal deformation profile for
the unsupported tunnel is shown as a dashed line (“Disp. vs Distance”) in Figure 33a. An esti-
mate of the displacement profile for the supported tunnel (with liner and sliding joints) is pre-
sented in Figure 33a as a dotted line for comparison.

A 2D finite element plane strain analysis is then applied to the full face construction sequence
(unsupported). The technique of progressive face replacement described in the previous section
(Figure 7) is used here. The resulting points on the ground reaction curve (white diamonds on
“Disp. vs Support Pressure” curve in Figure 33a) can be assigned locations along the tunnel
(filled diamonds in Figure 33a) using the (dashed) longitudinal deformation profile.

Figure 33 a) Ground reaction curve “Disp. vs Support Pressure” and
corresponding longitudinal displacement profile “Disp vs Distance (un-
supported)” for a axisymmetric model. Normalized plastic radius = 6.5.
Longitudinal displacement profile function fitted based on Appendix 1.
Point symbols and number ID’s represent corresponding stages in plane
strain model (related symbols are linked between two curves as shown
for stage 11 and 12 by dotted lines). Supported longitudinal deforma-
tion profile (dashed line without symbols) shown for comparison. b)
Axisymmetric model used for calibration showing yield indicators (x’s)
and wall displacement along tunnel (Vlachopoulos & Diederichs 2009b).
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Figure 34. Finite element mesh, geometry of excavation stages and liner segments
for 2D plane strain analysis of sequenced excavation and support.

The same correlation of model stage to tunnel location can be used for the benched tunnel model
with offset stages of bench excavation and with appropriate installation of support (remember
that the model support is installed at the beginning of the stage while the displacements are re-
ported at the end of the stage). The benched tunnel model is illustrated in Figure 34.

It is anticipated that the steel sets and the initial 20 cm shotcrete layer will undergo some lim-
ited yielding after the sliding joints close. The upper half of the arch, installed in the bench, may
also yield prior to this due to the moments induced by a reduction in the arch radius. This partial
arch and the complete arch, with sliding joints, are modeled as separate but joined layers with
appropriate material and section properties. They are assumed to act plastically with yield in the
steel and a 33% reduction in residual uniaxial compressive strength of the shotcrete after yield.

Following the geometry in Figure 34, the bench excavation sequence lags behind the top
heading by 2 stages. The upper composite liner is installed immediately behind the face (start of
stage 7 in Figure 33). The lower composite liner and the sliding joints are installed approxi-
mately 1 m behind the bench (beginning of stage 9), and the filler sections of 20 cm shotcrete
are installed and assumed to set by the beginning of stage 10. In this analysis the sliding joint
gap closes automatically two stages later (within stage 11) between 6 and 10 m form the face.

The final lining is applied behind the gap closure, beginning of stage 12 (10 m from the face)
for this analysis. This final lining is applied as an elastic composite according to the methodol-
ogy in Appendix 2. For the purposes of this analysis, a symmetrical reinforcement array of 6 x
25 mm rebar per metre, 75 mm from each surface is used. The moment of inertia, section depth
and total area are calculated for the rebar arrangement. The procedure is then similar as that de-
scribed in Appendix 2 for steel sets. The relevant properties are given in Table 3.

The aging of shotcrete is neglected here as the excavation rate is very slow (approximately 1
m per day). The shotcrete used at the site was of very high quality and 7 day strength and stiff-
ness values are used.



31

The short- and long-term liner loads are shown in Figure 35 for the full face excavation and
for the top heading and bench option. The compromise required to provide a bench for face sup-
port results in a less uniform loading of the two halves of the arch and the build-up of moments
in the sliding joint area. This effect is exaggerated dramatically if the final lining is installed be-
fore the sliding gap has closed.

Figure 35. Relative magnitudes and distribution of total axial load, moment and shear load in
the final 40 cm thick reinforced layer. Values plotted inside tunnel as solid represent short term
loading conditions. Hatched values outside of tunnel represent long term conditions. Dark shad-
ing indicates positive values for moment and shear, light shading indicates negative values. This
inner final liner layer is modeled elastically. This plot does not include residual loadings in the
plastic outer lining layer (steel sets embedded in 20 cm shotcrete).

To analyze the loadings within the steel and concrete components of the final inside lining layer,
the equations in Appendix 2 are used to partition the loads and moments and to generate elastic
capacity envelopes for comparison as shown for the full face options in Figure 36.
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Table 3. Liner properties for reinforced 40 cm inner liner (for use with Appendix 2).

Tunnel Radius 2.52 m Width of Section 1 m

Rebar Properties Shotcrete Properties
Number of Pairs per Section 6 Height of Section 0.4 m
Height of Rebar Section 0.25 m Young's Modulus 30000 MPa
Area of Section 0.005985 m2 Poisson's Ratio 0.2
Moment of Inertia 9.40E-05 m4 Compressive Strength 40 MPa
Young's Modulus 200000 MPa Tensile Strength -4 MPa
Poisson's Ratio 0.3
Compressive Strength 400 MPa
Tensile Strength -400 MPa Number of sets n 1

Figure 36. Partitioned liner loads compared to component capacity envelopes for full face tun-
nel option. Circles represent a full 60 cm lining, as per Figure 32b, installed in one step 2 m
from the face. Triangles represent the option involving W 6x 20 sets installed at the face with a
sliding gap in combination with 20 cm of shotcrete, followed at 10 m distance by a filled gap
and 40 cm of reinforce shotcrete. These plots are for the inner 40 cm of reinforced shotcrete
only. Filled symbols represent short term loading while open symbols are for long term loading.
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The most obvious result from Figure 36 is the large axial thrust predicted in the full lining in-
stalled near the face with no sliding joints. This confirms the conclusion from Figure 29 and
points to the definite requirement to allow deformation prior to full lining installation. For the
full face excavation, the liner with a sliding joint and with the final reinforced layer applied at
10 m from the face performs well, giving a factor of safety for long term loading greater than 2
for all loading combinations. The limiting state is the short term moment in the shotcrete com-
ponent (FS = 2). In this case the gap closed automatically in response to loading, between 5 and
10 m from the face, well before final lining installation.

As discussed, logistical and safety issues related to deformation and deterioration of the face
mandated the adoption of a top heading and short bench sequence. This required the lining to be
installed as an immediate top and slightly delayed bottom section. The partitioned capacity plots
for top heading and bench excavation are shown in Figure 37.

Figure 37. Partitioned liner loads compared to component capacity envelopes for top heading
and bench options. In these analyses, the sliding joint (gap) closes automatically under load be-
tween 5 and 10 m. Circles represent completion of the final lining at 5 m from the face (before
gap closure). Triangles represent the completion of the final lining at 10 m from the face (after
gap closure). These plots are for the inner 40 cm of reinforced shotcrete only. Filled symbols
represent short term loading while open symbols represent long term loading.
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For the top heading and bench option, the predicted performance is adequate in short and long
term loading provided that the gap (sliding joint) is filled and the final lining completed after the
joint has fully closed or the deformations have stabilized. The penalty for delaying liner comple-
tion will be unacceptable degradation and yielding of the initial 20 cm lining and the steel sets
resulting in service and safety problems. While this initial composite layer is expected to yield
to some degree, excessive yielding should be avoided. In addition, a long delay in the installa-
tion of the final liner could lead to loss of wall control.

The ideal condition is to fill the gap with shotcrete immediately upon joint closure to com-
plete the lining. In this example, the joint or gap closes between 6 m and 10 m from the face.
The triangles in Figure 37 represent completion of the final liner at 10 m. The limiting state in
this case is the short term moment in the shotcrete (FS > 2). The open circles in Figure 37 repre-
sent the case of premature completion of the final lining at 5 m from the face.

This design requires careful construction monitoring and management. If the gap is filled with
shotcrete and the final lining competed before the joints are allowed to close or before deforma-
tions have stabilized, the penalty is increased axial, shear and moment loading throughout the
liner. In the case shown here, cracking will be induced due to high moments for short term load-
ing and the factor of safety for all loading combinations drops for long term loading.

Even with excellent construction management, however, it is possible that liner completion
could take place too soon for some individual segments or rounds within the tunnel. From a haz-
ard mitigation perspective it is important to understand the consequences of this possibility. The
factors of safety illustrated in Figures 36 and 37 refer to initial cracking of the liner. Figure 38 il-
lustrates an alternative analysis of the results in which the non-partitioned liner loadings and ca-
pacity envelopes are calculated in a non-linear fashion, using the program Response 2000
(Bentz, 2000) that allows plastic (cracked) moments.

Figure 38. Total (non-partitioned) thrusts and moments from modeled inner liner of 40 cm rein-
forced shotcrete. Dashed envelopes represent limits for initial cracking of shotcrete. Solid enve-
lopes represent capacity limits accounting for the development of additional moment capacity in
the cracked liner as well as accounting for the tensile strength of the reinforcement (Vecchio and
Collins, 1986). Triangles represent installation of the final lining at 10 m; circles represent com-
pletion at 5 m. Filled symbols indicate short term loading; open symbols indicate long term
loading. Sliding joint closes automatically between 5 and 10 m from the face.



35

Figure 38 shows that the critical loading, in the case of premature completion of the liner, is the
short term moment. This is indicated by the calculated values falling outside the capacity enve-
lopes for cracking. These envelopes are equivalent to the elastic envelopes for the partitioned
liner, presented in the previous figures. This case still falls within the solid capacity envelopes
representing the ultimate load capacity of the liner with tension cracks fully developed and in-
ternal loading redistributed. This indicates that the prematurely installed final lining will not col-
lapse catastrophically in compression or bending. Instead, cracks would become visible during
the construction phase of the tunnel and repairs can be made.

The ultimate result is a reduced long term factor of safety for all loading conditions, again
reinforcing the need for good construction management to ensure the correct installation se-
quence for potentially variable rock mass conditions and deformation rates.

The appearance of the tunnel, constructed as described in this example, is shown in Figure 39.

Figure 39. Completed section of tunnel with a 60 cm thick reinforced shot-
crete lining, placed in two layers as described above.

4 CONCLUSIONS

A methodology for the design of tunnel linings has been presented. While this approach has
been used by specialist tunnel designers for many years, it has never been described comprehen-
sively in a single document that allows the reader to follow all the derivations and the step by
step calculations. To make this process as easy as possible to follow, the authors have included
two case history based examples, one for a very shallow tunnel and the other for a very deep
tunnel. These examples have been chosen to highlight the complex loading conditions that can
occur under different geological and topographic conditions and how these complexities can be
incorporated into a rational lining design.

The support capacity diagrams are based on elastic analysis of the support elements and this
implies that no tensile cracking or compressive crushing of the shotcrete or concrete elements is
acceptable. These simplified calculations allow the user to optimize the design of the lining
components relatively quickly and efficiently. It has been demonstrated that, where tensile
cracking becomes an important consideration, more sophisticated non-linear structural design
approaches, which allow for crack development, can be used.
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6 SOFTWARE

The methodologies described in this paper can be used with any modern numerical package
provided the input and verification of results are done according to equations and procedures
presented. The three-dimensional analyses were carried out using FLAC3D, developed and sold
by Itasca (www.itascacg.com) while all other calculations were performed using Phase2, devel-
oped and sold by Rocscience (www.rocscience.com).

The structural program Response 2000, developed by Professor Bentz, can be downloaded
(free) from (http://www.ecf.utoronto.ca/~bentz/home.shtml).
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8 APPENDIX 1 – CALCULATION OF LONGITUDINAL DISPLACEMENT PROFILES

In order to design the appropriate timing for the installation of stiff support or when optimizing
the installation of support with specific displacement capacity, it is important to determine the
longitudinal closure profile for the tunnel. A portion of the maximum radial displacements at the
tunnel boundary will take place before the face advances past a specific point. The tunnel boun-
dary will continue to displace inwards as the tunnel advances further beyond the point in ques-
tion. This longitudinal profile of closure or displacement versus distance from the tunnel face is
called the longitudinal displacement profile and can be calculated using three-dimensional mod-
els for complex loading and geometric conditions or with axisymmetric models for uniform or
isotropic initial stress conditions and circular tunnel cross sections. This profile can be used to
establish a distance-convergence relationship for 2D modeling or for analytical solutions (as in
Carranza-Torres and Fairhurst, 2000). The following discussion of longitudinal displacement
profile estimation is excerpted from Vlachopoulos and Diederichs (2009a).

In order to facilitate analytical calculations of ground response (convergence-confinement)
Panet (1995) derived a relationship for the longitudinal displacement profile based on elastic
analysis:
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where tt RXd / , ur is the average radial displacement at a specified longitudinal position, X,

and umax is the maximum short term radial displacement distant from the face and corresponding
to plane strain analysis of a tunnel cross section. Rt is the tunnel radius and X is positive into the
tunnel away from the face (X = 0). The position X is negative into the rock ahead of the face and
is specified along the tunnel centerline.

Numerous other authors have suggested alternative expressions for the elastic longitudinal
displacement profile including Unlu and Gercek (2003) who noted that the curve in front of the
face and the curve behind the face do not follow a single continuous functional relationship with
X. The radial deformation profile with respect to distance from the face is accurately predicted
for the elastic case to be:
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where u0 is the radial displacement at the face location (X=0) and Aa, Ab, Ba, Bb are functions of
Poisson’s Ratio:
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These preceding equations are for elastic deformation. Panet (1993, 1995), Panet and Guenot
(1982), Chern et al. (1998) and other have proposed empirical solutions for longitudinal dis-
placement profiles based on plastic modeled deformation of varying intensity (correlated to var-
ious indices such as the ratio between insitu stress and undrained cohesive strength, for exam-
ple).

Alternatively, an empirical best fit to actual measured closure data can be used (for example –
based on data from Chern et al, 1998):
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These relationships are summarized in Figure A1.1.

Figure A1.1: Longitudinal displacement profile functions from various re-
searchers and example data from Chern et al.(1998).

The development of radial deformation, however, is directly linked to the development of the
plastic zone as the tunnel advances. Studies by the authors have shown that the longitudinal dis-
placement profile function proposed by Panet (1995) and by Unlu and Gercek (2003) is reason-
able for plastic analysis provided that the radius of the plastic zone does not exceed 2 tunnel ra-
dii and provided that the yielding zone in the tunnel face does not interact with the developing
yield zone around the tunnel walls as illustrated in Figure A1.2.

The advancing front of plastic yielding is bullet shaped in three dimensions and for large plas-
tic zones (radius of plastic zone Rp >> 2) the shape of this developing yield zone is geometrical-
ly similar for increasing maximum plastic radii. There is no reason, therefore to expect that a
single longitudinal displacement profile will suffice for these conditions. In order to account for
the influence of increased overall yielding on the shape of the normalized longitudinal dis-
placement profile, the most logical index to relate to the longitudinal displacement profile func-
tion is the ultimate radius of the normalized plastic zone radius, Rp/Rt.
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Figure A1.2: a) Plastic yield zone developing as tunnel advances to the left. Maximum plastic
zone radius is less than twice the tunnel radius and the wall yield zone does not interact with the
face yield zone (Panet’s 1995 longitudinal displacement profile is valid); b) wall yield zone
more than double the tunnel radius and interacts with face yield zone (Panet’s longitudinal dis-
placement profile is not valid).

To illustrate this problem, one series of analyses were performed involving a radial tunnel sec-
tion and an axi-symmetric analysis along the tunnel axis. The first suite of analyses is based on a
typical rock mass at 1100m depth in graphitic phyllite found in the Yacambu-Quibor Tunnel in
Venezuela. This is case A1 in the table below. In this case the initial insitu stress is approximate-
ly 10 times the estimated rock mass uniaxial strength. 5 other rock masses are investigated with
increasing strength (increasing intact strength and/or GSI) giving a series of representative cases
with varying po/crm (in situ stress/rock mass strength). The rock mass parameters are summa-
rized in Table A1.1.

Table A1.1: Rockmass parameters for longitudinal displacement profile analysis using
PHASE2 (constant P0=28MPa)

A1 B1 C1 D1 E1 F1 G1

P0/crm 10 8 6 4 2 1 Elastic

ci (MPa) 35 35 35 50 75 100

mi 7 7 7 7 7 7

 0.25 0.25 0.25 0.25 0.25 0.25

GSI 25 35 45 48 60 74

m 0.481 0.687 0.982 1.093 1.678 2.766

s 0.0002 0.0007 0.0022 0.0031 0.0117 0.0536

a 0.531 0.516 0.508 0.507 0.503 0.501

Erm (MPa) 1150 2183 4305 7500 11215 27647 1150

crm(MPa) 2.8 3.5 4.7 7 14 28

P0 (MPa) 28 28 28 28 28 28 28

Radius, m 2.5 2.5 2.5 2.5 2.5 2.5 2.5
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The rock mass strengths are estimated as per Hoek et al (2002) and the elastic moduli are esti-
mated based on Hoek and Diederichs (2007). A second set of analyses were performed based
on rock mass A1 (plastic) and G1 (elastic) in Table A1.1 the stress levels listed in Table A1.2:

Table A1.2: Rockmass parameters for longitudinal displacement profile analysis using
PHASE2 (constant crm=2.8MPa)

A2 B2 C2 D2 E2 F2 G2

P0/crm 10 8 6 4 2 1 elastic

P0 (MPa) 28 22.4 16.8 11.2 5.6 2.8 28

The tunnels were analyzed (with Phase2) in plane strain cross section to determine the extent of
the plastic zone and the maximum radial deformation in each case. In addition, the cases were
analyzed, using axisymmetric models, with 1 m incremental advance to determine the longitu-
dinal displacement profile in each case as shown in Figure A1.3. The maximum displacements
and sizes of plastic zone were comparable between the radial and longitudinal models. These
summary results are presented in Table A1.3 and the resultant normalized longitudinal dis-
placement profiles are presented in Figure A1.4.

Figure A1.3: (left) radial tunnel section for PHASE2 analysis; (right) axisymmetric model with
1 m excavation stages (tunnel advances to the left).

Table A1.3: Summary results from radial and longitudinal (axisymmetric) analysis.

P0/crm 10 8 6 4 2 1 Elastic

Constant Po A1 B1 C1 D1 E1 F1 G

Plastic Rp 7.5 5.1 3.5 2.3 1.5 1.2 1

Max Disp 2.14 0.571 0.154 0.0495 0.0148 0.00367 0.0753

Constant crm A2 B2 C2 D2 E2 F2 G

Plastic Rp 7.5 6.3 5.0 3.3 2.2 1.6 1

Max Disp 2.14 1.25 0.632 0.242 0.0585 0.00167 0.0753
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Figure A1.4: Modeled longitudinal displacement profile results for axisymmetric models: (top)
constant Po model results; (bottom) constant crm model. Labeled results (A-G) correspond to
models in Table A1.3.
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By inspection of Figure A1.4 it is evident that the longitudinal displacement profile does not
correlate with the stress/strength index P0/crm as the set of curves in both plots represent the
same selected values for this ratio and yet have different longitudinal displacement profiles.
Analysis of the data, however, shows a direct correlation with the maximum normalized plastic
zone, Rp/Rt, as expected. The correlation between u0/umax at X/Rt = 0 (at the face) and the maxi-
mum plastic radius, Rp/Rt, is shown in Figure A1.5. Ignoring the influence of Poisson’s ratio
(negligible compared to plastic yielding) the best fit relationship (independent of material para-
meters and stress levels) is:
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1  (A1.5)

where tpr RRP /

Figure A1.5: Correlation between u0/umax at X/Rt = 0 (at the face) and the maxi-
mum plastic radius, Rp/Rt for analyses in table A1.4.

The relationships proposed by Unlu and Gercek (2003) correctly illustrate that the behavior
ahead of the face (X<0 into the rockmass) does not follow the same continuous function as the
behavior (progressive displacement) behind the face (X>0 in the tunnel). Their functions sum-
marized in Equation A1.2, do not, however, capture the influence of a large developing plastic
zone.

Based on the analysis in the preceding discussion, a new set of relationships are presented
here that capture the influence of large plastic zone development on the longitudinal displace-
ment profile. Equation A1.5 gives the relationship between normalized plastic radius and nor-
malized closure at the face (X=0). Equations A1.6 and A1.7 give the best fit longitudinal dis-
placement profile for X<0 and X>0 as a function of normalized maximum plastic zone radius.
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Figure A1.6: Correlation between predicted longitudinal displacement profiles (Equations A1.6
and A1.7) and model data (analyses from Table A1.4). (top) constant p0 analysis; (bottom) con-
stant crm analysis.
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The correlation with model data is shown in Figure A1.6.
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There is an important caveat to consider when using numerical analysis to compute lon-
gitudinal displacement profiles. When using axisymmetric or full three-dimensional
models to determine the longitudinal displacement profile relationship, it is important to
consider the excavation rate. A stress front builds ahead of the bullet shaped plastic zone
and influences the rate of plastic zone development. Such models will yield a different
apparent longitudinal displacement profile depending on the size of the excavation step.
This is clearly shown in Figure A1.7, where there is a significant difference between the
instantaneous excavation and the 1m (0.2D) step simulation (other excavation step sizes
shown for comparison). For support sequencing it is important to simulate the actual ex-
cavation step size or, if the tunneling is continuous (TBM), to use a small step size.

Figure A1.7: Influence of excavation step size on the longitudinal displacement profile.
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9 APPENDIX 2 - MOMENTS AND FORCES IN LINING ELEMENTS

In a typical tunnel design in which support consists of steel sets embedded in shotcrete, the de-
signer needs to know the contribution of each of these support elements and to be able to adjust
the number and dimensions of each to accommodate the loads imposed on the lining. In current
tunnel design, these loads are obtained from numerical analyses in which “beam elements” are
attached to the tunnel boundary and the axial thrust, bending moments and shear forces induced
in these elements are computed directly.

Note that these beam elements constitute “tunnel support” and they interact with the sur-
rounding rock mass to limit the convergence of the tunnel. On the other hand, rockbolts act as
“tunnel reinforcement” in that they change the mechanical properties of the rock mass surround-
ing the tunnel. Hence, it is possible to carry out a numerical analysis of a tunnel reinforced by
means of rockbolts and supported by means of a composite lining. The loads imposed on the lin-
ing will be reduced by the reinforcement and the composite lining will respond to these reduced
loads. The analysis that follows is valid whether rockbolts are present or not, provided that the
numerical analysis correctly models the load transfer from the rock mass onto the lining.

Figure A2.1 represents the problem to be analyzed involving a section of composite liner of
width b comprising n steel sets and n units of shotcrete —note that if n units of each material ex-
ist along the width b, this is equivalent to saying that the units are spaced at s = b/n. The compo-
site section in Figure 1 can be regarded as an equivalent section of width b and thickness teq. The
steel sets are assumed to be symmetrically placed in the shotcrete lining so that the neutral axes
of both the steel sets and the shotcrete lining are coincident. For the purposes of this analysis it
is assumed that the complete shell behaves elastically. This is a reasonable assumption since the
tunnel designer generally attempts to design the lining so that it will not fail.
    The following analysis is excerpted from Carranza-Torres and Diederichs (2009).

Figure A2.1: A section of width b in a composite lining consisting of steel sets, spaced at a dis-
tance s, embedded in shotcrete. Moments Mst and axial thrusts Nst are induced in the steel sets
and moments Msh and thrusts Nsh are induced in the shotcrete shell.
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In order to calculate the moments and axial thrusts induced in the steel sets and the shotcrete
shell and to compare these with the capacity of the steel sets and shotcrete, the following steps
are required:

1. An “equivalent” rectangular section with a width of b, a thickness teq and a modulus of
Eeq, is determined.

2. The capacity of the steel sets and the shotcrete lining are determined.
3. A numerical model of the tunnel is constructed and beam elements representing the

equivalent rectangular section are applied to the tunnel perimeter.
4. The bending moments and axial thrusts are redistributed back onto the steel sets and

shotcrete lining.

9.1 Calculation of equivalent section

The properties of the equivalent rectangular section are calculated as follows. For plane strain
conditions the compressibility coefficient Dst and flexibility coefficient Kst for the steel sets are:
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where Est is the Young’s modulus of the steel
Ast is the cross-sectional area of each steel set
Ist is the moment of inertia of each steel set and
st is the Poisson’s ratio of the steel

For the shotcrete shell, the compressibility and flexibility coefficients are:
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where Esh is the Young’s modulus of the shotcrete
Ash is the cross-sectional area of each unit of shotcrete = s.tsh
Ish is the moment of inertia of each unit of shotcrete = 12/).( 3

shts
sh is the Poisson’s ratio of the shotcrete

The equivalent compressibility and flexibility coefficients for the composite lining are:

)( shsteq DDnD  (A2.5)

)( shsteq KKnK  (A2.6)

The equivalent section has a width of b, an equivalent section thickness teq and the equivalent
modulus Eeq. The equivalent compressibility and flexibility coefficients can be written as:

eqeqeq EtbD . (A2.7)
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Solving for the variables teq and E eq
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9.2 Calculation of support capacity

In order to check whether the induced stresses in the steel sets and shotcrete lining are within
permissible limits, it is useful to plot the moments, shear forces and thrusts on support capacity
diagrams. The support capacity curves are calculated as follows:

9.2.1 Moment-thrust capacity

The maximum permissible compressive and tensile stresses induced in the lining are given by:
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where FS is the factor of safety.

The maximum and minimum permissible thrust capacity is obtained by substituting M = 0 in
equations A2.11 and A2.12, giving:
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The maximum bending moment is obtained when tensile and compressive failures occur simul-
taneously which, by eliminating N from equations A2.11 and A2.12, gives:
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The corresponding normal force Ncr at which these maximum moments occur is given by:
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9.2.2 Shear force-thrust capacity

In terms of shear force and axial thrust relationships:
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For failure in compression:
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For failure in tension:
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The critical value of the shear force Qcr associated with a particular factor of safety FS for both
failure in compression and tension at the same time is:

9

4 tc
cr

FS

A
Q


 (A2.23)

Note that t is negative.

9.3 Redistribution of thrust and moment onto steel sets and shotcrete

The bending moments, shear forces and axial thrusts are calculated by means of a numerical
analysis and for the equivalent composite lining of width b and thickness teq. In order to consider
the behavior of the steel sets and the shotcrete separately, it is necessary to redistribute these
thrusts and moments back onto the individual support elements.

Since many of the linings are attached to curved surfaces and, in some cases, these linings are
relatively thick compared to their radius R, it is necessary to consider the redistribution in terms
of a thick curved beam solution. This solution is the most general since it automatically degene-
rates to a thin beam solution as the radius of curvature increases to infinity.

The equations for the redistribution of the moment M, axial thrust N and shear forces Q in-
duced in any one of the beam elements representing the equivalent shell are:
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Shotcrete thrusts:
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Steel set shear forces:
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Shotcrete shear forces:
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9.4 Support capacity plots

The capacity plots described above can be calculated by means of a simple spreadsheet. The
following input parameters have been assumed for this analysis:

Steel sets Shotcrete lining
Tunnel radius R = 2 m Shotcrete thickness tsh = 0.2 m
Steel set spacing s = 0.6 m Modulus of shotcrete Esh = 30,000 MPa
Steel set height tst = 0.162 m Poisson’s ratio sh = 0.15
Area of steel set Ast = 4.75 x 10-3 m2 Compressive strength csh = 40 MPa
Moment of Inertia Ist = 2.23 x 10-5 m4 Tensile strength tsh = -2.5 MPa
Modulus of steel Est = 200,000 MPa Area of shotcrete Ash = s.tsh = 0.12 m2

Poisson’s ratio st = 0.25 Moment of Inertia Ish = s.tsh
3/12 = 0.0004 m4

Compressive strength cst = 500 MPa
Tensile strength tst = -500 MPa

Calculation of Support capacity diagrams for a Factor of Safety = 1.0

Steel sets M N Shotcrete lining M N

Maximum Thrust 0.00 2.38 Maximum Thrust 0.00 4.80

Maximum moment 0.14 0.00 Maximum moment 0.09 2.10

Minimum thrust 0.00 -2.38 Minimum thrust 0.00 -0.60

Minimum moment -0.14 0.00 Minimum moment -0.09 2.10

Complete fig 0.00 2.38 Complete fig 0.00 4.80

Shear force - axial thrust plot

Steel sets Q N N Shotcrete lining Q N N

Maximum shear force 1.58 Maximum shear force 1.13

Minimum shear force -1.58 Minimum shear force -1.13

1.58 0.00 0.00 1.13 4.20 4.20

1.19 1.04 -1.04 0.85 4.46 2.10

0.79 1.78 -1.78 0.57 4.65 0.60

0.40 2.23 -2.23 0.28 4.76 -0.30

0.00 2.38 -2.38 0.00 4.80 -0.60

-0.40 2.23 -2.23 -0.28 4.76 -0.30

-0.79 1.78 -1.78 -0.57 4.65 0.60

-1.19 1.04 -1.04 -0.85 4.46 2.10

-1.58 0.00 0.00 -1.13 4.20 4.20
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The following forces induced in the lining described above are redistributed into the steel and
shotcrete components as defined by Equations A2.24 to A2.29. The lining was installed in a cir-
cular tunnel with a radius of 5 m in a rock mass with properties defined by:

Modulus E = 4000 MPa
Peak cohesion = 2 MPa, Residual cohesion = 1 MPa
Peak friction angle = 40, Residual friction angle = 35

The rock mass is subjected to a horizontal stress normal to the tunnel axis of 4 MPa and a ver-
tical stress of 2 MPa. The horizontal stress parallel to the tunnel axis is 2 MPa.

The results of these calculations are plotted in Figure A2.2.

Redistribution of forces into steel and shotcrete lining components (Equations A2.24 to A2.29)

Total M Total Q Steel N Steel M Steel Q Shot N Shot M Shot Q

0.00692 0.00242 0.40880 0.00121 0.00042 1.39360 0.00294 0.00103

0.00591 0.00049 0.43527 0.00103 0.00009 1.48383 0.00251 0.00021

0.00451 0.00371 0.49292 0.00079 0.00065 1.68034 0.00192 0.00158

0.00266 0.00206 0.57431 0.00047 0.00036 1.95781 0.00113 0.00088

-0.00057 -0.00719 0.67026 -0.00010 -0.00126 2.28492 -0.00024 -0.00305

-0.00283 -0.00224 0.77803 -0.00050 -0.00039 2.65229 -0.00120 -0.00095

-0.00518 0.00738 0.86640 -0.00091 0.00129 2.95356 -0.00220 0.00313

-0.00632 -0.00213 0.91111 -0.00111 -0.00037 3.10595 -0.00269 -0.00091

-0.00680 0.00133 0.91191 -0.00119 0.00023 3.10869 -0.00289 0.00057

-0.00519 -0.00831 0.86533 -0.00091 -0.00146 2.94989 -0.00221 -0.00353

-0.00315 -0.00787 0.79319 -0.00055 -0.00138 2.70397 -0.00134 -0.00334

-0.00121 -0.00529 0.70242 -0.00021 -0.00093 2.39454 -0.00051 -0.00225

0.00239 -0.00134 0.59056 0.00042 -0.00023 2.01320 0.00101 -0.00057

0.00456 -0.00336 0.49313 0.00080 -0.00059 1.68109 0.00194 -0.00143

0.00617 0.00073 0.43500 0.00108 0.00013 1.48290 0.00262 0.00031

0.00626 -0.00133 0.40879 0.00110 -0.00023 1.39355 0.00266 -0.00057

0.00631 -0.00002 0.42241 0.00111 0.00000 1.43999 0.00268 -0.00001

0.00500 0.00211 0.48075 0.00088 0.00037 1.63887 0.00213 0.00090

0.00241 0.00237 0.57426 0.00042 0.00042 1.95762 0.00102 0.00101

-0.00028 0.00829 0.68655 -0.00005 0.00145 2.34045 -0.00012 0.00352

-0.00324 0.00972 0.79386 -0.00057 0.00170 2.70624 -0.00138 0.00413

-0.00627 0.00100 0.87449 -0.00110 0.00017 2.98111 -0.00266 0.00042

-0.00740 -0.00508 0.91454 -0.00130 -0.00089 3.11764 -0.00314 -0.00216

-0.00738 0.00174 0.90659 -0.00129 0.00030 3.09055 -0.00313 0.00074

-0.00461 0.00103 0.85673 -0.00081 0.00018 2.92057 -0.00196 0.00044

-0.00295 -0.00449 0.76633 -0.00052 -0.00079 2.61239 -0.00126 -0.00191

0.00012 -0.01188 0.65380 0.00002 -0.00208 2.22878 0.00005 -0.00505

0.00357 -0.00367 0.54585 0.00063 -0.00064 1.86081 0.00152 -0.00156

0.00526 -0.00100 0.46110 0.00092 -0.00018 1.57188 0.00224 -0.00043

0.00680 -0.00190 0.41097 0.00119 -0.00033 1.40097 0.00289 -0.00081
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Figure A2.2. Support capacity diagrams and induced lining forces for the example described
above.




