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1 How to prove analytic (holomorphic, complex differ-
entiable)?

Note: let €2 be an open set in C and f be a complex-valued function on €.

1.1 Definition (Difference Quotient)
Definition 1.1. Say f is complex differentiable (holomorphic) at zy € €, if

f(z0 +h) — f(z20)

DQ = :

converges to a limit when h — 0. Call the limit f'(z).
If f is complex differentiable at all points in ), then call f holomorphic on Q.

Remark 1.1. It should be emphasized that in the above limit, h is a complex number that may
approach O from any direction.

Remark 1.2. A holomorphic function will actually be infinitely many times complex differen-
tiable, that is, the existence of the first derivative will guarantee the existence of derivatives of
any order. For proof, see Section 1.4.3 and Theorem 2.4.

For more application of this method, see Lemma 2.3, Theorem 2.2, Theorem 2.4.

1.2 Cauchy-Riemann Equations

Theorem 1.1 (C-R = analytic). Suppose u,v € C'(Q) and satisfy the C-R equations

{ e = Uy, (1.1)

Uy = —Vy,
then f(x,y) = u(xy) + iv(z,y) is analytic on €.

Remark 1.3. Actually, by Looman-Monchoff Theorem, we just need that u,v are continuous
and all their first partial derivatives exit (may be not continuous) and satisfy the C-R equations,
then f = u+1v is analytic.

1.3 Integration along closed curves equals zeros

Theorem 1.2 (Morera). Suppose f is continuous on an open set ) and for any triangle T

contained in €2,
/ f(z)dz =0,
T

then f is holomorphic.
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1.4 Power series
1.4.1 From holomorphic to power series

Lemma 1.1. Let

Sn(z)=1+z2+--+ 2V, (1.2)
SN+
En(z) = T, (1.3
then ]
—z
Furthermore, if |z| < p <1, then |En(z)| < p1N_+pl.

Theorem 1.3 (holomorphic = analytic). Suppose f is holomorphic on Q and D,(zy) C §.
Then f has a power series expansion in D, (z),

= Zan(z —20)", Vz € D.(2),
n=0

. _fM(zg)
with an = n! - 27rz fC'T(zO ) (w— zo ”*1

dw.

Proof. Without loss of generality, we can take zp = 0 and p < r. By Cauchy formula (Thm
2.3) and Lemma 1.1,

2 =;Z Sl
/ f(w 1
w 1—=2
1 w
" 2mi c. fi)>SN(Z/w)d +27rz o, fgu) Ew (z/w) dw
N
B> (271m w(n+3dw) S,
where . ] Mol
en(2)] < o el (2 )p 7 (27r) = 0.
as N — oo.
Besides,

[ S, M0

"oom o wntt n!
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1.4.2 From power series to holomorphic

Definition 1.2. Say {f.} converges uniformly on compact subsets of Q to f, if for any compact
subsect K C €, and Ve > 0, there is an N such that |f,(z) — f(2)| <e,Vz € K, n > N.

Remark 1.4. Power series converge uniformly on compact subsects inside the circle.

Theorem 1.4 (uniformly limit = analytic). Suppose {f,} analytic on Q0 and converges uni-
formly on compact subsets of Q) to f. Then f is analytic.
Consequently, power series converge to analytic functions.

Proof. Let D be any disc whose closure is contained in {2 and T be any triangle in that disc.
Then, since each f, is holomorphic, Goursat’s theorem (Lemma 2.4) implies

/ fa(2) dz =0, Vn.
T
By assumption, f,, — f uniformly on D, so f is continuous and

/T Ful2)dz — /T £(2) de.

As a result, we find [, f(2)dz = 0 for VI' C D. By Morera theorem (Thm 1.2), we conclude
that f is holomorphic in D. Since this conclusion is true for every D whose closure is contained
in 2, we find that f is holomorphic in all of €. O

1.4.3 Differentiate

Theorem 1.5 (Can differentiate power series term by term). Suppose
f(z) = anlz = 20)"
n=0
with radius of convergence R. Then power series for ' has the same radius of convergence and
f(z) = Z na,(z — z)" 1.
n=0

Theorem 1.6 (Derivative convergence). Suppose {f,} analytic on Q and converges uniformly
on compact subsets of Q2 to f. Then {f,gk)} converges uniformly on compact subsets of ) to

),
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2 Integration along curves

2.1 Preliminaries

Definition 2.1. Given a curve v € C with para 2(t) : |a,b] — C. Suppose f : v — C is
continuous. Then

b N-1
[ 1@z = [ oo = Jm 3 1) - )

|Az|—0
where Az = zj11 — z;, |Az| = max|Az;]|.
j

Lemma 2.1 (Basic estimate).

A F(2)dz

where length () = fab |2/ (t)| dt.

< length () sup|f(2)]

zey

Lemma 2.2 (Reverse orientation). If v~ is vy with reverse orientation, then

L F(2)dz = — L )z

Proof. Let v be parameterized by z(t) : [a,b] — C and v~ parameterized by 2~ (¢) : [a,b] — C.
The relationship between z(t) and z7(t) is 27 (t) = z(a + b — t).

Leti=0,---,n, Az = b_T“,x,- =a+iAx,xg=a,r, =b,and y; = a+b—x;, Ay = Ax,yg =
b, y, = a. By the definition of integration along curves (Def 2.1),

/ @ = / fE(0)(z7) (t)dt
= lm 3 f(= (2) (=) (2)Aa
= lim 37 f(2() (~'(5) Ay

_ / F(2(8)2 (1)t

:_lﬂd
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2.2 Fundamental Theorem of Calculus

Definition 2.2. A primitive for f on € is a function F' that is holomorphic on  and such
that
F'(z) = f(2), Vze€Q.

Theorem 2.1 (Fundamental Theorem of Calculus #2). Let 2 be an open set in C and 7 be a
curve (or path) in Q that begins at wy and ends at ws.
Version I: If f is analytic on ), then

[ £z = fws) = fw).
Version II: If f has a primitive in ), then
/ﬂ@@zFW@—F@Q

Proof. Chain Rule + Fundamental Theorem of Calculus # 1. O
Corollary 2.1. If v is a closed curve and f is holomorphic, then f,y f(z)dz = 0.
Corollary 2.2. Any two primitives of f (if they exist) differ by a constant.

Proof. Suppose both F' and G are the primitives of function f. According to Thm 2.1 (version
IT), we know that if 7 is a curve in Q from wq to w, then

/ﬂ@u:ﬂm—Fm@:mm—Gw@

Fix wy, then Yw € Q, F(w) — G(w) = F(wy) — G(wy) = constant. O

Corollary 2.3. If Q is a region (open+connected), f is complex differentiable at each point in
Q, and f'(z) =0 for all z € Q, then f is a constant.

Proof. Method I: Path connected + Theorem 2.1.

Fix a point wy € €. It is suffices to show that f(w) = f(wp) for all w € Q.

Since €2 is connected, for any w € (2, there exists a curve v which joins wy to w. By Thm
2.1 (version 1),

/ f(2)dz = f(w) - f(w).

By assumption, f’ = 0 so the integral on the left is 0 and we conclude that f(w) = f(wy) as
desired.
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Method II: Definition + C-R equations.

f'(z) =0,
of 1/0f 10f
:> - = - _— _— :O
0z 2<8x+z’0y ’
= (ug + 1vy) — i(uy +ivy) =0, since f, = u, + ivg, fy = uy + vy,
= (uy+vy) +i(vy —uy) =0,
= Uy +vy =0, vy —u, =0.

Besides, by C-R Eqn.(1.1), we can get that

Uy = Uy = Uy = Vy = 0
=  wu(x,y) = constant, v(z,y) = constant
=  f = constant.

2.3 Cauchy Theorem

Lemma 2.3 (Deferential under integral). Suppose that ¢(z) is continuous function on the trace

of a path ~. Prove that the function

w—z

f(2) = / o) 4,

is analytic on C\ 7.

Idea: just need to show that

Proof. Recall the DQ method, for Vzq € C\ ~,

M-St _ [ o),
.

Z— 20

= e T
= [ |G
- b >/ [<w = SEZ)— J o

8
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Let

E@):/{< %i{ww e

D =dist (2o,tr(y)) = min |zp — w|,

wetr ()
M = max |p(w)].
wetr(y)
Choose a disc Dp/a(20), Vz € Dpja(20), Vw € v, we have
|z —w|>D/2, |z—w|>D/2.

By Lemma 2.1, we have

|E(z)] < M length (7),

1
(D/ 2)(D/2)?

f(z) — / sow
Z— 20
M

length (v) — 0, asz — z.

< |Z—Z()|

(D/2)(D/2)?
It implies Eq.(2.1). O

Lemma 2.4 (Goursat). If Q is an open set in C, and T C Q) a triangle whose interior is also

contained in €2, then
| 1z =
T

whenever f is continuous on Q and analytic on Q\{p}.

Theorem 2.2 (Cauchy’s theorem on a convex open set). Suppose € is convex and open, p € €.
If f is continuous on 0 and analytic on Q\{p}, then

/fdz:(),
”

Idea: Construct F' holomorphic with £ = f, Then f is continuous so F' is continuous and
by Thm 2.1,

for any closed ~ in €.

/fdz = /F’dz = F(end) — F(start) = 0. (2.2)
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Proof. Fix a € Q. Let L be the line segement from a to z. (2 is convex indicates that L7 is
contained in €.
Define

f(z) = - f(w)dw.

Fix zp € 2 and consider z near z;. By Lemma 2.4,

(/L+/ +/_Lé>f(w)dw:0,

=  F(z)+ (w)dw — F(z) =0,
N F(ZZ)/:Z(ZO) _ Z_lzo /Z f(w)dw

Since f is continuous at zg, then

f(z) = f(20) + R(2),

with R(z) — 0, as z — 2. So for £ > 0, 39 > 0 so that if |z — zg| < 0 then |R(2)| < e.
Also,

d
feodu = [ SifGopuldw = fan)(z - )
Lz 0 Y
Hence,
F(z) — F(2) 1 / 1 /
e [ U R = )+ [ e
F(z)-F
~ ‘M — ()| < sup |R(w)| =0, asz— 2.
2= 20 wely
It indicates that F'(zy) = f(z0). Then F' = f. By Eq.(2.2), we can get the conclusion. O

2.4 Cauchy Integral Formula

Theorem 2.3 (Cauchy Integral Formula on a disc). Suppose f is holomorphic on Dg(z) and
0<r < R. ThenVa € D,(2),

a) = 1 Mdz. 2.3
/(a) /wo) (2.3)

271 zZ—a

10
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Proof. Let et
f(z)—f(a
2) = z—a Z 7& a,
6 ={ pit 70 (2.4

It is easy to know that G(z) is continuous and G(z) is holomorphic on D, (z9)\{a}. By Thm
2.2, we have

f@_mw _
- /cr(zo)(z—a Z—a =0

flz) fla) .
= /CT(ZO)Z_CLdz-/cr(zo)z_adZ—me(a).

O

Theorem 2.4 (Cauchy Integral Formula with derivatives). If f is holomorphic in an open
set Q, then f has infinitely many complex derivatives in Q2. Moreover, if D,.(zy) C 2, then
Vz € DT(ZQ),

5y = W
(=) '/sz) (w_z)an : (2.5)

271

Proof. Here, we give three methods to prove this.
Method I Induction on n and by Def 1.1.

n =0, by Thm 2.3,
1
1) =50 [ 2% aw.
2m Jow — 2z

Suppose f has desideratives 0,1, -+ ,n — 1 and the formula (2.5) is ture. Then

SOt h) - [0V (=1 f(w) 1 1
be = h - 2mi /C h ((w—z—h)”_(w—z)”)dw

Let A=—1 B = —— then

w—z—h’ w—z’

h
(w—2z—=h)(w—2)
A" —B"=(A-B)(A" '+ A" 2B + ...+ B"h).

A-B=

11
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So we have
i DO
= lm (n2;i1)! /C — J:(;LU))(w — (A" 4 A" 2B 4+ ...+ B" V) duw,
a (nz;;)! /0;1355 (w— 2 J:(Zj))(w _— (A" + A" 2B+ ... 4+ B" Hdw,
I i C) R

omi Jo (w — z)nt1

Method II Induction on n and differential under integral (Lemma 2.3).

& )
- I [di%} w
nl [ fw)

= — 2 dw.

2mi Jo (w — z)n 1

Method IIT Power series expansion By Eq.(2.3),

_ 1 f(w)
f(z) = 57 /cr(zo) o Zdw.

Do power expansion

1

w—z
B 1

(w—20) — (2 — 20)
B 1 1

w— 2zl ;_ZZ‘;
B 1 22— 2
n w_zon:O w — 2o

Then

It implies Eq.(2.5).

12
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2.5 Liouville’s theorem

Theorem 2.5 (Cauchy inequality). If f is holomorphic in an open set that contains the closure
of a disc D centered at zy and of radius R, then

n!
7)) < MLl
where || fllc = sup,ec | f(2)] denotes the supremum of | f| on the boundary circle C.

Theorem 2.6 (Liouville’s theorem). If f is entire and bounded, then f is constant.

2.6 Fundamental Theorem of Algebra

Lemma 2.5 (Basic polynomial estimate). Suppose
p(2) = an2™ +ay_12V 4+ ayz +a,

is a complex polynomial of degree N. Then there exist constants 0 < A < B and a radius R
such that
Al2|Y < Ip(2)| < Blzf,  if 2] > R. (2.6)

Remark 2.1. Here, 0 < A < |ay| < B and A, B can be as close to ay as desired.

Theorem 2.7 (Fundamental Theorem of Algebra). Every non-constant polynomial p(z) with
complex coefficients has a root in C.

Proof. Assume that p(z) # 0, Vz € C. By Eq.(2.6), we know that f(z) = zﬁ is bounded

entire. And by Liouville Theorem (Thm 2.6), f is constant, so p(z) is constant, which is a
contradiction. O

Corollary 2.4. Every polynomial p(z) of degree n > 1 has precisely n roots in C. If these roots
are denoted by wy, wa, -+ ,wy,, then p(z) can be factored as

p(z) = an(z —wy)(z —wy) -+ (2 — wy).

3 Useful properties of holomorphic functions

3.1 Isolated zeros

Theorem 3.1 (Zero theorem). Suppose f is holomorphic on Q@ and f(z) = 0,20 € Q. If
Ir > 0 such that D,(z) € Q and f(z) is not identically 0 on D,(zy), then Ing € Z* and a
function h(z) which is holomorphic on D,(z) so that h(zy) # 0 and

f(z) =(z2—20)"h(2), Vzé€ D,(2)-

13
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Proof. From Theorem 1.3, we know that

f(z) = an(z—2)", Vz € Dy(2),

n=0

. (n)
with a, = £ nszo)'

Since f is not identically 0 on D,(z), we know that 3n such that a, # 0. Also, f(z) =
0= a9 =0.
Let ng = min{n € Z* : (%) # 0}, then

f(z) = (z = 2)™ Z an(z — 20)" 0.
n=ng
Let h(z) = Z;’O:no an(z — 29)"~™ which is holomorphic on D,(zy). Also, h(zy) = an, =
fnon—(,zo) = (0. Then we get the conclusion. 0

Corollary 3.1. Suppose f and g are analytic on a domain Q and that f? = g* on Q. Prove
that either f =g or f = —g on (.

Proof. Choose F'= f+ g, G = f — g. Assume both of F' and G do not vanish on €. It means
that F' and G are not identically zero on 2. It also means that F' and G only have isolated
zeros in ().

=g
= F(2)G(z)=0
= dzg such that either F'(z) = 0 or G(z) = 0.

Without loss of generality, let F'(z) = 0. Since 2 is an isolated zero of F', 3r; > 0 such that
F(2) #0on D,,(20) = Dy, (2) \ {z0}. Besides, G also only has isolated zeros, so we can choose
a € D,, (), such that G(a) # 0. Jry > 0 such that G(z) # 0 on D,,(a) and D, (a) C D, (z).
Then

F(z)G(z) #0, Vze€ D,,(a),

which contradicts with the assumption. O

3.2 Identity theorem

Theorem 3.2 (Identity theorem). Suppose f : & — C is holomorphic and Zy = {z € Q :
f(z) =0}. Then either Zy = Q or Z; has no limit points in ).

Proof. Step 1: Disc version.

Step 2: Let U be the interior of Z;. Then U is open and nonempty.

Step 3: Let V = Q\U, then V is also open.

Step 4: Since Q is connected and Q = U UV, U is not empty, we know that V' = () and
Q= Z. O

14
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Corollary 3.2. Suppose f and g are holomorphic in a region  and f(z) = g(2) for all z in
some non-empty open subsets of Q0 (or more generally for z in some sequence of distinct points
with limit point in Q). Then f(z) = g(z) throughout Q.

Corollary 3.3. Only one way to extend €* and trig functions to C. Besides, any trig identity
holds for complex angles.

Remark 3.1. An analytic function may have infinitely many (at most countable) zeros on a
bounded domain as soon as the limit point of these zeros is not in this domain. For example,
f(z) = sin (ﬁ) has infinitely many zeros on the open unit disc D1(0), i.e. zx =1 — %, but
2z, = 1€D1(0). So each {z} is also isolated zero. Besides, z =1 is the essential singularity of

f(z).

3.3 Averaging property

Lemma 3.1 (Averaging property). f is holomorphic on  and D,(zy) C 2, then

f(z0) = %/0 7rf(zo + re')dt (3.1)

Proof. Let C,. be a circle in €2, centered at zg with radius r. If we parameterize C, by z =
2o + et 0 <t < 2, then by Cauchy integral formula,

£(z0) IR IO

21 Jo, 2 — 2o

1 2T it )

2mi reit
1 2m

— % ; f(Z(] + re“) dt

3.4 Maximum principle

Theorem 3.3 (Maximum principle #1). Suppose f is holomorphic on a domain Q. If |f]
attains a local mazimum at a point in ), then f = constant.

Proof. Method I By Open mapping theorem

Suppose |f| has a local max at zp € Q. Let wo = f(20). Then Ir > 0 such that D,(z) € Q
and |f(z)| < |f(z0)] for z € D,(zp).

By Open Mapping Theorem (Thm 6.3), if f is nonconstant, f(D,(z0)) contains a disc about
f(20). But there are points in such a disc with modulus bigger than |w|. This is a contradiction.

Method II By averaging property

15
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Suppose zp € Q and that for all z € Q, |f(2)] <|f(20)|- By Eq.(3.1), we know that

1 27 ]
£l < 5 [ 1o+ 7o) . (32
T Jo
However, the assumption |f(z9)| > |f(2)| for all z € Q implies that
1 27 ) 1 27
3= |G ae< o [ Gl de= el (3.3

From (3.2)-(3.3), we can get

1

£l = 5= [ 1f G+ ey at. (3.4

It follows that

2T
0 = 1fGol =5 [ 1 ret) at

=5 | ol = 1f o+ ey at,

which means |f(z0)| = |f(20 + re')| for all ¢ € [0,2x]. That is to say |f(z)| = |f(20)| for all
z € C,.. Since r is arbitrary, it follows that |f(z)| = | f(20)| for all z € Q. Since f is holomorphic
and |f(z)| is a constant, f is also a constant (by Chapter One, # 13(c), Page 28). O

Theorem 3.4 (Maximum principle #2). Suppose ) is a bounded domain. f is continuous on
Q and holomorphic on Q. Then |f| assumes its mazimum value on the boundary of ).

3.5 Rouche’s Theorem

Theorem 3.5 (Rouche’s Theorem). Suppose f and g are meromorphic functions on a connected
open G C C and v is a piecewise C* closed curve in G with

(i) Ind,(w) =0 for Vw € C\ G;

(ii) no zeros or poles of f or g on ;

(iii) |f(2) — g(2)| < |f(2)| for all z € v (that is, the difference is strictly smaller than one

of the functions |f| on v ).
Then,
Ny — Py = Ny — Py, (3.5)
where

Ny= > malt, Ind,(a),
a€@G, f(a)=0

Py = Z ordery, Ind(b),

beG, f(b)=o00

and similarly for Ny and P,.

16
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Here are some applications.

Corollary 3.4. There are no such sequence of polynomials that uniformly converges to f(z) = %

on the circle {z : |z| = 1}.

Proof. Suppose 3 p,(z) — 1 uniformly on C;(0), then

1
|2pn(2) — 1| = |pn(2) — ;| — 0, Vze Cy(0).
Then d sufficient large N such that
lzpn(2) — 1| <1, ¥n> N, Vz € C1(0).

By Rouche’s Theorem, N, .y = N;. But zp,(z) has at least one zero, while 1 has no zeros,
which is a contradiction. ]

Corollary 3.5. There are no such sequence of polynomials that uniformly converges to f(z) =
(2)? on the circle {z : |2| = 1}.

Proof. Suppose 3 p,(z) — (2)* uniformly on Cy(0), then
122pn(2)| = |22 (2)° | = |2|' =1, Vze C1(0).

Then do the similar thing as last corollary. O

3.6 Argument Principle

Theorem 3.6 (Argument principle). Let C' be a simple closed path. Suppose that f(z) is ana-
lytic and nonzero on C' and meromorphic inside C. List the zeros of f inside C' as z1, 29, , 21
with multiplicities Ny, - -+ , N, and Z¢o = Zle N;. List the poles of f inside C as wy, wg, - -+ ,wy
with orders My, -+, M, and Pc = 3_,_, M;. Then

ZC — PC = %AC arq f(Z) (36)
_ 11 f(©)
i Jo 70 7
Remark 3.2. From FEgs.(3.6)-Eq.(3.7), we know that
f'(<)

Ne arg f(z) = %/C d¢. (3.8)

f(©)

This formula is always true even if the curve C' is not a closed path.

17



Yingwei Wang Complex Analysis

Corollary 3.6. How many zeros does the polynomial
f(z) = 2" 4 2 4 2001
have in the first quadrant?
Proof. Chose a closed curve:
v =L{+Ch+ Ly,
where C} here means the circle in the first quadrant and R is sufficient large.
On one hand, on L and LY, we know that

Aoy arg f(2) =0 (3.9
Apo arg f(z) = —m. (3.10)
Hint for Eq.(3.10): if z = iR, then f(z) = —R'998 +iR +2001. And consider R from oo to

0.
On the other hand, on C}, we know that

f1(¢) B 1998¢1997 41
ot f(C) “©o= /c,; 9% 4 ¢ 2001 ¢
1998
~ —d
/c; ¢ ‘
— 1998 % — 9997i. (3.11)

By Thm. 3.6 and Egs.(3.9)-(3.11), we know that the number of zeros of f(z) in the first

quadrant is
99971 — 7

= 499.
o 99

4 Harmonic functions

4.1 Definition

The following definitions of harmonic functions are equivalent:
Definition 4.1. Say u : Q — R is harmonic if u € C* and Au = 0.
Definition 4.2. Say u : Q — R is harmonic if u € C? and Au = 0.

Definition 4.3. Say u : Q@ — R is harmonic if u is locally the real (imaginary) part of a
holomorphic function.

Definition 4.4. Say u : Q — R is harmonic if u is continuous on €0 and ug, Uy, Uyy, Uy, exist

and Au =0 on ).

Remark 4.1. Here, A = ;—;jtaa—; is called Laplacian operator and Au = 0 is called Laplacian
equation.

18
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4.2 Harmonic conjugate

Theorem 4.1. A harmonic function on a simply connected domain has a global harmonic
conjugate.

Remark 4.2. Suppose u be harmonic and f be the analytic function with Ref = u. Then,
' = uy —iuy is also analytic.

4.3 Poisson integral formula

Definition 4.5 (Poisson kernel).

1 1—|2? 1 e + 2
Pzt)= ————=—R . 4.1
(%) 21 et — 2|2 27w ‘ (e“ —z)’ (41)
, 1 1—r?
Plrei® t) = ! (4.2)

T2 1—2rcos(0 —t) + 12

Theorem 4.2 (Dirichlet problem). Suppose u is continuous on D1(0) and harmonic on D1(0).
Then

u(z):/OWP(z,t)u(eit)dt.

Lemma 4.1. Some properties about Poisson kernel:
(i) P(a,t) >0 ifa € D(0),t € [0,2n].
(i1) fozﬂ P(a,t)dt =1 for any a € D1(0).
(iii) P(z,t) =0 as|z| — 1.
(iv) P(z,t) is harmonic in z.

Theorem 4.3 (Convergence). Suppose {u,,}5°_, is a sequence of harmonic functions on Q such
that u,, converges uniformly to a function u on each compact subset of 2. Then u is harmonic

on €.

Moreover, for every multi-index o, D“u,, converges uniformly on each compact subset of €.

Proof. Given D,(a) C €, we need only show that u is harmonic on D, (a). Without loss of
generality, we assume D,.(a) = D;(0).
By Thm 4.2, we know that

2T
wn() = [ Pt
0
for Vz € D;(0) and ¥m. Taking the limit of both sides, we obtain
2m )
u(z) = / Pz, tu(et)dt,
0

for Vz € D;(0). Thus, u is harmonic on D;(0). O
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4.4 Mean Value Property and Maximum Principle

Theorem 4.4 (Mean Value Property). Since holomorphic f = u + iv satisfies the averaging
property, take the real part of Eq.(3.1), we can get the mean value property of harmonic u.
More precisely,

2
u(z) = %/0 u(z + re)do.

An important sequence of the mean value property is the following maximum principle for
harmonic functions.

Theorem 4.5 (Maximum Principle). Suppose ) is connected, u is real valued and harmonic
on ), and u has a maximum or minimum in ). Then u is a constant.

The following corollary is frequently useful. Note that the connectivity of {2 is not needed
here.

Corollary 4.1. Suppose §1 is bounded, u is a continuous real valued function on Q that is
harmonic on . Then u attains its mazimum and minimum values over ) on Of2.

The next corollary is a version of maximum principle for complex valued functions.

Corollary 4.2. Let Q be connected and u be harmonic on Q. If |u| has a maximum in Q, then
u s a constant.

Remark 4.3. For holomorphic cases, see Thm 1.4 and Thm 1.6.

Theorem 4.6 (Converse of the mean value property #1). A continuous function that satisfies
the mean value property must be harmonic.

Proof. Step I: Poisson Kernel
Let

then v(z) is harmonic and v(e) = u(e").

Step II: Maximum Principal

Since u(z) satisfies the mean value property, then u(z) also satisfies the maximum principal.
So u — v satisfies the maximum principal. Besides, u — v = 0 on the boundary, so u —v < 0 for
all z € D1(0).

Repeat the argument, we can get v — u < 0. Hence, u = v. O

Definition 4.6. Say f satisfies the weak mean value property if for each zy € 2, de > 0, such
that

1 2 )
) =5 [ uteat g
for all p with 0 < p < €.

Theorem 4.7 (Converse of the mean value property #2). A continuous function that satisfies
the weak mean value property must be harmonic.
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4.5 Zeros of harmonic functions

Theorem 4.8. Let u be real-valued and harmonic function in the open set €.
(1) Let A={z € Q:u(z) =0}. show that A cannot be isolated.
(2) Let B ={z € Q:Vu=0}. Show that either B = or B is isolated.

Proof. (1) Suppose zy € A and D, (z) € Q, r, = .
By Mean value property (Thm 4.4),

0 = u(z) = % /C u(z)dz.

™

For each n, since u(z) is continuous on C,., (z), there exists z, € C,. (2o) such that u(z,) = 0.

Then we found a sequence {z,}°°, C A such that z, — z5. So A cannot be isolated.

(2) Since u is harmonic, there exists a holomorphic function f = u + v on Q.

Vu = 0 means u, = 0,u, = 0. So we have f'(2) = u, —iu, =0, Vz € B.

Let g(z) = f'(z), then g is also holomorphic on 2, and A is the set of zeros of g. So either
g(z) =0 or 2 is isolated for Vzy € B.

It follows that either B = €2 or B is isolated. O

Remark 4.4. Suppose u is a non-constant real-valued function on the whole complex plane.
Then the zero set {z € C : u(z) = 0} is an unbounded set.

5 Isolated singularity

Note: let punctured domain Q = Q\{z}, and punctured disk D,(zy) = D, (z0)\{z0}, where Q
is an open and connected domain and D,.(zy) is an open disc centered at zy, with radius r.

5.1 Definition

A point singularity of a function f is a complex number zg such that f is defined in a neigh-
borhood of z; but not at the point z; itself. We also call such points isolated singularities.
5.1.1 Removable singularity

Let f be holomorphic in Q. If we can define f at zp in such a way that f becomes holomorphic
in all of €, we say that zy is a removable singularity of f.

5.1.2 Pole

We say that a function f defined in ﬁr(zo) has a pole at zg, if the function %, defined to be
zero at zp, is holomorphic in D,.(z).
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5.1.3 Essential singularity
f oscillates and may grow faster than any power at zy, which is called essential singularity.
Remark 5.1. f has an isolated singularity at oo means f (%) has an isolated singularity at 0.

Remark 5.2. f is meromorphic on {2 means that at each z € Q, either f is holomorphic or f
has a pole.
5.1.4 From the view of power series

Consider the Laurent expansion of a function in the punctured disk Dy (z):

o0

Fz) =D an(z—2)"
where ) £0)
= o Cr(z0) (€ — Zo)dc'
o [f

f(z) = an(z = 20)",

then f(z) has a removable singularity at z = zy, which means f(z) may be extended by
defining f(z9) = ap, and the resulting function is analytic in the open disk D,.(zp).

o If .
f(Z) = Z an(z - ZO)n> N > OaaN 7& O>
n=N

then f(z) has a zero of multiply N at z = z5. Near zy, f(z) = (2 — 20)Vg(2), where g(z)
is analytic in D,(zp), g(z0) # 0.
o If

oo

f(Z) = Z an(z - ZO)na M > Oaa—M 7é 07
n=—M
then f(z) has a pole of order M at z = zy. Near zy, f(z) = (z — 20) Mg(2), where g(z)
is analytic in D,(z0), g(20) # 0.

o If

f(z) = Z an(z —20)", a, # 0 for infinitely many negative n,

n=—oo

then f(z) has a essential singularity at z = z.
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e The coefficient of (z — 29) ! is called the residue of f(z) at z5. Suppose zq is the m order
pole of f(z), then

dm—l

dzm—l

Res,, f(z) = (m — 1)!

[(z = 20)" f(2)]

Remark 5.3. Here, from this point of view, we make the summary of Thm.1.3, Thm.53.1,
Thm.5.1, Thm.5.2 and Thm.5.3.

5.2 Riemann removable singularities theorem

Theorem 5.1. Suppose [ is holomorphic and bounded in ), then f has a removable singularity
at 2.

That is to say, if IM > 0 such that |f(2)| < M,Vz € D,(20), then 3h(z) holomorphic in
D, (z9) and h = f on D,(z).

Proof: Here we give too methods to prove this.

5.2.1 Method I: integral formulas + estimates
We shall prove that for Vz € D,(z), we have

f2) = - / HO e, (5.1)

- 2—7” op C— %
By Cauchy theorem, we have
H©) gy [ Oy [ 16 4 _
/aDC—Zd<+ %C_Zdufyég_zdc 0, (5.2)

where 7, and v/ are small circles of radius € with negative orientation and centered at z and z
respectively.
On one hand,
f(Q)

'YeC_Z

On the other hand, since f is bounded and € is small, { stays away from z, we have

d¢ = —2mif(2). (5.3)

[ﬂ Cf(_cld(‘ < Ce. (5.4)

By (5.2)-(5.4) and letting € tend to 0, then we can get (5.1).

Now it is OK to choose h(z) = 5= [, J;(_C; d¢.
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5.2.2 Method II: construct function

Consider the function g(z) defined by

0, if z = 2z,
9(z) = { (2 — 20)2f(2), if z # 2. (5.5)
By assumption, g(z) is holomorphic on D, (z). Next to find ¢'(z0).
On one hand,
9(2) = g(20) +0(z — 20) + [(z — 20) f(2)](z = 20). (5.6)
Note that |(z — 20) f(20)] < |2 — 20| M — 0 as z — 2.
On the other hand, consider the Taylor series

9(2) = 9(20) + ¢'(20)(z — 20) + R(2)(z — 20), (5.7)

where R(z) — 0 as z — z.
By (5.6) and (5.7), we can know that ¢'(zp) = 0 and g(z) is holomorphic on D, (z).
So we have

LM OT L8 g™ (2 o
g2)=3"7 (, Sy == Y (! (2 = 2. (5.8)

n n

Let h(z) = > 9" (z0) (2 — 29)" 2, which is holomorphic on D,.(z). Besides, by (5.5) and

n=2 n!

(5.8), we can know that h(z) = f(z) for Vz € D, ().

5.3 Pole Theorem

Lemma 5.1. 2y is a pole of f < |f(2)] — 00 as z — 2.

Theorem 5.2 (Pole theorem). Suppose f : Q — C is holomorphic and lim,_,., |f(z)| = oo.
Then 3n € Z* and h(z) satisfying h(z) # 0 and f(z) = L

(z—z0)™
Proof. Since |f(z)| = 0o as z — z, Ir > 0 such that D,(20) C Q and [f(z)| > 1 on D.(z).
Let g(z) = ﬁ, then g(z) is holomorphic and bounded on D,(z). By Theorem 5.1, g(z)
can extend to be holomorphic on D,(z) by defining

1
— |
70 = I e
Since zg is a isolated zero of g(z), by Theorem 3.1, there exits n € Z* and H(z) which is
holomorphic on D, (zy) with H(zp) # 0 such that g(z) = (z — 29)"H(2).

Then h(z) = H%Z) is holomorphic in D, (z) and

= 0.
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5.4 Casorati-Weierstrass Theorem

Theorem 5.3 (Casorati-Weierstrass). Suppose f : ﬁR(zo) — C has an essential singularity at

~

20. Then ¥r € (0, R), f(D,(z0)) is dense in C.

Proof. Assume that 3r > 0 such that f(D,(z)) is not dense, then there exits a € C and § > 0
such that R
|f(z) —a|l >6, forVze D.(2).
1

Consider ¢(z) = T e Since ¢(2) is holomorphic and bounded on D, (z), by theorem

(5.1), there exits h(z) which is holomorphic on D, (z) and h(z) = g(z) on D, ().
Then f(z) = ﬁ +a. If h(zp) =0, then f has a pole at zy; if A(z9) # 0, f has a removable
singularity at z. Ti]is contradicts that f has an essential singularity at zg. O

Remark 5.4. In order to prove that zy is the essential singularity of f(z), just need to show
that 3 two distinguishable sequences {z,}°2, and {w,}5°, such that

Zn = 20, Wp — 2y, AS N — OO,

but
o) =2 flwn) —w, asn— oo,

where z # w.

5.5 Meromorphic functions
5.5.1 Polynomials

Lemma 5.2. Suppose f is an entire function that satisfies an estimate of the form
f(2)] < ClY, if |2 > R, (5.9)

for some positive integer N and positive real constants C and R. Then f must be a polynomial
with degree N or less.

Proof. Method I: Cauchy inequality + power series
Let 7 > R, M, = supy,_, | f(z)| < Cr". By Cauchy inequality (Thm 2.5),

n!M,

Tn

[F™(0)] < < Cnlr¥=" — 0,

as 1 — oo if n > N. It implies that ™ (0) = 0if n > N.
By Theorem 1.3,

N )
fo =y 0
n=0 :
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which is a polynomial with degree N or less.
Method II: Principal parts + Liouville theorem
By Theorem 1.3,

f(z) = Z anz",
n=0

f(z) ag ap aN-1 = k
R :<Z_N+zN—1+"'+ z >+kZ:0aN+'“Z' (5.10)
Let R(z) = % + —f# + - -+ + = which is called the principal part of f(z)/z" at point
z2=0,g(2) =Y 1o anikz® = % — R(z) which is entire.
Besides, claim that g(z) is bounded since
: | fE]
< L =
Jn o)1 < J |52+ i o =

By Liouville theorem (Thm 2.6), g(z) = constant. Denote g(z) = ay, then by Eq.(5.10),

Fo) = 0
n=0
]
Lemma 5.3. Suppose f is an entire function that satisfies an estimate of the form
[f(2)| = Clz|™, if |2] > R, (5.11)

for some positive integer N and positive real constants C' and R. Then f must be a polynomial
with degree N or more.

Proof. Method I: Cauchy inequality + power series
Consider the function f(1/z). By assumption,

F0/2)2 oo i <R
= f(l/2) = %, m > N, g(z) entire,

= [flz) =2"g(1/2).
Since lim, . ¢g(1/z) = ¢(0), we can choose r > R such that

sup [g(z)] < |g(0) +1].

|z|=r
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By Cauchy formula,

/O =

o[ e,

211 wntl

< I g D) ((g(0)] + 1)

~ 271' wr r g

<Crm™™ —0, asr— oo, ifn>m> N.

By Theorem 1.3,

0,
which is a polynomial with degree N or more.
Method II: Principal parts + Liouville theorem
Eq.(5.11) implies that f has finitely many zeros.

Consider )

9(2) = = —
N6
then ¢(z) is bounded entire. By Liouville theorem (Thm 2.6), g(z) is constant. Thus f(z) is a

rational function. Furthermore, since f(z) is entire, f should be a polynomial.
Denote Ny = degreef(z), by Lemma 2.5, 3 positive constants ¢y, ¢o, Ry such that

Z principal parts at finitely zeros of f(z),

alz|V < |f(2)] < el 2™,

Z| > RO.
Compared with Eq.(5.11), we know that Ny > N. O

Theorem 5.4. Suppose f is entire and with a pole of order m at oo. Then f is a polynomial
of degree m.

Proof. f is entire means

f(z) = ianz", Vz e C. (5.12)
n=0
= 1))=Y % V2 £ 0. (5.13)
n=0

That f(z) has a pole of order m at at co means f(1/z) has a pole of order m at 0. Hence,
Eq.(5.13) only has finitely many terms; more precisely, Vn > m, a, = 0. It indicates that f(z)
is a polynomial of order m. O

Corollary 5.1. Suppose f is entire and one-to-one, then f must be a linear function

f(z) =az+b, a#0.
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Proof. Step I: Claim that f has a pole at z = oco.

If removable, then f is bounded entire and must be a constant; if essential, then f can not

be one-to-one since f(z) is dense in any neighborhood of co.
Step II: Claim that f must be a polynomial.
See the proof of Theorem 5.4.
Step III: Claim that the degree of f must be one.

If the degree of f is bigger than one, then f’ at least has one zero in C, which contradicts

with Theorem 7.3.

5.5.2 Rational functions

Theorem 5.5. Suppose P(z) and Q(z) are functions with no common factors and Ng

deg (Q) > N, = deg P. Let {a;}}L, denote the zeroes of Q(z) with order my, then

where

is the principal part of % at a,.
Proof. Step I: By Thm 3.1, near ay,
Q(2) = (= — ar)" qu(2),

where gx(z) is a polynomial and gx(ax) # 0.
Step 1I:

28 N (z-lamk Liiiﬂ

1
A A, —
—_ 70 4y fmest holomorphic function
(z — a)™ z — ag

= Ry (z) + holomorphic function.

Step III: Consider f(z) = £& — SM  Ri(2). Claim that f(z) is bounded entire.

Q(2)
First, need to show that ajs are removable singularity. Near a;,

P(z)_ Z:P(z)_ 0 _M .
SERPLCRIE R > o)

M
k=
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which is holomorphic and hence bounded.

Second,
. | P(2)
lim |Ri(2)|=0, lim =0,
= |llim lf(z)|=0. (5.14)
Z|—00

Step IV: By Thm 2.6, f(z) is a constant. Besides, by Eq.(5.14), we know that the constant
should be 0. Then we can get the conclusion. O

Theorem 5.6. f is meromorphic < f is a rational function.

Proof. “<" is obviously.

“<” : Step I: Claim that f(z) has only finitely many singularities in C.

f(1/2) has either removable singularity or a pole at 0,

= Jr > 0 such that f(1/z) is holomorphic on D,(0) \ {0}

= f(2) is holomorphic on C\ D;,,.(0).

Since D;/,(0) is compact and each singularity is isolated, so f(z) has only finitely many
singularities in C, say 21, 22, - - , 25, wWith order my, mo,-- -, m,,.

Step II: There are two methods.

Method 1: Let Q(z) = [[,_,(z — zx)™, then near z;, 3 a holomorphic function h;(z) such
that

1) = 25 ) #0,
IR =) [ - 20

which is bounded near z; and holomorphic everywhere else, hence extent to be entire.

Let P(z) = f(2)Q(z) which is entire. Besides, P(z) has a pole or removable singularity at
oo. By Thm 5.4, P(z) is a polynomial and then f(z) = ggg

Method 2: Let Ri(z) be the principal part of f(z) at z; and R (z) be the principal part
of f(1/z) at 0.

Let H(2) = f(2) — Roo(2) = Y_1_; Ri(2). Then H(2) is holomorphic on C\ {21, - , 2, 00}
and has removable singularity at these points. Hence H(z) can be extent to be holomorphic
on C, which is bounded entire. By Thm 2.6, H(z) is a constant. So f(z) = H(z) + Ruoo(2) +
> r—; Ri(2) is a rational function. O

is a rational function.

6 Uniform convergence

6.1 Hurwitz’ Theorem

Theorem 6.1. Suppose f, : Q@ — C is holomorphic with f, # 0 on Q, and f, — f uniformly
on compact subsets of Q. Then either f =0 or f(2) # 0 or all z € Q.
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Proof. By Thm 1.4, f is holomorphic.
Suppose f not identically 0 but f(zy) = 0. R
On one hand, by Identity theorem 3.2, 3r > 0 so that f(z) # 0 for all z € D,(2) and

|f(2)] >6 >0, VzeC.(z). (6.1)
On the other hand, since f,, — f uniformly on C,(zy), Ing such that Vn > ny,
[fu(2) = f(2)] <6, Vz € Cp2). (6.2)

By (6.1), (6.2) and Rouche’s theorem (Thm 3.5), we know that f and f + (f, — f) = f. has
the same number of zeros. But this contradicts with f(z9) = 0 and f,, # 0 on D,(zo). O

6.2 Montel Theorem
6.2.1 Normal Family

Let F be a set of holomorphic functions on 2. F is a normal family means any sequence
{fn} € F, 3 asubsequence {f,,} such that V compact set K C €, f,,, converges uniformly on
K.

6.2.2 Uniform boundedness

The family F is said to be uniformly bounded on compact subsets of € if for each compact set
K CQ,3M = M(K) > 0 such that

1f(2)] < M, forVze K, Vf e F.

6.2.3 Equicontinuity

The family F is said to be equicontinuous on a compact set K if for Ve > 0, 30 > 0 such that
Vz,w € K with |z —w| < J, then

If(2) — f(w)| <&, YfeF.

6.2.4 Montel Theorem

Theorem 6.2. Let F be a set of holomorphic functions on Q. If F is uniformly bounded on
compact subsets of ), then

(i) F is equicontinuous on any compact subset of .

(ii) F is a normal family.

Proof:
(i) Use the Cauchy estimates on small circles.
(ii) Use pointwise convergence on a dense set plus equicontinuity and diagonalization.
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6.3 Open mapping theorem

Theorem 6.3. Suppose [ : Q2 — C is holomorphic, then f maps open sets to open sets.

Proof. Let wy = f(z) for some 2z, € Q. For w near wy, let

9(2) = f(2) —w,
F(z) = f(z) — wo,
G(z) = wy — w,

then g(2) = F(2) + G(2).
Since 2y is an isolated zero for F' and for w near wy, |G| is small, we can find » > 0 such
that D,(z) C € and Je > 0,

|F(2)] > e > |G(2)]|, Vze€ Cr(z).

By Rouche Theorem, g = F'+ G has a zero in D,(z), say 3z; € D,(z) such that g(z;) = 0,
ie. f(z1) =w. Hence w € f(D,(z)) and D.(wy) C f(D,(20)). O

7 Univalence

7.1 Local univalence

Theorem 7.1. Suppose f : Q2 — C is holomorphic and 3z € Q with f'(29) # 0. Then Ir > 0
such that f is univalent in D, (zp).

Proof. Since f'(zy) # 0, then f(z) — f(z0) has a zero of order 1 at z5. So

f(z) = f(z0) = h(2)(z — 20),

where h(z) is holomorphic in © and h(zy) # 0.
Then

1
dR > 0, s.t. |h(2)] > i\h(z0)|, for Vz € Dg(2).
1
= [f(2) = f(z0)| > §|h(zo)|R, for Vz € Cr(20).

= Ir>0, st |f(z) — fla)] > i\h(zoﬂR, for Vz € Cr(29), a € D,(20).

For fixed a € D,(2), let go.(2) = f(2) — f(a) and define

Fla) = L %_(Z)dz.

B 27T7’ CR(ZO) ga(Z)

On one hand, since g,(z) is continuous in (z,a) and uniformly bounded, F' should be con-
tinuous. On the other hand, by Rouche Theorem, F(a) € Z and F(zy) = 1. So F(a) = 1 for
all @ € D,(z). It implies that for Ya € D,(2), the equation f(z) = f(a) has unique solution,
which means f is univalent in D, (z). O
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Corollary 7.1. Definition: A holomorphic mapping f : U — V is a local bijection on U if for
Vz € U, there exists an open disc D C U centered at z such that f : D — f(D) is a bijection.

Question: A holomorphic mapping f : U — V is a local bijection on U < f'(z) # 0 for
VzeU.

Proof. 7<" is obvious by the Theorem 7.1.
”=": Suppose f'(z9) = 0 for some zy € U. Then Ir > 0, such that

f(2) = f(z0) = a(z — 2)* + G(z), for Vz € D,(%), (7.1)

with a # 0,k > 2 and G(z) vanishing to order k + 1 at 2.
Besides, since f is bijective in D,(2g), 2 = 2o should be an isolated zero of f’(z). Thus, for
sufficiently small r, we have

f'(z) #0, forVz e D,(20)\{20}- (7.2)

Let’s choose w € C sufficiently small such that for Vz € C,(z), we have
w| < la(z = 20)"], (7.3)
1G(2)| < |a(z — 2)* —w|. (7.4)

Let F(2) = a(z — 2)* —w. By (7.3), (7.4) and Rouche’s Theorem, in the disk D,(z), the
function a(z — z)* has at least two zeros, then so does F(z) and further does f(z) — f(z0) =
F(z) + G(z). It contradicts with the fact that f(z) is bijective in D, (zp). O

Theorem 7.2. Suppose [ : Q — C is holomorphic and 3z € Q with f'(20) = f"(2) =+ =
f(2) =0, f™(2) # 0. Then IV > z with V C Q and @ holomorphic on 'V such that

(i) o(z0) = 0,¢'(2) #0,Vz € V.

(i) f(z) = f(z0) + [(2)]", Vz € V.

(i11) ¢ is a univalent map from V onto D,(0) for some r > 0.
7.2 Global univalence
Theorem 7.3. Suppose f : Q — C is holomorphic and univalent. Then f'(z) # 0, Vz € .
Proof. ¥z € Q, let f(z9) = wy and
9(2) = f(z) —wo, VzeQ

The fact that f is univalent implies that z = zy is a simple root of g(z), by Theorem 3.1,
Jh(z) holomorphic on Q and h(zy) # 0, such that

9(2) = (2 = 20)h(2) (7.5)

= g(2) =h(z) + (z — 2)l(2) (7.6)
= ['(=) =¢'(2) = h(z) # 0. (7.7)
O
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7.3 Limits univalence

Theorem 7.4. Suppose f, : Q2 — C is holomorphic and univalent on €2, and f,, — f uniformly
on compact subsets of Q2. Then f is either constant or univalent in 2.

Proof. Suppose f is not constant in Q. Suppose z; # z3 but f(21) = f(22) = w. Let F,, = f,—w,
F=f—w.

Jry, ro such that D, (z1) N D,,(z2) = 0.

3N such that Fyy and F' have the same number of zeros in D,,(z1) and D,,(z2).

Then we get two points & € D, (z1) and &Y € D,,(22) in two discs satisfying fx (&) =
In(EY) = w. Tt is a contradiction.

O

8 Conformal mappings

Let D = D1(0), Aut(D) denote the set of all automorphism of I); UHP denote the upper half
plane.

8.1 Schwartz Lemma

Theorem 8.1 (Schwartz Lemma). Let f € Aut(D) with f(0) = 0. Then

() 1(2)| < |#| forV> € D;

(i) |/(0)] < 1;

(i11) If either the equality in (i) holds for some z # 0 or the equality in (ii) holds, then f(z)
s a rotation.

Proof. Define

1G) - if 2 £,
Fz) = { £1(0), if z=0. (8.1)
Then F(z) is holomorphic on D.
By MMP (Thm 3.3),
max |F'(z)| = max |F(z)| = max )] < 1
|z|<r |z|=r |z|=r |Z‘ r

Let r — 1, we can get (i) and (ii).
For (iii), if either the equality in (i) holds for some z # 0 or the equality in (ii) holds, then
F(z) assumes maximum modulus at point inside the disc D, so F(z) = constant. U

Corollary 8.1. Let f € Aut(D). If f(z) has zeros of order N, then

()] < [
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Proof. Let f(z) = zVg(z), g(0) # 0. Define

- %, if 2#0,
F(z) = { g(0), if z=0. (8:2)

Then do the similar things as we just did. O

8.2 Automorphism of the disc
Lemma 8.1 (Blashke factor). Let a € D, then

Furthermore,
(i) 3t = Pa;
(it) 9a(0) = a, pa(a) = 0;
(i) 9(2) = 2L ,(0) = Jof? — 1, gu(a) = .

Theorem 8.2. If f € Aut(D), then 30 € R and a € D such that

J(z) =e 1—az

Corollary 8.2. If f € Aut(D), then |f'(0)] <1 —|f(0)|*.

Proof. Suppose f(0) = a, then construct ¢, =
By Schwartz Lemma (Thm 8.1) and Lemma 8. 1

. Let F(2) = (pa o f)(2), then F(0) = 0.

[F'(0)] <1
= lea(@lf(0) <1,
= |f(0)<1—la

8.3 From upper half plan to the unit disc
Theorem 8.3. The conformal mapping from UPH to D has the form

F) =2 Im(a) >0, §€R.

Z—a
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9 Roots of functions

Theorem 9.1 (Log roots on a convex open set). Given analytic and non-vanishing function
F(z) on a convex open set Q, there is an analytic function G(z) on Q such that F(z) = e%®).
Given a positive integer N, then H(z) = eG)/N s an N-th root of F(z), i.e. F(z) = H(z)".

Proof. Fix a point a € €2, and define the function

[ Fw),
G(z) = / o,

z
a

where L? is the line from a to z. Then we have

F/

/
1
=2 (9.1
= di(Fe—G) =Fe“ - FGe =0, (9.2)
z
= FeC=c, (9.3)
where c is a constant.
Pick up «a € log(c), then
F(2) = ce® = e = o1,
Define G = G 4 a, and H(z) = /N then we have F = HV. O

Corollary 9.1. Suppose that [ is non-vanishing analytic function on the complex plane minus
the origin. Let v denote the curve given by z(t) = e where 0 <t < 2. Suppose that

1 !/
e,
2mi ), f(2)
is divisible by 3. Prove that f has an analytic cube root on C\ {0}.

Proof. Step I: Fix a € (2 and define the function

- ).

where 77 is a curve from a to z.
Need to show that F'(z) is well defined. Choose two curves 72 and 72, then

/vg ?é:j; = /73 j;((sj)) dw = [yéu(_m é’((:;;)) dw = N 3m 2,

SO PO AN ) PO SR
= exp|g g f(w)dw 8 f(w)d ) p(2Nmi) =1,
- F(2) —1

Fi(z)
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which implies that F'(z) is independent of the curve ~.
Step II: Claim that F’ = % fTF
Restrict attention to a disk.

F(2) = exp [% ( 5 j}’((z))dw+/L ?’ég;dw>]

z
20

Use chain rule and the fact that on convex disc that

d f'(w)

1)
&= o )T e

Step III: Claim that (f/F3) =0= f/F?=C.

1 f
i /_f/F3_f3F2§7F_O
F3) F6 B

S

Choose a = log(C), and define

F(2) = exp (% /7 5 J;EZ; dw + a).

It is easy to know that f = F3.

0

Remark 9.1. Let f(z) be holomorphic on Q\ {po}, which has a zero at z = zy with multiplicity
n and has a pole at z = py with order m. Choose a € Q\ {po}, define a new function as

wo-on [ fir)

o h(z) = ’;:((ZZ)) has a simple pole at z = zy with residue equal to a positive integer.

Then we know that:

e g(z) is a well defined analytic function on 2\ {po, 20}

e g(z) has a removable singularity at z = zy. More precisely, if g(z) is redefined at z = z
as g(z0) = 0, then z = zy is also a zero of g(z) with multiplicity n.

e ¢(z) also has a pole at z = py with order m.
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