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Abstract. The purpose of this paper is to present a brief sketch of the evolution of modern 
control theory. Systems theory witnessed different stages and approaches, which will be 
very shortly presented. The main idea is that, at present, Control Theory is an 
interdisciplinary area of research where many mathematical concepts and methods work 
together to produce an impressive body of important applied mathematics. A general 
conclusion is that the main advances in Control of Systems would come both from 
mathematical progress and from technological development. We start with frequency-
domain approach and end our historical perspective with structural-digraph approach, 
passing through time-domain, polynomial-matrix-domain frequential and geometric 
approaches. 

 
1. Introduction 
This contribution is dedicated to present the main approaches and their mathematical support 
of development the control systems theory. The underlying idea is that, at present, Control 
Theory is an interdisciplinary area of research where many mathematical concepts and 
methods work together to produce an impressive body of important applied mathematics. 
Control systems theory witnessed different stages and approaches, which we will shortly 
describe here. The idea is to produce a general overview concerning the basics of these 
approaches, their origins, history and the way applications and interactions with mathematics 
and technologies has generated the development of the discipline. It is worth saying that all 
these approaches of Control Theory have their own value and still continue to represent 
important contributions both in theory and practice. 

The word control has two main meanings. First, it is understood as the activity of 
testing or checking that a physical or mathematical device has a satisfactory behaviour. 
Secondly, to control is to act, to implement decisions that guarantee that device behaves as 
desired. To control is to get “ordo ab chao”. 
 Control idea trace back in times of Aristotle (384-322 BC), [Bennet, 1979]. In his 
book “Politics”, one of the most influencing books ever written, in Chapter 3, Book 1, he has 
written: 

“… if every instrument could accomplish its own work, obeying or 
anticipating the will of others … if the shuttle weaved and the pick touched 
the lyre without a hand to guide them, chief workmen would not need 
servants, nor masters slaves.” 

We see that Aristotle described in a very transparent manner the purposes of Control Theory: 
to automatize processes in such a way to achieve their purposes they have constructed of, and 
to let the human being in liberty and freedom. 
 For the very beginning, the human being was under the primacy of existence. The 
description of physical or artificial systems was more linguistic, often not they are, but more 
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they like to be. Even the mathematics in old times, as synthesised by Euclid (325-265 îChr.) 
and Diophantus of Alexandria (200-284  AD), was expressed in terms of syllogisms. The 
world was seen as a Noun or as a Verb. The ancient philosophers sentenced that the world 
can be discussed in terms of processes governed by laws, all living under the commandment 
“nothing too much”. The first attempt to introduce computation was given by Fibonacci 
(1170-1250) in his Liber abaci. However, after three centuries the importance of computation 
came into being. 

René Descartes (1596-1650) came with the concept of method. Galileo Galilei 
(1564-1642) brought into use the physical experiments and later Sir Isaac Newton (1642-
1727) and Baron Gottfried Leibniz (1646-1716), introducing calculus achieved the first 
metamorphosis of science by transforming the operational foundations of science, that were 
mainly the heritage of Aristotle, into its modern form we know today. They established the 
primacy of mathematics, under which we still live today. This new attitude consisted of the 
use of physical experiments and the use of mathematical models involving differential 
equations. This primacy of mathematics is so much active that the scientists still continue to 
refer to the mathematical representation of the creation, to the mathematical models, avoiding 
to get down to existence. They are interested to solve these mathematical models, to get their 
properties and to study their solution.  

However, the character and structure of science, mainly over the past century, has 
been going through a second metamorphosis, which is the result of two classes of discoveries 
[Jackson, 1994]. The first group of discoveries refers to the limitations we can obtain about 
the dynamic behaviours of the creation from the mathematical models. It was discovered that 
all mathematical models have limitations to make: analytical mathematical deductions, 
deterministic physical predictions, and structurally stable models of closed systems. 
Additionally, the discovery of Kurt Gödel (1906-1978), that neither the consistency nor the 
completeness of any sufficiently general mathematical system can be proved within that 
system by generally accepted logical principles, struck at the foundations of mathematics that 
the mathematical systems can establish any result which is true. The second group of 
discoveries is in close connection with the raising of the computer science and informatics. 
These enlarged the operational basis for scientific investigations by introducing the computer 
experiments. The second metamorphosis of science enlarged the operational basis of physical 
experiments and mathematical models by including the third operational basis to get 
knowledge as computational or numerical experiments. These numerical experiments gave 
the scientists the access to a strange world. Intensive and very sophisticated computational 
experiments with mathematical models determined the re-addressing to the real existence. 
Rephrased, numerical experiments restored the primacy of existence, and the discipline that 
achieved this restoration is informatics. Basically we can define informatics as “coming 
down in computational of the mathematical concepts, turning these mathematical concepts in 
algorithms, the study of the associated algorithms subject to convergence and complexity”. 
This is the substance of informatics – transforming the advanced mathematical concepts in 
algorithms, implementation of algorithms in computing programs. In a way, informatics is 
computational linear algebra. The control systems theory determined the development of 
science in all its aspects and this in turn influenced the development of control theory. 
 The structure of this work is as follows. In section 2 we present the key concepts 
used in control theory. We emphasize the concept of feedback, the need for fluctuations and 
the optimization. Section 3 is for Frequency-Domain approach of systems control theory, 
where fundamental is the concept of transfer function. In section 4 we describe the Time-
Domain Algebraic approach which is based on the theory of differential equations. The 
Polynomial-Matrix-Domain Frequential approach is presented in section 5. This is a very 
natural extension of classical transfer function description to multi-input, multi-output 
systems. The next section is dedicated to Geometric approach which is an extension to 
algebraic approach. Finally, in the next section the Structural-Digraph approach is considered 
where the structure of the system is crucial in designing its control.  
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2. Fundamental concepts in Control Theory 
Although the mathematical formulation of control problems, based on the mathematical 
models of physical systems, is intrinsically complex, the fundamental ideas in control theory 
are enough simple very intuitive. These key ideas can be found in Nature, in the evolution 
and behaviour of living beings. There are three fundamental concepts in control theory. 

The first one is that of feedback. One of the most important contribution of Charles 
Darwin (1805-1882) was the theory that feedback over long time periods is responsible for 
the evolution of species. Later, Vito Volterra (1860-1940) used this concept to explain the 
balance between two populations of fish in a closed pond. But, the most influencing was 
Norbert Wiener (1885-1964) who introduced the fruitful concepts of positive and negative 
feedback in biology. In engineering, this term has been early introduced by the engineers of 
the Bell Telephone Laboratory [Mayr, 1970]. Now it is an active concept in practically all 
area of activity. A feedback process is one in which the state of the system, or its output, 
determines the way in which the control has to be computed at any time instant.  

The second key concept in control theory is that of the need for fluctuations. This is a 
basic principle that we apply and use many times in our every day life. Basically, the idea 
behind this concept is that we do not have necessarily to stress the system and drive it so 
brutally to the desired state immediately or directly. Very often, it is more efficient and 
physically realisable to control the system letting it to fluctuate, and trying to find that 
dynamics that will drive the system to the desired state without forcing it too much. This 
concept has been revealed early by Hall [1907] when he compared the action of political 
economists, who admitted that a proper action of the law of supply and demand must admit 
fluctuations, and the engineers who generally not recongnized the need of fluctuations in 
steam engine governors. The need for having fluctuations is a very general principle we find 
it also in penalty function or interior point methods from mathematical programming 
[Andrei, 1999a, 1999b, 2004a, 2004b].  
 The third very important concept in control theory is that of optimization. This is a 
very well established branch of mathematics, whose goal is to find the values for variables in 
order to maximize the profit or to minimize the costs subject to some constraints. It is in 
close connection to Control Theory mainly because a large variety of problems arising in 
system and control theory can be reduced to a few standard convex or quasi-convex 
optimization problems involving linear matrix inequalities. The important aspect is that the 
resulting optimization problems can be solved numerically very efficiently using the interior 
point methods. Therefore, the reduction of control problems to optimization constitutes a 
solution to the original problems, clearly in a very practical sense [Andrei, 2001], [Boyd, El 
Ghaoui, Feron and Balakrishnan, 1994]. Additionally, the contributions of Richard Bellman 
(1920-1984) by introducing the dynamic programming and of Lev Pontryagin (1908-1988) 
with its maximum principle for nonlinear optimal control, established the foundations of 
Modern Control Theory.  
 
3. Frequency-Domain Approach 
One of the first mathematical analysis of control systems was the frequency-domain 
approach. This is based on the developments of Pierre-Simon de Laplace (1749-1827), 
Joseph Fourier (1768-1830), Augustin Louis Cauchy (1789-1857), and others. The central 
concept of frequency-domain approach is that of transfer function. The transfer function of a 
linear time-invariant system is defined as Y s U s( ) / ( ) , where Y s( )  is the Laplace transform 
of the output, and U s is the Laplace transform of the input of the system. It turns out that 
the transfer function is the Laplace transform of the system impulse response  
Therefore, 

( )
h t( ).

H s Y s U s( ) ( ) / ( )= , i.e. H s( )  embodies the transfer characteristics of the 
system. This approach is appropriate for linear time-invariant systems, especially for single-
input/single-output systems where the graphical techniques are very efficient. 
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   Harry Nyquist (1889-1976) 

Frequency-domain approach originated in the process of 
solving of a major problem referring to the mass 
communication systems over long distances. To reduce 
distorsions in amplifiers, after six years of persistence, Harold 
S. Black (1898-1983) revolutionized telecommunications by 
introducing the negative feedback in 1927 [Black, 1934]. As a 
method of system control, this has had a great impact in a large 
number of applications.  
The theory of design the stable amplifiers was developed by 
Harry Nyquist (1889-1976) at Bell Laboratories. He derived 
his stability criterion, generally called the Nyquist stability 
theorem, based on the polar plot of the transfer function 
[Nyquist, 1932]. 

Later on, also at Bell Laboratories, Hendrik Bode (1905-1982) used the magnitude and phase 
frequency response plots of the transfer function to investigate the closed-loop stability, and 
introducing the notions of gain and phase margin [Bode, 1940]. In 1947, at MIT Radiation 
Laboratory, Nathaniel B. Nichols (1914-1997) developed his Nichols chart for the design of 
feedback systems, establishing the theory of servomechanisms [James, Nichols and Phillips, 
1947]. A major step in design of control systems is the root locus method introduced by 
Walter R. Evans (1920-1999) at North American Aviation. The idea behind this method is to 
use the poles and zeroes of the open loop system to determine the properties of the closed 
loop system when one parameter is changing.  

 

 
  Hendrik Bode (1905-1982) 

The classical control theory was expressed in the frequency 
domain and the s-plane using the methods of Nyquist, Bode, 
Nichols and Evans. All that is needed is the magnitude and 
phase of the frequency response, or the poles and zeroes of the 
open loop transfer function. This is very implementable for 
single-input/single-output systems since all these elements, the 
frequency response, and poles and zeroes of a transfer 
function, can accurately be determined. More than this, robust 
design is implemented using notions of gain and phase margin. 
To determine the transfer function of complex systems the 
block diagram algebra is very intensive used. It is not 
necessary for an internal description of the system dynamics; 
that is, only the input/output behavior of the system is needed. 

 The graphical techniques are difficult to apply for multi-input/multi-output, or multi-
loop systems. Due to the interactions among the control loops in a multivariable system, even 
that each single-input/single-output transfer function has acceptable properties concerning the 
step response and robustness, the whole system can fail to be acceptable. The quantitative 
feedback theory developed by Horowitz, overcome many of these limitations, providing an 
effective approach for the design the multivariable systems [Horowitz, 1963], [Horowitz and 
Sidi, 1972]. Quantitative feedback theory is a frequency-domain technique utilising the 
Nichols chart in order to achieve a robust design over a specified region of plant uncertainty. 
Basically, the desired time-domain responses are translated into frequency domain 
tolerances, which lead to bounds on the transfer function. Concerning the nonlinear systems, 
the classical techniques can be considered on a linearized version of a nonlinear system, at an 
equilibrium point where the system behaviour is approximately linear.  
 The above description of systems is useful in some circumstances, but is still very 
limited. The important omitted factors are the dynamical changes and the internal 
mechanisms by which the system transforms the inputs in outputs. Consequently, some new 
representation of a system has been considered, as we will see in the following. 
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4. Time-Domain Algebraic Approach 
This approach is based on the theory of differential equations. This theory is developed due 
to the infinitesimal calculus created by Newton and Leibniz, and the work of brothers 
Bernoulli, Jacopo Riccati (1676-1754), Leonhard Euler (1707-1783) and others. The analysis 
of motion of the dynamical systems by means of differential equations has been considered 
by Joseph-Louis Lagrange (1736-1813) and William Rowan Hamilton (1805-1865).  
 One of the most important problem considered in this representation was that of 
stability. George Airy (1801-1892) was the first to discuss the instability of a closed-loop 
system using the differential equations [Airy, 1840]. James Clerck Maxwell (1831-1879) 
analyzed the stability of Watt’s governor [Maxwell, 1868]. His idea was to linearize the 
differential equation of motion in order to find the characteristic equation of the system. He 
proved that the system is stable if the roots of the characteristic equation have negative real 
parts. Later, Edward Routh (1831-1907) provided a numerical technique for determining 
when a polynomial has negative roots, giving a treatise on the stability of a given state of 
motion [Routh, 1877]. Using differential equations, independently of Maxwell, 
Vishnegradsky [1877] analyzed the stability of regulators. But, the most elegant and general 
theory of stability was created by Alexander Lyapunov (1857-1918). He studied the stability 
of nonlinear differential equations using a generalized notion of energy [Lyapunov, 1893]. 
He introduced some concepts and techniques which are still in use. Following the idea of 
Lyapunov, Yakov Tsypkin (1919-1997) considered the phase plane for stable nonlinear 
control design and Vasile Mihai Popov [1961] provided the circle criterion for nonlinear 
stability analysis. 
 Another important problem considered in time-domain representation was that of 
optimal control and estimation. Johann Bernoulli (1667-1748) was the first who articulated 
the principle of optimality. The Brachistochrone problem was independently solved by 
Bernoulli and Newton, thus firmly establishing the power of calculus. Later on, various 
optimality principles were formulated by Pierre de Fermat (1601-1665) (in optics), Carl 
Friedrich Gauss (1777-1855), Jean d’Alembert (1717-1783), Pierre de Maupertuis (1698-
1759), Euler, Lagrange and Hamilton, and Albert Einstein (1879-1955) (in mechanics). In 
1957 Richard Bellman formulated the dynamic programming principle to the optimal control 
of discrete-time systems [Bellman, 1957], and in 1958 Lev Pontryagin  developed the 
maximum principle for solving nonlinear optimal control problems [Pontryagin et al., 1962]. 
Both these optimality principles characterize the optimal control by means of a feedback law. 
The main idea of Bellman was to introduce the value function (the Bellman function) which 
satisfies the Hamilton-Jacobi equation. On the other hand, the Pontryagin maximum principle 
is based on maximization of the Hamiltonian associated to the system by means of the adjoint 
state equation. It is worth saying that in both approaches the conclusions are the same. 
However, while the Pontryagin’s principle extends the concept of Lagrange multiplier from 
mechanics, the Bellman’s principle provides a novel viewpoint in which the value function 
and its time evolution has a vital role [Ionescu and Popeea, 1981]. 
The modern era in control theory started with the work of Rudolf 
Kalman who published a number of books in which the main 
problems of nonlinear systems theory was presented. In [Kalman 
and Bertram, 1960] the Lyapunov stability in time-domain of 
nonlinear systems is considered. The optimal control of systems 
as well as the design of linear quadratic regulator is discussed in 
[Kalman, 1960a]. The optimal filtering and estimation theory, and 
the design equation for the discrete Kalman filter was presented in 
[Kalman, 1960b]. The continuous version of Kalman filter was 
developed in [Kalman and Bucy, 1961]. To overcome the 
limitation of frequency-domain approach, which is very much an 
art and provide a non-unique feedback, Kalman introduced the 
concept of “state”, a mathematical  entity  that  mediates  between 

Rudolf Kalman  



                                                                                        ♦  Neculai Andrei - Scrieri Matematice 1  ♦ 
 

 

6 

inputs and outputs. The  importance  of  this concept is based on the  fact  that the state of a 
dynamical system emphasizes the notions of causality and internal structure. For finite-
dimensional systems, i.e. systems for which the state belongs to a finite-dimensional vector 
space, the representation is given by a first-order vector differential equation of the following 
form: 

( ) ( ) ( ),x t Ax t Bu t= +   
                                                            y t Cx t( ) ( ),=  
where x t( )  is the vector of internal variables, or system states,  is the vector of control 
inputs and  is the vector of measured outputs. The matrices 

u t( )
y t( ) A B,  and C  describes the 

system dynamical interconnections.  
 Using this representation Kalman formalized the notion of feedback control and 
optimality in control and estimation theory. In control theory he introduced the fundamental 
notions of controllability, observabillity, detectability, etc. and used them to determine a 
feedback control of the form: 

u t Kx t( ) ( )= − , 
in order to achieve suitable closed-loop properties. In the standard linear quadratic regulator 
problem the feedback matrix is determined to minimize a quadratic index: K

J x Qx u RuT T= + t
∞

∫ ( )d
0

,  

where  and Q R  are weighting matrices, that is design parameters. The importance of linear 
quadratic regulator design is the fact that if the Q  and R  are correctly chosen, than the 
feedback gain matrix  can be computed to make K J  finite, i.e. the integral involving the 
weighted norms of  and u t( ) x t( )  is bounded, and therefore x t( )  and  go to zero in 
time. This property guarantees the closed-loop stability of the system [Kalman, Falb and 
Arbib, 1969]. Feedback laws like 

u t( )

u t Kx t( ) ( )= −  are called static. An alternative to static 
feedback is the dynamic compensator of the form: 

( ) ( ) ( ) ( ),z t Ez t Fu t Gy t= + +  
                                                  u t Hz t( ) ( ),=  
where the inputs of the compensator are the system inputs and outputs. Now, the design 
problem is to select matrices E F G, ,  and H  in such a manner to get good closed-loop 
performance of the system. An efficient solution to the fundamental problems of linear 
systems theory like: pole placement, localization and exact disturbance rejection, restriced 
decoupling, extended decoupling, left invertibility, simultaneous decoupling and pole 
assignment, simultaneous disturbance localization and decoupling etc. can be obtained by 
means of dynamic compensators. However, a disadvantage and a limitation with this design 
using dynamic compensator is that the dimension of the compensator is the same as of the 
plant. The controllability or observability subspaces does not have a minimal dimension. 
There is a lack of transparency, relationship to frequency response methods is not apparent. 
The geometric approach and the structural-digraph approach consider these subspaces of 
minimal dimension giving thus very elegant and efficient design algorithms for solving the 
fundamental problems of linear systems theory. Besides, the linear quadratic regulator using 
static or dynamic feedback design procedures has no guaranteed robustness properties.  

The problem of designing controllers that satisfy both the robust stability and some 
performance criteria is called robust control. H∞ control theory is one of the cornerstones of 
modern control theory. It was developed to solve such problems with very strong practical 
implications. The widely accepted modern technique for solving robust control problems 
now is to reduce them to linear matrix inequalities problems (LMI). Historically, the first 
LMIs appeared around 1890 when Lyapunov showed that the linear dynamic system 

( ) ( )x t Ax t=  
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is stable, i.e. all its trajectories converge to zero, if and only if there exists a solution to the 
matrix inequalities: 

0,TA P PA+ <   0,TP P= >  
which are linear in unknown matrix  In 1940 Lu’re, Postnikov and others, applied 
Lyapunov approach to control problems with nonlinearity in the actuator thus obtaining 
stability criteria in the form of LMIs. These inequalities were polynomial (frequency 
dependent) inequalities.  

.P

Later on in 1960 Vladimir Yakubovich, Popov, Kalman, 
Anderson, and others obtained the positive real lemma 
which reduces the solution of the LMIs to simple graphical 
citerion: the circle criterion by Popov and Tsypkin’s 
criteria. It is fair to say that Yakubovich is the father of the 
LMI field. His results on the solution of certain special 
matrix inequalities, published early in 1962, are widely 
known. Ionescu and Stoica, [1999] considered the robust 
stabilization and H∞ problems based on the generalized 
Popov-Yakubovich theory. The reduction of a robust 
control problem to an LMI problem provides a solution. 
The key concept is the Kalman-Yakubovich-Popov 
Lemma: 

 
Vladimir A. Yakubovich 

Given a number 0,γ ≥ two  vectors and an n ,b c n n×  Hurwitz matrix A , of the single-
input single-output minimal system if the pair is completely controllable, 
then satisfying: 

( , , ),A b c ( , )A b
q

,T TA P PA qq+ = −  

,Pb c qγ− =  
exists if and only if 

12Re ( ) 0Tc j I A bγ ω −⎡ ⎤+ −⎣ ⎦ ≥  

for all real .ω  
The Kalman-Yakubovich-Popov lemma connects two areas of control theory: frequency 
methods and time-domain algebraic methods. It leads to the Positive Real Lemma, the 
Bounded Real Lemma, Circle Criterion, network theory, adaptive control etc. Popov [1962] 
gave the famous Popov frequency-domain stability criterion for the absolute stability of 
nonlinear systems. Popov’s criterion could be checked using graphical means, by verification 
that the Nyquist plot of the “linear part” of the nonlinear system was confined to a specific 
region in the complex plane. Yakubovich [1962, 1964] established the connection between 
the Popov criterion and the existence of a positive definite matrix satisfying certain matrix 
inequalities, establishing the area of linear matrix inequalities in control theory. The 
importance of LMI is that it can be efficiently solved using interior point methods. The 
interior point methods started a revolution in mathematical programming with the work of 
Karmarkar, published in 1984. In 1988 Nesterov and Nemirovskii developed interior point 
methods that apply directly to linear matrix inequalities showing that LMIs can be efficiently 
solved with convex optimization techniques. [Boyd, Ghaoui, Feron and Balakrishnan, 1994]. 
Generally, in control problems we do not encounter the LMI in canonical or semidefinite 
form, but rather with matrix variables. The most software packages for solving LMI work 
with the canonical or semidefinite forms. Therefore, a pre-processing phase is required. To 
convert a nonlinear convex matrix inequality into an LMI we can use the Schur complement: 

 

*

( ) ( )
0

( ) ( )
A x B x
B x C x
⎡ ⎤

>⎢ ⎥
⎣ ⎦

   ⇔    ( ) 0,C x > 1 *( ) ( ) ( ) ( ) 0.A x B x C x B x−− >  
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       Paul Finsler (1894-1970) 

 
A very useful trick in robustness is the Lemma given by 
Paul Finsler (1894-1970), which directly follows from the 
theorem of alternatives in LMIs theory:  
 
The following statements are equivalent 

* 0x Ax >  for all 0x ≠  subject to  0,Bx =
* 0B AB >  where 0,BB =  

* 0A B Bρ+ >  for some scalar ,ρ  
* * 0A XB B X+ + >  for some matrix .X  

 

 
Recently, Nesterov showed that the positivity of a polynomial can be expressed as an LMI. 
This gives a new unified insight into several problems encountered in control: spectral 
factorization of polynomials (  and 2H H∞ optimal control), global optimization over 
polynomials (robust stability analysis), positive real and bounded real lemma (nonlinear 
systems and control), sufficient stability conditions for polynomials (robust analysis and 
design). 

H∞

 
5. Polynomial-Matrix-Domain Frequential Approach 
In this approach a matrix-fraction description and polynomial equation design is considered, 
where a multi-input/multi-output system is described not in state-space form, but in 
input/output one, being a direct extension of the classical transfer function description with 
very powerfull design capabilities.  
 

 
          William Volovich 

Rosenbrock [1974] and Wolovich [1974] considered this 
approach based on polynomials in a complex variable  
obtained as Laplace transforms of the differential equations 
under consideration in zero initial conditions. The 
dynamical behavior of a m

s

− input, p − output, linear, time 
invariant, system may be represented by a proper 
p m× − transfer matrix T s( ) , where  

y s T s u s( ) ( ) ( ),=  
and the proper transfer matrix can always befactored as 
T s R s P s( ) ( ) ( ) ,= −1  where R s( )  and P s( )  are relatively 
right prime polynomial matrices of  dimensions p m×  and 
m m×  respectively. 

 
Using this representation Wolovich presented a very general compensator able to achieve any 
desired closed loop transfer matrix. In this context the compensator is specialized in order to 
solve the fundamental problems of arbitrary pole placement, static and dynamic decoupling 
and exact model matching. The advantage of this approach is that the desing objectives can 
best be described in the frequency domain in terms of a desired transfer matrix, and the 
polynomial-matrix compensation scheme can be employed to achieve any desired transfer 
matrix.  
 The latest development of this approach is the polynomial systems theory [Blomberg 
and Ylinen, 1983], [Ylinen, 2003]. The fundamental idea in the case of differential systems is 
that the differential operator p d dt= / is interpreted as a linear mapping from the space 
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X of differentiable time functions into itself. Thus, the differential equations are represented 
by equations in p − polynomials. Problems referring to stabilization, non-interacting 
systems, estimation and diagnostics can be solved. The advantage of this theory is that many 
features are in common with the classical transfer function methods, but works in an efficient 
way in the multivariable case. The main drawback of polynomial systems theory is that the 
essential operations are carried out in the ring of p − polynomials which is a weak algebraic 
structure. The equations in p − polynomials generally can not be solved with respect to an 
unknown signal. Thus, the equation solving is replaced by structural considerations. 
 Later, Willems [1991, 1997] has introduced the concept of behavioural systems 
theory, which in principle is the same as the polynomial systems theory. 

LMI gives a technical support to the polynomial-matrix-domain frequential approach 
of systems theory. Indeed, the set of polynomials that are positive on the real axis is a convex 
set that can be described by an LMI. This idea originating from the work by Shor is related 
with David Hilbert’s (1862-1943) 17th problem about algebraic sum of squares 
decompositions. A sufficient stability condition of a polynomial matrix can be characterized 
by an LMI: polynomial matrix ( )R s  is stable if and only if there exists a polynomial matrix 

 and a matrix satisfying the LMI ( )P s * 0P P= >
* * ( ) 0,P R R P S P+ − >  

where and is a special permutation matrix.  *( ) ( )S P V S P V= ⊗ V
 
6. Geometric Approach 
The geometric approach of linear systems theory is an extension of the algebraic approach 
and originated by the papers of Basile, Laschi and Marro [1969] and Basile and Marro, 
[1969a,b], where the controlled and conditioned invariants were introduced. Wonham and 
Morse [1970] renamed these objects as (A,B)-invariants and (C,A)-invariants which played a 
crucial role in multivariable control, establishing the geometric design approach of closed-
loop multivariable systems.  
Using the abstract geometric concepts of linear spaces, 
Wonham [1979] consolidated the geometrical apprach and 
articulated a compact and coordinate-free formulation and 
solution for many problems in linear control theory, 
including: model matching, disturbance rejection, reference 
tracking, decoupling and pole placement, etc. Basile and 
Marro [1982], and Schumacher [1983] introduced new 
geometric objects, the so-called self-bounded controlled 
invariants and self-hidden conditioned invariants, which 
proved to be very effective in minimizing the complexity of 
the dynamic compensators, solution of the above 
mentioned problems with stability. The minimality of 
compensators is the key aspect of geometric approach of 
linear system theory. 

 
W.M. Wonham 

Now the efforts are directed to link the Kalman control and filtering (the H 2 control and 
filtering) to the geometric decoupling, thus giving the possibility for solving the singular 
problems both in discrete and continuous-time case [Stoorvogel, 1992], [Saberi, Sannuti and 
Chen, 1995], [Marro, Prattichizzo and Zattoni, 2002]. 
 The main drawback of this approach is that the comparatively simple language of 
matrix algebra is translated into the more abstract language of high-dimensional vector space 
where the intuition is almost lost. 
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7. Structural-Digraph Approach 
All the above described approaches of control theory have serious limitations: 
♦ The description of the systems, both in differential equation form and in polynomial-

matrix frequential form, has entries regarded as numerical values which are accurately 
known.  

♦ The algorithms associated for system analysis and controller synthesis are based on matrix 
manipulation without considering any particular structure of the system or of the feedback. 

♦ The procedures for feedback synthesis are suitable for systems with a reduced number of 
inputs, outputs and states. A typical feature of real large-scale systems, sparsity, is not 
considered in these procedures. 

In order to overcome these limitations a digraph-theoretic approach has been considered. The 
idea behind this approach is to elaborate structural methods for obtaining the classes of the 
feedback matrices with minimal structure, solutions of the fundamental problems of linear 
control theory, which change in a minimal sense the original structure of the system. The first 
comprehensive analysis of the digraph-theoretic approach of large-scale linear systems has 
been considered by Andrei [1984, 1985]. The method considered grasp the structure of the 
system and its properties, which are invariant when the numerical parameters are modified, 
and design the feedback matrices with minimal structure. Thus, the solving process of the 
fundamental problems is embedded in some subspaces of smaller dimensions, where the 
numerical computations are non-trivial. 
 For any large-scale, time invariant, linear dynamic system a digraph is associated in a 
very canonical manner. The digraph consists of a number of nodes and edges associated to 
the nonzero entries of the matrices of the system. In this representation a number of digraph 
objects are introduced as: the supremal (A,B)-invariant subdigraph, the supremal (A,B)-
controllable subdigraph and the infimal (C,A)-invariant subdigraph. Using these digraphs 
the conditions to determine the minimal structure of the feedback matrices are given [Andrei, 
1983, 1984, 1985]. The main problems considered are the digraph pole placement, the 
digraph exact disturbance rejection, the combined pole placement with digraph exact 
disturbance rejection, digraph decoupling, and the combined problem of digraph decoupling 
with exact disturbance rejection. The key aspect of the digraph-theoretic approach is that the 
structure of the feedback matrices is determined directly from the structure of the system. The 
numerical computations are dramatically reduced in some subspaces of small dimensions. 
Using this technique a better insight into the structural nature of the design procedures is 
obtained. Thus, the structure of the feedback matrix and some of its elements are determined 
in such a way that a desired property of the closed-loop system holds generically 
(independently of numerical value of parameters), the rest of parameters of the feedback 
matrix may be considered for some other design requirements or optimization. The digraph-
theoretic representation suggests the minimal modification of the structure of the system in 
order to fulfil a desired property [Andrei, 1984, 1985]. Later, Reinschke [1988] and Wend 
[1993] consolidated this approach. 
 
8. Conclusion 
In this presentation we travelled through Control Systems Theory developments starting with 
the Frequency-Domain approach and continuing with Time-Domain Algebraic, Polynomial-
Matrix-Domain Frequential, Geometric and Structural-Digraph approaches. A general 
conclusion is that, at present, Control Theory is an interdisciplinary area of research where 
many advanced mathematical concepts, techniques and methods work together to produce an 
impressive body of important applied mathematics. The advances in Control of Systems are 
coming both from mathematical progress and from technological development. The main 
source of methods and techniques for solving the fundamental problems in Control Theory is 
given by Mathematical Programming Theory and Optimal Control. The development of 
semidefinite programming and second order cone programming together with the interior 
point methods lead to a corpus of methods and algorithms able to solve in a unified manner 
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real design and management problems in a very large diversity of domains. 
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