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Introduction

What is Complex Analysis?

The central object of study in complex analysis is a “complex differentiable” function f : C → C.

Since C is really R2, one might think of the function f as being a function from R2 to R2. So

one might guess that the subject of complex analysis is similar to real analysis. But everything

changes drastically if we assume f to be complex differentiable, that is,

lim
z→z0

f(z)− f(z0)

z − z0

exists. The definition is similar to the definition of differentiability of f having a real argument, but

now the numerator and denominator are complex numbers. This has far-reaching consequences.

One might think that one can prove theorems for holomorphic functions via real variables, but

actually this is a new subject, with its own proofs (often short). The core content of the course

can be summarized in the following Grand Theorem1:

Theorem 0.1. Let D be an open path connected set and let f : D → C. Then the following are

equivalent:

(1) For all z ∈ D, f ′(z) exists.

(2) For all z ∈ D and all n ≥ 0, f (n)(z) exists.

(3) u := Re(f), v := Im(f) are continuously differentiable and
∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −∂v

∂x
in D.

(4) For each simply connected subdomain S of D, there exists a holomorphic F : S → C such

that F ′(z) = f(z) for all z ∈ S.

(5) f is continuous on D and for all piecewise smooth closed paths γ in each simply connected

subdomain of D, we have ∫

γ

f(z)dz = 0.

(6) If {z ∈ C : |z−z0| ≤ r} ⊂ D, then for all z with |z−z0| < r, f(z) =
1

2πi

∫

|ζ−z0|=r

f(ζ)

ζ − z
dζ.

(7) If {z ∈ C : |z− z0| ≤ r} ⊂ D, then there is a unique sequence (cn)n≥0 in C such that for

all z with |z − z0| < r,

f(z) =
∞∑

n=0

cn(z − z0)
n.

Furthermore, cn =
1

2πi

∫

|ζ−z0|=r

f(ζ)

(ζ − z0)n+1
dζ and cn =

f (n)(z0)

n!
.

1Don’t worry about the unfamiliar terms/notation here: that is what we will learn, besides the proof!
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viii Introduction

Why study complex analysis?

Complex analysis plays an important role in many branches of mathematics, and in applications.

Here is a list of a few of them:

(1) PDEs. The real and analytic parts of a complex differentiable functions satisfy an

important basic PDE, called the Laplace equation:

∆u :=
∂2u

∂x2
+

∂2u

∂y2
= 0.

Many problems in applications give rise to this equation: for example gravitational fields,

electrostatic fields, steady-state heat conduction, incompressible fluid flow, Brownian

motion, computer animation2 etc.

(2) Real analysis. To work integrals in R. For example,
∫ ∞

−∞

cosx

1 + x2
dx.

Note that the problem is set in the reals, but one can solve it using complex analysis.

Moreover, one gains a deeper understanding of some real analysis facts via complex

analysis. For example, it is easy to understand that the power series representation of

the function

f(x) :=
1

1− x2
= 1 + x2 + x4 + x6 + . . .

is valid only for x ∈ (−1, 1), since f itself has singularities at x = 1 and at x = −1. But

if we look at the power series representation of the function

g(x) :=
1

1 + x2
= 1− x2 + x4 − x6 +− . . . ,

then this is again valid only for x ∈ (−1, 1), despite there being no obvious reason from

the formula for g for the series to break down at the points x = −1 and x = +1. The

mystery will be resolved when we look at the complex functions

F (z) =
1

1− z2
and G(z) =

1

1 + z2

(whose restriction to R are the functions f and g, respectively).

(3) Applications. Many tools used for solving problems in applications, such as the

Fourier/Laplace/z-transform, rely on complex function theory. These tools in turn are

useful for example to solve differential equations, such as the Black-Scholes equation for

option pricing. (See for example Section 20.6 on pages 441-450 of Shaw’s book [S].) Such

tools are also important in applied subjects such as mathematical physics, biomedical

engineering, control theory, signal processing and so on.

(4) Analytic number theory. Perhaps surprisingly, many questions about the natural

numbers can be answered using complex analytic tools. For example, the Prime Number

Theorem says that if π(n) denotes the number of primes less than n, then

π(n)

n

logn

n→∞−→ 1,

a proof of which can be given using complex analytic computations with the Riemann-

zeta function.

2See http://www.youtube.com/watch?v=egf4m6zVHUI or http://www.ams.org/samplings/feature-column/fcarc-harmonic



Complex Analysis is not complex analysis! ix

Complex Analysis is not complex analysis!

Indeed, it is not very complicated, and there isn’t much analysis. The analysis is “soft”: there are

fewer deltas and epsilons and difficult estimates, once a few key properties of complex differentiable

functions are established. The Grand Theorem we mentioned earlier tells us that the subject is

radically different from Real Analysis. Indeed, we have seen that a real-valued differentiable

function on an open interval (a, b) need not have a continuous derivative. In contrast, a complex

differentiable function on an open subset of C is infinitely many times differentiable! This miracle

occurs because complex differentiable functions are “rigid” and they have a lot of structure that

is imposed by the demand of complex differentiability. Nevertheless there are enough of them to

make the subject nontrivial and interesting!

Acknowledgements: Thanks are due to Professors Raymond Mortini, Adam Ostaszewski and

Rudolf Rupp for useful comments.





Chapter 1

Complex numbers and
their geometry

In this chapter, we set the stage for doing complex analysis. We study three main topics:

(1) We will introduce the set of complex numbers, and their arithmetic, making C into a

field, “extending” the usual field of real numbers.

(2) Points in C can be depicted in the plane R2, and we will see that the arithmetic in C

has geometric meaning in the plane. This correspondence between C and points in the

plane also allows one to endow C with the usual Euclidean topology of the plane.

(3) Finally we will study a fundamental function in complex analysis, namely the exponential

function. We also look at some elementary functions related to the exponential function,

namely trigonometric functions and the logarithm.

1.1. The field of complex numbers

By definition, a complex number is an ordered pair of real numbers. The set R×R of all complex

numbers is denoted by C. Thus

C = {z = (x, y) : x ∈ R and y ∈ R}.

For a complex number z = (x, y) ∈ C, where x, y ∈ R, the real number x is called the real part of

z, and y is called the imaginary part of z.

We define the operations of addition and multiplication on C as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1),

for complex numbers (x1, y1), (x2, y2). With these operations, C is a field, that is,

(F1) (C,+) is an Abelian group,

(F2) (C \ {0}, ·) is an Abelian group, and

(F3) the distributive law holds: for a, b, c ∈ C, (a+ b) · c = a · c+ b · c.

The additive identity is (0, 0), the additive inverse of (x, y) is (−x,−y). The multiplicative identity

is (1, 0), and the multiplicative inverse of (x, y) ∈ C \ {(0, 0)} is given by
(

x

x2 + y2
,

−y

x2 + y2

)
. (1.1)

Exercise 1.1. Check that (1.1) indeed is the inverse of (x, y) ∈ C \ {(0, 0)}.

1



2 1. Complex numbers and their geometry

Proposition 1.2. (C,+, ·) is a field.

In fact, we can embed R inside C, and view R as a subfield of C, that is, one can show that

the map

x 7→ (x, 0)

sending the real number x to the complex number (x, 0) is an injective field homomorphism.

(This just means that the operations of addition and multiplication are preserved by this map,

and distinct real numbers are sent to distinct complex numbers.)

But the advantage of working with C is that while in R there was no solution x ∈ R to the

equation

x2 + 1 = 0,

now with complex numbers we have

(0, 1) · (0, 1) + (1, 0) = (−1, 0) + (1, 0) = (0, 0).

If we give a special symbol, say i, to the number (0, 1), then the above says that

i2 + 1 = 0

(where we have made the usual identification of the real numbers 1 and 0 with their corresponding

complex numbers (1, 0) and (0, 0)).

Henceforth, for the complex number (x, y), where x, y are real, we write x+ yi, since

(x, y) = (x, 0)︸ ︷︷ ︸
≡x

+(y, 0)︸ ︷︷ ︸
≡y

· (0, 1)︸ ︷︷ ︸
≡i

= x+ yi.

Note that as yi = (y, 0) · (0, 1) = (0, y) = (0, 1) · (y, 0) = iy, we have x+ yi = x+ iy.

Exercise 1.3. Let θ ∈
(

−π

2
,
π

2

)

. Express
1 + i tan θ

1− i tan θ
in the form x+ yi, where x, y are real.

1.1.1. Historical development of complex numbers. Contrary to popular belief, historically,

it wasn’t the need for solving quadratic equations that lead to complex numbers to be taken

seriously, but rather it was cubic equations. The gist of this is the following. For the ancient

Greeks, mathematics was synonymous with geometry, and in the 16th century, this conception

was still dominant. Thus, when one wanted to solve

ax2 + bx+ c = 0,

one imagined that one was trying to solve geometrically the problem of finding the point of

intersection of the parabola y = ax2 with the line y = −bx− c. Thus it was easy to dismiss the

lack of solvability in reals of a quadratic such as x2 +1 = 0, since that just reflected the geometric

fact that parabola y = x2 did not meet the line y = −1. See the picture on the left in Figure 1.

Figure 1. Lack of solvability in reals of x2 = −1 versus the fact that x3 = 3px+2q always has
a real solution x.
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Meanwhile, Cardano (1501-1576) gave a formula for solving the cubic x3 = 3px+ 2q, namely,

x =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3.

For example, one can check that for the equation x3 = 6x+ 6, with p = 2 and q = 3, this yields

one solution to be x = 3
√
4 + 3

√
2. However, note that by the Intermediate Value Theorem, the

cubic y = x3 always intersects the line y = 3px+2q. See the picture on the right in Figure 1. But

for an equation like x3 = 15x + 4, that is when p = 5 and q = 2, we have q2 − p3 = −121 < 0,

and so Cardano’s formula becomes meaningless with real numbers. On the other hand, it can be

checked easily that x = 4 is a real solution to this equation.

It was some thirty years after Cardano’s work appeared, that Bombelli had a “wild thought”:

that perhaps the solution x = 4 could, after all, be obtained from Cardano’s formula, via a detour

through the use of complex numbers. Note that Cardano’s formula in this case gives

x = 3
√
2 + 11i+ 3

√
2− 11i.

Bombelli thought that if with the arithmetic of complex numbers it was the case that

3
√
2 + 11i = 2 + ni and 3

√
2− 11i = 2− ni,

for some real n, then indeed Cardano’s formula gives 4. So we need to calculate (2 + ni)3 and set

it equal to 2 + 11i in order to find n, and this gives n = 1. (Check this!) It was in this manner

that Bombelli’s work on cubic equations established that complex numbers are important, since

he showed that perfectly real problems needed complex number arithmetic for their solution.

Exercise 1.4. A field F is called ordered if there is a subset P ⊂ F, called the set of positive elements of

F, satisfying the following:

(P1) For all x, y ∈ P , x+ y ∈ P .

(P2) For all x, y ∈ P , x · y ∈ P .

(P3) For each x ∈ P , one and only one of the following three statements is true:

1◦ x = 0. 2◦ x ∈ P . 3◦ −x ∈ P .

For example, the field of real numbers R is ordered, since P := (0,∞) is a set of positive elements of
R. (Once one has an ordered set of elements in a field, one can compare the elements of F by defining a
relation >P in F by setting y >P x for x, y ∈ F if y − x ∈ P .) Show that C is not an ordered field.

Hint: Consider x := i, and first look at x · x.

1.2. Geometric representation of complex
numbers

Since C = R2, we can identify complex numbers with points in the plane. See Figure 2.

x

y
(x,y)

(0,0)

C

Figure 2. The complex number x+ iy in the complex plane.
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The complex plane is sometimes called the Argand1 plane.

Exercise 1.5. Locate the following points in the complex plane:

0, 1, −3

2
, i, −

√
2i, cos

π

3
+ i sin

π

3
.

With this identification of complex numbers with points in the plane, it is clear that complex

addition is just addition of vectors in R2. See Figure 3.

z1

z2

z1 + z2

Figure 3. Addition of complex numbers is vector addition in R2.

We will now see the special geometric meaning of complex multiplication. In order to do

this, it will be convenient to use polar coordinates. Thus, let the point (x, y) ∈ R2 have polar

coordinates r ≥ 0 and θ ∈ [π, π). Then

x = r cos θ,

y = r sin θ.

r is the distance of (x, y) to (0, 0), while θ is the angle made by the ray joining (0, 0) to (x, y) with

the positive real axis. (If (x, y) is itself (0, 0), we set θ = 0.) Thus we can express the complex

number in terms of the polar coordinates (r, θ):

x+ yi = r cos θ + (r sin θ)i = r(cos θ + i sin θ).

See Figure 4.

0 x

y

r

θ

(x, y)

Figure 4. Polar coordinates (r, θ) of (x, y) ∈ R2.

Then for two complex numbers expressed in polar coordinates as

z1 = r1(cos θ1 + i sin θ1),

z2 = r2(cos θ2 + i sin θ2),

1It is named after Jean-Robert Argand (1768-1822), although it was used earlier by Caspar Wessel (1745-1818).
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we have that

z1 · z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2 + i(cos θ1 sin θ2 + cos θ2 sin θ1))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

Thus z1 · z2 has the polar coordinates (r1r2, θ1 + θ2). In other words, the angles z1 and z2 make

with the positive real axis are added in order to get the angle z1 · z2 makes with the positive real

axis, and the distances to the origin are multiplied to get the distance z1 · z2 has to the origin. See

Figure 5.

z1

z2

z1z2

0

θ1θ2

θ1+θ2r1r2

Figure 5. Geometric meaning of complex multiplication: angles get added, distances to the
origin get multiplied.

In particular, we have

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

for all n ∈ N. This is called de Moivre’s formula.

Exercise 1.6. Recover the trigonometric equality cos(3θ) = 4(cos θ)3 −3 cos θ using de Moivre’s formula.

Exercise 1.7. Express (1 + i)10 in the form x+ iy with real x, y without expanding!

Exercise 1.8. By considering the product (2 + i)(3 + i), show that
π

4
= tan−1 1

2
+ tan−1 1

3
.

Exercise 1.9. Gaussian integers are complex numbers of the form m+ in, where m,n are integers. Thus
they are integral lattice points in the complex plane. Show that it is impossible to draw an equilateral
triangle such that all vertices are Gaussian integers.

Hint: Rotation of one of the sides should give the other. Recall that
√
3 is irrational.

De Moivre’s formula gives an easy way of finding the nth roots of a complex number z, that

is, complex numbers w that satisfy wn = z. Indeed, we first write z = r(cos θ + i sin θ) for some

r ≥ 0 and θ ∈ [0, 2π). Now if wn = z, where w = ρ(cosα+ i sinα), then

wn = ρn(cos(nα) + i sin(nα)) = r(cos θ + i sin θ) = z,

and so by equating the distance to the origin on both sides, we obtain ρn = r. Hence

ρ = n
√
r.

On the other hand, the angle made with the positive real axis is nα, which is in the set

{· · · , θ − 4π, θ − 2π, θ, θ + 2π, θ + 4π, θ + 6π, · · · }
which yields distinct w for

α ∈
{
θ

n
,
θ

n
+

2π

n
,
θ

n
+ 2 · 2π

n
, . . . ,

θ

n
+ (n− 1) · 2π

n

}
.

In particular, if z = 1, we get the nth roots of unity, which are located at the vertices of a n-sided

regular polygon inscribed in a circle. See Figure 6.
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Figure 6. The six 6th roots of unity.

Exercise 1.10. Find all complex numbers w such that w4 = −1. Depict these in the complex plane.

Exercise 1.11. Find all complex numbers z that satisfy z6 − z3 − 2 = 0.

Exercise 1.12. We know that if a, b, c are real numbers such that a2 + b2 + c2 = ab+ bc+ ca, then they
must be equal. Indeed, doubling both sides and rearranging gives (a− b)2 + (b− c)2 + (c− a)2 = 0, and
since each summand is nonnegative, it must be the case that each is 0. On the other hand, now show that
if a, b, c are complex numbers such that a2 + b2 + c2 = ab+ bc+ ca, then they must lie on the vertices of
an equilateral triangle in the complex plane. Explain the real case result in light of this fact.

Hint: If ω is a nonreal cube root of unity, then calculate ((b− a)ω + (b− c)) · ((b− a)ω2 + (b− c)).

Exercise 1.13. Show, using the geometry of complex numbers, that the line segments joining the centers
of opposite external squares described on sides of an arbitrary convex quadrilateral are perpendicular and
have equal lengths.

Exercise 1.14. The Binomial Theorem says that if a, b are real numbers and n ∈ N, then

(a+ b)n =
n
∑

k=0

(

n

k

)

akbn−k, where

(

n

k

)

:=
n!

k!(n− k)!
, k = 0, 1, 2, . . . , n,

are the binomial coefficients. The algebraic reasoning leading to this is equally valid if a, b are complex
numbers. Show that

(

3n

0

)

+

(

3n

3

)

+

(

3n

6

)

+ · · ·+
(

3n

3n

)

=
23n + 2 · (−1)n

3
.

Hint: Find (1 + 1)3n + (1 + ω)3n + (1 + ω2)3n, where ω denotes a nonreal cube root of unity.

The absolute value |z| of the complex number z = x+ iy, where x, y ∈ R, is defined by

|z| =
√
x2 + y2.

Note that this is the distance of the complex number z to 0 in the complex plane. By expressing

z1, z2 ∈ C in terms of polar coordinates, or by a direct calculation, it is clear that

|z1z2| = |z1| · |z2|.
Exercise 1.15. Verify the above property by expressing z1, z2 using Cartesian coordinates.

The complex conjugate z of z = x+ iy where x, y ∈ R, is defined by

z = x− iy.

In the complex plane, z is obtained by reflecting the point corresponding to z in the real axis.

The following properties are easy to check:

z = z, zz = |z|2, Re(z) =
z + z

2
, Im(z) =

z − z

2i
.

Exercise 1.16. Verify that the four equalities above hold.
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Exercise 1.17. Sketch the following sets in the complex plane:

(1) {z ∈ C : |z − (1− i)| = 2}.
(2) {z ∈ C : |z − (1− i)| < 2}.
(3) {z ∈ C : 1 < |z − (1− i)| < 2}.
(4) {z ∈ C : Re(z − (1− i)) = 3}.
(5) {z ∈ C : |Im(z − (1− i))| < 3}.
(6) {z ∈ C : |z − (1− i)| = |z − (1 + i)|}.
(7) {z ∈ C : |z − (1− i)|+ |z − (1 + i)| = 2}.
(8) {z ∈ C : |z − (1− i)|+ |z − (1 + i)| < 3}.

Exercise 1.18. Prove that for all z ∈ C, |z| = |z|, |Re(z)| ≤ |z| and |Im(z)| ≤ |z|. Give geometric
interpretations of each.

Exercise 1.19. Suppose that a, z ∈ C are such that |a| < 1 and |z| ≤ 1. Prove that

∣

∣

∣

∣

z − a

1− az

∣

∣

∣

∣

≤ 1.

Exercise 1.20. Consider the polynomial p given by p(z) = c0 + c1z + · · ·+ cdz
d, where c0, c1, . . . , cd ∈ R

and cd 6= 0. Show that if w ∈ C is such that p(w) = 0, then also p(w) = 0.

Exercise 1.21. Show that the area enclosed by the triangle formed by 0 and a, b ∈ C is given by

∣

∣

∣

∣

Im(ab)

2

∣

∣

∣

∣

.

Exercise 1.22. Prove for arbitrary complex numbers z1, z2, z3 that idet





1 z1 z1
1 z2 z2
1 z3 z3



 is real.

Exercise 1.23 (Enestrom’s Theorem). Let p be the polynomial given by p(z) = c0 + c1z + · · · + cdz
d,

where d ≥ 1 and c0 ≥ c1 ≥ c2 ≥ · · · ≥ cd > 0. Prove that the zeros of the polynomial p all lie outside the
open unit disc with center 0 and radius 1.

Hint: Show that (1− z)p(z) = 0 implies that c0 = (c0 − c1)z + (c1 − c2)z
2 + · · ·+ (cd−1 − cd)z

d + cdz
d+1,

which is impossible for |z| < 1.

1.3. Topology of C

1.3.1. Metric on C. In order to do calculus with complex numbers, we need a notion of distance

between a pair of complex numbers. Since C is just R2, we use the usual Euclidean distance in

R2 as the metric in C. Thus, for complex numbers z1 = x1 + iy1 and z2 = x2 + iy2, we have

d(z1, z2) =
√
(x1 − x2)2 + (y1 − y2)2 = |z1 − z2|.

By Pythagoras’s Theorem, this is the length of the line segment joining the points (x1, y1), (x2, y2)

in R
2.

In particular, the triangle inequality holds: |z1 + z2| ≤ |z1|+ |z2| for z1, z2 ∈ C.

Exercise 1.24. Show that for all z1, z2 ∈ C, |z1 − z2| ≥ ||z1| − |z2||.

Just as we did in real analysis, we can now talk about open balls, open sets, closed sets in C.

We can also talk about convergent sequences in C, and of compact subsets of C.

Example 1.25. Let z be a complex number with |z| < 1. Then the sequence (zn)n∈N converges

to 0. Indeed, we can write z = |z|eiθ, where θ ∈ (−π, π], and so if |z| < 1, we have zn = |z|neiθn,
and |zn − 0| = |z|n → 0 as n → ∞. ♦

Exercise 1.26. Consider the polynomial p given by p(z) = c0 + c1z + · · ·+ cdz
d, where c0, c1, . . . , cd ∈ C

and cd 6= 0. Show that there exist M,R > 0 such that |p(z)| ≥ M |z|d for all z ∈ C such that |z| > R.

Exercise 1.27. Show that a sequence (zn)n∈N of complex numbers is convergent to z∗ if and only if the
two real sequences (Re(zn))n∈N and (Im(zn))n∈N are convergent respectively to Re(z∗) and Im(z∗).
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Exercise 1.28. Show that a sequence (zn)n∈N of complex numbers is convergent to z∗ if and only if
(zn)n∈N converges to z∗.

Exercise 1.29. Prove that C is complete.

Exercise 1.30. Prove that the map z 7→ Re(z) : C → R is continuous.

Exercise 1.31. Prove that z 7→ z : C → C is a homeomorphism.

1.3.2. Domains. In the sequel, the notion of a path connected open set will play an important

role. We will call an open path-connected subset of C a domain. Let us first explain what we

mean by a path connected set.

Definition 1.32. A path (or curve) in C is a continuous function γ : [a, b] → C.

A stepwise path is a path γ : [a, b] → C such that there are points

t0 = a < t1 < · · · < tn < tn+1 = b

such that for each k = 0, 1, . . . , n, the restriction γ : [tk, tk+1] → C is a path with either a constant

real part or constant imaginary part. See Figure 7.

An open set U ⊂ C is called path connected if for every z1, z2 ∈ U , there is a stepwise path

γ : [a, b] → C such that γ(a) = z1, γ(b) = z2, and for all t ∈ [a, b], γ(t) ∈ U .

Figure 7. Stepwise path.

(Actually in the above definition of path connected open sets, the restriction of the paths

being stepwise paths can be relaxed, but this is an unnecessary diversion for us. So we just live

with this definition instead.)

Example 1.33. The open unit disc D := {z ∈ C : |z| < 1} is a domain.

For r ∈ (0, 1), the open annulus Ar := {z ∈ C : r < |z| < 1} is a domain.

The set S := {z ∈ C : |z| 6= 1} is not a domain, since although it is open, it is not path

connected. Indeed, there is no path joining, say 0 and 2: for if there were one such path γ, then by

the Intermediate Value Theorem applied to the function t 7→ |γ(t)| : [a, b] → R, we see that since

|γ(a)| = 0 < 1 < 2 = |γ(b)|, there must be a t∗ ∈ [a, b] such that |γ(t∗)| = 1, but then γ(t∗) 6∈ S.

♦

Exercise 1.34. Show that the set {z ∈ C : Re(z) · Im(z) > 1} is open, but not a domain.

Exercise 1.35. Let D be a domain. Set D∗ := {z ∈ C : z ∈ D}. Show that D∗ is also a domain.

1.4. The exponential function and kith

In this last section, we discuss some basic complex functions: the exponential function, the trigono-

metric functions and the logarithm. They will serve as counterparts to the familiar functions from

calculus, to which they reduce when restricted to the real axis. Some have new interesting prop-

erties not possessed by them when the argument is only allowed to be real. We begin with the

exponential function.
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1.4.1. The exponential ez.

Definition 1.36 (The complex exponential). For z = x + iy ∈ C, where x, y are real, we define

the complex exponential, denoted by ez, as follows:

ez = ex(cos y + i sin y).

First we note that when y = 0, the right hand side is simply ex. So this definition gives

an extension of the usual exponential function of a real variable. We will see later on that this

is a complex differentiable function everywhere in the complex plane, and it is the only possible

extension of the real function x 7→ ex having this property of being complex differentiable in the

whole complex plane; see Exercise 4.38 on page 63. So we will eventually see that this mysterious

looking definition is quite natural. Right now, let us check the following elementary properties:

Proposition 1.37.

(1) For z1, z2 ∈ C, ez1+z2 = ez1ez2 .

(2) For z ∈ C, ez 6= 0, and (ez)−1 = e−z.

(3) For z ∈ C, ez+2πi = ez.

(4) For z ∈ C, |ez| = eRe(z).

Proof. (1) If z1 = x1 + iy1 and z2 = x2 + iy2, then

ez1+z2 = e(x1+x2)+i(y1+y2) = ex1+x2(cos(y1 + y2) + i sin(y1 + y2))

= ex1ex2(cos y1 cos y2 − sin y1 sin y2 + i(sin y1 cos y2 + cos y1 sin y2))

= ex1(cos y1 + i sin y1)e
x2(cos y2 + i sin y2) = ez1ez2.

(2) From the previous part, we see that 1 = e0 = ez−z = eze−z, showing that ez 6= 0 and

(ez)−1 = e−z.

(3) We have ez+2πi = eze2πi = eze0(cos(2π) + i sin(2π)) = ez · 1 · (1 + i · 0) = ez.

(4) For x, y ∈ R, |ex cos y+iex sin y| =
√
e2x((cos y)2 + (sin y)2) =

√
e2x = ex. So |ex+iy| = ex. �

(3) above shows that z 7→ ez is not one-to-one, but rather, it is periodic with period 2πi.

Figure 8 shows the effect of z 7→ ez on horizontal (fixed imaginary part y) and vertical lines (fixed

real part x).

0

π
2

π

3π
2

2π

−1 0 1 2

z 7→ez

Figure 8. The image of horizontal and vertical lines under the exponential map.
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Note that for z = iy, where y is real, we have

eiy = cos y + i sin y.

This is the so-called Euler’s formula. (A special case is the equation eiπ + 1 = 0, relating some of

the fundamental numbers in mathematics.) Hence the polar form of a complex number can now

be rewritten as

z = r(cos θ + i sin θ) = reiθ.

Exercise 1.38. Compute ez for the following values of z: i
9π

2
, 3 + πi.

Exercise 1.39. Find all z ∈ C that satisfy ez = πi.

Exercise 1.40. Plot the curve t 7→ eit : [0, 2π] → C.

Exercise 1.41. Describe the image of the line y = x under the map z = x+ iy 7→ ez. Proceed as follows:
Start with the parametric form x = t, y = t, and get an expression for the image curve in parametric
form. Plot this curve, explaining what happens when t increases, and when t → ±∞.

Exercise 1.42. Find the modulus and the real and imaginary parts of ez
2

and of e
1
z in terms of the real

and imaginary parts x, y of z = x+ iy.

1.4.2. Trigonometric functions. Just as we extended the real exponential function, we now

extend the familiar real trigonometric functions to complex trigonometric functions. From the

Euler formula we established earlier, we have for real x that

eix = cosx+ i sinx,

e−ix = cosx− i sinx,

which gives

cosx =
eix + e−ix

2
and sinx =

eix − e−ix

2i
.

This prompts the following definitions: for z ∈ C, we define

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Several trigonometric identities continue to hold in the complex setting. For instance,

cos(z1 + z2) = (cos z1)(cos z2)− (sin z1)(sin z2).

Indeed, we have

(cos z1)(cos z2)− (sin z1)(sin z2)

=

(
eiz1 + e−iz1

2

)(
eiz2 + e−iz2

2

)
−
(
eiz1 − e−iz2

2i

)(
eiz2 − e−iz2

2i

)

=
2ei(z1+z2) + 2e−i(z1+z2)

4
= cos(z1 + z2).

Exercise 1.43. Verify that for complex z1, z2, sin(z1 + z2) = (sin z1)(cos z2) + (cos z1)(sin z2).

Also, (sin z)2 + (cos z)2 = 1, since

(sin z)2+ (cos z)2=

(
eiz − e−iz

2i

)2

+

(
eiz + e−iz

2

)2

=
(−e2iz + 2− e−2iz) + (e2iz + 2 + e−2iz)

4
=1.

However, as opposed to the real trigonometric functions which satisfy | sinx| ≤ 1 and | cosx| ≤ 1

for real x, z 7→ sin z and z 7→ cos z are not bounded. Indeed, for z = iy, where y is real, we have

cos(iy) =
e−y + ey

2
and sin(iy) =

e−y − ey

2i
,

and so | cos(iy)|, | sin(iy)| → ∞ as y → ±∞.
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We will see later that z 7→ cos z and z 7→ sin z are complex differentiable everywhere in the

complex plane.

Exercise 1.44. Show that for z = x+ iy, where x, y are real,

cos z = (cos x)(cosh y) + i(sin x)(sinh y) and | cos z|2 = (cosh y)2 − (sin x)2,

where cosh y :=
ey + e−y

2
and sinh y :=

ey − e−y

2
.

Exercise 1.45. We know that the equation cos x = 3 has no real solution x. However, show that there
are complex z that satisfy cos z = 3, and find them all.

1.4.3. Logarithm function. The logarithm function should be the inverse of the exponential

function, that is, given a z 6= 0, we seek a complex number w such that

ew = z,

and then the rule which sends z to w is the sought for logarithm function. However, the moment we

find one w such that ew = z, we know that there are infinitely many others, since ew+2πin = ew = z

for all n ∈ Z. So we will fix a particular choice. To do this, let us note that the real part of w

is uniquely determined by the equation ew = z: Indeed, eRe(w) = |z|, and so Re(w)= log |z|. If

z = |z|eiθ, where θ ∈ (−π, π], then

ew = eRe(w)eiIm(w) = |z|eiθ.
Dividing by eRe(w) = |z| (6= 0), we obtain eiIm(w) = eiθ, that is, ei(Im(w)−θ) = 1. Thus we have

Im(w) − θ ∈ 2πZ. In particular, the choice Im(w) = θ ∈ (−π, π] is allowed, and so we have the

following.

Definition 1.46. The principal logarithm Log z of z 6= 0 is defined by

Log z = log |z|+ iArg z,

where Arg z is called the principal argument of z, defined to be a number in (−π, π] such that

z = |z|eiArg z.

Of course, had we chosen the argument θ such that z = |z|eiθ to lie in a different interval

(a, 2π + a] or [a, 2π + a) for some other a, we would have obtained a different well-defined notion

of the logarithm (which would also be equally legitimate).

One can now also talk about ab, where a, b are complex numbers, and we define the principal

value of ab to be

ab := ebLog(a).

Example 1.47. The principal value of ii is eiLog(i) = ei(log |i|+iArg i) = ei(0+i π
2 ) = ei(i

π
2 ) = e−

π
2 .

♦

Exercise 1.48. Find Log(1 + i).

Exercise 1.49. Find Log(−1) and Log(1). Show that Log(z2) isn’t always equal to 2Log(z).

Exercise 1.50. Find the image of the annulus {z ∈ C : 1 < |z| < e} under the principal logarithm.

Exercise 1.51. Show that the principal logarithm is not continuous on C\{0}. Later on we will see that
it is complex differentiable in the domain C \ (−∞, 0] (that is, the complex plane with a “cut” along the
nonpositive real axis), and in particular, continuous there.

Exercise 1.52. Find the principal value of (1 + i)1−i.

Exercise 1.53. Depict the points in the set
{

z ∈ C : z 6= 0,
π

4
< Arg(z) <

π

3

}

in the complex plane.





Chapter 2

Complex
differentiability

In this chapter we will learn three main things:

(1) The definition of complex differentiability.

(2) The Cauchy-Riemann equations: these are PDEs that are satisfied by the the real and

imaginary parts of a holomorphic function.

(3) The geometric meaning of complex differentiability: locally the map is an “amplitwist”,

namely an amplification together with a twist (a rotation).

2.1. Complex differentiability

Definition 2.1.

(1) Let U be an open subset of C, and let z0 ∈ U . A function f : U → C is said to be

complex differentiable at z0 if there exists a complex number, say f ′(z0) ∈ C, such that

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0),

that is, for every ǫ > 0, there is a δ > 0 such that whenever 0 < |z − z0| < δ, z ∈ U and

we have ∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ǫ.

We sometimes denote f ′(z0) instead by
df

dz
(z0).

(2) A function f : U → C which is complex differentiable at all points of the open set U is

called holomorphic in U .

(3) A function that is holomorphic in C is called entire.

Let us look at a simple example of an entire function.

Example 2.2. Consider the function f : C → C defined by f(z) = z2 (z ∈ C). We show that f

is entire, and that for f ′(z0) = 2z0 for z0 ∈ C. Let ǫ > 0. Set δ := ǫ > 0. Then whenever z ∈ C

satisfies 0 < |z − z0| < δ, we have
∣∣∣∣
f(z)− f(z0)

z − z0
− 2z0

∣∣∣∣ =
∣∣∣∣
z2 − z20
z − z0

− 2z0

∣∣∣∣ = |z + z0 − 2z0| = |z − z0| < δ = ǫ.

As z0 ∈ C was arbitrary, f is entire. ♦

13
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On the other hand, here is an example of a natural mapping which is not complex differentiable.

Example 2.3. Consider the function g : C → C defined by g(z) = z (z ∈ C). We show that g

is differentiable nowhere. Suppose that g is differentiable at z0 ∈ C. Let ǫ := 1
2 > 0. Then there

exists δ > 0 such that whenever z satisfies 0 < |z − z0| < δ, we have
∣∣∣∣
g(z)− g(z0)

z − z0
− g′(z0)

∣∣∣∣ =
∣∣∣∣
z − z0
z − z0

− g′(z0)

∣∣∣∣ < ǫ.

In particular, taking z = z0 +
δ

2
, we have 0 < |z − z0| < δ, and so

∣∣∣∣
z − z0
z − z0

− g′(z0)

∣∣∣∣ =
∣∣∣∣
δ/2

δ/2
− g′(z0)

∣∣∣∣ = |1− g′(z0)| < ǫ. (2.1)

Also, taking z = z0 + i
δ

2
, we have 0 < |z − z0| < δ, and so

∣∣∣∣
z − z0
z − z0

− g′(z0)

∣∣∣∣ =
∣∣∣∣
−iδ/2

iδ/2
− g′(z0)

∣∣∣∣ = | − 1− g′(z0)| = |1 + g′(z0)| < ǫ. (2.2)

It follows from (2.1) and (2.2) that

2 = |1− g′(z0) + 1 + g′(z0)| ≤ |1− g′(z0)|+ |1 + g′(z0)| < ǫ+ ǫ = 2ǫ = 2 · 1
2
= 1,

a contradiction. So g is not differentiable at z0. ♦

Exercise 2.4. Show that f : C → C defined by f(z) = |z|2 for z ∈ C, is complex differentiable at 0 and
that f ′(0) = 0. We will see later (in Exercise 2.28) that f is not complex differentiable at any nonzero
complex number.

Exercise 2.5. Let D be a domain, and f : D → C be holomorphic in D. Set D∗ := {z ∈ C : z ∈ D}, and
define f∗ : D∗ → C by f∗(z) = f(z) (z ∈ D∗). Prove that f∗ is holomorphic in D∗.

The following lemma is useful to prove elementary facts about complex differentiation. Roughly

speaking, the result says that for a complex differentiable function f with complex derivative L

at z0, f(z)− f(z0)− L · (z − z0) goes to 0 “faster than z − z0”.

Lemma 2.6. Let U be an open set in C, z0 ∈ U , and f : U → C. Then f is complex differentiable

at z0 if and only if there is a r > 0, a complex number L, and a complex valued function h defined

on the open disc D(z0, r) := {z ∈ C : |z − z0| < r} ⊂ U such that

f(z) = f(z0) + (L+ h(z))(z − z0) for |z − z0| < r,

and lim
z→z0

h(z) = 0. Moreover, then f ′(z0) = L.

Proof. (If) For z 6= z0, we have, upon rearranging, that

f(z)− f(z0)

z − z0
− L = h(z)

z→z0−→ 0

and so f is complex differentiable at z0, and f ′(z0) = L.

(Only if) Now suppose that f is complex differentiable at z0. Then there is a δ1 > 0 such that

whenever 0 < |z − z0| < δ1, z ∈ U and
∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < 1.

Set r := δ1, and define h : D(z0, r) → C by

h(z) =





f(z)− f(z0)

z − z0
− f ′(z0) if z 6= z0,

0 if z = z0.
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Then clearly f(z) = f(z0) + (f ′(z0) + h(z))(z − z0) holds whenever |z − z0| < r. If ǫ > 0, then

there is a δ > 0 (which can be chosen smaller than r) such that whenever 0 < |z − z0| < δ, we

have ∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ (= |h(z)− 0|) < ǫ.

This completes the proof. �

For example, using this lemma, we see that holomorphic functions must be continuous.

Exercise 2.7. Let D be a domain in C. Show that if f : D → C is complex differentiable at z0 ∈ D, then
f is continuous at z0. (Later on, we will show that if f is holomorphic in D, then in fact it is infinitely
many times differentiable in D!)

Using Lemma 2.6, it is also easy to show the following.

Proposition 2.8. Let U be an open subset of C. Let f, g : U → C be complex differentiable

functions at z0 ∈ U .

(1) f + g is complex differentiable at z0 and (f + g)′(z0) = f ′(z0) + g′(z0).

(Here f + g : U → C is the function defined by (f + g)(z) = f(z) + g(z) for z ∈ U .)

(2) If α ∈ C, then α · f is complex differentiable and (α · f)′(z0) = αf ′(z0).

(Here α · f : U → C is the function defined by (α · f)(z) = αf(z) for z ∈ U .)

(3) fg is complex differentiable at z0 and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0).

(Here fg : U → C is the function defined by (fg)(z) = f(z)g(z) for z ∈ U .)

Remark 2.9. Let U be an open subset of C, and let H(U) denote the set of all holomorphic

functions in U . Then it follows from the above that H(U) is a complex vector space with pointwise

operations.

On the other hand, the third statement above shows that the pointwise product of two holo-

morphic functions is again holomorphic, and soH(U) also has the structure of a ring with pointwise

addition and multiplication.

Example 2.10. It is easy to see that if f(z) := z (z ∈ C), then f ′(z) = 1. Using the rule for

complex differentiation of a pointwise product of two holomorphic functions, it follows by induction

that for all n ∈ N, z 7→ zn is entire, and

d

dz
zn = nzn−1.

In particular all polynomials are entire. ♦

Exercise 2.11. Let D = {z ∈ C : |z| < 1} and H(D) denote the complex vector space of all holomorphic
functions in D with pointwise operations. Is H(D) finite dimensional?

Exercise 2.12. Let U be an open subset of C, and let f : U → C be such that f(z) 6= 0 for z ∈ U and f
is holomorphic in U . Prove that the function

1

f
: U → C

defined by

(

1

f

)

(z) =
1

f(z)
for all z ∈ U , is holomorphic, and that

(

1

f

)

′

(z) = − f ′(z)

(f(z))2
(z ∈ U).

Exercise 2.13. Show that in C \ {0}, for each m ∈ Z,
d

dz
zm = mzm−1.

Proposition 2.14 (Chain rule). Let Df , Dg be domains, and let f : Df → C and g : Dg → C be

holomorphic functions such that f(Df ) ⊂ Dg. Then their composition g ◦ f : Df → C, defined by

(g ◦ f)(z) = g(f(z)) (z ∈ Df ),

is holomorphic in Df and (g ◦ f)′(z) = g′(f(z))f ′(z) for all z ∈ Df .
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Proof. Let z0 ∈ Df . Then f(z0) ∈ Dg. From the complex differentiability of f at z0 and that of

g at f(z0), we know that there are functions hf and hg, defined in the discs D(z0, rf ) ⊂ Df and

D(f(z0), rg) ⊂ Dg such that

f(z)− f(z0) = (f ′(z0) + hf(z))(z − z0),

g(w) − g(f(z0)) = (g′(f(z0)) + hg(w))(w − f(z0)),

and

lim
z→z0

hf (z) = 0, lim
w→f(z0)

hg(w) = 0.

But it follows from the continuity of f at z0 that when z is close to z0, w := f(z) is close to f(z0),

and so if z 6= z0, but close to z0, we have

(g ◦ f)(z)− (g ◦ f)(z0)
z − z0

= (g′(f(z0)) + hg(f(z)))(f
′(z0) + hf (z)),

and so the claim follows. �

Exercise 2.15. Assuming that ez is entire and that

d

dz
ez = ez

(we will prove this later), show that e−
1+z
1−z is holomorphic in the unit disc D := {z ∈ C : |z| < 1}, and

find its derivative.

2.2. Cauchy-Riemann equations

We now prove the main result in this chapter, which says roughly that a function f = u + iv is

holomorphic if and only if its real and imaginary parts (viewed as real valued functions living in

an open subset of R2) satisfy a pair of partial differential equations, called the Cauchy-Riemann

equations.

Cauchy-Riemann

Theorem 2.16. Let U be an open subset of C and let f : U → C be complex differentiable at

z0 = x0 + iy0 ∈ U . Then the functions

(x, y) 7→ u(x, y) := Re(f(x+ iy)) : U → R and

(x, y) 7→ v(x, y) := Im(f(x+ iy)) : U → R

are differentiable at (x0, y0) and

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (2.3)

(The two PDEs in (2.3) are called the Cauchy-Riemann equations.)
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Proof. (The idea of the proof is easy, we just let (x, y) tend to (x0, y0) by first keeping y fixed at

y0, and then by keeping x fixed at x0, and look at what this gives us.)

Let z0 = (x0, y0) ∈ U . Let ǫ > 0. Then there is δ > 0 such that whenever 0 < |z − z0| < δ, we

have z ∈ U and
∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ǫ.

Hence if x ∈ R is such that 0 < |x − x0| < δ, then z := x + iy0 satisfies z − z0 = x − x0 and so

0 < |z − z0| < δ. Thus

∣∣∣∣
u(x, y0)− u(x0, y0)

x− x0
− Re(f ′(z0))

∣∣∣∣ =

∣∣∣∣Re
(
f(x+ iy0)− f(x0 + iy0)

z − z0
− f ′(z0)

)∣∣∣∣

≤
∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ǫ.

Thus the partial derivative
∂u

∂x
(x0, y0) = lim

x→x0

u(x, y0)− u(x0, y0)

x− x0
= Re(f ′(z0)).

Similarly, we also have
∂v

∂x
(x0, y0) = lim

x→x0

v(x, y0)− v(x0, y0)

x− x0
= Im(f ′(z0)). Thus

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (2.4)

Now take y ∈ R such that 0 < |y − y0| < δ, then z := x0 + iy satisfies z − z0 = i(y − y0) and

so 0 < |z − z0| < δ. Thus

∣∣∣∣
u(x0, y)− u(x0, y0)

y − y0
+ Im(f ′(z0))

∣∣∣∣ =

∣∣∣∣Im
(
−f(x0 + iy)− f(x0 + iy0)

z − z0
+ f ′(z0)

)∣∣∣∣

≤
∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ǫ.

Thus the partial derivative

∂u

∂y
(x0, y0) = lim

y→y0

u(x0, y)− u(x0, y0)

y − y0
= −Im(f ′(z0)).

Similarly,

∣∣∣∣
v(x0, y)− v(x0, y0)

y − y0
− Re(f ′(z0))

∣∣∣∣ =

∣∣∣∣Re
(
f(x0 + iy)− f(x0 + iy0)

z − z0
− f ′(z0)

)∣∣∣∣

≤
∣∣∣∣
f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ǫ.

Thus the partial derivative
∂v

∂y
(x0, y0) = lim

y→y0

v(x0, y)− v(x0, y0)

y − y0
= Re(f ′(z0)). Hence

f ′(z0) =
∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0). (2.5)

From (2.4) and (2.5), it follows that

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).
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Finally, we have for z = (x, y) satisfying 0 < |z − z0| < δ that
∣∣∣∣u(x, y)− u(x0, y0)−

(
∂u

∂x
(x0, y0)

)
· (x − x0)−

(
∂u

∂y
(x0, y0)

)
· (y − y0)

∣∣∣∣
‖(x, y)− (x0, y0)‖2

=

∣∣∣∣u(x, y)− u(x0, y0)−
((

∂u

∂x
(x0, y0)

)
· (x− x0)−

(
∂v

∂x
(x0, y0)

)
· (y − y0)

)∣∣∣∣
‖(x, y)− (x0, y0)‖2

=
|Re(f(z)− f(z0)− f ′(z0)(z − z0))|

|z − z0|
< ǫ.

Thus u is differentiable at (x0, y0). Similarly, v is also differentiable at (x0, y0). �

Remark 2.17. We will see later on that in fact the real and imaginary parts of a holomorphic

function are infinitely many times differentiable.

Let us revisit Example 2.3.

Example 2.18. For the function g : C → C defined by g(z) = z (z ∈ C), we have that

u(x, y) = Re(g(x+ iy)) = Re(x− iy) = x,

v(x, y) = Im(g(x+ iy)) = Im(x− iy) = −y.

Thus
∂u

∂x
(x, y) = 1 6= −1 =

∂v

∂y
(x, y). This shows that the Cauchy-Riemann equations can’t hold

at any point. So we recover our previous observation that g is differentiable nowhere. ♦

Exercise 2.19. Consider Exercise 2.4 again. Show that f is not differentiable at any point of the open
set C \ {0}.

One also has the following converse to Theorem 2.16. This is a very useful result to check the

holomorphicity of functions.

Theorem 2.20. Let U be an open subset of C. Let f : U → C be such that the functions

(x, y) 7→ u(x, y) := Re(f(x+ iy)) : U → R and

(x, y) 7→ v(x, y) := Im(f(x+ iy)) : U → R

are continuously differentiable in U and the Cauchy-Riemann equations hold:

for all (x, y) ∈ U,
∂u

∂x
(x, y) =

∂v

∂y
(x, y) and

∂u

∂y
(x, y) = −∂v

∂x
(x, y).

Then f is holomorphic in U and f ′(x+ iy) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) for x+ iy ∈ U .

Proof. Let z0 = x0 + iy0 ∈ U . Let ǫ > 0. Let δ > 0 be such that whenever |z − z0| < δ, we have

z = x+ iy ∈ U and
∣∣∣∣
∂u

∂x
(x, y)− ∂u

∂x
(x0, y0)

∣∣∣∣+
∣∣∣∣
∂v

∂x
(x, y)− ∂v

∂x
(x0, y0)

∣∣∣∣ < ǫ. (2.6)

Fix such a z distinct from z0. Define ϕ : (−1, 1) → R
2 by

ϕ(t) =

[
u(x0 + t(x− x0), y0 + t(y − y0))

v(x0 + t(x − x0), y0 + t(y − y0))

]
.



2.2. Cauchy-Riemann equations 19

Then with p(t) := (x0 + t(x − x0), y0 + t(y − y0)), we have

ϕ′(t) =




∂u

∂x
(p(t))(x − x0) +

∂u

∂y
(p(t))(y − y0)

∂v

∂x
(p(t))(x − x0) +

∂v

∂y
(p(t))(y − y0)


 =




∂u

∂x
(p(t)) −

∂v

∂x
(p(t))

∂v

∂x
(p(t))

∂u

∂x
(p(t))



[

x− x0

y − y0

]
,

where we have used the Cauchy-Riemann equations to get the last expression. Thus

ϕ′(t) =




Re

((
∂u

∂x
(p(t)) + i

∂v

∂x
(p(t))

)
(z − z0)

)

Im

((
∂u

∂x
(p(t)) + i

∂v

∂x
(p(t))

)
(z − z0)

)


 .

Let ϕ1, ϕ2 be the two scalar-valued components of ϕ. Setting

A :=

∫ 1

0

∂u

∂x
(p(t))dt and B :=

∫ 1

0

∂v

∂x
(p(t))dt,

we have using the Fundamental Theorem of Integral Calculus that

ϕ1(1)− ϕ1(0) =

∫ 1

0

ϕ′
1(t)dt = Re((A + iB)(z − z0)).

Similarly, also ϕ2(1)− ϕ2(0) = Im((A + iB)(z − z0)). Thus

f(z)− f(z0) = ϕ1(1)− ϕ1(0) + i(ϕ2(1)− ϕ2(0)) = (A+ iB)(z − z0),

and so

f(z)− f(z0)

z − z0
−
(
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

)

=

∫ 1

0

(
∂u

∂x
(p(t)) − ∂u

∂x
(p(0))

)
dt+ i

∫ 1

0

(
∂v

∂x
(p(t))− ∂v

∂x
(p(0))

)
dt.

By (2.6), it follows that
∣∣∣∣
f(z)− f(z0)

z − z0
−
(
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

)∣∣∣∣ < ǫ.

This holds for all z satisfying 0 < |z − z0| < δ, and so f is complex differentiable at z0 and

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

This completes the proof. �

Let us revisit Example 2.2 again.

Example 2.21. For the function f : C → C defined by f(z) = z2 (z ∈ C) we have that

u(x, y) = Re(f(x+ iy)) = Re(x2 − y2 + 2xyi) = x2 − y2,

v(x, y) = Im(f(x+ iy)) = Im(x2 − y2 + 2xyi) = 2xy.

Thus

∂u

∂x
(x, y) = 2x =

∂v

∂y
(x, y),

∂u

∂y
(x, y) = −2y = −∂v

∂x
(x, y),

which shows that the Cauchy-Riemann equations hold in C. So we recover our previous observation

that f is entire, and since

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) = 2x0 + 2y0i = 2z0,

we also obtain that f ′(z) = 2z for z ∈ C. ♦
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Example 2.22. For the function g : C → C defined by g(z) = ez (z ∈ C) we have that

u(x, y) = Re(g(x+ iy)) = Re(ex(cos y + i sin y)) = ex cos y,

v(x, y) = Im(g(x+ iy)) = Im(ex(cos y + i sin y)) = ex sin y.

Thus

∂u

∂x
(x, y) = ex cos y =

∂v

∂y
(x, y),

∂u

∂y
(x, y) = −ex sin y = −∂v

∂x
(x, y),

which shows that the Cauchy-Riemann equations hold in C. So we arrive at the important result

that ez is entire, and since

g′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) = ex cos y + iex sin y = ez,

we also obtain that
d

dz
ez = ez for z ∈ C. Hence from Proposition 2.14, also the trigonometric

functions

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
are entire functions, and moreover,

d

dz
sin z =

ieiz − (−i)e−iz

2i
=

eiz + e−iz

2
= cos z, and

d

dz
cos z =

ieiz + (−i)e−iz

2
= −eiz − e−iz

2i
= − sin z.

♦

Example 2.23. We will show that
d

dz
Log(z) =

1

z
for z ∈ C \ (−∞, 0].

First note that when z, z0 ∈ C \ (−∞, 0] are distinct, then Log(z) 6= Log(z0). (Why?) Let

ǫ > 0. Set

ǫ1 := min

{ |z0|
2

,
|z0|2
2

ǫ

}
.

Since ew is differentiable at w0 := Log(z0), there is a δ1 > 0 such that whenever

0 < |w − w0| = |w − Log(z0)| < δ1,

we have ∣∣∣∣
ew − ew0

w − w0
− ew0

∣∣∣∣ =
∣∣∣∣

ew − z0
w − Log(z0)

− z0

∣∣∣∣ < ǫ1.

But by the continuity and injectivity of Log in C\(−∞, 0], there exists a δ > 0 such that whenever

0 < |z − z0| < δ, we have

0 < |Log(z)− Log(z0)| < δ1.

Thus with w := Log(z), where z satisfies 0 < |z − z0| < δ, we have 0 < |w − w0| < δ1, and so
∣∣∣∣

z − z0
Log(z)− Log(z0)

− z0

∣∣∣∣ < ǫ1.

But then

∣∣∣∣
z − z0

Log(z)− Log(z0)

∣∣∣∣ ≥ |z0| − ǫ1 ≥ |z0|
2

. Hence whenever 0 < |z − z0| < δ, we have

∣∣∣∣
Log(z)− Log(z0)

z − z0
− 1

z0

∣∣∣∣ <
ǫ1

|z0|
(∣∣∣∣

z − z0
Log(z)− Log(z0)

∣∣∣∣
) ≤ ǫ1

|z0|
|z0|
2

=
2ǫ1
|z0|2

< ǫ.

Thus Log is holomorphic in C \ (−∞, 0] and moreover,
d

dz
Log(z) =

1

z
. ♦
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We now consider an example illustrating the fact that the assumption of differentiability of

u, v in Theorem 2.20 (as opposed to mere existence of partial derivatives of u, v satisfying the

Cauchy-Riemann equations), is not superfluous.

Example 2.24. Consider the function f : C → C given by

f(x+ iy) =
xy(x+ iy)

x2 + y2

if x+ iy 6= 0, and f(0) = 0. We have that for nonzero (x, y) ∈ R2,

u(x, y) = Re(f(x+ iy)) =
x2y

x2 + y2
,

v(x, y) = Im(f(x+ iy)) =
xy2

x2 + y2
,

and u(0, 0) = v(0, 0) = 0. Thus

∂u

∂x
(0, 0) = 0 =

∂v

∂y
(0, 0),

∂u

∂y
(0, 0) = 0 = −∂v

∂x
(0, 0),

which shows that the Cauchy-Riemann equations hold at the point (0, 0). However, the function

is not complex differentiable at 0, since if it were, we would have

f ′(0) =
∂u

∂x
(0, 0) + i

∂v

∂x
(0, 0) = 0 + i0 = 0,

and for ǫ =
1

4
, there would exist a corresponding δ such that whenever 0 < |z − 0| = |x+ iy| < δ,

we would have ∣∣∣∣
f(z)− f(0)

z − 0
− f ′(0)

∣∣∣∣ =
∣∣∣∣

xy

x2 + y2

∣∣∣∣ < ǫ,

but taking x+ iy =
δ

2
+ i

δ

2
, we arrive at the contradiction that

1

2
=

∣∣∣∣
xy

x2 + y2

∣∣∣∣ < ǫ =
1

4
.

This shows that f is not complex differentiable at 0.

We note that there is no contradiction to Theorem 2.20, since for example u is not differentiable

at (0, 0). It it were, its derivative at (0, 0) would have to be the linear transformation
[

x

y

]
7→
[

∂u

∂x
(0, 0)

∂u

∂x
(0, 0)

] [
x

y

]
=
[
0 0

] [ x

y

]
= 0.

But then with ǫ := 1
3 > 0, there must exist a δ > 0 such that whenever 0 < ‖(x, y)− (0, 0)‖2 < δ,

we would have

|u(x, y)− u(0, 0)− 0((x, y)− (0, 0))|
‖(x, y)− (0, 0)‖2

=
x2y

(x2 + y2)
3
2

< ǫ =
1

3
.

But then with (x, y) =

(
δ

2
,
δ

2

)
, we have ‖(x, y)− (0, 0)‖2 =

δ√
2
< δ, and so we must have

x2y

(x2 + y2)
3
2

=

δ2

4
· δ
2(

δ2

4
+

δ2

4

) 3
2

=
1√
8
< ǫ =

1

3
=

1√
9
,

a contradiction. So u is not differentiable at (0, 0). ♦
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The Cauchy-Riemann equations can also be used to prove some interesting facts, for example

the following one, which highlights the “rigidity” of holomorphic functions alluded to earlier. See

also Exercise 2.29 below.

Example 2.25 (Holomorphic function with constant modulus on a disc is a constant). Consider

the disc D = {z ∈ C : |z − z0| < r}. We will show using the Cauchy-Riemann equations that if

f : D → C is holomorphic in D, with the property that there is a c ∈ R such that |f(z)| = c for

all z ∈ D, then f is constant.

Let u, v denote the real and imaginary parts of f . By assumption, c2 = |f |2 = u2 + v2, and

so by differentiation,

u
∂u

∂x
+ v

∂v

∂x
= 0,

u
∂u

∂y
+ v

∂v

∂y
= 0.

Now use
∂v

∂x
= −∂u

∂y
in the first equation and

∂v

∂y
=

∂u

∂x
in the second equation to get

u
∂u

∂x
− v

∂u

∂y
= 0, (2.7)

u
∂u

∂y
+ v

∂u

∂x
= 0. (2.8)

To get rid of ∂u
∂y

, multiply (2.7) by u, (2.8) by v, and add. Similarly, to eliminate ∂u
∂x

, multiply

(2.7) by −v, (2.8) by u, and add. This yields

(u2 + v2)
∂u

∂x
= 0,

(u2 + v2)
∂u

∂y
= 0.

If c = 0 so that u2+ v2 = c2 = 0, then u = v = 0 and so f = 0 in D. If c 6= 0, then the above gives

∂u

∂x
=

∂u

∂y
= 0,

and by the Cauchy-Riemann equations, it now follows also that
∂v

∂x
=

∂v

∂y
= 0.

(x,y)

(x,y0)(x0,y0)

By the Fundamental Theorem of Integral Calculus, it follows that

u(x, y0)− u(x0, y0) =

∫ x

x0

∂u

∂x
(ξ, y0)dξ = 0,

u(x, y)− (x, y0) =

∫ y

y0

∂u

∂y
(x, η)dη = 0.

Hence the value of u at any (x, y) is the same as the value of u at z0 = (x0, y0). Hence u is constant

in D. Similarly, v is constant in D, too. Consequently, f = u+ iv is constant in D. ♦
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Exercise 2.26. Show that z 7→ z3 is entire using the Cauchy-Riemann equations.

Exercise 2.27. Show that z 7→ Re(z) is complex differentiable nowhere.

Exercise 2.28. Show that z 7→ |z|2 is not complex differentiable at any nonzero complex number.

Exercise 2.29. Let D ⊂ C be a domain. Show, using the Cauchy-Riemann equations, that if f : D → C

is holomorphic in D, with the property that f(z) ∈ R for all z ∈ D, then f is constant in D.

Exercise 2.30. Let D ⊂ C be a domain. Show that if f : D → C is holomorphic in D, with the property
that f ′(z) = 0 for all z ∈ D, then f is constant in D.

Exercise 2.31. Let k be a fixed real number, and let f be defined by f(z) = (x2−y2)+kxyi for z = x+iy,
x, y ∈ R. Show that f is entire if and only if k = 2.

2.3. Geometric meaning: local amplitwist and
conformality

In calculus we have learnt the geometric meaning of the derivative of a real valued function at a

point in the interior of an interval. It gives the slope of the line which is tangential to the graph

of the function at that point. In other words, it describes the local behaviour of the function by

a linear function. One can imagine magnifying the graph of the function using lenses of greater

and greater magnifying power, and then the graph looks like a straight line.

One might ask analogously: What is the geometric meaning of the complex derivative? The

answer turns out to be that the complex derivative at a point describes the action of the complex

differentiable function locally by an “amplitwist”, namely a rotation together with a scaling.

Holomorphic functions are precisely those whose local effect is an amplitwist: all the “infinitesimal”

complex numbers emanating from a single point are amplified and twisted the same amount.

To see this, let us first note that since our map is from U (⊂ C) to C, in order to draw a

graph of this function, we would need 4 dimensions, and so we can’t visualize it that way. So we

will think of a picture of U as part of the plane, and we have that the function will map points

from this part of the plane to the complex plane. For example, Figure 1 shows how the function

z 7→ z2 transforms the square grid.

00 11

z 7→z2

Figure 1. Note that just as in the domain, also in the image, the blue and red lines are mutually perpendicular.

Thus the map f maps the point (x, y) to (u(x, y), v(x, y)), where u := Re(f) and v := Im(f).

If the map [
x

y

]
7→
[

u(x, y)

v(x, y)

]

is differentiable, then we know that its derivative is the linear transformation

A :=




∂u

∂x
(x, y)

∂u

∂y
(x, y)

∂v

∂x
(x, y)

∂v

∂y
(x, y)



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which describes the local action. But if f is complex differentiable at a point, then we know that

the Cauchy-Riemann equations are satisfied, and so we have

∂u

∂x
(x, y) =

∂v

∂y
(x, y) =: a, and − ∂v

∂x
(x, y) =

∂u

∂y
(x, y) =: b,

so that

A =

[
a b

−b a

]
=
√
a2 + b2




a√
a2 + b2

b√
a2 + b2

− b√
a2 + b2

a√
a2 + b2


 =: r

[
cos θ sin θ

− sin θ cos θ

]
.

This shows that A is not any old linear transformation, but a anticlockwise rotation through an

angle θ followed by a scaling by r. Hence a key difference from merely differentiable functions from

R2 to R2 is that complex differentiable maps are those which have these special types of linear

transformations as derivatives when viewed as mappings from R2 to R2. Since the local behaviour

of the map is described by means of the linear transformation A, it follows that the local action

of a holomorphic function is indeed an amplitwist.

The above explanation was via real analysis and the Cauchy-Riemann equations. A more

direct way of seeing this is to observe that from the definition of the complex derivative f ′(z0),

we have that for z near z0, f(z0 + h)− f(z0) ≈ f ′(z0)h, and so if we imagine a tiny change in z0,

the effect is that of changing f(z0) by f ′(z0)h, and this latter term is obtained from h by rotating

h by the argument of f ′(z0) and scaling h by |f ′(z0)|. See Figure 2.

z0
f(z0)

h h

h̃h̃

f ′(z0)h

f ′(z0)h̃

f

Figure 2. Geometric local meaning of the complex derivative.

Exercise 2.32. Figure 3 shows the shaded interior of a curve being mapped by an entire function to
the exterior of the image curve. If z travels round the curve in the domain in an anticlockwise manner,
then which way does its image w travel round the image curve? Hint: Draw some infinitesimal arrows
emanating from z, including one in the direction of motion.

z w
?

?

f

Figure 3. Which way?
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θ

C1

C2

T1

T2

p

Figure 4. Angle between curves.

2.3.1. Conformality. We now highlight an important consequence of the local amplitwist prop-

erty of holomorphic functions, namely that such mappings are conformal: they “preserve angle

between curves”. Let us explain what we mean by this. Imagine two smooth curves C1, C2,

intersecting at a point p. Since the curves are smooth (that is continuously differentiable), we can

draw their tangent lines T1, T2, at p, as shown in Figure 4.

We now define the angle between C1 and C2 at p to be the acute angle from T1 to T2. Thus

this angle has a sign attached to it. The angle between C2 and C1 at p is thus minus the angle

between C1 and C2 at p. If we now apply a sufficiently smooth mapping f to the curves, then the

image curves will again possess tangents at the image f(p) of p, and so there will be a well-defined

angle between the image curves f(C1) and f(C2) at f(p). If the angle between the image curves

is the same as the angle between the original curves through p, then we say that the map f has

“preserved” the angle at p. See Figure 5.

θ

θ

f

f(p)p

Figure 5. Preservation of angles at p by f .

It is perfectly possible that the map f preserves the angle between some pair of curves through

p, but not every pair of curves through p. However, if it does preserve the angle between every

pair of curves through p, we say it is conformal at p. We stress that this means that both the

magnitude and the sign of the angle are preserved; see Subsection 2.3.3 below. If the map f is

conformal at every point of its domain, we simply call it conformal. Holomorphic functions are

conformal (at all points where f ′(z0) 6= 0), since each of the tangent vectors will be twisted by the

same amount by the holomorphic function f . See Figure 6.

θ

θ

ϕ

ϕ

T1p

T2

f

f(p)

Figure 6. Conformality of a holomorphoc f . Here ϕ = Arg(f ′(p))
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Look at Figure 1 on page 23 and Figure 8 on page 9, which show the action of the entire

mappings z2 and ez, respectively. In each of these pictures, we see that just like in the domain,

also in the image, the blue and red lines are mutually perpendicular, illustrating a special case of

the conformality.

2.3.2. Visual differentiation of z 7→ z2. In order to find the derivative of the squaring map

z 7→ z2, we will understand its local behaviour, and find the amplitwist by pictures. This will tell

us what the derivative is!

Look at Figure 7. Consider the point P corresponding to z0 = r(cos θ + i sin θ). We imagine

the length of the segment PQ to be ǫ ≪ r. Then ∠POQ =: dθ ≈ 0.

OO

θ

θ

θθ

rr

P P
ϕ

ϕ

ϕ

ϕ

Q
r2

P ′

Q′

Q̃

Õ

Figure 7. Visual differentiation of the squaring map z 7→ z2.

First we determine the twist produced on PQ, which is mapped to P ′Q′. If we draw the ray

P ′Õ which is parallel to OP , and the ray P ′Q̃ parallel to PQ, as shown in Figure 7, then we note

that

“twist” = ∠Q′P ′Q̃ = ∠ÕP ′Q̃− ∠ÕP ′Q′ = ∠OPQ− (∠OP ′Q′ − ∠OP ′Õ) = ϕ− (ϕ− θ) = θ.

Let us now determine the length of the segment P ′Q′. To do this, we note that ∠Q′OP ′ is 2dθ,

and we construct the angle bisector of this angle, meeting the side P ′Q′ in R′. See Figure 8.

O

ϕ
ϕ≈

∠dθ

r2

P ′

Q′

R′

rǫ

Figure 8. Visual differentiation of the squaring map z 7→ z2.
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Now ∆R′OP ′ is similar to ∆QOP . Thus

ℓ(OP ′)

ℓ(OP )
=

ℓ(P ′R′)

ℓ(PQ)

and so ℓ(R′P ′) = rǫ. Also, since dθ is small, ∆P ′OR′ is congruent to ∆R′OQ′, and so ℓ(Q′R′) = rǫ.

Hence

“ampli” =
ℓ(P ′Q′)

ℓ(PQ)
=

2rǫ

ǫ
= 2r.

Consequently, the amplitwist is 2r(cos θ + i sin θ) = 2z0, and so f ′(z0) = 2z0.

Exercise 2.33. We know that the power function z 7→ zn, n ∈ N, is entire. Find its complex derivative
by a pictorial argument.

Hint: Since the amplitwist is the same for all arrows, one can simplify the argument by looking at what
happens to an infinitesimal vector perpendicular to the ray joining 0 to z0.

Exercise 2.34. We know that the exponential function z 7→ ez is entire. Find its complex derivative
using a pictorial argument.

Hint: Take a typical point x+ iy, and move it vertically up through a distance of δ. Look at the image to
determine the amplification. Similarly, by moving x+ iy horizontally through δ, determine the “twist”.

2.3.3. Visual nonholomorphicity of z 7→ z. Figure 9 shows that the map z 7→ z is not

conformal. Indeed, although the magnitude of the angle between C1 and C2 is preserved, the

complex conjugation map does not preserve the angle, since the sign of the angle is opposite in

the image.

Figure 9. z 7→ z is not holomorphic.

Exercise 2.35. Give a visual argument to show that the map z 7→ Re(z) is not holomorphic in C.

2.4. The d-bar operator

The two Cauchy-Riemann equations can be written as a single equation by introducing what is

called the “d-bar operator”
∂

∂z
.
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Let us define the differential operators1

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Then the Cauchy-Riemann equations for f in a domain can be rewritten simply as

∂

∂z
f = 0

since
∂

∂z
f =

1

2

(
∂u

∂x
+ i

∂u

∂y

)
+ i

1

2

(
∂v

∂x
+ i

∂v

∂y

)
=

1

2

(
∂u

∂x
− ∂v

∂y

)
+ i

1

2

(
∂u

∂y
+

∂v

∂x

)
= 0.

Also, the derivative

f ′ =
∂

∂z
f,

because

∂

∂z
f =

1

2

(
∂u

∂x
− i

∂u

∂y

)
+ i

1

2

(
∂v

∂x
− i

∂v

∂y

)
=

1

2

(
∂u

∂x
+

∂v

∂y

)
+ i

1

2

(
−∂u

∂y
+

∂v

∂x

)

=
1

2

(
2
∂u

∂x

)
+ i

1

2

(
2
∂v

∂x

)
= f ′.

So philosophically, we ought to think of holomorphic functions as ones which are “independent of

z”. For example, z + z is not holomorphic since

∂

∂z
(z + z) =

1

2

(
∂

∂x
+ i

∂

∂y

)
(2x) = 1 6= 0.

Exercise 2.36. Show that 4
∂

∂z

∂

∂z
= ∆, where ∆ :=

∂2

∂x2
+

∂2

∂y2
is the Laplacian operator.

1These expressions are motivated by the following meaningless calculation: We have x =
z + z

2
, y =

z − z

2i
and

∂

∂z
=

∂

∂x

∂x

∂z
+

∂

∂y

∂y

∂z
=

∂

∂x

1

2
+

∂

∂y

1

2i
,

∂

∂z
=

∂

∂x

∂x

∂z
+

∂

∂y

∂y

∂z
=

∂

∂x

1

2
+

∂

∂y

−1

2i
.



Chapter 3

Cauchy Integral
Theorem and
consequences

Having become familiar with complex differentiation, we now turn to integration. The importance

of integration in the complex plane stems from the fact that it will lead to a greater understanding

of holomorphic functions. For example, the fundamental fact that holomorphic functions are

infinitely many times complex differentiable! In this chapter we will learn the following main

topics:

(1) Contour integration and its properties.

(2) The Fundamental Theorem of Contour Integration.

(3) The Cauchy Integral Theorem.

(4) Consequences of the Cauchy Integral Theorem:

(a) Existence of a primitive.

(b) Infinite differentiability of holomorphic functions.

(c) Liouville’s Theorem and the Fundamental Theorem of Algebra.

(d) Morera’s Theorem.

3.1. Definition of the contour integral

In ordinary calculus, the symbol
∫ b

a

f(x)dx (3.1)

has a clear meaning. Now suppose we wish to generalize this in the complex setting: given z, w

complex numbers, want to give meaning to something like
∫ w

z

f(ζ)dζ.

Then a first question is:

How do we get from z to w?

In R, if a < b, then there is just one way of going from the real number a to the real number b, but

now z and w are points in the complex plane, and so there are many possible connecting paths

along which we could integrate. See Figure 1.

29
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a b

R

z

w

C

?

Figure 1. Which path?

So in the complex setting, besides specifying the end points z and w, we will also specify the

path γ taken to go from z to w, and we will replace the above expression (3.1) in the real case

now by an expression which looks like this in the complex setting:
∫

γ

f(z)dz.

We call such an expression a “contour” integral, for the computation of which we need the following

data:

(1) A domain D (⊂ C).

(2) A continuous function f : D → C.

(3) A smooth path γ : [a, b] → D.

The precise definition is given below.

Definition 3.1. Let D be a domain, and let f : D → C be a continuous function. If γ : [a, b] → D

is a smooth path (that is, a continuously differentiable function), then we define
∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt. (3.2)

Remark 3.2. It is very common and convenient to refer to the range {γ(t) : t ∈ [a, b]} of a path

γ : [a, b] → C as the path/curve itself. With this usage, a path becomes a concrete geometric

object (as opposed to being a mapping), such as a circle or a straight line segment in the complex

plane and hence can be easily visualized. The difficulty with this abuse of terminology is that

several different paths can have the same image, and so it causes ambiguity.

Exercise 3.3. Consider the three paths γ1, γ2, γ3 : [0, 2π] → C defined by

γ1(t) = eit,

γ2(t) = e2it,

γ3(t) = e−it,

for t ∈ [0, 2π]. Show that their images are the same, but the three contour integrals
∫

γ1

1

z
dz,

∫

γ2

1

z
dz,

∫

γ3

1

z
dz

are all different.

Exercise 3.4. Let f be holomorphic in a domain and let γ : [0, 1] → D be a smooth path. Show that

d

dt
f(γ(t)) = f ′(γ(t)) · γ′(t) for all t ∈ [0, 1].
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The integral on the right hand side of (3.2) exists, since if we decompose γ and f into their

real and imaginary parts, namely γ(t) = x(t) + iy(t) and f(z) = u(z) + iv(z), then

∫ b

a

f(γ(t))γ′(t)dt =

∫ b

a

(
u(γ(t))x′(t)− v(γ(t))y′(t)

)
dt+ i

∫ b

a

(
u(γ(t))y′(t) + v(γ(t))x′(t)

)
dt

and each of the latter integrals is just the usual real Riemann integral of continuous integrands.

Note that γ′(t)dt is an “incremental segment” of the curve, and so the integral is just like the

Riemann sum in the real setting; see Figure 2.

a

b

zn

γ′(t)dt

zn+1γ

Figure 2. Riemann sum
N∑

n=1

f(zn)(zn+1 − zn).

We also note that the definition is independent of the parametrization of the curve, that is,

if γ̃ : [c, d] → C is such that there is a continuously differentiable function ϕ : [a, b] → [c, d] such

that c = ϕ(a), d = ϕ(b) and γ(t) = γ̃(ϕ(t)) for t ∈ [a, b], then by the chain rule it follows that

∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt =

∫ b

a

f(γ̃(ϕ(t)))γ̃′(ϕ(t))ϕ′(t)dt

(τ=ϕ(t))
=

∫ d

c

f(γ̃(τ))γ̃′(τ)dτ

=

∫

γ̃

f(z)dz.

We extend the definition above to paths with “corners”. A path γ : [a, b] → C is called a

piecewise smooth path/curve if there exist points c1, . . . , cn such that a < c1 < · · · < cn < b and

such that γ is continuously differentiable on [a, c1], [c1, c2], . . . , [cn−1, cn], [cn, b]. For such a path,

we define
∫

γ

f(z)dz =

∫ c1

a

f(γ(t))γ′(t)dt+

∫ c2

c1

f(γ(t))γ′(t)dt+· · ·+
∫ cn

cn−1

f(γ(t))γ′(t)dt+

∫ b

cn

f(γ(t))γ′(t)dt.

In general the value of the contour integral will depend on the route chosen. Here is an

example.

Example 3.5. Consider the two paths γ1, γ2 from 0 to 1 + i given by

γ1(t) = (1 + i)t, t ∈ [0, 1],

γ2(t) =

{
t if t ∈ [0, 1]

1 + (t− 1)i if t ∈ (1, 2].

See Figure 3.
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0

1+i

γ1 γ2

Figure 3. The two paths γ1 and γ2.

Then we have
∫

γ1

z dz =

∫ 1

0

(1 + i)t(1 + i)dt =

∫ 1

0

(1− i)(1 + i)tdt =

∫ 1

0

2tdt = 1,

while
∫

γ2

z dz =

∫ 1

0

t1dt+

∫ 2

1

(1 + (t− 1)i)idt =

∫ 1

0

tdt+

∫ 2

1

(1− (t− 1)i)idt =
1

2
+

1

2
+ i = 1 + i.

Thus the integral depends on the path for the nonholomorphic integrand z 7→ z. ♦

The main goal in this chapter (beyond the definition of contour integration) will be to show

that the contour integration of a holomorphic function along two paths from z to w is the same

provided that the map is holomorphic everywhere in the region between the two paths. It turns

out that this is a fundamental result (called the Cauchy Integral Theorem) in complex analysis

because many further results follow from this.

Example 3.6. Consider the same two contours γ1, γ2 considered in Example 3.5 above. But

instead of the nonholomorphic map z 7→ z, consider now the entire function z: Then we have

∫

γ1

z dz =

∫ 1

0

(1 + i)t(1 + i)dt =

∫ 1

0

2itdt = i,

and
∫

γ2

z dz =

∫ 1

0

t1dt+

∫ 2

1

(1 + (t− 1)i)idt =

∫ 1

0

tdt+

∫ 2

1

(i − (t− 1))dt =
1

2
− 1

2
+ i = i.

We note that the answer is the same for γ1 and for γ2. ♦

Exercise 3.7. Integrate the following functions over the circle |z| = 2, oriented anticlockwise:

(1) z + z.

(2) z2 − 2z + 3.

(3) xy, where z = x+ iy, x, y ∈ R.

Exercise 3.8. Evaluate

∫

γ

Re(z)dz, where γ is:

(1) The straight line segment from 0 to 1 + i.

(2) The short circular arc with center i and radius 1 joining 0 to 1 + i.

(3) The part of the parabola y = x2 from x = 0 to x = 1 joining 0 to 1 + i.
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3.1.1. A far reaching little integral. Let r be any positive real number, and γr be the path

along a circle of radius r centered at the origin, traversed once anticlockwise, defined by γr(t) = reit

(t ∈ [0, 2π]). Let n be any integer, and let fn be defined by fn(z) = zn, z ∈ C \ {0}. Then
∫

γr

fn(z)dz =

∫ 2π

0

(reit)nrieitdt = irn+1

∫ 2π

0

ei(n+1)tdt

= irn+1

{
2π if n = −1

0 otherwise

}
=

{
2πi if n = −1,

0 otherwise.

Thus the contour integral ∫

γr

fn(z)dz =

{
2πi if n = −1,

0 otherwise

is independent of r, and excluding the case n = −1, always 0.

We will see later that this has enormous consequences. For instance, if we have an f that has

a representation in terms of integral powers of z:

f(z) =
∑

n∈Z

anz
n,

then formally we have
f(z)

zm+1
=
∑

n∈Z

anz
n−m−1, and so

1

2πi

∫

γr

f(z)

zm+1
dz = am.

In the above, we assumed that the sum passes through integration over γr. We will make

precise the details later, but things work out essentially as suggested by this calculation.

Exercise 3.9. Let C be the circular path with center 0 and radius 1 traversed in the anticlockwise
direction. Show that for 0 ≤ k ≤ n,

(

n

k

)

=
1

2πi

∫

C

(1 + z)n

zk+1
dz.

3.2. Properties of contour integration

The following properties are easy to show.

Proposition 3.10. Let D be a domain in C, γ : [a, b] → D be a piecewise smooth path, and

f, g : D → C be continuous. Then:

(1)

∫

γ

(f + g)(z)dz =

∫

γ

f(z)dz +

∫

γ

g(z)dz.

(2) If α ∈ C, then

∫

γ

(αf)(z)dz = α

∫

γ

f(z)dz.

(3) Let −γ : [a, b] → D be the path defined by (−γ)(t) = γ(a+ b− t) for t ∈ [a, b]. (Thus −γ

is just γ traversed in the opposite direction.) Then
∫

−γ

f(z)dz = −
∫

γ

f(z)dz.

(4) Let γ1 : [a1, b1] → D and γ2 : [a2, b2] → D be two paths such that γ1(b1) = γ2(a2) (so that

γ2 starts where γ1 ends). Define γ1 + γ2 : [a1, b1 + b2 − a2] to be their “concatenation”

by:

(γ1 + γ2)(t) =

{
γ1(t) for a1 ≤ t ≤ b1,

γ2(t− b1 + a2) for b1 ≤ t ≤ b1 + b2 − a2.

Then

∫

γ1+γ2

f(z)dz =

∫

γ1

f(z)dz +

∫

γ2

f(z)dz.
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Proof. These are straightforward, and follow using the definition and properties of the real

integral. We just prove (4):

∫

γ1+γ2

f(z)dz =

∫ b1+b2−a2

a1

f((γ1 + γ2)(t))(γ1 + γ2)
′(t)dt

=

∫ b1

a1

f((γ1 + γ2)(t))(γ1 + γ2)
′(t)dt +

∫ b1+b2−a2

b1

f((γ1 + γ2)(t))(γ1 + γ2)
′(t)dt

=

∫ b1

a1

f(γ1(t))γ
′
1(t)dt+

∫ b1+b2−a2

b1

f(γ2(t− b1 + a2))γ
′
2(t− b1 + a2)dt

=

∫

γ1

f(z)dz +

∫ b2

a2

f(γ2(s))γ
′
2(s)dt (via the substitution s = t− b1 + a2)

=

∫

γ1

f(z)dz +

∫

γ2

f(z)dz. �

We now prove a useful inequality.

Proposition 3.11. Let D be a domain in C, γ : [a, b] → D be a piecewise smooth path and

f : D → C be a continuous function. Then
∣∣∣∣
∫

γ

f(z)dz

∣∣∣∣ ≤
(

max
z∈{γ(t): t∈[a,b]}

|f(z)|
)
· (length of γ). (3.3)

Proof. Consider first a continuous complex-valued function ϕ : [a, b] → C, for which we prove
∣∣∣∣∣

∫ b

a

ϕ(t)dt

∣∣∣∣∣ ≤
∫ b

a

|ϕ(t)|dt.

To see this, let

∫ b

a

ϕ(t)dt = reiθ , where r ≥ 0 and θ ∈ (−π, π]. Then

∣∣∣∣∣

∫ b

a

ϕ(t)dt

∣∣∣∣∣ = r = e−iθreiθ = e−iθ

∫ b

a

ϕ(t)dt =

∫ b

a

e−iθϕ(t)dt

=

∫ b

a

Re
(
e−iθϕ(t)

)
dt+ i

∫ b

a

Im
(
e−iθϕ(t)

)
dt.

But the left hand side is real, and so the integral of the imaginary part on the right hand side

must be zero, and so
∣∣∣∣∣

∫ b

a

ϕ(t)dt

∣∣∣∣∣ =
∫ b

a

Re
(
e−iθϕ(t)

)
dt ≤

∫ b

a

∣∣Re
(
e−iθϕ(t)

)∣∣ dt ≤
∫ b

a

∣∣e−iθϕ(t)
∣∣ dt =

∫ b

a

|ϕ(t)| dt.

The claim in the proposition now follows, since with ϕ(t) := f(γ(t)) · γ′(t), t ∈ [a, b], we obtain

∣∣∣∣
∫

γ

f(z)dz

∣∣∣∣ =

∣∣∣∣∣

∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(γ(t))γ′(t)|dt

=

∫ b

a

|f(γ(t))||γ′(t)|dt ≤ max
t∈[a,b]

|f(γ(t))|
∫ b

a

|γ′(t)|dt.

If γ(t) = x(t) + iy(t), where x, y are real-valued, then

∫ b

a

|γ′(t)|dt =
∫ b

a

√
(x′(t))2 + (y′(t))2dt = length of γ.

This completes the proof. �
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Exercise 3.12. Calculate the upper bound given by (3.3) on the absolute value of the integral
∫

γ

z2 dz,

where γ is the straight line path from 0 to 1 + i. Also, compute the integral and find its absolute value.

Exercise 3.13. Using the calculation done in Exercise 3.9, deduce that

(

2n

n

)

≤ 4n.

3.3. Fundamental Theorem of Contour
Integration

If f is the derivative of a holomorphic function, then the calculation of

∫

γ

f(z)dz is easy, since we

have (analogous to the Fundamental Theorem of Integral Calculus in the real setting):

Theorem 3.14 (Fundamental1 Theorem of Contour Integration). Let D be a domain in C and

γ : [a, b] → D be a piecewise smooth path. Suppose that f : D → C is a continuous function in D,

such that there is a holomorphic function F : D → C such that F ′ = f in D. Then
∫

γ

f(z)dz = F (γ(b))− F (γ(a)).

Proof. For z = x+ iy ∈ D, where x, y are real, define the real-valued functions U, V, u, v by

F (x + iy) = U(x, y) + iV (x, y),

f(x+ iy) = u(x, y) + iv(x, y).

Also, set γ(t) = x(t) + iy(t) (t ∈ [a, b]), where x, y are real-valued. Then by the Cauchy-Riemann

equations, we have

u(x, y) + iv(x, y) = f(x+ iy) = F ′(x+ iy) =
∂U

∂x
(x, y) + i

∂V

∂x
(x, y) =

∂V

∂y
(x, y)− i

∂U

∂y
(x, y).

By the chain rule and the above, we have

d

dt
U(x(t), y(t))=

∂U

∂x
(x(t), y(t))·x′(t)+

∂U

∂y
(x(t), y(t))·y′(t) = u(x(t), y(t))·x′(t)−v(x(t), y(t))·y′(t).

Similarly,

d

dt
V (x(t), y(t))=

∂V

∂x
(x(t), y(t))·x′(t)+

∂V

∂y
(x(t), y(t))·y′(t) = v(x(t), y(t))·x′(t)+u(x(t), y(t))·y′(t).

Thus
∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt =

∫ b

a

(
u(x(t), y(t)) + iv(x(t), y(t))

)
(x′(t) + iy′(t))dt

=

∫ b

a

d

dt
U(x(t), y(t))dt + i

∫ b

a

d

dt
V (x(t), y(t))dt

= U(x(b), y(b))− U(x(a), y(a)) + i(V (x(b), y(b))− V (x(a), y(a)))

= F (γ(b))− F (γ(a)).

This completes the proof. �

1The naming of this result is done just to highlight the similarity with the real analysis analogue. However, in complex
analysis, this isn’t all that “fundamental”. We will soon learn about Cauchy’s Integral Theorem, which is certainly more
fundamental!
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In particular,

∫

γ

f(z)dz is independent of the connecting path when f has an “antiderivative”

or “primitive”.

Example 3.15. Since
d

dz

(
z2

2

)
= z (z ∈ C), it follows that for any path γ joining 0 to 1 + i,

∫

γ

z dz =
(1 + i)2

2
− 02

2
=

1 + 2i+ i2

2
=

1 + 2i− 1

2
= i,

and so in particular, we recover the answer obtained in Example 3.6. ♦

Example 3.16. There is no function F : C → C such that F ′(z) = z for all z ∈ C. Indeed, the

calculation in Example 3.5 shows that the contour integral along paths joining 0 to 1 + i does

depend on the path chosen. ♦

Exercise 3.17. Show, using the Cauchy-Riemann equations, that z 7→ z has no primitive in C.

Exercise 3.18 (Integration by Parts Formula). Let f, g be holomorphic functions defined in a domain
D, such that f ′, g′ are continuous in D, and let γ be a piecewise smooth path in D from z ∈ D to w ∈ D.
Show that

∫

γ

f(ζ)g′(ζ)dζ = f(z)g(z)− f(w)g(w)−
∫

γ

f ′(ζ)g(ζ)dζ.

Exercise 3.19. Evaluate

∫

γ

cos z dz, where γ is any path joining −i to i.

Definition 3.20. A path γ : [a, b] → C is said to be closed if γ(a) = γ(b).

Corollary 3.21. Let D be a domain in C and γ : [a, b] → D be a closed piecewise smooth path.

Suppose that f : D → C is a continuous function in D, such that there is a holomorphic function

F : D → C such that F ′ = f in D. Then
∫

γ

f(z)dz = 0.

Example 3.22. Since for m ∈ Z \ {0} and z ∈ D := C \ {0}, we have

d

dz

(
zm

m

)
= zm−1 (z ∈ C),

it follows that for any closed path γ in D,

∫

γ

zk dz = 0 for k 6= −1. What if k = −1? Note that

d

dz
Log z =

1

z
for z ∈ D̃ := C \ (−∞, 0),

and so for any path γ̃ in D̃, we do have
∫

γ̃

1

z
dz = 0.

However, in D,
1

z
doesn’t have a primitive; see Exercise 3.24. ♦

Exercise 3.23. Use the Fundamental Theorem of Contour Integration to write down the value of
∫

γ

ez dz

where γ is a path joining 0 and a+ ib. Equate the answer obtained with the parametric evaluation along
the straight line from 0 to a+ ib, and deduce that

∫ 1

0

eax cos(bx)dx =
a(ea cos b− 1) + bea sin b

a2 + b2
.

Exercise 3.24. Show that
1

z
has no primitive in the punctured complex plane C \ {0}.
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3.4. The Cauchy Integral Theorem

We will now show one of the main results in complex analysis, called the Cauchy Integral Theorem.

Theorem 3.25 (The Cauchy Integral Theorem). Let D be a domain in C and let f : D → C

be holomorphic in D. If γ1, γ2 : [0, 1] → D are two closed piecewise smooth paths such that γ1 is

D-homotopic to γ2, then ∫

γ1

f(z)dz =

∫

γ1

f(z)dz.

Before we go further, let us try to understand the statement. Notice, first of all, that the

two paths in D are closed. Secondly, what do we mean by saying that the two closed paths are

“D-homotopic”? We have the following definition.

Definition 3.26. Let D be a domain in C. Let γ0, γ1 : [0, 1] → D be closed paths. Then γ0 is

said to be D-homotopic to γ1 if there is a continuous function H : [0, 1]× [0, 1] → D such that the

following hold:

(H1) For all t ∈ [0, 1], H(t, 0) = γ0(t).

(H2) For all t ∈ [0, 1], H(t, 1) = γ1(t).

(H3) For all s ∈ [0, 1], H(0, s) = H(1, s).

We can think of the H as a family of closed paths from [0, 1] to D, parametrized by “time”,

the s-variable. Initially, when s = 0, H(·, 0) is the path γ0, while finally, when the time s = 1, we

end up with H(·, 1), which is the path γ1. So far, this is what (H1) and (H2) say. The requirement

(H3) just says that at each point of time s, the intermediate path γs := H(·, s) is closed too.

Figure 4 illustrates this.

H(·,1)=γ1

H(·,0)=γ0

H(·,s)

Figure 4. D-homotopic closed paths.

Exercise 3.27. Let D be a domain in C. Show that D-homotopy is an equivalence relation on the set of
all closed paths in D.

Proof of Theorem 3.25. We will make the simplifying assumption that the homotopy H is

twice continuously differentiable. This smoothness condition can be omitted, but then the proof

becomes technical. Moreover, the assumption of twice continuous differentiability is mild, and we

will invoke this below when we will exchange the order of partial differentiation:

∂2H

∂s∂t
=

∂2H

∂t∂s
.

Essentially, the proof proceeds by looking at the map s 7→ I(s) for s ∈ [0, 1], where I(s) denotes

the integral of f along γs := H(·, s). We will use differentiation under the integral sign with
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respect to s to show that I ′(s) ≡ 0, showing that s 7→ Is is constant, and in particular I(0) = I(1),

which is the desired conclusion.)

Set γs := H(·, s) to be the intermediate curve at time s, where s ∈ [0, 1], and define

I(s) =

∫

γs

f(z)dz,

for s ∈ [0, 1]. We have

dI

ds
(s) =

d

ds

∫

γs

f(z)dz =
d

ds

∫ 1

0

f(H(t, s))
∂H

∂t
(t, s)dt

=

∫ 1

0

∂

∂s

(
f(H(t, s))

∂H

∂t
(t, s)

)
dt

=

∫ 1

0

(
f ′(H(t, s))

∂H

∂s
(t, s)

∂H

∂t
(t, s) + f(H(t, s))

∂2H

∂s∂t
(t, s)

)
dt

=

∫ 1

0

(
f ′(H(t, s))

∂H

∂t
(t, s)

∂H

∂s
(t, s) + f(H(t, s))

∂2H

∂t∂s
(t, s)

)
dt

=

∫ 1

0

d

dt

(
f(H(t, s))

∂H

∂s
(t, s)

)
dt,

and so by the Fundamental Theorem of Integral Calculus,

dI

ds
(s) =

∫ 1

0

d

dt

(
f(H(t, s))

∂H

∂s
(t, s)

)
dt = f(H(1, s))

∂H

∂s
(1, s)− f(H(0, s))

∂H

∂s
(0, s)

= f(H(1, s)) lim
σ→s

H(1, σ)−H(1, s)

σ − s
− f(H(1, s)) lim

σ→s

H(0, σ)−H(0, s)

σ − s

= f(H(1, s)) lim
σ→s

H(1, σ)−H(1, s)

σ − s
− f(H(1, s)) lim

σ→s

H(1, σ)−H(1, s)

σ − s
= 0.

Hence the map s 7→ I(s) : [0, 1] → C is constant. In particular,
∫

γ1

f(z)dz = I(1) = I(0) =

∫

γ2

f(z)dz.

This completes the proof. �

Exercise 3.28. We have seen that if C is the circular path with center 0 and radius 1 traversed in the
anticlockwise direction, then

∫

C

1

z
dz = 2πi.

Now consider the path S, comprising the four line segments which are the sides of the square with vertices
±1 ± i, traversed anticlockwise. Draw a picture to convince yourself that S is C \ {0}-homotopic to C.
Evaluate parametrically the integral

∫

S

1

z
dz,

and confirm that the answer is indeed 2πi.

Exercise 3.29. Let γ : [0, 2π] → C be the elliptic path defined by γ(t) = a cos t+ ib sin t, where a, b are
positive. By considering

∫

γ

1

z
dz,

show that
∫ 2π

0

1

a2(cos t)2 + b2(sin t)2
dt =

2π

ab
.
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3.4.1. Special case: simply connected domains. An important special case is when a closed

path γ is D-homotopic to a point (that is, the constant path γ̃(t) = w for all t ∈ [0, 1]). In this

case we say that γ is D-contractible. A domain in which every closed path is D-contractible is

called simply connected.

For example, the domains C, D := {z ∈ C : |z| < 1}, C \ (−∞, 0], are all simply connected,

while the annulus {z ∈ C : 1 < |z| < 1} and the punctured complex plane C \ {0} aren’t. See

Figure 5. In these examples, we notice that the domains with “holes” aren’t simply connected.

C

D

C\(−∞,0]

simply connected

A

C\{0}

not simply connected

Figure 5. The domains C, D := {z ∈ C : |z| < 1} and C \ (−∞, 0] are simply connected, while
the annulus A := {z ∈ C : 1 < |z| < 2} and the punctured plane C \ {0} aren’t.

Exercise 3.30. Show that any closed path is C-contractible. Prove that any two closed paths are C-
homotopic.

We have the following corollary of the Cauchy Integral Theorem.

Corollary 3.31. Let D be a simply connected domain, γ be a closed piecewise smooth path in D

and f : D → C be holomorphic in D. Then
∫

γ

f(z)dz = 0.

Proof. Let γ be D-contractible to a point, say, w ∈ D, and let γ̃ be the constant path given by

γ̃(t) = w for all t ∈ [0, 1]. By the Cauchy Integral Theorem, we have

∫

γ

f(z)dz =

∫

γ̃

f(z)dz =

∫ 1

0

f(γ̃(t))γ̃′(t)dt =

∫ 1

0

f(w) · 0dt =
∫ 1

0

0dt = 0.

This completes the proof. �

This corollary is itself also sometimes called the Cauchy Integral Theorem.
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Example 3.32. For any closed path γ, we have

∫

γ

ez dz = 0,

since ez is entire, and C is simply connected. In fact for any entire function f ,

∫

γ

f(z)dz = 0,

for any closed path γ. ♦

Exercise 3.33. Consider

I :=

∫

γ

f(z)dz,

where f is a continuous function in a domain D containing the closed smooth path γ. True or false?

(1) If f is holomorphic in D and D is a disc, then I = 0.

(2) If I 6= 0, and f is holomorphic in D, then not all the points enclosed by γ are contained in D.

(3) If f is holomorphic in D, then I = 0.

Exercise 3.34. Applying Cauchy’s Integral Theorem to ez and integrating round a circular path, show
that for all r > 0,

∫ 2π

0

er cos t cos(r sin t+ t)dt = 0.

Exercise 3.35 (Winding number of a curve). Suppose that γ : [0, 1] → C is a smooth closed path that
does not pass through 0. We define the winding number of γ (about 0) to be

w(γ) :=
1

2πi

∫

γ

1

z
dz =

1

2πi

∫ 1

0

γ′(t)

γ(t)
dt.

(1) Using the observation that e2πia = 1 if and only if a ∈ Z, show that w(γ) ∈ Z by proceeding as
follows. Define ϕ : [0, 1] → C by

ϕ(t) = e

∫ t

0

γ′(s)

γ(s)
ds

, t ∈ [0, 1].

To show that w(γ) ∈ Z, it suffices to show that ϕ(1) = 1. To this end, calculate ϕ′(t), and use
this expression to show that ϕ/γ is constant in [0, 1]. Use this fact to conclude that ϕ(1) = 1.

(2) Calculate the winding number of the curve Γ1 : [0, 1] → C given by Γ1(t) = e2πit (t ∈ [0, 1]).

(3) Prove that if γ1, γ2 : [0, 1] → C are two smooth closed paths that do not pass through 0, and
γ1 · γ2 is their pointwise product, then

w(γ1 · γ2) = w(γ1) +w(γ2).

(4) Let m ∈ N. Calculate the winding number of the curve Γm : [0, 1] → C given by Γm(t) = e2πimt

(t ∈ [0, 1]).

(5) Show that the winding number function γ 7→ w(γ) is “locally constant”, by which we mean that
if γ0 : [0, 1] → C \ {0} is a smooth closed path, then there is a δ > 0 such that for every smooth
closed path γ : [0, 1] → C \ {0} such that such that

‖γ − γ0‖∞ := max
t∈[0,1]

|γ(t)− γ0(t)| < δ,

we have w(γ) = w(γ0). (In other words, if we equip the set of curves with the uniform topology,
and equip Z with the discrete topology, then γ 7→ w(γ) is continuous.)
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γ

Γ

Figure 6. Cauchy Integral Theorem.

3.4.2. Pictorial justification of the Cauchy Integral Theorem. We now give a pictorial

argument for the Cauchy Integral Theorem, based on the fact that a holomorphic function is

locally an amplitwist.

Imagine a simple closed path γ whose interior is filled with a grid of small squares, each having

a side length ǫ, aligned with the real and imaginary axes. We have shaded the squares that are

entirely within γ, and we denote by Γ be the boundary of this shaded region. See Figure 6.

Because we have drawn relatively large squares, Γ is only a crude approximation to γ. However,

as ǫ gets smaller, the shaded region fills the interior of γ better, and Γ follows γ more closely. We

will later justify that the difference in integral of f around Γ and around γ is of order ǫ.

But first we will show that the integral of f around Γ is zero as ǫ goes to 0. Consider the sum

of all the integrals of f taken anticlockwise around each of the shaded squares. When we add the

integrals from these two squares, their common edge is traversed twice, but in opposite directions,

and hence the integrals along it cancel. But this is true of every edge that lies inside the shaded

region, so that when we add the integrals over all the shaded squares, the only integrals which do

not cancel each other are the ones along edges that make up Γ. Thus
∫

Γ

f(z)dz =
∑

shaded squares

∫

�

f(z)dz. (3.4)

The investigation of the integral of f around γ has thus been reduced to the study of the local

effect of f on infinitesimal squares in the interior of γ. But on each infinitesimal square, the action

of f is an amplitwist, and the image under f is thus again a square. Let us see what this says

about each term in the above sum. Figure 7 shows a magnified picture of an infinitesimal square

and the amplitwisted image of this square under f . The points a, b, c, d are mapped to A, B, C,

D.

−ǫ

−iǫ

ǫ

iǫ

a

b

c

d

A

B

C

D p

q

f

Figure 7. Amplitwist on an infinitesimal shaded square.
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Then
∫

�

f(z)dz = A · ǫ+B · (iǫ) + C · (−ǫ) +D · (−iǫ) = (A− C)ǫ + (B −D)iǫ = (p+ iq)ǫ = 0,

where the last equality follows because

q = p rotated through a right angle = ip,

using the fact that f , being a local amplitwist, maps the infinitesimal square to a square. Thus the

vanishing of the loop integrals for holomorphic functions, that is, the Cauchy Integral Theorem is

just a manifestation of their local amplitwist property!

Finally, we show the little detail we ignored, namely that the difference in integral of f around

Γ and around γ is of order ǫ. Look at Figure 6 again, and let us look at the parts of white squares

which lie between γ and the Γ. The number of such fragments of squares is approximately

length of γ

ǫ
.

On the other hand, the difference in the integrals of f along the portions of γ and Γ along a

particular white fragment of an infinitesimal square can be seen to be of order ǫ2 (since it is of the

form v · dz, where v is a vector of length of order ǫ, obtained as a sum of amplitwisted versions

of vectors of length of order ǫ, and dz is of order ǫ). So the difference between the integral of f

around Γ and γ is of order
length of γ

ǫ
· ǫ2 = ǫ · (length of γ),

which goes to zero as ǫ goes to zero.

This completes the pictorial argument for the Cauchy Integral Theorem.

Finally, we highlight that for maps that do not possess the local amplitwist property the

Cauchy Integral Theorem may fail, by looking at the nonholomorphic map z 7→ z. We will show

that rather than the integral around the closed loop γ being 0, the contour integral of z around γ

yields the area enclosed by γ!

First note that each infinitesimal square in our grid of squares in Figure 6 is still mapped to

a square by the map z 7→ z, but now instead of the new squares being an amplitwisted version of

the old squares, we have that the new squares are obtained simply by reflection in the real axis of

the old squares. See Figure 8.

−ǫ

−iǫ

ǫ

iǫ

a

b

c

d

A

B

C

D

p

q

R

Figure 8. Action of the nonholomorphic map z 7→ z on an infinitesimal shaded square.
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This makes each term in the sum (3.4) nonzero:

∫

�

z dz = A ·ǫ+B · (iǫ)+C · (−ǫ)+D · (−iǫ) = (A−C)ǫ+(B−D)iǫ = (p+ iq)ǫ = (iǫ+ iǫ)ǫ = 2iǫ2,

If we add all these contributions, then we get
∫

Γ

z dz =
∑

shaded squares

∫

�

z dz = 2iǫ2 · (number of infinitesimal squares inside γ).

But

(number of infinitesimal squares inside γ) =
area enclosed by γ

area of each infinitesimal square
,

and so ∫

Γ

z dz = 2i · (area enclosed by γ).

So in contrast to the Cauchy Integral Theorem for holomorphic functions, we see that for this

nonholomorphic function, the integral along a closed contour is not zero, but yields the area of

the contour!

Exercise 3.36. Hold a coin of radius R down on a flat surface and roll another coin of radius r round it.
The path traced by a point on the rim of the rolling coin is called an epicycloid, and it is a closed curve
if R = nr, for some n ∈ N. See Figure 9.

Figure 9. The epicycloid with n = 6.

(1) With the center of the fixed coin at the origin, show that the epicycloid can be represented

parametrically as z(t) = r((n+ 1)eit − ei(n+1)t), t ∈ [0, 2π].

(2) By evaluating the integral of z along the epicycloid, show that the area enclosed by the epicycloid
is equal to πr2(n+ 1)(n+ 2).

In the rest of this chapter we will learn about several consequences of the Cauchy Integral

Theorem. In particular, we will learn

(1) that in simply connected domains every holomorphic function possesses a primitive;

(2) that holomorphic functions are infinitely many times differentiable;

(3) that bounded entire functions are constants (Liouville’s Theorem) (and also use this to

prove the Fundamental Theorem of Algebra);

(4) a result called Morera’s theorem, which is a sort of a converse to the Cauchy Integral

Theorem.
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3.5. Existence of a primitive

We will show that on a simply connected domain, every holomorphic function is the derivative of

some holomorphic function.

Theorem 3.37. If D is a simply connected domain and f : D → C is holomorphic, then there is

a holomorphic function F : D → C such that F ′(z) = f(z) for all z ∈ D.

Proof. Fix z0 ∈ D. For any z ∈ D, let γz be any path in D joining z0 to z. Define F : D → C by

F (z) =

∫

γz

f(ζ)dζ.

This gives a well-defined F , since if γ̃ is another path joining z0 to z, then the concatenation of

γz with −γ̃ is a closed path, and so by the Cauchy Integral Theorem,

0 =

∫

γz−γ̃

f(ζ)dz =

∫

γz

f(ζ)dζ −
∫

γ̃

f(ζ)dζ,

and so

∫

γz

f(ζ)dζ =

∫

γ̃

f(ζ)dζ.

Next we show the holomorphicity of F and that F ′ = f . Since f is holomorphic in D, it is also

continuous there, and so given an ǫ > 0, there is a δ > 0 such that whenever ζ ∈ C is such that

|ζ − z| < δ, we have ζ ∈ D and |f(ζ)− f(z)| < ǫ. Thus if we take a w such that 0 < |w − z| < δ,

then we have:
F (w) − F (z)

w − z
=

1

w − z

(∫

γw

f(ζ)dζ −
∫

γz

f(ζ)dζ

)
.

If γzw is a straight line path joining z to w, then the concatenation of γw with the concatenation

of −γwz with −γz is a closed path, and so by the Cauchy Integral Theorem, we obtain
∫

γw

f(ζ)dζ −
∫

γz

f(ζ)dζ =

∫

γzw

f(ζ)dζ.

See Figure 10.

z0

z w

γz

γw

γzw

Figure 10. Existence of a primitive.

Thus,

F (w)− F (z)

w − z
− f(z) =

1

w − z

∫

γzw

f(ζ)dζ − 1

w − z

∫

γzw

f(z)dζ =
1

w − z

∫

γzw

(f(ζ)− f(z))dζ,
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and so
∣∣∣∣
F (w)− F (z)

w − z
− f(z)

∣∣∣∣ =

∣∣∣∣
1

w − z

∫

γzw

(f(ζ)− f(z))dζ

∣∣∣∣ =
1

|w − z|

∣∣∣∣
∫

γzw

(f(ζ) − f(z))dζ

∣∣∣∣

≤ 1

|w − z| ǫ|w − z| = ǫ.

Thus F ′(z) = f(z), and F is holomorphic. �

Exercise 3.38. Suppose that D is a domain. If f is holomorphic in D, and there is no F holomorphic in
D such that F ′ = f in D, then we know that D cannot be simply connected. Give a concrete example of
such a D and f .

3.6. Cauchy Integral Formula

We will now learn about a result, called the Cauchy Integral Formula, which says, roughly speaking

that if we have a closed path γ without self-intersections, and f is function holomorphic inside γ,

then the value of f at any point inside γ is determined by the values of the function on γ! This

illustrates the “rigidity” of holomorphic functions. Later on, in the next chapter, we will study a

more general Cauchy Integral Formula, which will allow us to even express all the derivatives of

f at any point inside γ in terms of the values of the function on γ. So we can consider the basic

result in this section as the “n = 0 case” of the more general result to follow. We begin with the

following.

Proposition 3.39. Let Cr be the circular path with center z0 and radius r > 0 traversed in the

anticlockwise direction. Let R > r, DR = {z ∈ C : |z − z0| < R}, and f : DR → C be such that f

is continuous on DR and holomorphic in the punctured disc DR \ {z0}. Then

f(z0) =
1

2πi

∫

Cr

f(z)

z − z0
dz.

Proof. Let ǫ > 0. Then there is a δ > 0 (which we can arrange to be smaller than r) such

that whenever 0 < |z − z0| ≤ δ, we have |f(z)− f(z0)| < ǫ. Consider the circular path Cδ, with

center z0 and radius δ traversed in the anticlockwise direction. But Cδ and Cr are easily seen

to be DR \ {z0}-homotopic. Indeed the homotopy H can be obtained by just taking the convex

combination of the points on Cr and Cδ: H(·, s) := (1 − s)Cr(·) + sCδ(·), s ∈ [0, 1]. Thus by the

Cauchy Integral Theorem, we have

∫

Cr

f(z)

z − z0
dz =

∫

Cδ

f(z)

z − z0
dz.

Hence,
∣∣∣∣
1

2πi

∫

Cr

f(z)

z − z0
dz − f(z0)

∣∣∣∣ =

∣∣∣∣
1

2πi

∫

Cδ

f(z)

z − z0
dz − f(z0)

1

2πi

∫

Cδ

1

z − z0
dz

∣∣∣∣

=

∣∣∣∣
1

2πi

∫

Cδ

f(z)− f(z0)

z − z0
dz

∣∣∣∣

≤
(
max
z∈Cδ

|f(z)− f(z0)|
2π|z − z0|

)
· 2πδ

<
ǫ

2πδ
· 2πδ = ǫ.

Since ǫ > 0 was arbitrary, the claim follows. �
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Corollary 3.40. Let D be a domain, and let f : D → C be holomorphic in D. Let z0 ∈ D and

r > 0 be such that the circular path Cr with center z0 and radius r, and its interior, is contained

in D. Then we have

f(z0) =
1

2πi

∫

Cr

f(z)

z − z0
dz.

Here is a basic version of the Cauchy Integral Formula. Note that as opposed to the previous

Corollary 3.40, now the w can be any point inside the circle with center z0 and radius r, and not

necessarily the center z0 as in the corollary above.

Corollary 3.41 (Cauchy’s Integral Formula for circular paths). Let D be a domain, and let

f : D → C be holomorphic in D. Let z0 ∈ D and r > 0 be such that the circular path Cr with

center z0 and radius r, and its interior, is contained in D. Then we have

f(w) =
1

2πi

∫

Cr

f(z)

z − w
dz, |w − z0| < r.

Proof. Let w be such that |w−z0| < r. Choose a δ > 0 small enough so that the circular path Cδ

with center w and radius δ is contained in the interior of Cr. But now Cr and Cδ are D-homotopic;

see Figure 11.

z0

w

Cr

Cδ

Figure 11. Homotopy between circles.

Thus it follows that f(w) =
1

2πi

∫

Cδ

f(z)

z − w
dz =

1

2πi

∫

Cr

f(z)

z − w
dz. �

Exercise 3.42. Let 0 < a < 1, and let γ be the unit circle with center 0 traversed anticlockwise. Show
that

∫

γ

i

(z − a)(az − 1)
dz =

∫ 2π

0

1

1 + a2 − 2a cos t
dt.

Use Cauchy’s Integral Formula to deduce that

∫ 2π

0

1

1 + a2 − 2a cos t
dt =

2π

1− a2
.

Exercise 3.43. Fill in the blanks.

(1)

∫

γ

ez

z − 1
dz = , where γ is the circle |z| = 2 traversed in the anticlockwise direction.

(2)

∫

γ

z2 + 1

z2 − 1
dz = , where γ is the circle |z − 1| = 1 traversed in the anticlockwise direction.

(3)

∫

γ

z2 + 1

z2 − 1
dz = , where γ is the circle |z − i| = 1 traversed in the anticlockwise direction.

(4)

∫

γ

z2 + 1

z2 − 1
dz = , where γ is the circle |z + 1| = 1 traversed in the anticlockwise direction.

(5)

∫

γ

z2 + 1

z2 − 1
dz = , where γ is the circle |z| = 3 traversed in the anticlockwise direction.
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Exercise 3.44. Does z 7→ 1

z(1− z2)
have a primitive in {z ∈ C : 0 < |z| < 1}?

Corollary 3.45 (Cauchy’s Integral Formula for general paths). Let

(1) D be a domain,

(2) f : D → C be holomorphic in D,

(3) z0 ∈ D, and

(4) γ be a closed path in D which is D \ {z0}-homotopic to a circular path C centered at z0,

such that C and its interior is contained in D.

Then we have

f(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz.

Proof. By the Cauchy Integral Formula for circular paths, it follows that

f(z0) =
1

2πi

∫

C

f(z)

z − z0
dz.

But since γ is D \ {z0}-homotopic to C, by the Cauchy Integral Theorem we have

1

2πi

∫

C

f(z)

z − z0
dz =

1

2πi

∫

γ

f(z)

z − z0
dz.

This completes the proof. �

This result highlights the “rigidity” associated with holomorphic functions mentioned earlier.

By this we mean that their highly structured nature (everywhere locally an amplitwist) enables

one to pin down their precise behaviour from very limited information. That is, even if we know

the effect of a holomorphic function in a small portion of the plane, its values can be inferred at

other far away points in a unique manner. Figure 12 illustrates this in the case of the Cauchy

Integral Formula, where knowing the values of f on the curve γ enables one to determine the

values at all points in the shaded region!

z0

γ

Figure 12. Rigidity of holomorphic functions.

Exercise 3.46. Integrate the following functions over the circular path given by |z| = 3 traversed in the
anticlockwise direction:

(1) Log(z − 4i).

(2)
1

z − 1
.

(3) Principal value of iz−3.
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Exercise 3.47. Let F be defined by F (z) =
eiz

z2 + 1
and let R > 1.

(1) Let σ be the closed semicircular path formed by the segment S of the real axis from −R to R,
followed by the circular arc T of radius R in the upper half plane from R to −R. Show that

∫

σ

F (z)dz =
π

e
.

(2) Prove that |eiz| ≤ 1 for z in the upper half plane, and conclude that for large enough |z|,

|F (z)| ≤ 2

|z|2 .

(3) Show that lim
R→∞

∫

T

F (z)dz = 0, and so lim
R→∞

∫

S

F (z)dz =
π

e
.

(4) Conclude, by parameterizing the integral over S in terms of x and just considering the real part,
that

∫

∞

−∞

cos x

1 + x2
dx := lim

R→∞

∫ R

−R

cos x

1 + x2
dx =

π

e
.

Exercise 3.48. Evaluate

∫ 2π

0

ee
iθ

dθ.

3.7. Holomorphic functions are infinitely many
times differentiable

In this section we prove the fundamental property of holomorphic functions in a domain, namely

that they are infinitely many times complex differentiable.

Corollary 3.49. Let D be a domain, and let f : D → C be holomorphic in D. Then for all

z0 ∈ D, f ′′(z0), f
′′′(z0), . . . all exist.

Proof. Let g be defined by

g(z) =





f(z)− f(z0)

z − z0
if z 6= z0,

f ′(z0) if z = z0.

Clearly g is holomorphic in D \ {z0} and continuous in D. Choose a r > 0 small enough so that

the disc with center z0 and radius 2r is contained in D. Then the circular path Cr with center z0
and radius r is contained in D. Then by Proposition 3.39, it follows that

f ′(z0) = g(z0) =
1

2πi

∫

Cr

f(z)− f(z0)

(z − z0)2
dz

=
1

2πi

∫

Cr

f(z)

(z − z0)2
dz − f(z0)

2πi

∫

Cr

1

(z − z0)2
dz

=
1

2πi

∫

Cr

f(z)

(z − z0)2
dz. (3.5)

Thus for w near z0 inside Cr, but with w 6= z0, we have that

f ′(w) − f ′(z0)

w − z0
=

1

w − z0

(
1

2πi

∫

Cr

f(z)

(z − w)2
dz − 1

2πi

∫

Cr

f(z)

(z − z0)2
dz

)

=
1

2πi

∫

Cr

f(z)(2z − z0 − w)

(z − w)2(z − z0)2
dz,

and so we guess that

lim
w→z0

f ′(w) − f ′(z0)

w − z0
=

2

2πi

∫

Cr

f(z)

(z − z0)3
dz.
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We prove this claim below. We have

f ′(w)− f ′(z0)

w − z0
− 2

2πi

∫

Cr

f(z)

(z − z0)3
dz = (w − z0)

1

2πi

∫

Cr

(3z − z0 − 2w)f(z)

(z − w)2(z − z0)3
dz

But the continuous map

(z, w) 7→
∣∣∣∣
(3z − z0 − 2w)f(z)

(z − w)2(z − z0)3

∣∣∣∣

on the compact set Cr ×
{
w : |w − z0| ≤

r

2

}
has a maximum value M ≥ 0. Hence,

∣∣∣∣
f ′(w)− f ′(z0)

w − z0
− 2

2πi

∫

Cr

f(z)

(z − z0)3
dz

∣∣∣∣ ≤ |w − z0|Mr.

This shows that f ′ is differentiable at z0. As the choice of z0 was arbitrary, f ′ is holomorphic in

D. But now replacing f by f ′, we see that f ′′ is holomorphic in D. Continuing in this manner,

we get the desired conclusion. �

Exercise 3.50. Suppose f is holomorphic in a domain D. Is it clear that if n ∈ N, then f (n) has a
continuous derivative?

3.8. Liouville’s Theorem and the Fundamental
Theorem of Algebra

Here is one more instance of the rigidity associated with holomorphicity.

Theorem 3.51 (Liouville’s Theorem). Every bounded entire function is constant.

Proof. Let M ≥ 0 be such that for all z ∈ C, |f(z)| ≤ M . Suppose that w ∈ C, and let γ be the

circular path with center w and radius R, where R is any positive number. Then (from the proof

of Corollary 3.49, see in particular (3.5))

|f ′(w)| =
∣∣∣∣
1

2πi

∫

γ

f(z)

(z − w)2
dz

∣∣∣∣ ≤
M

2πR2
· 2πR =

M

R
.

But since R > 0 was arbitrary, it follows that f ′(w) = 0. So f ′(w) = 0 for all w ∈ C, and hence

f is constant. One way to see this is the following. If z ∈ C, by considering the straight line path

γz joining 0 to z, we have

f(z)− f(0) =

∫

γz

f ′(ζ)dζ = 0.

This completes the proof. �

This result can be used to give a short proof of the Fundamental Theorem of Algebra2.

Corollary 3.52 (Fundamental Theorem of Algebra). Every polynomial of degree ≥ 1 has a root

in C.

Proof. Suppose p(z) = c0 + c1z + · · ·+ cdz
d is a polynomial with d ≥ 1, and such that it has no

root in C. That is, for all z ∈ C, p(z) 6= 0. But then the function f defined by

f(z) =
1

p(z)
(z ∈ C)

2Despite its name, there is no purely algebraic proof of the theorem, since any proof must use the completeness of
the reals, which is not an algebraic concept. Additionally, it is not really fundamental for modern algebra; its name was
given at a time when the study of algebra was mainly concerned with the solutions of polynomial equations with real or
complex coefficients.
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is entire. (See Exercise 2.12.) By Exercise 1.26, there exist M,R > 0 such that |p(z)| ≥ M |z|d
whenever |z| > R. In the compact set {z ∈ C : |z| ≤ R}, the continuous function z 7→ |p(z)| has a
positive minimum m. Thus

|f(z)| ≤ min

{
1

MRd
,
1

m

}
.

By Liouville’s Theorem, f must be constant, and so p must be a constant, a contradiction to the

fact that d ≥ 1. �

Exercise 3.53. Let f be an entire function such that f is bounded below, that is, there is a δ > 0 such
that for all z ∈ C, |f(z)| ≥ δ. Show that f is a constant.

Exercise 3.54. Show that an entire function whose range of values avoids a disc {w ∈ C : |w −w0| < r}
must be a constant.

Exercise 3.55. Assume that f is an entire function that is periodic in both the real and in the imaginary
direction, that is, there exist T1, T2 in R such that f(z) = f(z + T1) = f(z + iT2) for all z ∈ C. Prove
that f is constant.

Exercise 3.56. A classical theme in the theory of entire functions is to ask:

“If f is entire and |f(z)| behaves such-and-such as |z| gets large, then is f actually equal to so-and-so?”.

Here is one instance of this.

(1) Show that if f is entire and |f(z)| ≤ |ez|, for all z ∈ C, then in fact f is equal to cez for some
complex constant c with |c| ≤ 1. (Thus if a nonconstant entire function “grows” no faster than
the exponential function, it is an exponential function.)

(2) A naive student may argue that the assertion is false because he has heard that “polynomials
grow more slowly than the exponential function”, but surely p 6= ez. Dispel his confusion by
showing that if p is a polynomial satisfying |p(z)| ≤ |ez| for all z ∈ C, then p ≡ 0.
Hint: Look at z = x < 0.

3.9. Morera’s Theorem: converse to Cauchy’s
Integral Theorem

Theorem 3.57 (Morera’s Theorem). Let D be a domain and let f : D → C be a continuous

function such that for every closed rectangular path γ in every disc contained in D,
∫

γ

f(z)dz = 0.

Then f is holomorphic in D.

Proof. Let z0 ∈ D, and let R > 0 be such that the disc ∆ with center z0 and radius R is contained

in D. Define F : ∆ → C by

F (z) =

∫

γz0,z

f(ζ)dζ,

where γz0,z is the path joining z0 to z by first moving horizontally and then moving vertically.

We will first show that F is holomorphic in ∆, and its derivative is f . From this it follows that f

(being the derivative of a holomorphic function) is itself holomorphic in ∆, and the proof will be

finished.

Let z ∈ ∆. Suppose ǫ > 0. Since f is continuous, there exists δ > 0 be such that whenever

|w − z| < δ, w ∈ ∆ and |f(w) − f(z)| < ǫ. We have

F (w) − F (z) =

∫

γz0,w

f(ζ)dζ −
∫

γz0,z

f(ζ)dζ.

Using the fact that the integral of f on closed rectangular paths is zero, it follows that

F (w) − F (z) =

∫

γz,w

f(ζ)dζ,
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where γz,w is the path joining z to w by again first moving horizontally and then moving vertically.

See Figure 13 which shows one particular case.

z0

w

z

Figure 13. Morera’s Theorem.

Thus

F (w)− F (z)

w − z
− f(z) =

1

w − z

∫

γz,w

f(ζ)dζ − f(z)
1

w − z

∫

γz,w

1dζ =
1

w − z

∫

γz,w

(f(ζ) − f(z))dζ,

where we have used the Fundamental Theorem of Contour Integration for the holomorphic function

1 to obtain ∫

γz,w

1dζ = w − z.

Consequently,
∣∣∣∣
F (w)− F (z)

w − z
− f(z)

∣∣∣∣ =
∣∣∣∣∣

1

w − z

∫

γz,w

(f(ζ)− f(z))dζ

∣∣∣∣∣ ≤
ǫ

|w − z|(|Re(w− z)|+ |Im(w− z)|) < 2ǫ.

This completes the proof. �

Exercise 3.58. Suppose f is continuous in a domain D and also holomorphic on all of D except possibly
at one point z0 ∈ D. Then f is actually holomorphic on all of D.

Remark 3.59 (Outside the scope of this course). Morera’s Theorem can be used to show several

very useful results. We mention one such:

Theorem 3.60. Suppose (fn)n∈N is a sequence of holomorphic functions defined in a domain D,

and (fn)n∈N converges to f uniformly on every compact subset of D. (That is, on any compact

K ⊂ D, the functions fn restricted to K converge uniformly to f.) Then f is holomorphic on D.

Proof. Let z be an arbitrary point of D, and let ∆ be an open disc whose closure is contained in

D. Then by Cauchy’s Theorem, ∫

R

fn(z)dz = 0

for any rectangle R contained in ∆. On the other hand, we know that (fn)n∈N converges uniformly

to f in the closure of ∆, and so

0 = lim
n→∞

∫

R

fn(z)dz =

∫

R

f(z)dz.

Since the fn are continuous, f will also be continuous on D. By Morera’s Theorem, f is holomor-

phic on ∆. Since z was arbitrary, this means f is holomorphic on all of D. �





Chapter 4

Taylor and Laurent
Series

In this chapter we will first learn about the fundamental result which says that a holomorphic

function has a power series expansion around any point in the domain where it lives, and vice

versa, every power series gives rise to a holomorphic function. En route we will also prove further

fundamental results on holomorphic functions:

(1) The (general) Cauchy Integral Formula and the Cauchy inequality.

(2) The classification of zeros and the Identity Theorem.

(3) The Maximum Modulus Theorem.

In the second part of the chapter, we will learn about Laurent series, which are like power series,

except that negative integer powers of the variable also occur in the expansion. This will be useful

to study functions that are holomorphic in annuli (and in particular punctured discs). They are

also useful to classify “singularities”, and to evaluate some real integrals, as we will see at the end

of this chapter.

4.1. Series

Just like with real series, given a sequence (an)n∈N of complex numbers, one can form a new

sequence (sn)n∈N of its partial sums:

s1 := a1,

s2 := a1 + a2,

s3 := a1 + a2 + a3,

...

If (sn)N converges, we say that the series
∞∑

n=1

an converges, and we write
∞∑

n=1

an = lim
n→∞

sn.

If the sequence (sn)N does not converge we say that the series

∞∑

n=1

an diverges.

We say that the series
∞∑

n=1

an converges absolutely if the real series
∞∑

n=1

|an| converges.

53
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From the result in Exercise 1.27, which says that a complex sequence converges if and only if the

sequences of its real and imaginary parts converge, it follows that
∞∑

n=1

an

converges if and only if the two real series
∞∑

n=1

Re(an) and

∞∑

n=1

Im(an)

converge. Thus the results from real analysis lend themselves for use in testing the convergence

of complex series. For example, it is easy to prove the following two facts, which we leave as

exercises.

Exercise 4.1. If

∞
∑

n=1

an converges, then lim
n→∞

an = 0.

Exercise 4.2. If
∞
∑

n=1

an converges absolutely, then
∞
∑

n=1

an converges.

Exercise 4.3. Show that if |z| < 1, then
∞
∑

n=0

zn converges and that
∞
∑

n=0

zn =
1

1− z
.

Exercise 4.4. Show that if |z| < 1, then

∞
∑

n=1

nzn−1 =
1

(1− z)2
.

Exercise 4.5. Show that the series
1

1s
+

1

2s
+

1

3s
+ · · · converges for all s ∈ C satisfying Re(s) > 1. Thus

s 7→ ζ(s) :=
∞
∑

n=1

1

ns

is a well-defined map in the half-plane given by Re(s) > 1, and is called the Riemann ζ-function. The
link of the Riemann zeta function with the number theoretic world of primes is brought out by the Euler

Product Formula, which says that if p1 := 2 < p2 := 3 < p3 := 5 < · · · is the infinite list of primes in
increasing order, then

ζ(s) = lim
K→∞

K
∏

k=1

1

1− 1

psk

, Re(s) > 1.

Bernhard Riemann (1826-1866) showed that the ζ-function can be extended holomorphically to C\{1}. It
can be shown that the ζ-function has zeros at −2,−4,−6, . . . , called “trivial zeros”, but it also has other
zeros. All the non-trivial zeros Riemann computed turned out to lie on the line Re(s) = 1

2
. This led him

to formulate the following conjecture, which is a famous unsolved problem in Mathematics.

Conjecture 4.6 (Riemann Hypothesis). All non-trivial zeros of the ζ-function lie on the line Re(s) = 1
2
.

4.2. Power series are holomorphic

Theorem 4.7. For a power series

∞∑

n=0

cnz
n, exactly one of the following hold:

(1) Either it is absolutely convergent for all z ∈ C.

(2) Or there is a unique nonnegative real number R such that

(a)

∞∑

n=0

cnz
n is absolutely convergent for all z ∈ C with |z| < R, and

(b)

∞∑

n=0

cnz
n is divergent for all z ∈ C with |z| > R.
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(The unique R > 0 in the above theorem is called the radius of convergence of the power

series, and if the power series converges for all z ∈ C, we say that the power series has an infinite

radius of convergence, and write “R = ∞”.)

z0

R

converge

diverge

Figure 1. Convergence region of a power series in C.

Proof. Let

S :=

{
y ∈ [0,∞) : there exists a z ∈ C such that y = |z| and

∞∑

n=0

cnz
n converges

}
.

Clearly 0 ∈ S. We consider the following two possible cases.

1◦ S is not bounded above. Then given z ∈ C, there exists a y ∈ S such that |z| < y. But since

y ∈ S, there exists a z0 ∈ C such that y = |z0| and
∑

n=0

cnz
n
0

converges. It follows that its nth term goes to 0 as n → ∞, and in particular, it is bounded:

|cnzn0 | ≤ M . Then with r :=
|z|
|z0|

(< 1), we have

|cnzn| = |cnzn0 |
( |z|
|z0|

)n

≤ Mrn (n ∈ N).

But

∞∑

n=0

Mrn converges (r < 1!), and so by the comparison test,

∞∑

n=0

cnz
n is absolutely convergent.

2◦ S is bounded above. Let R := supS. If z ∈ C and |z| < R, then by the definition of supremum,

it follows that there exists a y ∈ S such that |z| < y. Then we repeat the proof in 1◦ as follows.

Since y ∈ S, there exists a z0 ∈ C such that y = |z0| and
∞∑

n=0

cnz
n
0

converges. It follows that its nth term goes to 0 as n → ∞, and in particular, it is bounded:

|cnzn0 | ≤ M . Then with r :=
|z|
|z0|

(< 1), we have

|cnzn| = |cnzn0 |
( |z|
|z0|

)n

≤ Mrn (n ∈ N).

But

∞∑

n=0

Mrn converges (r < 1!), and so by the comparison test,

∞∑

n=0

cnz
n is absolutely convergent.

Finally, if z ∈ C and |z| > R, then |z| 6∈ S, and by the definition of S,

∞∑

n=0

cnz
n diverges.
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The uniqueness of R can be seen as follows. If R, R̃ have the property described in the theorem

and R < R̃, then

R < r :=
R+ R̃

2
< R̃.

Because 0 < r < R̃,

∞∑

n=1

cnr
n converges, while as R < r,

∞∑

n=0

cnr
n diverges, a contradiction. �

Remark 4.8. Just as with real power series, complex power series may diverge at every point

on the boundary (given by |z| = R), or diverge on some points of the boundary and converge at

other points of the boundary, or converge at all the points on the boundary.

Exercise 4.9. Show that

∞
∑

n=1

nnzn converges only when z = 0.

Exercise 4.10. Show that
∞
∑

n=1

zn

nn
converges for all z ∈ C.

Exercise 4.11. Let (cn)n∈N be a sequence of complex numbers. Show that the radius of convergence of
the real power series

∞
∑

n=0

|cn|xn

coincides with that of the complex power series

∞
∑

n=0

cnz
n.

Exercise 4.12. Find the radius of convergence of the following complex power series:
∞
∑

n=1

(−1)n

n
zn,

∞
∑

n=1

1

n2
zn,

∞
∑

n=1

n2012zn,

∞
∑

n=1

1

nn
zn,

∞
∑

n=0

1

n!
zn.

Consider a polynomial p : C → C given by

p(z) := c0 + c1z + c2z
2 + · · ·+ cdz

d, z ∈ C,

for some complex numbers c0, . . . , cd and some integer d ∈ {0, 1, 2, . . .}. For such a polynomial p,

it is immediately seen (by successive differentiation, and subsequent evaluation at z = 0) that the

coefficients c0, c1, . . . , cd are related to the derivatives of p at 0:

p(0) = c0,

p′(0) = c1,

p′′(0) = 2c2,

. . .

p(k)(0) = k!ck,

. . .

so that

ck =
p(k)(0)

k!
, k = 0, 1, 2, 3, . . . .

Hence one obtains the following expansion for p:

p(z) = p(0) + p′(0)z +
p′′(0)

2!
z2 + · · ·+ p(d)(0)

d!
zd.

We will see in Corollary 4.15 below, that for power series, which are similar to polynomials (except

that we have possibly infinitely many nonzero coefficients), a similar formula holds in the region

of convergence.

We first prove the result which says that, just like polynomials, power series are holomorphic

inside the disc where they converge.
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Theorem 4.13. Let R > 0 and let the power series f(z) :=

∞∑

n=0

cnz
n converge for |z| < R. Then

f ′(z) =
∞∑

n=1

ncnz
n−1 for |z| < R.

Proof. First we show that the power series

g(z) :=

∞∑

n=1

ncnz
n−1 = c1 + 2c2z + · · ·+ ncnz

n−1 + . . .

is absolutely convergent for |z| < R. Fix z and let r be such that |z| < r < R. By hypothesis

∞∑

n=0

cnr
n

converges, and so there is some positive number M such that |cnrn| < M for all n. Let ρ :=
|z|
r
.

Then 0 ≤ ρ < 1, and

|ncnzn−1| ≤ nM |z|n−1

rn
=

Mnρn−1

r
.

But from Exercise 4.4, we know that

∞∑

n=1

nρn−1 converges1. Hence by the Comparison Test,

∞∑

n=1

ncnz
n−1

converges absolutely.

Now we show that f ′(z0) = g(z0) for |z0| < R, that is,

lim
z→z0

(
f(z)− f(z0)

z − z0
− g(z0)

)
= 0.

As before, let r be such that |z0| < r < R and since z → z0, we may also restrict z so that |z| < r.

Suppose ǫ > 0. As

∞∑

n=1

ncnr
n−1 converges absolutely, there is an index N such that

∞∑

n=N

|ncnrn−1| < ǫ

4
.

Now keep N fixed. We can write

f(z)− f(z0)

z − z0
− g(z0) =

∞∑

n=1

cn
(
zn−1 + zn−2z0 + · · ·+ zzn−2

0 + zn−1
0 − nzn−1

0

)
.

We let S1 be the sum of the first N − 1 terms of this series (that is, from n = 1 to n = N − 1)

and S2 be the sum of the remaining terms. Then

|S2| ≤
∞∑

n=N

|cn|
(
rn−1 + rn−1 + · · ·+ rn−1 + nrn−1

)
=

∞∑

n=N

2n|cn|rn−1 <
ǫ

2
.

Also,

S1 =
N∑

n=1

cn
(
zn−1 + zn−2z0 + · · ·+ zzn−2

0 + zn−1
0 − nzn−1

0

)

1to
1

(1 − ρ)2
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is a polynomial in z and by the algebra of limits, lim
z→z0

S1 = 0. Hence there is a δ > 0 such that

whenever |z − z0| < δ, we have |S1| <
ǫ

2
. Thus for |z| < r and 0 < |z − z0| < δ, we have

∣∣∣∣
f(z)− f(z0)

z − z0
− g(z0)

∣∣∣∣ ≤ |S1|+ |S2| <
ǫ

2
+

ǫ

2
= ǫ.

This means that f ′(z0) = g(z0), as claimed. �

Remark 4.14. The above two results imply that if we replace the real variable in a real power

series which converges in an interval (−R,R) by a complex variable, then we can “extend/continue”

the real power series to a holomorphic function in the disc given by |z| < R in the complex plane.

So we can view real analytic functions (namely functions of a real variable having a local power

series expansion) as restrictions of holomorphic functions. This again highlights the interplay

between the world of real analysis and complex analysis. (We have seen a previous instance of

this interaction when we studied the Cauchy-Riemann equations.)

By a repeated application of the previous result, we have the following.

Corollary 4.15. Let R > 0 and let the power series f(z) :=

∞∑

n=0

cnz
n converge for |z| < R. Then

f (k)(z) =
∞∑

n=k

n(n− 1)(n− 2) · · · (n− k + 1)cnz
n−k for |z| < R, k ≥ 1. (4.1)

In particular, for n ≥ 0, cn =
1

n!
f (n)(0).

Proof. This is straightforward, and the last claim follows by setting z = 0 in (4.1):

f (k)(0) = k(k−1)(k−2) · · · 1ck+
(
z ·

∞∑

n=k+1

n(n− 1)(n− 2) · · · (n− k + 1)cnz
n−k−1

)∣∣∣∣∣
z=0

= k!ck.

Also, f(0) = c0. �

More generally, we can consider power series which are centered at a point z0, and the following

result follows easily from the above.

Corollary 4.16. Let z0 ∈ C, R > 0 and f(z) :=

∞∑

n=0

cn(z − z0)
n converge for |z − z0| < R. Then

f (k)(z) =

∞∑

n=k

n(n− 1)(n− 2) · · · (n− k + 1)cn(z − z0)
n−k for |z − z0| < R, k ≥ 1.

In particular, for n ≥ 0, cn =
1

n!
f (n)(z0).

Remark 4.17 (Uniqueness of coefficients). Suppose that

∞∑

n=0

cn(z − z0)
n and

∞∑

n=0

c̃n(z − z0)
n

are two power series which both converge to the same function f in an open disk with center z0
and radius R > 0. Then from the above, for n ≥ 0, we have

cn =
f (n)(z0)

n!
= c̃n.

Exercise 4.18. For |z| < 1, what is 12 + 22z + 32z2 + 42z3 + · · · ?
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Exercise 4.19. True or false? All statements refer to power series of the form

∞
∑

n=0

cnz
n.

(1) The set of points z for which the power series converges equals either the singleton set {0} or
some open disc of finite positive radius or the entire complex plane, but no other type of set.

(2) If the power series converges for z = 1, then it converges for all z with |z| < 1.

(3) If the power series converges for z = 1, then it converges for all z with |z| = 1.

(4) If the power series converges for z = 1, then it converges for z = −1.

(5) Some power series converge at all points of an open disc with center 0 of some positive radius,
and also at certain points on the boundary of the disc (that is the circle bounding the disc),
and at no other points.

(6) There are power series that converge on a set of points which is exactly equal to the closed disc
given by |z| ≤ 1.

(7) If the power series diverges at z = i, then it diverges at z = 1 + i as well.

4.3. Taylor series

We have seen in the last section that complex power series define holomorphic functions in their

disc of convergence. In this section, we will show that conversely, every holomorphic function f

defined in a domain D possesses a power series expansion in a disc around any point z0 ∈ D.

Theorem 4.20. If f is holomorphic in the open disc DR := {z ∈ C : |z − z0| < R}, then
f(z) = c0 + c1(z − z0) + c2(z − z0)

2 + c3(z − z0)
3 + · · · , z ∈ DR,

where for n ≥ 0,

cn =
1

2πi

∫

C

f(z)

(z − z0)n+1
dz,

and C is the circular path with center z0 and radius r, where 0 < r < R traversed in the anticlock-

wise direction.

Proof. Let z ∈ DR. Initially, let r be such that |z − z0| < r < R. Then by Cauchy’s Integral

Formula,

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ =

1

2πi

∫

C

f(ζ)

ζ − z0 + z0 − z
dζ =

1

2πi

∫

C

f(ζ)

(ζ − z0)

(
1− z − z0

ζ − z0

)dζ

Set w :=
z − z0
ζ − z0

. Then |w| = |z − z0|
r

< 1. Thus

1

1− z − z0
ζ − z0

=
1

1− w
= 1 + w + w2 + w3 + · · ·+ wn−1 +

wn

1− w
,

and so

f(z) =
1

2πi

∫

C

f(ζ)

(
1

ζ − z0
+

z − z0
(ζ − z0)2

+ · · ·+ (z − z0)
n−1

(ζ − z0)n
+

(z − z0)
n

(ζ − z0)n(ζ − z)

)
dζ

= c0 + c1(z − z0) + · · ·+ cn−1(z − z0)
n−1 +Rn(z),

where

Rn(z) :=
1

2πi

∫

C

f(ζ)(z − z0)
n

(ζ − z0)n(ζ − z)
dζ.

There is a M > 0 such that for all ζ ∈ C, |f(ζ)| < M . Moreover, |ζ − z0| = r and

|ζ − z| = |ζ − z0 − (z − z0)| ≥ |ζ − z0| − |z − z0| = r − |z − z0|,
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and so

|Rn(z)| ≤
( |z − z0|

r

)n
M

r − |z − z0|
n→∞−→ 0.

Thus the series c0 + c1(z − z0) + c2(z − z0)
2 + c3(z − z0)

3 + · · · converges to f(z). Note that we

have only shown the expression

cn =
1

2πi

∫

C

f(z)

(z − z0)n+1
dz

where r is such that |z − z0| < r < R. But by the Cauchy Integral Theorem, we see that this

integral is independent of r, and any value of r ∈ (0, R) can be chosen here. �

Corollary 4.21 (Taylor2 Series). Let D be a domain and let f : D → C be holomorphic. If

z0 ∈ D, then

f(z) = f(z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)

2!
(z − z0)

2 +
f ′′′(z0)

3!
(z − z0)

3 + . . . , |z − z0| < R,

where R is the radius of the largest open disk with center z0 contained in D. Also,

f (n)(z0) =
n!

2πi

∫

C

f(z)

(z − z0)n+1
dz, (4.2)

where C is the circular path with center z0 and radius r, where 0 < r < R traversed in the

anticlockwise direction.

(4.2) is called the (general) Cauchy Integral formula.

Proof. From Theorem 4.20, we have

f(z) = c0 + c1(z − z0) + c2(z − z0)
2 + c3(z − z0)

3 + . . . , z ∈ DR, (4.3)

where DR := {z ∈ C : |z − z0| < R} and R is the radius of the largest open disk with center z0
contained in D. Also, for n ≥ 0,

cn =
1

2πi

∫

C

f(z)

(z − z0)n+1
dz,

and C is the circular path with center z0 and radius r, where 0 < r < R traversed in the

anticlockwise direction. But from Corollary 4.16, we know that the power series above is infinitely

many times differentiable, and also, for n ≥ 0,

1

n!
f (n)(z0) = cn.

Thus the result follows. �

Example 4.22. The exponential function f , z 7→ f(z) := ez, is entire. Since

d

dz
ez = ez,

it follows that f (n)(0) = 1, and so

f(z) =

∞∑

n=0

f (n)(0)

n!
(z − 0)n =

∞∑

n=0

1

n!
zn,

for all z ∈ C. ♦

2Named after Brook Taylor (1685-1731) who, among others, studied this expansion in the context of real analytic
functions
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Example 4.23. The function f defined by f(z) = Log(z) is holomorphic in C \ (−∞, 0]. The

largest open disc with center z0 = 1 in this cut plane is D = {z ∈ C : |z − 1| < 1}. Since

f (n)(z0) =
(−1)n(n− 1)!

zn0
= (−1)n(n− 1)!,

we have Log(1 + w) = w − w2

2
+ · · ·+ (−1)nwn

n
+ · · · for |w| < 1. ♦

Exercise 4.24. Show that for z ∈ C: sin z = z − z3

3!
+

z5

5!
−+ · · · and cos z = 1− z2

2!
+

z4

4!
−+ · · · .

Exercise 4.25. Find the Taylor series of the polynomial z6 − z4 + z2 − 1 with the point z0 = 1 taken as
the center.

Corollary 4.26 (Cauchy’s inequality). Suppose f is holomorphic in DR := {z ∈ C : |z−z0| < R}
and |f(z)| ≤ M for all z ∈ DR. Then for n ≥ 0,

|f (n)(z0)| ≤
n!M

Rn
.

Proof. Let C be the circle with center z0 and radius r < R. Then

|f (n)(z0)| =
∣∣∣∣
n!

2πi

∫

C

f(z)

(z − z0)n+1
dz

∣∣∣∣ ≤
n!

2π
max
z∈C

∣∣∣∣
f(z)

(z − z0)n+1

∣∣∣∣ · 2πr =
n!

2π

M

rn+1
2πr =

n!M

rn
.

The claim now follows by passing the limit r ր R. �

Exercise 4.27. Suppose that f is an entire function for which there is an M > 0 and an n ∈ N such that
for all z ∈ C, |f(z)| ≤ M |z|n. Use Cauchy’s inequality to prove that f (n+1)(z) = 0 for all z and show that
f is a polynomial of degree at most n.

Exercise 4.28. Evaluate
∫

C

sin z

z2012
dz,

where C is the circular path with center 0 and radius 1 traversed in the anticlockwise direction.

4.4. Classification of zeros

Suppose p is a nonzero polynomial function. Then by the Division Algorithm, given any z0 ∈ C,

we can divide p by z − z0, and find the quotient polynomial q and the remainder r ∈ C:

p(z) = (z − z0)q(z) + r.

If the z0 was a zero of p, that is, if p(z0) = 0, then we must have r = 0, and so p(z) = (z− z0)q(z).

Note that if p is of degree d, then q has degree d − 1. We can now ask if q(z0) = 0, and if so,

repeat the above with p replaced by q to get p(z) = (z − z0)q(z) = (z − z0)
2q1(z), where q1 is a

polynomial with degree d− 2. Proceeding in this manner, we will eventually obtain

p(z) = (z − z0)
mqm−1(z),

where qm−1 is a polynomial of degree d−m, and qm−1(z0) 6= 0.

We will see in this section that a similar thing holds when instead of the polynomial, we have

a holomorphic function. But let us first define what we mean by a zero of a holomorphic function.

Definition 4.29. Let D be a domain and f : D → C be holomorphic in D.

A point z0 ∈ D is called a zero of f if f(z0) = 0.

If there is a least m ∈ N such that

(1) f (m)(z0) 6= 0 and

(2) f(z0) = · · · = f (m−1)(z0) = 0,

then z0 is said to be a zero of f of order m. (We adopt the convention that f (0) := f .)



62 4. Taylor and Laurent Series

We have the following result on the classification of zeros of a holomorphic function.

Proposition 4.30 (Classification of zeros). Let D be a domain and f : D → C be holomorphic

in D such that z0 ∈ D is a zero of f . Then there are exactly two possibilities:

1◦ There is a positive R such that f(z) = 0 for all z satisfying |z − z0| < R.

2◦ z0 is a zero of order m and there exists a holomorphic function g : D → C such that

g(z0) 6= 0 and f(z) = (z − z0)
mg(z) for all z ∈ D.

Proof. We have a power series expansion for f in a disc with some radius R > 0 and center z0:

f(z) = c0 + c1(z − z0) + c2(z − z0)
2 + c3(z − z0)

3 + · · · for |z − z0| < R.

Since f(z0) = 0, we know that c0 = 0. Now there are exactly two possibilities:

1◦ All the cn are zero.

2◦ There is a smallest m ≥ 1 such that cm 6= 0.

The first case gives f(z) = 0 whenever |z − z0| < R.

In the latter case, we have c0 = c1 = · · · = cm−1 = 0, and so using the fact that

cn =
f (n)(z0)

n!
, n ≥ 0,

it follows that z0 is a zero of order m. Moreover, from the power series expansion, we have

f(z) = cm(z − z0)
m + cm+1(z − z0)

m+1 + · · · = (z − z0)
m

∞∑

k=0

cm+k(z − z0)
k (4.4)

for |z − z0| < R. Thus, if we define g : D → C by

g(z) =






f(z)

(z − z0)m
for z 6= z0,

∞∑

k=0

cm+k(z − z0)
k for |z − z0| < R,

From (4.4), the two definitions give the same value whenever both are applicable. The function g

is seen to be holomorphic near z0 by the power series expansion for g, while at any z in D that is

different from z0, it is holomorphic by the first definition. Finally, g(z0) = cm 6= 0. This completes

the proof. �

Exercise 4.31. Let D be a domain, m ∈ N, R > 0 and z0 ∈ D. Let f, g : D → C be holomorphic
functions such that g(z0) 6= 0 and whenever |z − z0| < R, f(z) = (z − z0)

mg(z0). Prove that z0 is a zero
of f of order m.

Exercise 4.32. Find the order of the zero z0 for the function f in each case:

(1) z0 = i and f(z) = (1 + z2)4.

(2) z0 = 2nπi, where n is an integer, and f(z) = ez − 1.

(3) z0 = 0 and f(z) = cos z − 1 +
1

2
(sin z)2.

Exercise 4.33. Let f be holomorphic in a disc that contains a circle γ in its interior. Suppose there is
exactly one zero z0 of order 1 of f , which lies in the interior of γ. Prove that

z0 =
1

2πi

∫

γ

zf ′(z)

f(z)
dz.

Exercise 4.34. Let D be a domain and f be holomorphic in D such that f has a zero of order m > 1 at
z0 ∈ D. Prove that the function z 7→ (f(z))2 has a zero of order 2m at z0, and that f ′ has a zero of order
m− 1 at z0.
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4.5. The Identity Theorem

In this section, we will learn the Identity Theorem, which once again highlights the rigidity of

holomorphic functions.

Lemma 4.35. Let D be a domain and f : D → C be a holomorphic function in D. Suppose

that (zn)n∈N is a sequence of distinct zeros of f which converges to a point z∗ in D. Then f is

identically zero in a disc with some radius R > 0 centered at z∗.

Proof. By the continuity of f ,

f(z∗) = lim
n→∞

f(zn) = lim
n→∞

0 = 0.

From Proposition 4.30, if f is not identically zero in a disc centered at z∗ with some positive

radius, then z∗ is a zero of order m of f , and there exists a holomorphic function g : D → C such

that

f(z) = (z − z∗)
mg(z) (z ∈ D)

and g(z∗) 6= 0. Since g is continuous, g(z) 6= 0 in a disc with some radius R > 0 centered at z∗.

But then for large n ensuring that zn satisfies 0 < |zn − z∗| < R, we have the contradiction that

0 = f(zn) = (zn − z∗)
mg(zn) 6= 0.

Hence f is identically zero in a disc centered at z∗ with some positive radius. �

Theorem 4.36. Let D be a domain and f : D → C be holomorphic in D. Suppose that (zn)n∈N

is a sequence of distinct zeros of f which converges to a point z∗ in D. Then f is identically zero

in D.

Proof. Let w ∈ D. Then there is a path γ : [0, 1] → D such that γ(0) = z∗ and γ(1) = w. We

know that there is a R > 0 such that whenever |z − z∗| < R, we have f(z) = 0. In particular, for

small positive ts, |γ(t)− z∗| < R, and so f(γ(t)) = 0. We will show that in fact f(γ(t)) = 0 for all

t ∈ [0, 1], and in particular f(w) = f(γ(1)) = 0 too. To this end, define

T = sup{τ ∈ [0, 1] : ∀t ∈ [0, τ ], f(γ(t)) = 0}.
This T exists by the least upper bound property of R, since {τ ∈ [0, 1] : ∀t ∈ [0, τ ], f(γ(t)) = 0} is

bounded above by 1 and is nonempty because 0 belongs to it. By continuity of f ◦γ, f(γ(T )) = 0.

By Lemma 4.35, there is a disc of some positive radius r centered at γ(T ) such that f is identically

zero in that disc. But if T < 1, then for ts in (T, 1] that are close enough to T , we will have

|γ(t) − γ(T )| < r, and so f(γ(t)) = 0 for such ts. This contradicts the definition of T . Hence

T = 1, and so f(w) = f(γ(1)) = 0. This completes the proof. �

The following is an immediate consequence of this result.

Corollary 4.37 (Identity Theorem). Let D be a domain and f, g : D → C be holomorphic in D.

Suppose that (zn)n∈N is a sequence of distinct points in D which converges to a point z∗ in D, and

such that for all n ∈ N, f(zn) = g(zn). Then f(z) = g(z) for all z ∈ D.

Proof. Define ϕ : D → C by ϕ(z) = f(z)−g(z), and note that the zns are zeros of the holomorphic

function ϕ. By the result above, ϕ must be identically zero in D, and so the claim follows. �

Exercise 4.38. Show that there is only one entire function f such that f(x) = ex for all x ∈ R.

Exercise 4.39. Show, using the Identity Theorem, that for all z1, z2 ∈ C,

cos(z1 + z2) = (cos z1)(cos z2)− (sin z1)(sin z2),

by appealing to the corresponding identity when z1, z2 are real numbers.
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Exercise 4.40. Let D be a domain and let H(D) be the set of all functions holomorphic in D. Then it
is easy to check that H(D) is a commutative ring with the pointwise operations

(f + g)(z) = f(z) + g(z),

(f · g)(z) = f(z)g(z),

for z ∈ D and f, g ∈ H(D). (By a commutative ring R, we mean a set R with two laws of composition
+ and · such that (R,+) is an Abelian group, · is associative, commutative and has an identity, and the
distributive law holds: for a, b, c ∈ R, (a + b) · c = a · c + b · c.) Check that H(D) is an integral domain,
that is, a nonzero ring having no zero divisors. In other words, if f · g = 0 for f, g ∈ H(D), then either
f = 0 or g = 0.

If instead of H(D), we consider the set C(D) of all complex-valued continuous functions on D, then
C(D) is again a commutative ring with pointwise operations. Is C(D) an integral domain? (This shows
that continuous functions are not as “rigid” as holomorphic functions.)

Exercise 4.41. Let f, g be holomorphic functions in a domain D. Which of the following conditions
imply f = g identically in D?

(1) There is a sequence (zn)n∈N of distinct points in D such that f(zn) = g(zn) for all n ∈ N.

(2) There is a convergent sequence (zn)n∈N of distinct points in D with lim
n→∞

zn ∈ D such that

f(zn) = g(zn) for all n ∈ N.

(3) γ is a smooth path in D joining distinct points a, b ∈ D and f = g on γ.

(4) w ∈ D is such that f (n)(w) = g(n)(w) for all n ≥ 0.

Exercise 4.42. Suppose that f is an entire function, and that in every power series

f(z) =

∞
∑

n=0

cn(z − z0)
n,

at least one coefficient is 0. Prove that f is a polynomial.

4.6. The Maximum Modulus Theorem

In this section, we prove an important result, known as the Maximum Modulus Theorem.

Theorem 4.43 (Maximum Modulus Theorem). Let D be a domain and let f : D → C be

holomorphic in D. Suppose that there is a z0 ∈ D such that for all z ∈ D, |f(z0)| ≥ |f(z)|. Then

f is constant on D.

Proof. Let r > 0 be such that the disc with center z0 and radius 2r is contained in D. Let γ be

the circular path defined by γ(t) = z0 + reit, t ∈ [0, 2π]. Then by the Cauchy Integral Formula,

f(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz =

1

2π

∫ 2π

0

f(z0 + reit)dt,

and since |f(z0 + reit)| ≤ |f(z0)| for all t, the above yields

|f(z0)| ≤
1

2π

∫ 2π

0

|f(z0 + reit)|dt ≤ |f(z0)|.

By rearranging, this implies that

1

2π

∫ 2π

0

(
|f(z0)| − |f(z0 + reit)|

)
dt = 0.

But the integrand is pointwise nonnegative, and so |f(z0 + reit)| = |f(z0)| for all t. But by

replacing r be any smaller number, the same conclusion would hold. Thus we have that f maps

the disc ∆ with center z0 and radius r into the circle {w ∈ C : |w| = |f(z0)|}. This implies by

Example 2.25 that f is constant on ∆. The Identity Theorem now implies that f must be constant

on the whole of D. �
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Exercise 4.44. Let D be a domain and let f : D → C be a nonconstant holomorphic map. Prove that
there is no maximizer for the map z 7→ |f(z)| on D.

Exercise 4.45 (Minimum Modulus Theorem). Let D be a domain and let f : D → C be holomorphic
in D. Suppose that there is a z0 ∈ D such that for all z ∈ D, |f(z0)| ≤ |f(z)|. Then prove that either
f(z0) = 0 or f is constant on D.

Exercise 4.46. Consider the function f defined by f(z) = z2 − 2. Find the maximum and minimum
value of |f(z)| on {z ∈ C : |z| ≤ 1}.

4.7. Laurent series

Laurent series generalize Taylor series. Indeed, while a Taylor series
∞∑

n=0

cn(z − z0)
n

has nongenative powers of the term z−z0, and converges in a disc, a Laurent series is an expression

of the type ∑

n∈Z

cn(z − z0)
n,

which has negative powers of z − z0 too, and we will see that it “converges” in an annulus and

gives a holomorphic function there. Conversely, we will also learn that if we have a holomorphic

function in an annulus and has singularities that lie in the “hole” inside the annulus, then the

function has a Laurent series expansion in the annulus. For example, we know that for z 6= 0, the

following holds:

e
1
z =

∞∑

n=0

1

n!

(
1

z

)n

=

∞∑

n=0

1

n!
z−n.

Let us first define precisely what we mean by the convergence of the Laurent series
∑

n∈Z

cn(z−z0)
n.

Definition 4.47. The Laurent series
∑

n∈Z

cn(z − z0)
n is said to converge if the two series

∞∑

n=1

c−n(z − z0)
−n and

∞∑

n=0

cn(z − z0)
n

converge. In this case, we write

∑

n∈Z

cn(z − z0)
n =

∞∑

n=1

c−n(z − z0)
−n +

∞∑

n=0

cn(z − z0)
n,

and call it the sum of the Laurent series.

Let us first find out for what z the Laurent series could possibly converge. From Theorem 4.7.

the power series
∞∑

n=0

cn(z − z0)
n

converges inside a disc {z ∈ C : |z| < R2} and diverges outside it. The series

∞∑

n=1

c−nw
n

also converges inside a disc {w ∈ C : |w| < r1} and diverges outside it. Thus

∞∑

n=1

c−n(z − z0)
−n
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converges for
1

|z − z0|
< r1,

that is for |z − z0| > 1
r1

=: R1, and diverges for |z − z0| < R1. Hence the Laurent series converges

in the annulus {z ∈ C : R1 < |z − z0| < R2} and diverges if either |z − z0| < R1 or |z − z0| > R2.

Also since both

z 7→
∞∑

n=0

cn(z − z0)
n and z 7→

∞∑

n=1

c−n(z − z0)
−n

are holomorphic in {z ∈ C : R1 < |z − z0| < R2}, so is their sum.

That conversely, a function holomorphic in an annulus has a Laurent series expansion is the

content of the following theorem.

Theorem 4.48. If f is holomorphic in the annulus A := {z ∈ C : R1 < |z − z0| < R2}, where
R1 ≥ 0, then

f(z) =
∑

n∈Z

cn(z − z0)
n for z ∈ A,

where

cn =
1

2πi

∫

C

f(ζ)

(ζ − z0)n+1
dζ,

and C is the circular path given by C(t) = z0 + reit (t ∈ [0, 2π]), and r is any number such that

R1 < r < R2. Moreover the series is unique.

Proof. (Existence.) Let z ∈ A, and fix r1 and r2 such that R1 < r1 < |z − z0| < r2 < R2. Let γ1
and γ2 be the circular paths given by

γ1(t) = z0 + r1e
it,

γ2(t) = z0 + r2e
it,

for t ∈ [0, 2π]. Let γ3 : [r1, r2] → A be the path

γ3(t) = ti
z

|z| .

Thus γ3 is a straight line path that avoids z and joins γ1 to γ2. See Figure 2.

z0

z
r1

r2

R1

R2

γ2

γ1

γ3

−γ3

Figure 2. Laurent series.

Clearly the path γ := γ2 − γ3 − γ1 + γ3 is A-contractible to z, and so by the Cauchy Integral

Formula,

f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ − 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ,
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since the contour integral along γ3 cancels with that along −γ3. We have

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ2

f(ζ)

ζ − z0 + z0 − z
dζ =

1

2πi

∫

γ2

f(ζ)

(ζ − z0)

(
1− z − z0

ζ − z0

)dζ

Set w :=
z − z0
ζ − z0

. Then |w| = |z − z0|
r2

< 1. Thus

1

1− z − z0
ζ − z0

=
1

1− w
= 1 + w + w2 + w3 + · · ·+ wn−1 +

wn

1− w
,

and so

1

2πi

∫

γ2

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ2

f(ζ)

(
1

ζ − z0
+ · · ·+ (z − z0)

n−1

(ζ − z0)n
+

(z − z0)
n

(ζ − z0)n(ζ − z)

)
dζ

= c0 + c1(z − z0) + · · ·+ cn−1(z − z0)
n−1 +Rn(z),

where

Rn(z) :=
1

2πi

∫

γ2

f(ζ)(z − z0)
n

(ζ − z0)n(ζ − z)
dζ.

Here we have used the fact that γ2 is A-homotopic to any circle C with center z0 and radius r

where R1 < r < R2, and so by Theorem 3.25,
∫

γ2

f(ζ)

(ζ − z0)k
dζ =

∫

C

f(ζ)

(ζ − z0)k
dζ = ck

for k = 1, . . . , n−1. There is a M > 0 such that for all ζ ∈ γ2, |f(ζ)| < M . Moreover, |ζ−z0| = r2
and

|ζ − z| = |ζ − z0 − (z − z0)| ≥ |ζ − z0| − |z − z0| = r2 − |z − z0|,
and so

|Rn(z)| ≤
( |z − z0|

r2

)n
M

r2 − |z − z0|
n→∞−→ 0.

Thus

c0 + c1(z − z0) + c2(z − z0)
2 + c3(z − z0)

3 + · · · = 1

2πi

∫

γ2

f(ζ)

ζ − z
dζ.

Similarly, we have

− 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ1

f(ζ)

(z − z0)− (ζ − z0)
dζ =

1

2πi

∫

γ1

f(ζ)

(z − z0)

(
1− ζ − z0

z − z0

)dζ

Set w :=
ζ − z0
z − z0

. Then |w| = r1
|z − z0|

< 1. Thus

1

1− ζ − z0
z − z0

=
1

1− w
= 1 + w + w2 + w3 + · · ·+ wn−1 +

wn

1− w
,

and so

− 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ1

f(ζ)

(
1

z − z0
+ · · ·+ (ζ − z0)

n−1

(z − z0)n
+

(ζ − z0)
n

(z − z0)n(z − ζ)

)
dζ

= c−1(z − z0)
−1 + c−2(z − z0)

−2 + · · ·+ c−(n−1)(z − z0)
−(n−1) + R̃n(z),

where

R̃n(z) :=
1

2πi

∫

γ1

f(ζ)(ζ − z0)
n

(z − z0)n(z − ζ)
dζ.
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Here we have used the fact that γ1 is A-homotopic to any circle C with center z0 and radius r

where R1 < r < R2, and so by Theorem 3.25,
∫

γ1

f(ζ)

(ζ − z0)k
dζ =

∫

C

f(ζ)

(ζ − z0)k
dζ = ck

for k = −1, . . . , −(n − 1). There is a M > 0 such that for all ζ ∈ γ1, |f(ζ)| < M . Moreover,

|ζ − z0| = r1 and

|z − ζ| = |(z − z0)− (ζ − z0)| ≥ |z − z0| − |ζ − z0| = |z − z0| − r1,

and so

|R̃n(z)| ≤
(

r1
|z − z0|

)n
M

|z − z0| − r1

n→∞−→ 0.

Thus

c−1(z − z0)
−1 + c−2(z − z0)

−2 + · · ·+ c−(n−1)(z − z0)
−(n−1) + · · · = − 1

2πi

∫

γ1

f(ζ)

ζ − z
dζ.

This completes the proof of the part on the existence of the Laurent expansion.

(Uniqueness.) Cauchy’s Integral Formula allows us to show that the Laurent expansion is unique,

that is, if

f(z) =
∑

n∈Z

c̃n(z − z0)
n for R1 < |z − z0| < R2,

then for all n, c̃n = cn.

First we note that if n 6= 1, then (z − z0)
n =

d

dz

(
(z − z0)

n+1

n+ 1

)
, and so

∫

C

(z − z0)
ndz = 0 (n 6= 1),

where C is given by C(t) = z0 + reit (t ∈ [0, 2π]). By a direct calculation,
∫

C

1

z − z0
dz =

∫ 2π

0

1

reit
ireitdt = 2πi.

Hence, if term-by-term integration is justified in the annulus, we would have
∫

C

(z − z0)
−m−1

∑

n∈Z

c̃n(z − z0)
ndz =

∑

n∈Z

c̃n

∫

C

(z − z0)
n−m−1dz = 2πic̃m,

and the claim about the uniqueness of coefficients would be proved. This term-by-term integration

can be justified as follows. We have

∑

n∈Z

c̃n(z − z0)
n−m−1 =

(
· · ·+ c̃m−2

(z − z0)3
+

c̃m−1

(z − z0)2

)
+

c̃m
z − z0

+ (c̃m+1 + c̃m+2(z − z0) + · · · )

= f1(z) +
c̃m

z − z0
+ f2(z).

We need only show that f1, f2 each have a primitive in the annulus and then
∫

C

∑

n∈Z

c̃n(z − z0)
n−m−1dz =

∫

C

(
f1(z) +

c̃m
z − z0

+ f2(z)

)
dz = 0 + 2πic̃m + 0 = 2πic̃m,

as required. But f2(z) =

∞∑

n=1

c̃m+n(z − z0)
n−1 for |z − z0| < R2, and so if

F2(z) :=

∞∑

n=1

c̃m+n

n
(z − z0)

n for |z − z0| < R2,

then
d

dz
F2(z) = f2(z), and so F2 is a primitive of f2.
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For f1, we have

f1(z) =

∞∑

n=1

c̃m−n

(z − z0)n+1
=

∞∑

n=1

c̃m−nw
n+1,

where w =
1

z − z0
, and this is valid for R2 > |z − z0| > R1, and so

∞∑

n=1

c̃m−nw
n+1

converges for |w| < 1

R1
. If we set

G(w) = −
∞∑

n=1

c̃m−n

n
wn for |w| < 1

R1
,

then
d

dz
G(w) = −

∞∑

n=1

c̃m−nw
n−1. Hence if define F1 by

F1(z) = G

(
1

z − z0

)
=

∞∑

n=1

c̃m−n

n
(z − z0)

−n for z ∈ A,

then
d

dz
F1(z) =

(
G′

(
1

z − z0

))(
− 1

(z − z0)2

)
= (z − z0)

−2
∞∑

n=1

c̃m−n(z − z0)
−n+1 = f1(z). �

Note that the uniqueness of coefficients is valid only if we consider a particular fixed annulus.

It can happen that the same function has different Laurent expansions, but valid in different

annuli, as shown in the following example.

Example 4.49. Consider the function f defined by f(z) =
1

z(z − 1)
.

Then if we consider the annulus |z| > 1, then the Laurent series expansion of f is given by

f(z) =
1

z(z − 1)
=

1

z2
(
1− 1

z

) =
1

z2

(
1 +

1

z
+

1

z2
+

1

z3
+ · · ·

)
=

∞∑

n=2

z−n.

On the other hand, if we consider the annulus 0 < |z| < 1, then the Laurent series expansion of f

is

f(z) =
1

z(z − 1)
= −1

z

(
1 + z + z2 + z3 + · · ·

)
= −1

z
−

∞∑

n=0

zn.

♦

Example 4.50. Consider the function f given by f(z) = z3e
1
z . Then f is holomorphic in C\{0},

and its Laurent expansion in the annulus |z| > 0 is given by

f(z) = z3e
1
z = z3

(
1 +

1

1!

1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ · · ·

)
= z3 + z2 +

z

2
+

1

6
+

∞∑

n=1

1

(n+ 3)!
z−n.

♦
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4.8. Classification of singularities

If we look at the three functions
sin z

z
,

1

z3
, e

1
z ,

then we notice that each of them is not defined at 0, but we will see that the “singularity” at 0 in

each case has a very different nature. We give the following definition.

Definition 4.51. Let f be holomorphic in the punctured disc {z ∈ C : 0 < |z−z0| < R} for some

R > 0. Then we call z0 an isolated singularity of f . The singularity is called

(1) removable if there is a function F , holomorphic for |z − z0| < R such that F = f for

0 < |z − z0| < R.

(2) a pole if lim
z→z0

|f(z)| = +∞, that is, for every M > 0 there is a δ > 0 such that whenever

0 < |z − z0| < δ, |f(z)| > M .

(3) essential if z0 is neither removable nor a pole.

Example 4.52.

(1) The function
sin z

z
has a removable singularity at 0, since for z 6= 0, we have

sin z

z
=

1

z

(
z − z3

3!
+

z5

5!
−+ · · ·

)
=

∞∑

n=0

(−1)n

(2n+ 1)!
z2n,

and the right hand side, being a power series with an infinite radius of convergence (why?)

defines an entire function.

(2) The function
1

z3
has a pole at 0, since lim

z→0

1

|z|3 = +∞.

(3) The function e
1
z has an essential singularity at 0. Indeed, 0 is not a removable singularity,

because for example

lim
xց0

e
1
x = +∞.

0 is also not a pole, since lim
xր0

e
1
x = 0, showing that it isn’t true that lim

z→0
|f(z)| = +∞. ♦

The following result gives a characterization of the types of singularities in terms of limiting

behaviour.

Proposition 4.53. Suppose z0 is an isolated singularity of f . Then

(1) z0 is removable if and only if lim
z→z0

(z − z0)f(z) = 0.

(2) z0 is a pole if and only if there exists an n ∈ N such that

(a) lim
z→z0

(z − z0)
n+1f(z) = 0 and

(b) it is not the case that lim
z→z0

(z − z0)f(z) = 0.

We then call the smallest such n the order of the pole z0.

Proof. (1) Let z0 be removable, and F be holomorphic in DR := {z ∈ C : |z− z0| < R} such that

F = f for 0 < |z − z0| < R. Then using the fact that F is continuous at z0, we obtain

lim
z→z0

(z − z0)f(z) = lim
z→z0

(z − z0)F (z) = 0 · F (z0) = 0.

Conversely, suppose that

lim
z→z0

(z − z0)f(z) = 0,
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and that f is holomorphic in the punctured disc {z ∈ C : 0 < |z− z0| < R}. Then f has a Laurent

expansion

f(z) =
∑

n∈Z

cn(z − z0)
n,

where

cn =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz,

and Cr is a circular path of any positive radius r < R with center z0. We show that c−n = 0 for

n ∈ N. Indeed, given ǫ > 0, first choose r small enough so that whenever |z − z0| = r, we have

|(z − z0)f(z)| < ǫ. Then we have for n ∈ N that

|c−n| =
∣∣∣∣
1

2πi

∫

Cr

f(z)

(z − z0)−n+1
dz

∣∣∣∣ ≤
1

2π

ǫ

r−n+2
2πr ≤ ǫRn−1.

Since the choice of ǫ > 0 was arbitrary, it follows that c−n = 0 for all n ∈ N. Consequently, with

F (z) :=

∞∑

n=0

cn(z − z0)
n,

we see that F is holomorphic in {z ∈ C : |z − z0| < R}, and F = f in the punctured disc

{z ∈ C : 0 < |z − z0| < R}.

(2) Suppose that z0 is a pole of f . Then there is some R > 0 such that |f(z)| > 1 in the punctured

disc D := {z ∈ C : 0 < |z − z0| < R}. Define g in this punctured disc D by

g(z) =
1

f(z)
.

Since z0 is a pole of f , it follows that lim
z→z0

g(z) = 0. In particular, also

lim
z→z0

(z − z0)g(z) = 0,

and so by the first part above, g has a holomorphic extension G to {z ∈ C : |z − z0| < R}. Also,

G(z0) = lim
z→z0

g(z) = 0.

So z0 is a zero of G, and since G is not identically zero in a neighbourhood of z0, it follows from the

result on the classification of zeros that z0 has some order n, and there is a holomorphic function

ϕ defined for |z − z0| < R such that ϕ(z0) 6= 0 and G(z) = (z − z0)
nϕ(z). In particular, in D we

have

f(z) =
1

g(z)
=

1

G(z)
=

1

(z − z0)nϕ(z)
.

Hence (z − z0)
n+1f(z) =

(z − z0)

ϕ(z)
−→ 0

ϕ(z0)
= 0 as z → z0. Also, it can’t be the case that

lim
z→z0

(z − z0)f(z) = 0,

since otherwise, by the result in the previous part, z0 would be a removable singularity.

Conversely, suppose that there exists an n ∈ N such that

lim
z→z0

(z − z0)
n+1f(z) = 0

and that f is holomorphic in the punctured disc {z ∈ C : 0 < |z − z0| < R}. Suppose that we

have chosen the smallest such n, that is,

¬
(

lim
z→z0

(z − z0)
nf(z) = 0

)
. (4.5)
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Then lim
z→z0

(z−z0) ((z − z0)
nf(z)) = 0, and so by the previous part, there is a holomorphic extension

h of (z − z0)
nf(z) to the disc {z ∈ C : |z − z0| < R}. In particular, for 0 < |z − z0| < R,

f(z) =
h(z)

(z − z0)n
.

From (4.5), h(z0) = lim
z→z0

h(z) = lim
z→z0

(z − z0)
nf(z) 6= 0. Since h(z) → h(z0) 6= 0 as z → z0,

|f(z)| = |h(z)|
|z − z0|n

→ +∞.

So z0 is a pole of f . �

We now show a result which illustrates the “wild” behaviour of a function f at its essential

singularity z0. It says that given any complex number w, any ǫ > 0, and any arbitrary small

punctured disc ∆ with center z0, there is a point z in ∆ such that f(z) lies within a distance

ǫ from w. So the image of any punctured disc centered at the essential singularity is dense in

C. Or in even more descriptive terms, f comes arbitrarily close to any complex value in every

neighbourhood of z0.

Theorem 4.54 (“Casorati-Weierstrass”3). Suppose z0 is an essential singularity of f . Then for

every complex number w, every δ > 0 and every ǫ > 0, there exists a z ∈ C such that |z − z0| < δ

and |f(z)− w| < ǫ.

Proof. Suppose that there is a w and an ǫ > 0 such that for all z in some punctured disc D with

center z0, we have |f(z)− w| ≥ ǫ. Then the function g defined by

g(z) =
1

f(z)− w

for z ∈ D is holomorphic there, and

lim
z→z0

(z − z0)g(z) = 0,

since g is bounded in D (by 1/ǫ). So g has a removable singularity at z0. Let m be the order of

the zero of g at z0. (Set m = 0 if g(z0) 6= 0.) Write g(z) = (z − z0)
mϕ(z), where ϕ is holomorphic

in D and ϕ(z0) 6= 0. Then

(z − z0)
m+1f(z) = (z − z0)

m+1w +
(z − z0)

ϕ(z)
−→ 0w +

0

ϕ(z0)
= 0.

Thus we arrive at the contradiction that either f has a removable singularity at z0 (when m = 0)

or a pole at z0 (when m ∈ N). �

Example 4.55. The function e
1
z has an essential singularity at z = 0. It has no limit as z

approaches 0 along the imaginary axis. (Why?) It becomes unboundedly large as z approaches 0

through positive real values, and it approaches 0 as z approaches 0 through negative real values.

We show that it takes on any given nonzero value w = |w|eiθ in any arbitrarily small neigh-

bourhood of z = 0. Setting z = reit, we need to solve

e
1
z = e

cos t
r

−i sin t
r = |w|eiθ ,

and so by equating the absolute value and arguments, we obtain

cos t = r log |w| and sin t = −rθ.

3This result was published by Weierstrass in 1876 (in German) and by the Sokhotski in 1873 (in Russian). So it
was called Sokhotski’s theorem in the Russian literature and Weierstrass’s theorem in the Western literature. The same
theorem was published by Casorati in 1868, and by Briot and Bouquet in the first edition of their book (1859), called
Theorie des fonctions doublement periodiques, et en particulier, des fonctions elliptiques. However, Briot and Bouquet
removed this theorem from the second edition (1875).
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Using (cos t)2 + (sin t)2 = 1, we have

r =
1√

(log |w|)2 + θ2
and tan t = − θ

log |w| .

But we are allowed to increase θ by integral multiplies of 2π, without changing w. Bearing this in

mind, it is clear from the above expression for r that we can make r as small as we please. ♦

The above example illustrates a much stronger theorem than the Casorati-Weierstrass The-

orem, due to Picard, which says that the image of any punctured disc centered at an essential

singularity misses at most one point of C! In our example above, the exceptional value is w = 0.

A proof of Picard’s Theorem is beyond the scope of these notes, but can be found in Conway’s

book [C].

Proposition 4.56. Suppose that z0 is an isolated singularity of f with the Laurent series expansion

f(z) =
∑

n∈Z

cn(z − z0)
n for 0 < |z − z0| < R,

where R is some positive number. Then

(1) z0 is a removable singularity if and only if cn = 0 for all n < 0.

(2) z0 is a pole if and only if there is some m ∈ N such that c−m 6= 0 and cn = 0 for all

n < −m. Moreover, the order of the pole coincides with m.

(3) z0 is an essential singularity if and only if there are infinitely many indices n < 0 such

that cn 6= 0.

Proof. (1) Suppose that z0 is a removable singularity. Then f has a holomorphic extension F

defined for |z − z0| < R. But then this holomorphic F has a Taylor series expansion

F (z) =

∞∑

n=0

c̃n(z − z0)
n for |z − z0| < R.

In particular, for 0 < |z − z0| < R, we obtain

f(z) =

∞∑

n=0

c̃n(z − z0)
n =

∑

n∈Z

cn(z − z0)
n,

and by the uniqueness of the Laurent series expansion in an annulus, it follows that cn = c̃n for

n ≥ 0, and cn = 0 for all n < 0.

Conversely, suppose that cn = 0 for all n < 0. Then defining F for |z − z0| < R by

F (z) =

∞∑

n=0

cn(z − z0)
n,

we see that F is a holomorphic extension of f to {z ∈ C : |z − z0| < R}.

(2) Suppose z0 is a pole of order m. Then the function (z − z0)
mf(z) has a removable singularity

at z0. Hence by the previous part,

(z − z0)
mf(z) = (z − z0)

m
∑

n∈Z

cn(z − z0)
n =

∑

n∈Z

cn(z − z0)
n+m

has all coefficients of negative powers of z − z0 equal to 0. Hence

(z − z0)
mf(z) = c−m + c−m+1(z − z0) + c−m+2(z − z0)

2 + · · · (4.6)

and so

f(z) =
c−m

(z − z0)m
+

c−m+1

(z − z0)m−1
+ · · ·+ c−1

(z − z0)
+ c0 + c1(z − z0) + c2(z − z0)

2 + · · · .
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Moreover, the function c−m + c−m+1(z− z0) + c−m+2(z− z0)
2 + · · · is holomorphic, and so it has

the limit c−m as z → z0. On the other hand, since z0 is a pole of order m, we know that it is not

the case that lim
z→z0

(z − z0)
mf(z) = 0. Consequently, (4.6) implies that c−m 6= 0.

Conversely, suppose that there is some m ∈ N such that c−m 6= 0 and cn = 0 for all n < −m.

Then we have (z − z0)
mf(z) = c−m + c−m+1(z − z0) + c−m+2(z − z0)

2 + · · · , and since the right

hand side defines a holomorphic function in {z ∈ C : |z − z0| < R}, it follows that
lim
z→z0

(z − z0)
mf(z) = c−m 6= 0, and lim

z→z0
(z − z0)

m+1f(z) = 0.

Thus z0 is a pole of order m of f .

(3) This is immediate from the previous two parts and the fact that an essential singularity is

neither a removable singularity nor a pole. �

Exercise 4.57. Let D be a domain and f be holomorphic in D such that f has only one zero z0 in D,
and the order of z0 is m > 1. Show that the function z 7→ 1

f(z)
has a pole of order m at z0.

Exercise 4.58. Let D be a disc with center z0. Suppose that f is nonzero and holomorphic in D \ {0},
and that f has a pole of order m at z0. Show that the function z 7→ 1

f(z)
has a holomorphic extension g

to D, and that g has a zero of order m at z0.

Exercise 4.59. Let D be a domain and z0 ∈ D. Suppose that f has a pole of order m at z0 and that f
has the Laurent series expansion

f(z) =
∑

n∈Z

cn(z − z0)
n for 0 < |z − z0| < R,

where R is some positive number. Show that c−1 =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
((z − z0)

mf(z)) .

Exercise 4.60. True or false?

(1) If f has a Laurent expansion z−1 + c0 + c1z+ · · · , convergent in some punctured disc about the
origin, then f has a pole at 0.

(2) A function may have different Laurent series centered at z0, depending on the annulus of con-
vergence selected.

(3) If f has an isolated singularity at z0, then it may be expanded in a Laurent series centered at
z0 and is convergent in some punctured disc given by 0 < |z − z0| < R.

(4) If a Laurent series for f convergent in some annulus given by R1 < |z − z0| < R2 is actually a
Taylor series (no negative powers of z − z0), then this series actually converges in the full disc
given by |z − z0| < R2 (at least).

(5) If the last conclusion holds, then f has at worst removable singularities in the full disc given by
|z − z0| < R2 and may be considered holomorphic throughout this disc.

Exercise 4.61. Decide the nature of the singularity, if any, at 0 for the following functions. If the function
is holomorphic or the singularity is isolated, expand the function in appropriate powers of z convergent in
a punctured disc given by 0 < |z| < R.

sin z, sin
1

z
,

sin z

z
,

sin z

z2
,

1

sin 1
z

, z sin
1

z

Exercise 4.62. True or false?

(1) lim
z→0

|e 1
z | = +∞.

(2) If f has a pole of order m at z0, then there exists a polynomial p such that f − p

(z − z0)m
has

holomorphic extension to a disc around z0.

(3) If f is holomorphic in a neighbourhood of 0, then there is an integer m such that
f

zn
has a pole

at 0 whenever n > m.

(4) If f, g have poles of order mf ,mg respectively at z0, then their pointwise product f · g has a
pole of order mf +mg at z0.



4.9. Residue Theorem 75

Exercise 4.63. Give an example of a function holomorphic in all of C except for essential singularities
at the two points 0 and 1.

Exercise 4.64. The function f given by f(z) = (z − 1)−1 has the Laurent series z−1 + z−2 + z−3 + · · ·
for |z| > 1. A naive student, observing that this series has infinitely many negative powers of z, concludes
that the point 0 is an essential singularity of f . Point out the flaw in his argument.

Exercise 4.65. Prove or disprove: If f and g have a pole and an essential singularity respectively at the
point z0, then fg has an essential singularity at z0.

Exercise 4.66. Prove, using the Casorati-Weierstrass Theorem, that if f has an essential singularity at
z0, and if w is any complex value whatever, then there exists a sequence z1, z2, z3, · · · such that

lim
n→∞

zn = z0 and lim
n→∞

f(zn) = w.

4.9. Residue Theorem

Suppose that D is a domain and z0 ∈ D is an isolated singularity of f : D \ {z0} → C. Then we

know that f has a Laurent series expansion

f(z) =
∑

n∈Z

cn(z − z0)
n for 0 < |z − z0| < R,

where R is some positive number. We then know that

2πic−1 =

∫

C

f(z)dz,

where C is a circular path with center z0 and any radius r < R. If γ is a closed path in D which

is D \ {z0}-homotopic to C, then we have, using the Cauchy Integral Theorem, that
∫

γ

f(z)dz =

∫

C

f(z)dz = 2πic−1. (4.7)

We call c−1 the residue of f at z0, since we can imagine integrating termwise formally in the

Laurent series expansion of f , and this is what is “left over” (=residue):
∫

γ

f(z)dz =

∫

γ

∑

n∈Z

cn(z − z0)
ndz =

∑

n∈Z

cn

∫

γ

(z − z0)
ndz = 2πic−1.

(Because the integral

∫

γ

(z − z0)
ndz = 0 for n ≥ 0 thanks to the fact that (z− z0)

n is entire. Also

d

dz

(z − z0)
n+1

n+ 1
= (z − z0)

n,

for n ≤ −2, showing that (z − z0)
n has a primitive.) We will denote the residue of f at z0 by

res(f, z0) .

(4.7) gives a way of computing contour integrals via calculating the residue of f at z0 (which

amounts to finding the value of the coefficient c−1 in the Laurent expansion of f). We know

that there is a way to compute this if z0 is a pole; see Exercise 4.59. Some real integrals can be

calculated in this manner. Here is an example.

Example 4.67. Consider the real integral

∫ 2π

0

1

5 + 3 cos θ
dθ.

We view this as the contour integral along a circular path as follows. First we write

cos θ =
eiθ + e−iθ

2
=

z +
1

z
2

=
z2 + 1

2z
,
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where z := eiθ. So if γ is the circular path with radius 1 and center at 0 defined by γ(θ) = eiθ

(θ ∈ [0, 2π]), then γ′(θ)dθ = ieiθdθ = izdθ, and so
∫ 2π

0

1

5 + 3 cos θ
dθ =

∫

γ

1

5 + 3 ·
(
z2 + 1

2z

) 1

iz
dz =

∫

γ

− 2i

(3z + 1)(z + 3)
dz.

Let f be the function defined by

f(z) = − 2i

(3z + 1)(z + 3)
.

Then f has two poles, one at − 1
3 and the other at −3, both of order 1. Of these, only the one at

− 1
3 lies inside γ. Thus,

∫ 2π

0

1

5 + 3 cos θ
dθ =

∫

γ

f(z)dz = 2πi · res
(
f,−1

3

)
.

Now

f(z) =
c−1

z +
1

3

+ c0 + c1

(
z +

1

3

)
+ c2

(
z +

1

3

)2

+ · · · ,

and so (
z +

1

3

)
f(z) = c−1 + c0

(
z +

1

3

)
+ c1

(
z +

1

3

)2

+ . . .

is holomorphic inside C. Thus

c−1 = lim
z→− 1

3

(
z +

1

3

)
f(z) = lim

z→− 1
3

− 2i

3(z + 3)
= − i

4
.

Consequently,

∫ 2π

0

1

5 + 3 cos θ
dθ =

π

2
. ♦

More generally, if f has a finite number of poles in D, a result similar to (4.7) holds, and this

is the content of the following.

Theorem 4.68 (Residue Theorem). Let D be a domain, and suppose that f is a function that is

holomorphic in D \ {p1, . . . , pK} and has poles of order m1, . . . ,mK , respectively at p1, . . . , pK .

Let γ be a closed path in D which avoids p1, . . . , pK and for each k = 1, . . . ,K, γ is D \ {pk}-
homotopic to a circle Ck centered at pk such that the interior of Ck is contained in D and contains

only the pole pk. Then
∫

γ

f(z)dz = 2πi

K∑

k=1

res(f, pk).

Proof. For each k = 1, . . . ,K, we can write

f(z) =

mk∑

n=1

c−n,k(z − pk)
−n +

∞∑

n=0

cn,k(z − pk)
n = fk(z) + hk(z),

where the sum with negative powers of z − pk is denoted by fk, and the sum with nonnegative

powers of z−pk is denoted by hk. Note that hk is holomorphic, and that fk is a rational function,

with only one singularity in D at pk. Thus f − fk is holomorphic in a small disk around pk.

Set g := f − (f1 + · · ·+ fK). Since

g = (f − fk)−
∑

j 6=k

fj ,

and observing that both f − fk and each fj for j 6= k is holomorphic at pk. This happens with

each k ∈ {1, . . . ,K}. Thus, g is holomorphic in D. We note that as γ is D \ {p1}-homotopic
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to a circle C1 centered at p1, which is in turn D-homotopic to the point p1, it follows that γ is

D-contractible to p1. So by the Cauchy Integral Theorem,
∫

γ

g(z)dz = 0,

that is,
∫

γ

f(z)dz =

K∑

k=1

∫

γ

fk(z)dz = 2πi

K∑

k=1

c−1,k = 2πi

K∑

k=1

res(f, pk).

This finishes the proof. �

Exercise 4.69. Evaluate

∫

γ

Log(z)

1 + ez
dz along the path γ shown in Figure 3.

−5−5i

−5−2i
10−2i

10+10i−5+10i

−5+5i

5+5i

5−5i

Figure 3. The curve γ.

As we mentioned earlier, the Residue Theorem can be used to calculate contour integrals, and

sometimes gives an easy way to calculate some real integrals. Let us see how it can be used to

calculate the improper integrals of rational functions.

Consider a real integral of the type
∫ ∞

−∞

f(x)dx.

Such an integral, for which the interval of integration is not finite, is called an improper integral,

and it is defined as
∫ ∞

−∞

f(x)dx = lim
a→−∞

∫ 0

a

f(x)dx + lim
b→+∞

∫ b

0

f(x)dx, (4.8)

when both the limits on the right hand side exist. In this case, there also holds that
∫ ∞

−∞

f(x)dx = lim
r→+∞

∫ r

−r

f(x)dx. (4.9)

(However, the expression on the right hand side in (4.9) may exist even if the limits in (4.8) may

not exist. For example,

lim
r→+∞

∫ r

−r

xdx = lim
r→+∞

(
r2

2
− r2

2

)
= 0,

but

∫ b

0

xdx =
b2

2
, and so lim

b→+∞

∫ b

0

xdx does not exist.

We call the right hand side in (4.9), if it exists, the Cauchy principal value of the integral.
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We will assume that the function f in (4.8) is a real rational function whose denominator is

different from 0 for all real x, and whose degree is at least two units higher than the degree of the

numerator. Then it can be seen that the limits on the right hand side in (4.8) exist, and so we

can start from (4.9). We consider the corresponding contour integral
∫

γ

f(z)dz,

around a path γ, as shown in Figure 4.

0 r−r

σ

Figure 4. The path γ consisting of the semicircular arc σ and the straight line path joining −r

to r along the real axis.

Since f is rational, z 7→ f(z) has finitely many poles in the upper half plane, and if we choose

r large enough, γ encloses all of these poles in its interior. By the Residue Theorem, we then

obtain ∫

γ

f(z)dz =

∫

σ

f(z)dz +

∫ r

−r

f(x)dx = 2πi
∑

k: Im(pk)>0

res(f, pk),

where the sum consists of terms for all the poles that lie in the upper half-plane. From this, we

obtain ∫ r

−r

f(x)dx = 2πi
∑

k: Im(pk)>0

res(f, pk)−
∫

σ

f(z)dz.

We show that as r increases, the value of the integral over the corresponding semicircular arc σ

approaches 0. Indeed, from the fact that the degree of the denominator of f is at least two units

higher than the degree of the numerator, it follows that there are M, r0 large enough such that

|f(z)| < M

|z|2 (|z| = r > r0).

Hence ∣∣∣∣
∫

σ

f(z)dz

∣∣∣∣ ≤
M

r2
πr =

Mπ

r
(r > r0).

Consequently, lim
r→+∞

∫

σ

f(z)dz = 0, and so

∫ ∞

−∞

f(x)dx = 2πi
∑

k: Im(pk)>0

res(f, pk).

Let us see an example of this method in action.

Example 4.70. We will show that

∫ ∞

0

1

1 + x4
dx =

π

2
√
2
.

The function f given by f(z) =
1

1 + z4
has four poles of order 1:

p1 = e
πi
4 , p2 = e

3πi
4 , p3 = e

5πi
4 , p4 = e

7πi
4 .

These are depicted in Figure 5.
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p1
p2

p3
p4

0 1

Figure 5. The four poles of f .

The first two of these poles lie in the upper half plane. We have

res(f, p1) = lim
z→p1

z − p1
1 + z4

= lim
z→p1

1

(1 + z4)− (1 + p41)

z − p1

=
1

d

dz
(1 + z4)

∣∣∣∣
z=p1

=
1

4p31
= −1

4
e

πi
4 ,

res(f, p2) = lim
z→p2

z − p2
1 + z4

= lim
z→p2

1

(1 + z4)− (1 + p42)

z − p2

=
1

d

dz
(1 + z4)

∣∣∣∣
z=p2

=
1

4p32
=

1

4
e−

πi
4 .

Thus ∫ ∞

−∞

1

1 + x4
dx = 2πi

(
−1

4
e

πi
4 +

1

4
e−

πi
4

)
= π sin

π

4
=

π√
2
.

Since f is even, that is, f(x) = f(−x) for all x ∈ R, it follows that
∫ ∞

0

1

1 + x4
dx =

1

2

∫ ∞

−∞

1

1 + x4
dx =

π

2
√
2
.

♦

Here is one more example, but this time we integrate a nonrational function.

Example 4.71 (Fresnel Integrals4). We will show that
∫ ∞

0

cos(x2)dx =

∫ ∞

0

sin(x2)dx =

√
π

2
√
2
.

We consider

∫

γ

eiz
2

dz, where γ is shown in Figure 6.

π
4

|z|=R

Figure 6. The path γ.

4These integrals arise in optics, in the description of diffraction phenomena.
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Since eiz
2

is entire, we have

0 =

∫

γ

eiz
2

dz =

∫ R

0

eix
2

dx+

∫ π
4

0

eiR
2e2iθ iReiθdθ −

∫ R

0

eit
2e

i π
2 ei

π
4 dt.

We will show that the middle integral goes to 0 as R increases. First note that
∣∣∣eiR

2e2iθ iReiθ
∣∣∣ =

∣∣∣ReR
2(i cos(2θ)−sin(2θ))

∣∣∣ = Re−R2 sin(2θ).

But Figure 7 shows that whenever the angle t is such that 0 < t < π
2 , we have

2

π
≤ sin t

t
.

Indeed, the length of the arc PAQ, which is 2t, is clearly less than the length of the semicircular

arc PBQ, which is π sin t, and so the inequality above follows. (Alternately, we could note that

t 7→ sin t is concave in [0, π], because its second derivative is − sin t, which is nonpositive in [0, π],

and so the graph of sin t is lies above that of the straight line graph of 2
π
t joining the two points

(0, 0) and (π2 , 1).)

t

sin t

P

Q

M A BO

1

Figure 7. Here P is any point on the circle with center 0 and radius 1 such that OP makes
an angle t with the positive real axis. We reflect P in the real axis to get the point Q, and let
M be the intersection of PQ with the real axis. With M as center and radius PM , we draw a
circle, meeting the real axis on the right of A at the point B.

Applying this inequality with t = 2θ yields
∣∣∣eiR

2e2iθ iReiθ
∣∣∣ = Re−R2 sin(2θ) ≤ Re−R2 4θ

π ,

and so ∣∣∣∣∣

∫ π
4

0

eiR
2e2iθ iReiθdθ

∣∣∣∣∣ ≤ R

∫ π
4

0

e−4R2 θ
π dθ =

π

4R
(1− e−R2

),

which tends to 0 as R → +∞. Hence we obtain
∫ ∞

0

eix
2

dx = lim
R→+∞

∫ R

0

eit
2e

i π
2 ei

π
4 dt =

1 + i√
2

∫ ∞

0

e−t2dt =
(1 + i)

√
π

2
√
2

.

Here we have used the known5 fact that∫ ∞

0

e−x2

dx =

√
π

2
.

5With I :=

∫
∞

0

e
−x2

dx, I2 =

(∫
∞

0

e
−x2

dx

)(∫
∞

0

e
−y2

dy

)
=

∫
∞

0

∫
∞

0

e
−(x2+y2)

dxdy =

∫ π
2

0

∫
∞

0

e
−r2

rdrdθ =
π

4
.
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Consequently, ∫ ∞

0

cos(x2)dx =

∫ ∞

0

sin(x2)dx =

√
π

2
√
2

by equating the real and imaginary parts ♦

Exercise 4.72. Evaluate

∫ 2π

0

cos θ

5 + 4 cos θ
dθ.

Exercise 4.73. Evaluate the following integrals:

(1)

∫

∞

0

1

1 + x2
dx.

(2)

∫

∞

0

1

(a2 + x2)(b2 + x2)
dx, where a > b > 0.

(3)

∫

∞

0

1

(1 + x2)2
dx.

(4)

∫

∞

0

1 + x2

1 + x4
dx.

Exercise 4.74. Let n ∈ N and C be the circular path C(t) = eit (t ∈ [0, 2π]). Evaluate
∫

C

ez

zn+1
dz.

Deduce that

∫ 2π

0

ecos θ cos(nθ − sin θ)dθ =
2π

n!
.

Exercise 4.75. Let f have a zero of order 1 at z0, so that
1

f
has a pole of order 1 at z0. Prove that

res

(

1

f
, z0

)

=
1

f ′(z0)
.

Exercise 4.76. Prove that res

(

1

sin z
, kπ

)

= (−1)k.

Exercise 4.77. The nth Fibonacci number fn, where n ≥ 0, is defined by the following recurrence
relation:

f0 = 1, f1 = 1, fn = fn−1 + fn−2 for n ≥ 2.

Let F (z) :=

∞
∑

n=0

fnz
n.

(1) Prove by induction that fn ≤ 2n for all n ∈ N.

(2) Using the estimate fn ≤ 2n, deduce that the radius of convergence of F is at least
1

2
.

(3) Show that the recurrence relation among the fn implies that F (z) =
1

1− z − z2
.

Hint: Write down the Taylor series for zF (z) and z2F (z) and add.

(4) Verify that res

(

1

zn+1(1− z − z2)
, 0

)

= fn.

(5) Using the Residue Theorem, prove fn =
1√
5

(

(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1
)

.

Hint: Integrate
1

zn+1(1− z − z2)
around a circle with center 0 and radius R and show that this

integral vanishes as R → +∞.





Chapter 5

Harmonic functions

In this last chapter, we study harmonic functions, namely functions u : U → R defined in an open

set U of R2, which satisfy an important PDE called the Laplace equation:

∆u :=
∂2u

∂x2
+

∂2u

∂y2
= 0 in U.

Besides being the prototype of an important class of PDEs (“elliptic equations”), this equation

arises in applications (in connection with gravitational fields, electrostatic fields, steady-state heat

conduction, incompressible fluid flow, Brownian motion, computer animation etc.).

What is the link between harmonic functions and complex analysis? We will see that the real

and imaginary parts u, v of a holomorphic function f = u+ iv are harmonic functions, and using

this link, will derive some important properties of harmonic functions.

Definition 5.1. Let U be an open subset of R2. A function u : U → R is called harmonic if u

has continuous partial derivatives of order 2, and

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0 for all (x, y) ∈ U.

Example 5.2. Let U = R2. Consider the function u : U → R given by u(x, y) = x2 − y2 for

(x, y) ∈ R2. Since
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 2− 2 = 0,

it follows that u is harmonic. ♦

Exercise 5.3. Show that the following functions u are harmonic in the corresponding open set U .

(1) u(x, y) = log(x2 + y2), U = R
2 \ {(0, 0)}.

(2) u(x, y) = ex sin y, U = R
2.

We show below that the real and imaginary parts of a holomorphic function in an open set

are harmonic functions.

Proposition 5.4. Let U be an open subset of C and let f : U → C be holomorphic in U . Then

u := Re(f) and v := Im(f) are harmonic functions in U .

Proof. We have f(x + iy) = u(x, y) + iv(x, y) for (x, y) ∈ U . Since f is infinitely many times

differentiable, we know that u, v have partial derivatives of all orders, and so by the Cauchy-

Riemann equations, we have

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)
=

∂

∂y

(
∂v

∂x

)
=

∂

∂y

(
−∂u

∂y

)
= −∂2u

∂y2
,
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and so u is harmonic. Similarly,

∂2v

∂x2
=

∂

∂x

(
∂v

∂x

)
=

∂

∂x

(
−∂u

∂y

)
= − ∂

∂y

(
∂u

∂x

)
= − ∂

∂y

(
∂v

∂y

)
= −∂2v

∂y2
,

and so v is harmonic as well. (Alternately, we could have also noted that v = Re(−if).) �

Example 5.5. Then the function u given by u(x, y) = x2 − y2 considered in Example 5.2 is in

fact the real part of the holomorphic function z 7→ z2, and so is harmonic. Similarly the function

v(x, y) := xy, which is half the imaginary part of z 7→ z2 is harmonic as well. ♦

In fact, a converse to the above result holds when the open set in question is a simply connected

domain. (For more general domains, it can happen that there are harmonic functions which aren’t

the real part of a holomorphic function; see Exercise 5.8.)

Proposition 5.6. Let D be a simply connected domain and u : D → R be harmonic in D. Then

there is another harmonic function v defined in D such that f := u+ iv is holomorphic in D.

(The function v is then called a harmonic conjugate of u.)

Proof. We will explicitly construct the holomorphic f with real part u, and then v := Im(f) will

serve as the required harmonic function. First set

g =
∂u

∂x
− i

∂u

∂y
.

The plan is to prove that g is holomorphic, and then to construct a primitive of g, which will be

the f we are after. To show that g is holomorphic, we will use Theorem 2.20. First we note that

since u is harmonic, the functions

Re(g) =
∂u

∂x
and Im(g) = −∂u

∂y

have continuous partial derivatives, and moreover, they satisfy the Cauchy-Riemann equations:

∂

∂x
(Re(g)) =

∂

∂x

(
∂u

∂x

)
=

∂2u

∂x2
= −∂2u

∂y2
=

∂

∂y

(
−∂u

∂y

)
=

∂

∂y
(Im(g)),

∂

∂y
(Re(g)) =

∂

∂y

(
∂u

∂x

)
=

∂

∂x

(
∂u

∂y

)
= − ∂

∂x

(
−∂u

∂y

)
= − ∂

∂x
(Im(g)).

Hence g is holomorphic in D, and by Theorem 3.37, it has a primitive G in D. Decompose

G = U + iV into its real and imaginary parts U, V . Then

∂u

∂x
− i

∂u

∂y
= g = G′ =

∂U

∂x
+ i

∂V

∂x
=

∂U

∂x
− i

∂U

∂y
,

where the last equation follows from the Cauchy-Riemann equations. From the above, we see that

∂(u− U)

∂x
= 0,

and so it follows from the Fundamental Theorem of Integral Calculus, that u−U is locally constant

along horizontal lines. Similarly, since

∂(u− U)

∂y
= 0,

u − U is also locally constant along vertical lines. But any two points in U can be joined by a

stepwise path, and so u−U is constant in D, that is, there is a constant c such that u = U + c in

D. Hence f := G− c is a holomorphic function in D whose real part is u. �

Exercise 5.7. Find harmonic conjugates for the following harmonic functions in R
2:

ex sin y, x3 − 3xy2 − 2y, x(1 + 2y).
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Exercise 5.8. Show that there is no holomorphic function f defined in C \ {0} whose real part is the
harmonic function u defined by u(x, y) = log(x2 + y2), (x, y) ∈ R

2 \ {(0, 0)}.
Hint: If v is a harmonic conjugate of u, then also h(z) := z2e−(u+iv) is holomorphic. Find |h|, and
conclude that h′ = 0. Show that h′ = 0 implies that 2/z has a primitive in C \ {0}, which is impossible.

Exercise 5.9. Is it possible to find a v : R2 → R so that f defined by f(x + iy) = x3 + y3 + iv(x, y),
(x, y) ∈ R

2, is holomorphic in C?

The above two results allow a fruitful interaction between harmonic and holomorphic functions.

For instance we have the following.

Corollary 5.10. Harmonic functions are infinitely many times differentiable.

(Note that the definition of a harmonic function demands only twice continuous differentiabil-

ity. The remarkable result here says that thanks to the fact that the Laplace equation is satisfied,

in fact the function has got to be infinitely differentiable. A result of this type is called a regularity

result in PDE theory.)

Proof. Suppose that u is a harmonic function in an open set U . Let z0 = (x0, y0) ∈ U . Then

there is a r > 0 such that the disc D with center z0 and radius r is contained in U . But D is

simply connected, and so there is a holomorphic function f defined in D, whose real part is u.

But then u is infinitely many times differentiable in D, and in particular at z0 ∈ D. As the choice

of z0 ∈ D was abritrary, the result follows. �

Exercise 5.11. Show that all partial derivatives of a harmonic function are harmonic.

Exercise 5.12. Show that the set Har(U) of all harmonic functions on an open set U forms a real vector
space with pointwise operations.

Exercise 5.13. Is the pointwise product of two harmonic functions also necessarily harmonic?

Using the Cauchy Integral Formula, we immediately obtain the following “mean value prop-

erty” of harmonic functions, which says that the value of a harmonic function is the average (or

mean) of the values on a circle with that point as the center.

Theorem 5.14 (Mean-value property of harmonic functions). Suppose u is harmonic in an open

set U . Let z0 ∈ U , and let R > 0 be such that {z ∈ C : |z − z0| < R} is contained in U . Then

u(z0) =
1

2π

∫ 2π

0

u(z0 + reit)dt

for all r such that 0 < r < R.

Proof. The disc D := {z ∈ C : |z − z0| < R} is simply connected, and so there is a holomorphic

function f defined in D, whose real part is u. But now by the Cauchy Integral Formula, if C is

the circular path given by C(t) = z0 + reit (t ∈ [0, 2π]), then

f(z0) =
1

2πi

∫

C

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + reit)

reit
ireitdt =

1

2π

∫ 2π

0

f(z0 + reit)dt.

Equating real parts, the claim is proved. �

From the Maximum Modulus Theorem (see page 64), we also obtain the following.

Theorem 5.15. Suppose u is harmonic in a simply connected domain U . Suppose that z0 ∈ U is

a point such that u(z0) ≥ u(z) for all z ∈ D. Then u is constant in U .
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Proof. There is a holomorphic function f defined in D whose real part equals u. But then the

function g : D → C defined by g(z) = ef(z) (z ∈ D) is holomorphic too. Its absolute value is eu,

and since

|g(z0)| = eu(x0,y0) ≥ eu(x,y) = |g(z)| for z = x+ iy ∈ D,

it follows from the Maximum Modulus Theorem, that g must be constant in D. This means that

there is a number c such that

f(z)− 2k(z)πi = c

where k : D → Z is an integer valued function in D. But from the above equation, we see that

k is continuous in D, and so, being integer-valued, k must be constant in D. So f , and hence its

real part u, is constant in D. �

In particular, this has an important consequence about the uniqueness of solutions to the

Dirichlet problem, as explained below.

Let D be the open disc with center 0 and radius 1. The boundary of D is the circle T with

center 0 and radius 1. Let ϕ : T → R be a continuous function. ϕ is called the boundary data.

Then the Dirchlet problem is the following:

Find a continuous u : D ∪ T → R such that ∆u = 0 in D and u|T = ϕ.

Proposition 5.16. The solution to the Dirichlet problem is unique.

Proof. Indeed, let u1, u2 be two distinct solutions corresponding to the boundary data ϕ, and

suppose that there is a point w ∈ D where u1(w) > u2(w). (Note that on the boundary u1 and u2

coincide.) Then u := u1 − u2 is a solution corresponding to the boundary data 0. Let z0 ∈ D ∪ T

be the maximizer for the real-valued continuous function u on the compact set D ∪ T. Then z0
can’t be in T, for otherwise, the maximum value must be 0, and in particular,

0 = u(z0) ≥ u(w) = u1(w)− u2(w) > 0,

a contradiction. Thus z0 ∈ D. Then we have in particular that u(z0) ≥ u(z) for z ∈ D, and so

by Theorem 5.15, u must be constant in D. But as u is continuous on D ∪ T, and u is 0 on T, it

follows that the constant value of u must be 0 everywhere in D ∪ T. Hence u1 = u2. �

Remark 5.17. It can be shown that the following expression, called the Poisson Integral Formula,

gives the solution to the Dirichlet problem with boundary data ϕ:

u(reit) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − t) + r2
ϕ(eiθ)dθ (0 ≤ r < 1, 0 ≤ t ≤ 2π).

This can be derived using the Cauchy Integral Formula, but there are some technical subtleties,

and so we will not prove this here.

Exercise 5.18 (Some half-plane Dirichlet problems). Given the “boundary data” b : R → R, we consider
the problem of finding a continuous, real-valued function h defined in the closed upper half-plane y ≥ 0,
such that h is harmonic in the open upper half-plane y > 0 and moreover, h(x, 0) = b(x).

(1) If b is just a polynomial p, then show that we can simply take h(x, y) = Re(p(x+ iy)).

(2) Prove that if

b(x) =
1

1 + x2
,

then (x, y) 7→ Re(b(x+ iy)) is not a solution (because of the pole at z = i). Show that

h(x, y) := Re

(

i

z + i

)

=
y + 1

x2 + (y + 1)2

gives a solution to the Dirichlet problem.
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Exercise 5.19. Let u : R2 → R be a harmonic function such that u(x, y) > 0 for all (x, y) ∈ R
2. Prove

that u is constant.

Hint: Let f be an entire function whose real part is u. Consider e−f .

Exercise 5.20. The regularity of functions satisfying the Laplace equation is not completely for free.
Here is an example to show that a discontinuous function may satisfy the Laplace equation! Consider the

function u : R2 → R defined to be the real part of e−1/z4 when z 6= 0 and 0 at the origin.

(1) Verify that u is discontinuous at 0.

(2) Check that u(x, 0) = e−1/x4

, u(0, y) = e−1/y4

.

(3) Being the real part of a holomorphic function in C \ {0}, we know already that u satisfies the
Laplace equation everywhere in R

2 \ {(0, 0)}. Show that also

∂2u

∂x2
(0, 0) and

∂2u

∂y2
(0, 0)

exist, and that
∂2u

∂x2
(0, 0) +

∂2u

∂y2
(0, 0) = 0.

Exercise 5.21. Let D1, D2 be domains in C. Let ϕ : D1 → D2 be holomorphic. Show that if h : D2 → R

is harmonic, then h ◦ ϕ : D1 → R is harmonic as well.

Now suppose that ϕ : D1 → D2 is holomorphic, a bjiection, and also ϕ−1 : D2 → D1 is holomorphic.
We call such a map ϕ a biholomorphism. Conclude that a function h : D2 → R is harmonic if and only if
h ◦ ϕ is harmonic.

Thus the existence of a biholomorphism between two domains allows one to transplant harmonic (or
even holomorphic) functions from one domain to the other. This mobility has the advantage that if D1 is
“nice” (like a half plane or a disc), while D2 is complicated, then problems (like the Dirichlet Problem) in
D2 can be solved by first moving over to D1, solving it there, and then transplanting the solution to D2.

A first natural question is then the following: Given two domains D1 and D2, is there a biholomor-
phism between them? An answer is provided by the Riemann Mapping Theorem, a proof of which is
beyond the scope of these notes, but can be found for example in [C].

Theorem 5.22 (Riemann Mapping Theorem). Let D be a proper (that is, D 6= C) simply connected

domain. Then there exists a biholomorphism ϕ : D → D := {z ∈ C : |z| < 1}.

Thus the above result guarantees a biholomorphism between any two proper simply connected domains
(by a passage through D). Unfortunately, the proof does not give a practical algorithm for finding the
biholomorphism. Show that the “Möbius transformation” ϕ : H → D, where H := {s ∈ C : Re(s) > 0},
given by

ϕ(s) =
s− 1

s+ 1
, s ∈ H,

is a biholomorphism between the right half plane H and the disc D.
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