
Node.JS Appliances on

Embedded Linux Devices

Mehmet Fatih Karagöz & Cevahir Turgut

1

Outline

2

 Introduction to Node.js

 Cross-compiling Node.js and Node Package Manager(NPM)

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Outline

3

 Introduction to Node.js

 Cross-compiling Node.js and NPM

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Introduction to Node.js

4

 What is Node.js?

 Node.js is a platform built on Chrome's JavaScript runtime

(V8) for easily building fast, scalable network applications.

 Event-Driven

 Non-Blocking I/O

 Lightweight

 Efficient HW Usage

Introduction to Node.js

Advantages Disadvantages

5

 Open source

 HW Efficiency

 Learning Curve

 Development Time

 Javascript / No Compile

 NPM Package Manager

 Small Developer Pool

 Bad at CPU Bound Jobs

 Asynchronous Debugging

Introduction to Node.js

6

 What is learning curve?

 Node.JS uses Javascript

 Most web developers are familiar with the language

 You can get started with building very basic application in less

than one hour (that includes installation time!)

Introduction to Node.js

7

 NPM (Node Packaged Modules)

 NodeJS package management system

 Install modules very easily even on embedded

 "npm install express“

 Installs dependant modules too

 Global install option

 "npm install -g express"

Introduction to Node.js

8

 Popular Modules

 Express

 Request

 Async

 Grunt

 socket.io

 Mocha

 Underscore

 Mongoose

 Redis

 Connect

Outline

9

 Introduction to Node.js

 Cross-compiling Node.js and NPM

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Cross-compiling Node.js and NPM

10

 Where is Node.js?

 Download

 http://nodejs.org/download

 Git

 git clone git://github.com/joyent/node.git

 cd node

 git checkout v0.10

 Node.js is released under the MIT license.

Cross-compiling Node.js and NPM

11

 Configuration Options

 Usage: configure [options]

 Options:

 --without-npm Don't install the bundled npm package manager

 --without-ssl Build without SSL

 --without-snapshot Build without snapshotting V8 libraries. You

 might want to set this for cross-compiling.

 --dest-cpu=DEST_CPU CPU architecture to build for. Valid values

 are: arm, ia32, x64

 --dest-os=DEST_OS Operating system to build for. Valid values are:

 win, mac, solaris, freebsd, openbsd, linux, android

Cross-compiling Node.js and NPM

12

 How to make and install

 export AR=arm-linux-gnueabihf-ar

 export CC=arm-linux-gnueabihf-gcc

 export CXX=arm-linux-gnueabihf-g++

 export LINK=arm-linux-gnueabihf-g++

 ./configure --without-snapshot --dest-cpu=arm --dest-os=linux

 make

 make install DESTDIR=~/node-armhf/

Outline

13

 Introduction to Node.js

 Cross-compiling Node.js and NPM

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Development Environment

14

 Suitable Editors

 Vim

 Gedit

 Webstorm

 Eclipse / Nodeclipse Plugin

 Cloud9 (Cloud based editor)

Development Environment

15

 “node debug myscript.js”

 Debugging Options

 cont, c - Continue execution

 next, n - Step next

 step, s - Step in

 out, o - Step out

 pause - Pause running code (like pause button in Developer Tools)

 setBreakpoint(), sb() - Set breakpoint on current line

 setBreakpoint(line), sb(line) - Set breakpoint on specific line

 setBreakpoint('fn()'), sb(...) - Set breakpoint on a first statement in functions body

 setBreakpoint('script.js', 1), sb(...) - Set breakpoint on first line of script.js

 clearBreakpoint, cb(...) - Clear breakpoint

 backtrace, bt - Print backtrace of current execution frame

 list(5) - List scripts source code with 5 line context (5 lines before and after)

 watch(expr) - Add expression to watch list

 unwatch(expr) - Remove expression from watch list

 watchers - List all watchers and their values (automatically listed on each breakpoint)

 repl - Open debugger's repl for evaluation in debugging script's context

Outline

16

 Introduction to Node.js

 Cross-compiling Node.js and NPM

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Scripting Samples in Embedded Devices

17

 GPIO/LED on/off

 var exec = require(‘child_process’).exec;

Scripting Samples in Embedded Devices

18

 CPU / Memory Usage

 var os = require(‘os’);

Scripting Samples in Embedded Devices

19

 Timers

Scripting Samples in Embedded Devices

20

 Ini Parser

 config.ini:

 ;sample config ini file

 name = Iniparser Demo

 version = 0.1

 “npm install iniparser”

Outline

21

 Introduction to Node.js

 Cross-compiling Node.js and NPM

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Development Story of a Surveillance

Application - Overview

22

 Main Purpose

 Demonstrate usage scenario of Node.js in real world app

 Give more information about network classes of Node.js

 Run complete Node.js app in embedded platform

 Example Surveillance System

 Smart IP Cameras

 to detect motion, etc.

 Server PC

 at Command Control Center

 monitoring cameras, their alarms, etc.

Development Story of a Surveillance

Application - Overview

23

 Deployment Model of Example System

Development Story of a Surveillance

Application - Overview

24

 Used Components

 IGEPv2 Boards

 DM3730 Texas Instruments processor

 ARM Cortex A8 1GHz

 Camera ISP

 512 Megabytes RAM / 512 Megabytes FLASH

 Ethernet 10/100 MB BaseT

 And more (C64+ DSP 800MHz, 3D Accelerator SGX530 @ 200 MHz,
...)

 Kernel

 2.6.37

 Compiler:

 GCC version 4.6.3

Development Story of a Surveillance

Application - Overview

25

 Component Diagram

Development Story of a Surveillance

Application - Overview

26

 Component Diagram (with messages)

Development Story of a Surveillance

Application - Overview

27

 Deployment Model of Example System

Development Story of a Surveillance

Application - Video App

28

 Video App

 Fake Applicaton to simulate motion detection

 Written using Boost CPP Libraries

 Connected to Camera System App with TCP

 Produces periodic alarm messages

 Receives configuration messages

Development Story of a Surveillance

Application - Video App

29

Development Story of a Surveillance

Application - Camera SystemMgr App

30

 Camera SystemMgr App

 Written using Node.js

 Manages other software elements running on camera through

IPC

 Store configurations

 Connection interface of camera to server

 Includes 2 TCP servers and 1 UDP client

 1 TCP Server for IPC with VideoApp

 1 TCP Server

 to get configuration messages from Server

 to send alarm messages to Server

 1 UDP broadcaster to send heartbeat

Camera SystemMgr App

31

Camera SystemMgr App

32

Camera SystemMgr App

33

Development Story of a Surveillance

Application - Server App

34

 Server App

 Connection with online cameras

 Camera discovery by listening Broadcast/UDP heartbeat messages

 Connecting TCP port of cameras

 Configuring cameras

 Collects alarms from cameras

 Serve all information to web interface

 Static Content Serving

 Express and Socket.io modules of Node.js

 Handles user inputs from web interface

 Management of all cameras

 Handling multi-client/multi-camera systems

Server App

35

Server App

36

Server App

37

Server App

38

Server App

39

Development Story of a Surveillance

Application - Web Interface

40

 Web Interface

 HTML5/Javascript

 Web Sockets

 Socket.io

 Angular.js

 Ajax Based

 No need to refresh

 Browser Compatibility

 IE9, Firefox, Chrome tested

Web Interface

WebSocket Code Samples

41

 From “http://socket.io/#how-to-use”

Web Interface

WebSocket Code Samples

42

Web Interface

WebSocket Code Samples

43

Outline

44

 Introduction to Node.js

 Cross-compiling Node.js and NPM

 Development environment

 Scripting samples in embedded devices

 Development story of a surveillance application

 Demo

 Questions

Questions

45

 Demo Codes

 github.com/mfkaragoz/elce2013demo

 Thank You!

 Mehmet Fatih KARAGOZ

 mfatihkaragoz@yahoo.com

 Cevahir TURGUT

 cevahir.turgut@gmail.com

