
To Appear in AI Magazine,
Summer/Fall 1994.

An Introduction to Least Commitment
Planning

Daniel S. Weld1

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195
weld@cs.washington.edu

Abstract

Recent developments have clari�ed the process of generating par-

tially ordered, partially speci�ed sequences of actions whose execution

will achive an agent's goal. This paper summarizes a progression of

least commitment planners, starting with one that handles the sim-

ple strips representation, and ending with one that manages actions

with disjunctive precondition, conditional e�ects and universal quan-

ti�cation over dynamic universes. Along the way we explain how

Chapman's formulation of the Modal Truth Criterion is misleading

and why his NP-completeness result for reasoning about plans with

conditional e�ects does not apply to our planner.

1I thank Franz Amador, Tony Barrett, Darren Cronquist, Denise Draper, Ernie Davis,
Oren Etzioni, Nort Fowler, Rao Kambhampati, Craig Knoblock, Nick Kushmerick, Neal
Lesh, Karen Lochbaum, Drew McDermott, Ramesh Patil, Kari Pulli, Ying Sun, Austin
Tate and Mike Williamson for helpful comments, but retain sole responsibility for errors.
This research was funded in part by O�ce of Naval Research Grant 90-J-1904 and by
National Science Foundation Grant IRI-8957302

Contents

1 Introduction 1

2 The Planning Problem 2

3 Search through World Space 6

3.1 Progression : 7
3.2 Regression : 8
3.3 Analysis : 10

4 Search through the Space of Plans 11

4.1 Total Order Planning : 11
4.2 Partial Order Planning : 12
4.3 Analysis : 19

5 Action Schemata with Variables 21

5.1 Planning with Partially Instantiated Actions : : : : : : : : : : 22
5.2 Implementation Details : 24

6 Conditional E�ects & Disjunction 25

6.1 Planning with Conditional E�ects : : : : : : : : : : : : : : : : 26
6.2 Disjunctive Preconditions : 27

7 Universal Quanti�cation 28

7.1 Assumptions : 29
7.2 The Universal Base : 30
7.3 The ucpop Algorithm : 31
7.4 Confrontation Example : 32
7.5 Quanti�cation Example : 37
7.6 Quanti�cation over Dynamic Universes : : : : : : : : : : : : : 39
7.7 Implementation : 41

8 Advanced Topics 42

ii

1 Introduction

To achieve their goals, agents often need to act in the world. Thus it should
be no surprise that the quest of building intelligent agents has forced Arti�cial
Intelligence researchers to investigate algorithms for generating appropriate
actions in a timely fashion. Of course the problem is not yet \solved," but
considerable progress has been made. In particular, AI researchers have
developed two complementary approaches to the problem of generating these
actions: planning and situated action. These two techniques have di�erent
strengths and weaknesses, as we illustrate below. Planning is appropriate
when a number of actions must be executed in a coherent pattern to achieve
a goal or when the actions interact in complex ways. Situated action is
appropriate when the best action can be easily computed from the current
state of the world (i.e., when no lookahead is necessary because actions do
not interfere with each other).

For example, if one's goal is to attend the IJCAI-93 conference in Cham-
bery, France, advanced planning is suggested. The goal of attending IJ-
CAI engenders many subgoals: booking plane tickets, getting to the airport,
changing dollars to francs, making hotel reservations, �nding the hotel, etc.
Achieving these goals requires executing a complex set of actions in the cor-
rect order, and the prudent agent should spend time reasoning about these ac-
tions (and their proper order) in advance. The slightest miscalculation (e.g.,
attempting to make hotel reservations after executing the trans-Atlantic
y
action) could lead to failure (i.e., a miserable night on the streets of Paris
among the city's many hungry canines).

On the other hand, if the goal is to stay alive while playing a fast paced
videogame, advanced planning may be less important. Instead, it may su�ce
to watch the dangers as they approach and shoot the most threatening at-
tackers �rst. Indeed, wasting time deliberating about the best target might
decrease one's success, since the time would be better spent shooting at
the myriad enemy. Domain speci�c situated-action systems are often imple-
mented as production systems or with hardwired logic (combinational net-
works). Techniques for automatically compiling these reactive systems from
declarative domain speci�cations and learning algorithms for automatically
improving their performance are hot topics of research.

In this paper, we neglect the situated techniques and concentrate on the
converse approach to synthesizing actions: planning. Planners are character-
ized by two dimensions which distinguish the construction strategy and the
component size respectively (Figure 1). One way of constructing plans is re-
�nement, the process of gradually adding actions and constraints; retraction
eliminates previously added components from a plan, and transformational

planners interleave re�nement and retraction activities. A di�erent dimen-
sion concerns the basic blocks that a planner uses when synthesizing a plan:
generative planners construct plans from scratch while case-based planners

1

use a library of previously synthesized plans or plan fragments.2 Case-based
systems are motivated by the observation that many of an agent's actions
are routine | for example, when making the daily commute to work or
school, one probably executes roughly the same actions in roughly the same
order. Even though these actions may interact, one probably doesn't need to
think much about the interactions because one has executed similar actions
so many times before. The main challenge faced by proponents of a case-
based system is developing similarity metrics which allow e�cient retrieval
of appropriate (previously executed) plans from memory. After all, if you
are faced with the task of getting to work but you can't stop thinking about
how you cooked dinner last night, then you'll likely arrive rather late.

Reasoning about Action

Planning Situated
Action

Generative
Refinement

Case-Based
Refinement

Generative
Transform.

Case-Based
Transform.

Figure 1: Major approaches for reasoning about action. This paper focuses
on generative, re�nement planning.

In the next sections, we'll de�ne the planning problem more precisely
and then start describing algorithms for solving the problem. We restrict
our attention to generative, re�nement planning, but our algorithms can be
adapted to transformational and case-based approaches [Hanks and Weld,
1992]. As we shall see, planning is naturally formulated as a search problem,
but the choice of search space is critical to performance.

2 The Planning Problem

Formally a planning algorithm has three inputs:

1. a description of the world in some formal language,

2. a description of the agent's goal (i.e., what behavior is desired) in some
formal language, and

2For example, chef [Hammond, 1990] and spa [Hanks and Weld, 1992] are good ex-
amples of a transformational case-based planners while prodigy/analogy [Veloso and
Carbonell, 1993] and Priar [Kambhampati and Hendler, 1992] are case-based, re�nement
planners. All the algorithms presented in the remainder of this paper are generative, re-
�nement algorithms. However, Gordius [Simmons, 1988b] provides a good example of a
generative, transformational planner (although it can be used in case-based mode as well).

2

3. a description of the possible actions that can be performed (again, in
some formal language). This last description is often called a domain

theory.

The planner's output is a sequence of actions which, when executed in
any world satisfying the initial state description, will achieve the goal. Note
that this formulation of the planning problem is very abstract. In fact, it
really speci�es a class of planning problems parameterized by the languages
used to represent the world, goals, and actions.

For example, one might use propositional logic to describe the e�ects of
actions, but this would preclude describing actions with universally quanti�ed
e�ects. The action of executing a UNIX \rm *" command is most naturally
described with quanti�cation: \All �les in the current directory are deleted."
Thus one might describe the e�ects of actions with �rst order predicate cal-
culus, but this assumes that all e�ects are deterministic. It would be very
di�cult to represent the precise e�ects of an action such as
ipping a coin or
prescribing a particular medication for a sick patient (who might or might
not get better) without some form of probabilistic representation.

In general, there is a spectrum of more and more expressive languages
for representing the world, an agent's goals, and possible actions. The task
of writing a planning algorithm is harder for more expressive representation
languages, and the speed of the resulting algorithm decreases as well. In this
paper, we'll explain how to build planners for several languages, but they all
make some simplifying assumptions that we now state.

� Atomic Time: Execution of an action is indivisible and uninterrupt-
ible, thus we need not consider the state of the world while execution
is proceeding. Instead, we may model execution as an atomic trans-
formation from one world state to another. Simultaneously executed
actions are impossible.

� Deterministic E�ects: The e�ect of executing any action is a de-
terministic function of the action and the state of the world when the
action is executed.

� Omniscience: The agent has complete knowledge of the initial state
of the world and of the nature of its own actions.

� Sole Cause of Change: The only way the world changes is by the
agent's own actions. There are no other agents and the world is static
by default. Note that this assumption means that the �rst input to
the planner (the world description) need only specify the initial state
of the world.

3

Admittedly, these assumptions are unrealistic. But they do simplify the
problem to the point where we can describe some simple algorithms. Al-
ternatively, skip ahead to the section on advanced topics where we describe
extensions to the algorithms that relax these assumptions.

We'll start our discussion of planning with a very simple language: the
propositional strips representation.3

The propositional strips representation describes the initial state of
world with a complete set of ground literals. For example, the simple world
consisting of a table and three blocks shown on the left side of Figure 2 can
be described with the following true literals:

C

A B

B

A

C

Figure 2: Initial and goal states for the \Sussman anomaly" problem in the
blocks world.

(on A Table) (on C A) (on B Table) (clear B) (clear C)

Since we require the initial state description to be complete, all atomic
formulae not explicitly listed in the description are assumed to be false (this
is called the \Closed World Assumption" [Reiter, 1980]). This means that
(not (on A C)) and (not (clear A)) are implicitly in the initial state
description as are a bunch of other negative literals.

The strips representation is restricted to goals of attainment. In general,
a planner might accept an arbitrary description of the behavior desired of
the agent over time. For example, one might specify that a robot should
cook breakfast but never leave the house. Most planning research, however,
has considered goal descriptions that specify features that should hold in the
world at the distinguished time point after the plan is executed, even though
this renders the \remain in the house" goal inexpressible. Furthermore, the
strips representation restricts the type of goal states that may be speci�ed
to those matching a conjunction of positive literals. For example, the goal
situation shown on the right hand side of Figure 2 could be described as
the conjunction of two literals (on B C) and (on A B). This yields a simple
block-stacking challenge called the \Sussman Anomaly."4

3The acronym \strips" stands for \STanford Research Institute Problem Solver" a
very famous and in
uential planner built in the 1970s to control an unstable mobile robot
known a�ectionately as \Shakey" [Fikes and Nilsson, 1971].

4The etymology of the name is a bit puzzling since the problem was discovered at MIT
in 1973 by Allen Brown who noticed that the hacker problem solver had problems dealing

4

A domain theory, denoted with the Greek letter �, forms the third part of
a planning problem: it's a formal description of the actions that are available
to the agent. In the strips representation, actions are represented with
preconditions and e�ects. The precondition of each action follows the same
restriction as the problem's goal: they are a conjunction of positive literals.
An action's e�ect, on the other hand, is a conjunction that may include
both positive and negative literals. For example, we might de�ne the action
move-C-from-A-to-Table as follows:

� Precondition: (and (on C A) (clear C))

� E�ect: (and (on C Table) (not (on C A)) (clear A))

Actions may be executed only when their precondition is true; in this
case we have speci�ed that the robot may move C from A to the Table only
when C is on top of A and has nothing atop it. When an action is executed,
it changes the world description in the following way. All the positive literals
in the e�ect conjunction (called the action's add-list) are added into the state
description while all the negative literals (called the action's delete-list) are
removed.5 For example, executing move-C-from-A-to-Table in the initial
state described above leads to a state in which

(on A Table) (on B Table) (on C Table) (clear A) (clear B) (clear C)

are true and all other atomic formulae are false.
So that concludes the description of a planner's inputs: a description of

the initial state, a description of the goal, and the domain theory, �, which is
a set of action descriptions. When called with these inputs, a planner should
return a sequence of actions that will achieve the goal when executed in the
initial state. For example, when given the problem de�ned by the Sussman

with it. Since hacker was the core of Gerald Sussman's Ph.D. thesis, he got stuck with
the name. In subsequent years, numerous researchers searched for elegant ways to handle
it. Tate's interplan system [Tate, 1975] used more sophisticated reasoning about goal
interactions to �nd an optimal solution and Sacerdoti's noah planner [Sacerdoti, 1975]

introdcued a more
exible representation to sidestep the problem. Because the planners
described in this paper adopt these techniques, they have no problem with the \Anomalous
Situation." Still it's worth explaining why the problem
ummoxed early researchers. Note
that the problem has two \subgoals:" to achieve (on A B) and to achieve (on B C). It
seems natural to try divide and conquer, but if we try to achieve the �rst subgoal before
starting the second then the obvious solution is to put C on the Table then put A on B

and we accidentally wind up with A on B when B is still on the Table. Of course one can't
get B on C without taking A o� B so trying to solve the �rst subgoal �rst appears to be a
mistake. But if we try to achieve (on B C) �rst, then we have a similar problem: B's on
C while A is still buried at the bottom of the stack. So no matter which order is tried, the
subgoals interfere with each other. But humans seem to use divide and conquer, so why
can't computers? In fact, they can as we show in the section on plan-space search.

5It's illegal for an action's e�ect to include an atomic fomula and its negation, since
this would lead to an unde�ned result.

5

anomaly's initial and goal states (Figure 2) and a set of actions like the one
described above, we'd like our planner to return a sequence like:

move-C-from-A-to-Table

move-B-from-Table-to-C

move-A-from-Table-to-B

As we shall see, there are a variety of algorithms that do exactly this, but
some are much more e�cient than others. We'll start by looking at planners
which are conceptually quite simple, and then look at more sophisticated
ways of planning.

3 Search through World Space

The simplest way to build a planner is to cast the planning problem as search
through the space of world states (shown in Figure 3). Each node in the graph
denotes a state of the world, and arcs connect worlds that can be reached by
executing a single action. In general, arcs are directed, but in our encoding of
the Blocks World, all actions are reversible so we have replaced two directed
edges with a single arc to increase readability. Note that the initial and goal
world states of the Sussman anomaly are highlighted in grey. When phrased
in this manner, the solution to a planning problem (i.e., the plan) is a path
through state-space. Note that the three-step solution listed at the end of
the previous section is the shortest path between these two states, but many
other paths are possible.

The advantage of casting planning as a simple search problem is the
immediate applicability of all the familiar brute force and heuristic search al-
gorithms [Korf, 1988]. For example, one could use depth-�rst, breadth-�rst,
or iterative deepening A� search starting from the initial state until the goal
is located. Alternatively, more sophisticated, memory bounded algorithms
could be used [Russell, 1992, Korf, 1992]. Since the tradeo�s between these
di�erent searching algorithms have been discussed extensively elsewhere, we
focus instead on the structure of the search space. A handy way to do this
is to specify the planner with a nondeterministic algorithm. This idea may
seem strange at �rst, but we'll use it extensively in subsequent sections, so
it's important to learn it now. In fact, it's quite simple: when specifying the
planning algorithm one uses a nondeterministic choose primitive. choose
takes a set of possible options and magically selects the right one. The beauty
of this nondeterministic primitive lies in its ease of implementation: choose
can be simulated with any conservative search method or it can be approxi-
mated with an aggressive search strategy. By decoupling the search strategy
from the basic nondeterministic algorithm two things are accomplished: (1)
the algorithm becomes simpler and easier to understand, and (2) the imple-

6

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

B

C

A

B

CA

B

CA

B C

A

B C

A

B CAB

C

A

A

B

C

Figure 3: World Space.

mentor can easily switch between di�erent search strategies in an e�ort to
improve performance.

3.1 Progression

To make this concrete, Figure 4 contains a simple nondeterministic planner
that operates by searching forward from the initial world-state until it �nds
a state in which the goal speci�cation is satis�ed.

The right way to think about a nondeterministic algorithm is with you

personally calling the shots every time that choose gets called. For example,
if we try ProgWS on the Sussman anomaly, then the �rst call to the proce-
dure has world-state set to the initial state (the leftmost grey state in Figure
3), goal-list set to the implicit conjunction ((on A B) (on B C)), and path

set to the null sequence. Since the initial state doesn't satisfy the goal, ex-
ecution falls to line 3 and choose is called. A moment's thought should
convince you that the best choice makes Move-C-from-A-to-Table be the
�rst action, so let's assume that this is the choice made by the computer.
By giving the program a magical oracle it can easily �nd the sequence of
three correct choices that will lead to a solution. Since we assume that the
oracle always makes the best choice, the program can quit (con�dent that no
solution is possible) if it ever runs into a dead end.

Of course, if one wants to implement ProgWS on any of the (nonmagical)
computers that exist today (and if one doesn't want to get a lot of email
from the program asking for advice!) then one needs to use search. A simple

7

Algorithm: ProgWS(world-state, goal-list, �, path)

1. If world-state satis�es each conjunct in goal-list,

2. Then return path,

3. Else let Act = choose from � an action whose precondition is satis�ed
by world-state:

(a) If no such choice was possible,

(b) Then return failure,

(c) Else let S = the result of simulating execution of Act in world-state

and return ProgWS(S, goal-list, �, Concatenate(path, Act)).

Figure 4: ProgWS: a Progressive, World-State planner. The initial call
should set path to the null sequence.

technique is to implement choose with breadth-�rst search. This way, even
though it wouldn't have the oracle, the planner could try all paths in parallel
(storing them on a queue and time slicing between them) until it found a state
that satis�ed the goal speci�cation. Any time a nondeterministic algorithm
would �nd a solution, the breadth-�rst search version will also (although in
the worst case it might take the searching version exponentially longer).

3.2 Regression

Figure 4 describes just one way to convert planning to a search through the
space of world states. Another approach, called regression planning [Waldinger,
1977], is outlined in Figure 5. Instead of searching forward from the initial
state (which is what ProgWS does), the RegWS algorithm (adapted from
[Nilsson, 1980]) searches backwards from the goal. Intuitively, RegWS rea-
sons as follows: \I want to eat, so I need to cook dinner, so I need to have
food, so I need to buy food, so I need to go to the store: : :" At each step
it chooses an action that might possibly help satisfy one of the outstanding
goal conjuncts.

To illustrate RegWS on a more concrete example, the Sussman anomaly,
then cur-goals is initially set to the list of conjuncts ((on A B) (on B C)).
The �rst call to choose demands an action whose e�ect contains a conjunct
that appears in cur-goals. Since the action Move-A-from-Table-to-B has
the e�ect of achieving (on A B), let's assume that the planner magically
(nondeterministically) makes that choice.

The next step, called goal regression, forms the core of the RegWS algo-
rithm: G is assigned the result of regressing a logical sentence (the conjunc-
tion corresponding to the list cur-goals) through the action Act. The result

8

Algorithm: RegWS(init-state, cur-goals, �, path)

1. If init-state satisifes each conjunct in cur-goals,

2. Then return path,

3. Else do:

(a) Let Act = choose from � an action whose e�ect matches at least
one conjunct in cur-goals.

(b) Let G = the result of regressing cur-goals through Act.

(c) If no choice for Act was possible or G is unde�ned, or G� cur-goals,

(d) Then return failure,

(e) Else return RegWS(init-state, G, �, Concatenate(Act, path)).

Figure 5: RegWS: a Regressive, World-State planner. The initial call should
set path to the null sequence.

of this regression is another logical sentence that encodes the weakest pre-
conditions that must be true before Act is executed in order to assure that
cur-goals will be true after Act is executed. This is simply the union of Act's
preconditions with all the current goals except those provided by the e�ects
of Act:

preconditions(Act) [(cur-goals � goals-added-by(Act))

In our example, Act has (on A Table) as its precondition and (and (on

A B) (not (on A Table))) as its e�ect so the result of regressing (and (on

A B) (on B C)) is: (and (on A Table) (on B C)).
Since Act achieved (on A B), regression removed that literal from the

sentence (replacing it with the precondition of Act, namely (on A Table).
Since Act doesn't a�ect the other goal, (on B C), it remains part of the
weakest precondition. Note that the sentence produced by regression is still
a conjunction; this is guarenteed to be true as long as action preconditions
are restricted to conjunctions, so it is ok to encode G and cur-goals with lists.

The next line of RegWS is also interesting | it says that if choose can't
�nd an action whose regression satis�es certain criteria, then a dead end has
been reached. There are three parts to the dead-end check, and we discuss
them in turn:

1. If no action has an e�ect containing a conjunct that matches one of the
conjuncts in cur-goals, then no action is pro�table. To see why this is
the case, note that unless Act has a matching conjunct, the result of
performing goal regression will be a strictly larger conjunctive sentence!
Whenever G is satis�ed by the initial state, then cur-goals will be too.

9

Thus there is no point in considering such an Act because any successful
plan that might result could be improved by eliminating it from the
path.

2. If the result of regressing cur-goals through Act is to make G unde�ned
then any plan that adds Act to this point in the path will fail. What
might make G unde�ned? Recall that regression returns the weakest
preconditions that must be true before Act is executed in order to make
cur-goals true after execution. But what if one of Act's e�ects directly
con
icts with cur-goals? That would make the weakest precondition
unde�ned because no matter what was true before Act, execution would
ruin things. A good example of this results when one tries to regress
((on A B) (on B C)) through Move-A-from-B-to-Table. Since this
action negates (on A B), the weakest preconditions are unde�ned.

3. If G � cur-goals then there's really no point in adding Act to path
for the same reasons that were explained in bullet 1 above. In fact,
one can show that G � cur-goals whenever the action's e�ect doesn't
match any conjunct in cur-goals, but the converse is false. Thus, strictly
speaking, the G � cur-goals renders the test of bullet 1 unnecessary;
however, eliminating it would result in reduced e�ciency since many
more regressions would be required.

3.3 Analysis

Our presentation of theProgWS and RegWS planning algorithms suggests
several natural questions. The �rst questions concern the soundness (i.e., if a
plan is returned, will it really work?) and completeness (i.e., if a plan exists,
does a sequence of nondeterministic choices exist that will �nd it?) of the
algorithms. Although we won't prove it here, both algorithms are sound and
complete.

The most important question, however, is \Which algorithm is faster?" In
their nondeterministic forms, of course, they have the same complexity: with
perfect luck, they'll each make the same number (say n) of nondeterministic
choices before �nding a solution. However, a real implementation must use
search to implement the nondeterminism, so an important question is \How
many choices must be considered at each nondeterministic branch point?"
Let's call this number b. Even a small di�erence in b can lead to a tremendous
di�erence in planning e�ciency since brute-force searching time is O(bn).

If one grants the plausible assumption that the goal of a planning problem
is likely to involve only a small fraction of the literals used to describe the
state, then regession planning is likely to have a much smaller branching
factor at each call to choose; as a result it's likely to run much faster.
To see this, note that there will probably be many actions that could be
executed in the initial state but only a few that are relevant to the goal (i.e.,

10

have e�ects that match the goal and have legal regressions). Since ProgWS

must consider all actions whose preconditions are satis�ed by the initial state,
it can't bene�t from the guidance provided by the planning objective.

In some cases, of course, the situation may be reversed. And we should
note that there are a variety of other search techniques (means-ends analysis,
bidirectional search, etc.) that we haven't discussed.6 The reason for this
selective portrayal stems from the nature of world space search itself. As the
next section shows, it's often much better to search the space of partially
speci�ed plans.

4 Search through the Space of Plans

In 1974, Earl Sacerdoti built a planner, called noah, with many novel fea-
tures. The innovation we'll focus on here is the reformulation of planning
from one search problem to another. Instead of searching the space of world
states (in which arcs denote action execution), Sacerdoti phrased planning as
search through plan space.7 In this space, nodes represent partially-speci�ed
plans and edges denote plan re�nement operations such as the addition of an
action to a plan. Figure 6 illustrates one such space. Once again, the initial
and goal state are highlighted in grey. The initial state represents the null

plan which has no actions, and the goal state represents a complete, working
plan for the Sussman anomaly. Note that while world state planners had to
return the path between initial and goal states, in plan-space the goal state
is the solution.

4.1 Total Order Planning

At this point we are forced to confess. We've claimed that it's useful to
think of planning as search through plan-space and we've explained that in
plan-space nodes denote plans, but we haven't said what plans really are. In
fact this is a very subtle issue that we shall discuss in some depth, but for
now let's consider a simple answer and suppose that a plan is represented as
a totally-ordered sequence of actions. In that case, we can view the familiar
RegWS algorithm as isomorphic to a plan-space planner! After all, at every
recursive call, it passes along an argument, path, which is a totally ordered

6Means-ends analysis, the problem solving strategy used by gps [Newell and Simon,
1963] is especially important, both from a historical perspective and because of its ubiquity
in machine learning research on speedup learning [Minton, 1988, Minton et al., 1989b].
Unfortunately, gps-like planners are incomplete (for example they cannot solve the Suss-
man anomaly) which complicates analysis and comparison to the algorithms in this paper.
Future work is needed to investigate the bene�ts, if any, of the gps approach.

7In fact, noah didn't actually search the space in any exhaustive manner (i.e. unlike
nonlin [Tate, 1977] it did no backtracking), but it is still credited with reformulating the
space in question.

11

Move A to B Move B to C
Move A to B

Move A to Table
Move A to B

Move C to Table
Move B to C
Move A to B

Figure 6: Plan Space

sequence of actions (i.e., a plan). In fact, if we watch the successive values
of path at each recursive call, we get the picture shown in Figure 6.

In summary, the nature of the space being searched by an algorithm is
(somewhat) in the eye of the beholder. If we view RegWS as searching the
space of world-states, it's a regression planner. If we view it as searching the
space of totally ordered plans, then the plan re�nement operators modify the
current plan by prepending new actions to the beginning of the sequence.

So what's the point of thinking about planning as a search process through
plan-space? This framework facilitates thinking about alternative plan re-
�nement operators and leads to more powerful planning algorithms. For
example, by adding new actions into the plan at arbitrary locations one can
devise a planner that works much better than one which is restricted to
prepending the actions. However, we won't describe that algorithm here
because it's possible to do even better by changing the plan representation
itself, as described in the next section.

4.2 Partial Order Planning

Think for a moment about how youmight solve a planning problem. For con-
creteness, we return to the introductory example of planning a trans-Atlantic
trip to IJCAI-93. To make the trip, one needs to purchase plane tickets and
also to buy a \Let's Go" guide to France (to enable choosing hotels and
itinerary). However, there's no need to decide (yet) which purchase should
be executed �rst. This is the idea behind least commitment planning | to
represent plans in a
exible way that enables deferring decisions. Instead of
committing prematurely to a complete totally ordered sequence of actions,
plans are represented as a partially ordered sequence and the planning algo-
rithm practices \Least Commitment" | only the essential ordering decisions
are recorded.

12

4.2.1 Plans, Causal Links & Threats

We represent a plan as a three-tuple: hA;O;Li in which A is a set of actions,
O is a set of ordering constraints over A, and L is a set of causal links
(described below). For example, if A = fA1; A2; A3g then O might be the
set fA1 < A3; A2 < A3g. These constraints specify a plan in which A3 is
necessarily the last (of three) actions, but does not commit to a choice of
which of the three actions comes �rst. Note that these ordering constraints
are consistent because there exists at least one total order that satis�es them.
As least commitment planners re�ne their plans, they must do constraint
satisfaction to ensure the consistency of O. Maintaining the consistency of
a partially ordered set of actions is just one (simple) example of constraint
satisfaction in planning | we'll see more in subsequent sections.

A key aspect of least commitment is keeping track of past decisions and
the reasons for those decisions. For example, if you purchase plane tickets
(to satisfy the goal of boarding the plane) then you should be sure to take
them to the airport. If another goal (having your hands free to open the taxi
door, say) causes you to drop the tickets, you should be sure to pick them
up again. A good way of ensuring that the di�erent actions introduced for
di�erent goals won't interfere is to record the dependencies between actions
explicitly.8 To record these dependencies, we use a data structure, called a
causal link, that was invented by Austin Tate for use in the nonlin planner
[Tate, 1977]. A causal link is a structure with three �elds: two contain
pointers to plan actions (the link's producer, Ap, and its consumer, Ac); the
third �eld is a proposition, Q, which is both an e�ect of Ap and a precondition

of Ac. We write such a causal link as Ap
Q
!Ac and store a plan's links in the

set L.
Causal links are used to detect when a newly introduced action interferes

with past decisons. We call such an action a threat. More precisely, suppose

that hA;O;Li is a plan and Ap
Q
!Ac is a causal link in L. Let At be a di�erent

action in A; we say that At threatens Ap

Q
!Ac when the following two criteria

are satis�ed:

� O [fAp < At < Acg is consistent, and

� At has :Q as an e�ect.

For example, if Ap asserts Q =(on A B), which is a precondition of Ac, and

the plan contains Ap
Q
!Ac, then At would be considered a threat if it moved

A o� B and the ordering constraints didn't prevent At from being executed
between Ap and Ac.

When a plan contains a threat, then there is a danger that the plan won't
work as anticipated. To prevent this from happening, the planning algorithm

8An alternative approach is to repeatedly compute these interactions, but this is often
less e�cient.

13

must check for threats and take evasive countermeasures. For example, the
algorithm could add an additional ordering constraint to ensure that At is
executed before Ap. This particular threat protection method is called demo-

tion; adding the symmetric constraint Ac < At is called promotion.9 As we'll
see in subsequent sections, there are other ways to protect against threats as
well.

4.2.2 Representing Planning Problems as Null Plans

Uniformity is the key to simplicity. It turns out that the simplest way to
describe a plan-space planning algorithm is to make it use one uniform rep-
resentation for both planning problems and for incomplete plans. The secret
to achieving this uniformity is an encoding trick: the initial state description
and goal conjunct can be bundled together into a special three-tuple called
the null plan.

The encoding is very simple. The null plan of a planning problem has
two actions, A = fA0; A1

g, one ordering constraint, O = fA0 < A
1
g, and

no causal links: L = fg. All the planning activity stems from these two
actions. A0 is the *start*" action | it has no preconditions and its e�ect
speci�es which propositions are true in the planning problem's initial state
and which are false.10 A

1
is the *end*" action | it has no e�ects, but

its precondition is set to be the conjunction from the goal of the planning
problem. For example, the null plan corresponding to the Sussman anomaly
is shown in Figure 7.

start

(on c a) (clear b) (clear c) (on a table) (on b table)

end

(on a b) (on b c)

Figure 7: The null plan for the Sussman Anomaly contains two actions |
the *start*" action precedes the *end*" action.

9The rationale behind the names stems from the fact that demotion moves the threat
lower in the temporal ordering while promotion moves it higher.

10Actually, we adopt the convention that every proposition which is not explicitly spec-
i�ed to be true in the initial state is assumed to be false. This is called the closed world

assumption or CWA.

14

4.2.3 The pop Algorithm

We now describe a simple, regressive algorithm that searches the space of
plans.11 pop starts with the null plan for a planning problem and makes
nondeterministic choices until all conjuncts of every action's precondition
have been supported by causal links and all threatened links have been pro-
tected from possible interference. The ordering constraints, O, of this �nal
plan may still specify only a partial order | in this case, any total order con-
sistent with O is guaranteed to be an action sequence that solves the planning
problem. See Figure 8 | the �rst argument to pop is a plan structure and
the second is an agenda of goals that need to be supported by links. Each
item on the agenda is represented as a pair hQ;Aii where Q is a conjunct of
the precondition of Ai. (Note: many times the identity of Ai will be clear
from the context and we will pretend that agenda contains propositions, such
as Q, instead of hQ;Aii pairs.)

It's very important to understand how this algorithm works in detail,
so we now illustrate its behavior on the Sussman anomaly. When making
the initial call to pop, we provide two arguments: the null plan, shown in
Figure 7, and agenda = fh(on A B); A

1
i; h(on B C); A

1
ig. Since agenda

isn't empty, control passes to line 2. There are two choices for the immediate
goal: either Q =(on A B) or Q =(on B C) so pop must make a choice.
Now comes a crucial, but subtle point. pop has to choose between the two
subgoals, but this was not written with choose| why not? The answer
is that the choice does not matter as far as completeness is concerned |
eventually both choices must be made. As a result there is no reason for
a searching version of the program to backtrack over this choice. Does this
mean that the choice doesn't matter? Absolutely not! One choice might
lead the planner to �nd an answer very quickly while the other choice would
lead to enourmous search. In practice, the choice can be very important
for e�ciency and it is often useful to interleave reasoning about di�erent
subgoals. But the order in which subgoals are considered by the planner
does not a�ect completeness and it is not important to a nondeterministic
algorithm| the same number of nondeterministic choices will be made either
way.

Anyway, suppose pop selects (on B C) from the agenda as the goal to
work on �rst; Aneed is set to A

1
. Line 3 needs to choose (a real nondeter-

11The pop planner is very similar to McAllester's snlp algorithm [McAllester and Rosen-
blitt, 1991] which is an improved formalization of Chapman's tweak planner [Chapman,
1987]. The di�erence between snlp and pop concerns the de�nition of threat. snlp treats

At as a threat to a link Ap
Q
!Ac when At has Q as an e�ect as well as when it has :Q as

an e�ect. Although this may seem counterintuitive (what does it matter if Q is asserted
twice?), this de�nition leads to a property, called systematicity, which reduces the over-
all size of the search space. It's widely believed that systematicity is interesting from a
technical point of view, but does not necessarily lead to increased planning speed. See
[Kambhampati, 1993a] for a discussion.

15

Algorithm: pop(hA;O;Li, agenda, �)

1. Termination: If agenda is empty, return hA;O;Li.

2. Goal selection: Let hQ;Aneedi be a pair on the agenda (by de�nition
Aneed 2 A and Q is a conjunct of the precondition of Aneed).

3. Action selection: Let Aadd = choose an action that adds Q (either
a newly instantiated action from �, or an action already in A which
can be consistently ordered prior to Aneed). If no such action exists

then return failure. Let L0 = L [fAadd

Q
!Aneedg, and let O0 = O [

fAadd < Aneedg. If Aadd is newly instantiated, then A0 = A [fAaddg
and O0 = O0 [fA0 < Aadd < A

1
g (otherwise let A0 = A).

4. Update goal set: Let agenda0 = agenda � fhQ;Aneedig. If Aadd is
newly instantiated, then for each conjunct, Qi, of its precondition add
hQi; Aaddi to agenda0.

5. Causal link protection: For every action At that might threaten a

causal link Ap
R
!Ac 2 L

0 choose a consistent ordering constraint, either

(a) Demotion: Add At < Ap to O
0, or

(b) Promotion: Add Ac < At) to O
0.

If neither constraint is consistent, then return failure.

6. Recursive invocation: pop(hA0;O0;L0i, agenda0, �).

Figure 8: POP: a regressive Partial Order Planner. The initial call must set
hA;O;Li to the null plan for the problem and set agenda to the list of goal
conjuncts.

ministic choice, this time!) an action, Aadd, which has (on B C) as an e�ect.
Suppose that the magic oracle suggests making Aadd be a new instance of a

move-B-from-Table-to-C action. A new causal link, Aadd
(on B C)

! A
1
, is

added to L0, and the agenda is updated. Since there are no threats to the sole
link, line 6 makes a recursive call with the arguments depicted in Figure 9.

On the second invocation of pop agenda is still not empty, so another
goal must be chosen. Suppose that the (clear B) conjunct of the recently
added move-B-from-Table-to-C action's precondition is selected as Q in
line 2. Next, in line 3 choose is called to make the nondeterministic choice
of a producing action. Suppose that instead of instantiating a new action
(as we illustrated last time), the planner decides to reuse an existing one:
the *start*" action A0. The net e�ect of this pass through pop is to add a
single link to L as illustrated in Figure 10 and to shrink the agenda slightly.

Suppose that on the third invocation of pop, the planner selects the top-

16

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

end

(on a b) (on b c)

Figure 9: After adding a causal link to support (on B C), the plan is as shown
and agenda contains f(clear B) (clear C) (on B Table) (on A B)g as
open propositions.

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

end

(on a b) (on b c)

Figure 10: After adding a causal link to support (clear B), the plan has two
causal links and agenda is set to f(clear C) (on B Table) (on A B)g.

level goal (on A B) from the agenda. Once again, several possibilities exist
for the nondeterministic choice of line 3. Suppose that pop decides to instan-
tiate a new move-A-from-Table-to-B action as Aadd. A new causal link gets
added to L, the new action is constrained to precede A

1
, and the agenda

is updated. Things get a bit more interesting when control
ow reaches
line 5. Note that both of the new actions, move-A-from-Table-to-B and
move-B-from-Table-to-C, are constrained to precedeA

1
but O contains no

constraints on their relative ordering. Furthermore, note that move-A-from-Table-to-B
negates (clear B). But this means that it threatens the link from A0 labeled
(clear B). This is illustrated in Figure 11.

To protect against this threat, pop must nondeterministically choose an
ordering constraint. In general, there are two possibilities: either constrain
the move-A action after the move-B action or constrain move-A to precede the
start" action A0. However, since line 3 assures that every action follows
A0, this last choice would make O inconsistent. Thus, pop orders the threat
after the link's consumer as shown in Figure 12.

17

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

(move a from table to b)
(clear b) (clear a) (on a table)

(on a b) (clear table) ~(on a table) ~(clear b)

end

(on a b) (on b c)

Figure 11: Since the move-A action could possibly precede the move-B action,
it threatens the link labeled (clear B) as indicated by the dashed line.

Since the agenda still contains �ve entries, there is much work left to be
done. However, all subsequent decisions follow the same lines of reasoning as
we have shown above so we omit them here. Eventually, pop returns the plan
shown in Figure 13. Careful inspection of this �gure con�rms that no link is
threatened. Indeed, the three actions in A (besides the dummies A0 and A

1

are exactly the same as the ones returned by the world-state planners of the
previous section. Like those planners, one can prove that pop is sound and
complete.

4.2.4 Implementation Details

To implement pop one must choose data structures to represent the partial
order over actions (O). The operations that the data structure needs to
support are the addition of new constraints to O, testing if O is consistent,
determining if Ai can be consistently ordered prior to Aj, and returning
the set of actions that can be ordered before Aj. In fact, this set of interface
operations can be reduced to the ability to add or deleteAi < Aj fromO, and
testO for consistency, but this won't necessarily lead to the greatest e�ciency
since many more queries are typically performed (i.e., in threat detection as
discussed in the paragraph below) than there are true updates. Caching
the results of queries (i.e., incrementally computing the transitive closure)
can signi�cantly increase performance. If a denotes the number of actions
in a plan, it takes O(a3) time to compute the transitive closure and O(a2)
space to store it, but queries can be answered quickly (see the Floyd-Warshall
algorithm and discussion [Cormen et al., 1991, p562]). Considerable research
has focussed on this time-space tradeo� and on variants which assume a
di�erent interface to the temporal manager (see [Williamson and Hanks,

18

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

(move a from table to b)
(clear b) (clear a) (on a table)

(on a b) (clear table) ~(on a table) ~(clear b)

end

(on a b) (on b c)

Figure 12: After promoting the threatening action, the plan's actions are
totally ordered.

1993] for a nice discussion and pointers).
Another implementation detail concerns the e�cency of testing for threat-

ened causal links. There can be O(a2) links and hence O(a3) threats. We've
found that the most e�cient way to handle threats is incrementally:

� Whenever a new causal link is added to L, all actions in A are tested
to see if they threaten it. This takes O(a) time.

� Whenever a new action instance is added to A, all links in L are tested
to see if they are threatened. This takes O(a2) time.

4.3 Analysis

In general, the expected performance of a search algorithm is O(cbn). The
three parameters that determine performance are explained below:

1. How many times is nondeterministic choose called before a solution is
obtained? This determines the exponent n.

2. How many possibilities need to be considered (by a searching algorithm)
at each call to choose? This determines the average branching factor
b.

3. How long does it take to process a given node in the search space
(i.e., how much processing goes on before the recursive call)? We have
written this as the constant c although it is usually a function of the
size of the node being considered.

19

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move c from a to table)
(on c a) (clear c)

(on c table) (clear a) ~(on c a)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

(move a from table to b)
(clear b) (clear a) (on a table)

(on a b) (clear table) ~(on a table) ~(clear b)

end

(on a b) (on b c)

Figure 13: Eventually, this plan is returned as a solution

The cost per node in the search space, c, is quite di�erent for RegWS

and pop, but this doesn't matter much in practice. For the world state plan-
ner, the per-node operations can all be implemented in time proportional
to the number of current goals, jcur-goals j, and the number and complex-
ity of actions. pop, on the other hand, has several operations (testing for
threatened links, for example) whose complexity grows with the length of the
plan under consideration. We say that these factors don't matter very much
because the exponential bn dominates these costs.

The number of nondeterministic calls, n, can vary somewhat. In partic-
ular, RegWS makes one call per action introduced (i.e., n = a) while pop
makes one per precondition conjunct (actually more if links are threatened).
Ignoring the issue of threatened links, pop will have a higher n if a given ac-
tion supports more than one precondition conjunct, and this is almost always
the case. For example, the *start*" action often supports many conjuncts.
On the other hand, the ratio between pop's n and RegWS's n can never
be greater than the maximum number of precondition conjuncts per action,
and this is typically a small constant (3 for the blocks world). In any case,
the value of n certainly doesn't suggest that pop will run faster.

But pop usually does run faster, and b is the reason why. pop achieves
completeness with a much smaller branching factor than the world-space
algorithms. At each call to choose in line 3, pop has to consider only those
actions whose e�ects are relevant to the particular goal, Q, chosen in line 2.
Recall that this choice of Q does not require backtracking. The situation with
RegWS is quite di�erent. Line 3a's nondeterministic choice must consider

20

all actions whose e�ects are relevant to any member of cur-goals. In other
words, RegWS has to backtrack over the choice of which goal (Q) to work
on next; failure to consider all possibilities would sacri�ce completeness. The
reason for this stems from the fact that RegWS links the decision of which
goal to work on next with the decision of when to execute the resulting actions.
By using a least commitment approach with the set of ordering constraints,
O, pop achieves a branching factor that is smaller by a factor equal to the
average size of cur-goals (or agenda), which can grow quite big. Indeed, the
increased branching factor is usually the dominant e�ect.

There are many other factors involved, and a detailed analysis is complex.
See [Barrett and Weld, 1993, Barrett and Weld, 1994, Minton et al., 1991,
Minton et al., 1992] for di�erent types of analytic comparisons and experi-
mental treatments.

It is also important to note that the pop algorithm represents just one
point on the spectrum of possible least commitment planning algorithms.
Brevity precludes a discussion of other interesting possibilites, but see [Kamb-
hampati, 1993a, Kambhampati, 1993b] for a survey of approaches and a
fascinating taxonomy of design tradeo�s.

5 Action Schemata with Variables

Since the idea of least commitment has proven useful, it is natural to wonder
if one can take it further. Indeed, this is both possible and useful! Before we
describe the next step, we wish to highlight the relationship between least
commitment and constraint satisfaction. Note that the key step in allowing
pop to delay decisions about when individual actions are to be scheduled
was the inclusion of the set of ordering constraints, O, and the attendant
constraint satisfaction algorithms for determining consistency. It turns out
that we can perform the same trick when choosing which action to use to
support an open condition: delay the decision by adding constraints and
gradually re�ning them.

Take a look back at Figure 9 in which pop has just created its �rst causal
link from a new move-B-from-Table-to-C action to support the goal (on B

C). How did this choice get made? Line 3 of pop selected between all existing
(there were none) and new actions that had (on B C) as an e�ect. What
were the other possibilities? Well, a move-B-from-A-to-C action would have
worked too. And if there were other blocks mentioned in the problem, then
pop would have had to consider moving B from D or from E or : : : . But this
is absurd! Why (at this point in the planning process) should pop have to
worry about where B is going to be? Instead, it is much better to delay that
commitment until later (when some choices may be easily ruled out).

We can accomplish this by having pop add the action Move-B-from-?x-to-C
where ?x denotes a variable whose value has not yet been chosen. In fact,

21

why not go all the way and de�ne a general move schema which de�nes the
class of actions that move an arbitrary block, ?b, from an arbitrary prior
location, ?x, to any destination ?y? We'll call such an action schema an
operator. When choosing to instantiate this operator, one could specify that
?b=B and ?y=C. Subsequent decisions could add more and more constraints
on the value of ?x until eventually it has a unique value. The key question
is \What types of constraints should be allowed?" The simplest12 answer
is to allow codesignation and noncodesignation constraints, which we write
as ?x=?y and ?x6=?y, respectively. To make these ideas concrete, see the
de�nition of Figure 14 which de�nes a move operator which is reasonably

general.13

(define (operator move)

:parameters (?b ?x ?y)

:precondition (and (on ?b ?x) (clear ?b) (clear ?y)

(6= ?b ?x) (6= ?b ?y) (6= ?x ?y) (6= ?y Table))

:effect (and (on ?b ?y) (not (on ?b ?x))

(clear ?x) (not (clear ?y))))

Figure 14: Variables, codesignation (=), and noncodesignation (6=) con-
straints allow speci�cation of more general action schemata.

5.1 Planning with Partially Instantiated Actions

It should be fairly clear that the operator of Figure 14 is a much more eco-
nomical description than the O(n3) fully speci�ed move actions it replaces (n
is the number of blocks in the world). In addition, the abstract description
has enormous software engineering bene�ts | needless duplication would
likely lead to inconsistent domain de�nitions if an error in one copy was
replaced but other copies were mistakenly left unchanged.

But representation is one thing, and planning is another. How must the
pop planning algorithm be modi�ed in order to handle partially instantiated
actions resulting from general operators such as the one in Figure 14? We
explain the changes below.

12A more elaborate approach would incorporate ideas from programming language type
systems.

13Figure 14's de�nition of move is restricted so that the block can't be moved to the
Table. This is necessary because the action's e�ects are di�erent when the destination is
the Table. Speci�cally, the normal de�nition of the block's world assumes that the Table
is always clear while blocks can have only one block on top of them. Thus moving a
block onto another must negate (clear ?y) but this mustn't happen if ?y=Table. While
it is possible to write a fully general move operator, it requires a more expressive action
language, such as one that allows conditional e�ects (described presently).

22

� The data structure representing plans must include a slot for the set
of variable binding (codesignation) constraints. Thus, a plan is now
hA;O;L;Bi, and a problem's null plan has B = fg.14

We also need some way to perform uni�cation.

{ Let MGU(Q;R;B) be a function that returns the most general uni-
�er of literals Q and R with respect to the codesignation con-
straints B. ? is returned if no such uni�er exists. The form of
a general uni�er is taken to be a set of pairs f(u; v)g, indicating
that u and v must codesignate to ensure that Q and R unify. This
allows us to treat codesignation constraints B as a conjunction of
general uni�ers (although in general B may contain noncodesigna-
tion constraints as well, even though MGU() cannot generate them).

MGU((on ?x B), (on A B)) = f(?x; A)g
MGU((on ?x B), (on A B); f(?x; C)g) = ?

For shorthand, we sometimes write MGU(Q;R) rather than explic-
itly specifying an empty set of bindings. Furthermore, we assume
that redundantly negated literals are treated in the obvious way.
I.e., ::P uni�es with P .

{ When � is a logical sentence, the notation �nB (or �nMGU(Q;R))
denotes the sentence resulting from substituting ground values
for variables wherever possible given the codesignation constraints
returned by uni�cation.

� In line 3 of pop (action selection) the choice of Aadd must consider
all existing actions (or new actions that could be instantiated from
an operator in �) such that one of Aadd's e�ect conjuncts, E, uni-
�es with the goal, Q, given the plan's codesignation constraints, i.e.,
MGU(Q;E;B)6=?. For example, given the null plan for the Sussman
anomaly and supposing that Q =(on B C), the planner could nonde-
terministically choose to set Aadd to a new instance of the move operator
because the e�ect conjunct (on ?b ?x) uni�es with (on B C).

� In line 3, when a new causal link is added to the plan, binding con-
straints must be added to B so as to force the producer's e�ect to
supply the condition required by the consuming action. Continuing
the Sussman anomaly example, the constraints f?b = B; ?x = Cg must
be added to B.

� Still in line 3, when a new action instance is created from an operator
in �, the planner must ensure that all variables refered to in the action

14B is named for \binding."

23

have not been used previously in the plan. For example, later in the
Sussman anomaly example, when a second move action is instantiated
to support the (on A B) goal, this action must not reuse the variable
names ?b, ?x, or ?y. Instead, for example, the new action instance
could refer to ?b1, ?x1, and ?y1.

� Line 4 (update goal set) of pop removesQ from the agenda and adds the
preconditions of Aadd if it is newly instantiated. Since operators include
some precondition conjuncts that specify noncodesignation constraints
(e.g., (6= ?b ?x)), these need to be treated specially (i.e., added to B
rather than to agenda). Thus, instead of adding all of Aadd's precondi-
tions to agenda, only the logical preconditions (e.g., (clear B)) should
be added.

� Line 5 (causal link protection) of pop considers every action At 2 A

that might threaten a causal link Ap
R
!Ac 2 L and either promotes it or

demotes it. Now that actions have variables in them, the meaning of
might threaten is subject to interpretation. Supposing that At has (not
(clear ?y1)) as an e�ect, could it threaten a link labeled (clear B)?
Well, unless B contains a constraint of the form ?y1 6=B, then the planner
might eventually add the codesignation ?y1=B and the threat would be
undeniable. However, it is best to wait until the uni�cation of ?y1 and
B is forced, i.e. until they unify with no substitution returned. Only at
that point need the planner decide between adding At < Ap or Ac < At

to O.15

� One �nal change is necessary. Line 1 of pop returns the plan if the
agenda is empty, but an extra test is now required. We can return a
plan only if all variables have been constrained to a unique (constant)
value. This is necessary to ensure that all threatened links are actually
recognized (see the previous bullet). Fortunately, we can get this test
for free by requiring that the initial state contain no variables and that
all variables mentioned in the e�ects of an operator be included in the
preconditions of an operator. With these restrictions on legal operator
syntax, the binding constraints added by line 3 are guaranteed to result
in unique values.

5.2 Implementation Details

To implement the generalized pop algorithm described above, one must
choose data structures for representing the binding constraints, B. The nec-

15This point (�rst suggested by [Ambros-Ingerson and Steel, 1988]) is actually rather
subtle and other possibilities have been explored. However, as explained in [Peot and
Smith, 1993, Kambhampati, 1993b], this approach has the advantage of both simplicity
and e�ciency.

24

essary operations include: the addition of constraints, testing for consistency,
uni�cation, and substitution of ground values. Note that the familiar algo-
rithms for uni�cation are inadequate for our tasks because they accept only
= constraints while we require 6= constraints as well.

The remainder of this Section describes one way to implement these func-
tions. Casual readers might wish to skip this discussion and jump directly
to the section on \Conditional E�ects & DIsjunction."

One implementation represents B as a list of varset structures. Each varset

has three �elds: const, cd-set, and ncd-set. The const �eld is either empty or
represents a unique constant. The cd-set �eld is a list of variables that are
constrained to codesignate, and the ncd-set is a list of variables and constants
that are constrained not to codesignate with any of the variables in cd-set or
the constant in const.

To add a constraint of the form ?x=?y to B, one �rst searches through
B to �nd the �rst varsets for ?x and ?y. If they are distinct and both have
const �elds set, then the constraint is inconsistent. Otherwise, a new empty
varset is created, the const �eld is copied from whichever of the two found
varsets had it set (if any). Next, the two cd-sets are unioned and assigned
to the new structure, and likewise for the ncd-sets. If any member of the
resulting ncd-set is in the resulting cd-set, then the operation is inconsistent.
If not, then the new varset is pushed onto the B list. Adding a constraint
where either ?x or ?y is a constant is done in the same way.

To add a constraint of the form ?x 6=?y to B, one �rst searches through
B to �nd the varsets for ?x and ?y. If either symbol is in the cd-set of the
other varset, then fail, otherwise, make a copy of the varsets, augmenting the
ncd-sets, and push the two new copies onto B.

These routines may seem ine�cient (note that they do not remove old
varsets from B and they make numerous copies; however, they perform well
in practice because they enable the planner to explore many plans in parallel
(i.e., using an arbitrary search technique) with reasonable space e�ciency
(because the B structures are shared between plans). If one restricts the
planner to depth �rst search, then a more e�cient codesignation algorithm
(that removes constraints during backtracking) is possible.

Another e�ciency issue concerns the creation of new variable names when
instantiating new actions from operators. A simple caching scheme can elim-
inate unnecessary copying and provide substantial speedup.16.

6 Conditional E�ects & Disjunction

One annoying aspect of the move operator of Figure 14 is the restriction that
the destination location can't be the Table. This means that to describe the

16The idea is based on the observation that sibling plans | those that explore di�erent
re�nements of the same parent | can reuse action instances.

25

possible movement actions, it's necessary to augment movewith an additional
operator, move-to-table that describes the actions that move blocks from
an arbitrary place to the Table. This is irritating for both software engineer-
ing and e�ciency reasons, but we concentrate on the latter. Note that the
existence of two separate movement operators means that the planner has
to commit (at line 3) whether the destination should be the Table or some
other block | even if it is adding the action to achieve some goal, Q, that
has nothing to do with the destination. For example, if move were added to
support the open condition (clear A) then the planner would have to pre-
maturely commit to the destination of the block on top of A. This violation
of the principle of least commitment causes reduced planning e�ciency.

Previously, we alluded to the fact that we could relax this annoying re-
striction if the action language allowed conditional e�ects. Indeed, condi-
tional e�ects are very useful and represent an important step in the journey
towards increasingly expressive action representation languages that we de-
scribed in the beginning of the paper. The basic idea is simple: we allow a
special when clause in the syntax of action e�ects. When takes two arguments,
an antecedant and a consequent. Both the antecedant and consequent parts
can be �lled by a single literal or a conjunction of literals, but their interpre-
tation is very di�erent. The antecendant part refers to the world before the
action is executed while the consequent refers to the world after execution.
The interpretation is that execution of the action will have the consequent's
e�ect just in the case that the antecedant is true immediately before execu-
tion (i.e., much like the action's precondition determines if execution itself
is legal). Figure 15 illustrates how conditional e�ects allow a more general
de�nition of move.

(define (operator move)

:parameters (?b ?x ?y)

:precondition (and (on ?b ?x) (clear ?b) (clear ?y)

(6= ?b ?x) (6= ?b ?y) (6= ?x ?y))

:effect (and (on ?b ?y) (not (on ?b ?x)) (clear ?x)

(when (6= ?y Table) (not (clear ?y)))))

Figure 15: Conditional e�ects allow the move operator to be used when the
source or destination locations is the Table. Compare with Figure 14.

6.1 Planning with Conditional E�ects

Historically, planning with actions that have conditional e�ects was thought
to be an inherently expensive and problematic a�air (see Figure 16). Thus

26

it may come as a suprise that conditional e�ects demand only two small
modi�cations to the planning algorithm presented earlier.

� Recall that line 3 (action selection) of the algorithm selects a new or
existing action, Aadd, whose e�ect uni�es with the goal Q. If the con-
sequent of a conditional e�ect uni�es with Q, then it may be used to
support the causal link. In this case, line 4 (update goal set), must add
the conditional e�ect's antecedant to the agenda.

� Without conditional e�ects, line 5 (causal link protection) makes the
nondeterministic choice between adding At < Ap to O

0 (i.e., demotion)
or adding Ac < At to O

0 (i.e., promotion). If the threatening e�ect is
conditional, however, then an alternative threat resolution technique,
called confrontation, is possible: add the negation of the conditional
e�ect's antecedant to the agenda. For an example of confrontation, see
Section 7.4.

Note that confrontation introduces negated goals, something we have not
previously discussed. For the most part, negated goals are just like positive
goals | they can be supported by an action whenever that action has an
e�ect that matches. The one di�erence concerns the initial state. Since it
is convenient to avoid specifying all the facts that are initially false, special
machinery is necessary to implement the closed world assumption.

6.2 Disjunctive Preconditions

It's also handy to allow actions (and the antecedants of conditional e�ects)
to contain disjunctive preconditions. While disjunctive preconditions can
quickly cause the search space to explode, they are useful when used with
moderation. Planning with them is very simple. In line 2 (goal selection)
after selecting Q from the agenda an extra test is added. If Q = (or Q1

Q2) then Q is removed from agenda and a nondeterministic call to choose
selects either Q1 or Q2. Whichever disjunct is selected is added back to the
agenda.

Note that we are only allowing preconditions to be disjunctive, not e�ects.
Even though the previous section described conditional e�ects, (when P Q)

should not be confused with e�ects that allow logical implication, i.e. (=>
P Q). In particular, (when P Q) is not the same as (or (not P) Q). The
antecedant of a conditional e�ect refers to the state of the world before the
action is executed; only the consequent actually speci�es a change to the
world.

While it is easy to extend the planner to handle disjunctive precondi-
tions, disjunctive e�ects are much, much harder. Disjunctive e�ects only
make sense when describing an action that has nondeterministic (random)
e�ects. For example, the action of
ipping a coin might be described with

27

Although the landmark paper \Planning for Conjunctive Goals" [Chapman, 1987] clari�ed
the topic of least commitment planning for many readers, it contained a number of results
that were misleading. Chapman's central contribution was the Modal Truth Criterion
(MTC), a formal speci�cation for a simple version of nonlin's Question Answering algo-
rithm [Tate, 1977]. In a nutshell, the MTC lists the necessary and su�cient conditions for
ensuring that a condition be true at a speci�c point in time given a partially ordered set
of partially speci�ed actions. Chapman observed that the MTC can be used for both plan
veri�cation and for plan generation; to demonstrate the latter, he implemented a sound
and complete planner called tweak.
Chapman also proved that evaluating the MTC is NP-hard when actions contain condi-
tional e�ects. Since tweak evaluated the MTC repeatedly in its innermost loop, Chap-
man (and other researchers) speculated that least commitment planning would not scale
to expressive action languages, e.g. those allowing conditional e�ects.
Fortunately, Chapman's pessimism was ungrounded. The
aw in his arguments stem from
the di�erence between determining whether a condition is true and ensuring that it be
true; a planner need only do the latter. For example, the modi�ed pop algorithm adds
actions whose e�ects are su�cient to make goal conditions true; whether a given e�ect
is necessary is of no concern as long as the planner nondeterministically considers every
alternative. Nowhere does the planner ask whether a condition is true in the plan; instead
it adds actions and posts su�cient constraints to make it true.
Once these constraints are posted, the planner must ensure that all constraints are satis�ed
before it can terminate successfully. The combination of causal links and a threat detection
algorithm renders this check inexpensive on a per-plan basis, however it can increase the
number of plans visited because of the nondeterministic choice to promote, demote, or
confront. In other words, the modi�ed pop algorithm pushes the complexity of evaluating
the MTC into the size of the search space. For an in depth discussion of this and other
aspects of Chapman's results see [Kambhampati and Nau, 1993]; for more information
on least commitment planning with conditional e�ects, see [Pednault, 1991, Collins and
Pryor, 1992, Penberthy and Weld, 1992].

Figure 16: The Modal Truth Criterion and Conditional E�ects

a disjunctive e�ect (or (heads ?x) (tails ?x)). Planning with actions
whose e�ects are only partially known is very tricky and we don't have time
to describe it in this simple introduction. See [Warren, 1976, Schoppers, 1987,
Kaelbling, 1988, Olawsky and Gini, 1990, Krebsbach et al., 1992, Peot and
Smith, 1992, Etzioni et al., 1992, Kushmerick et al., 1993].

7 Universal Quanti�cation

Now we are ready to take the next major step towards more expressive ac-
tions. Allowing universal quanti�cation in preconditions allows one to easily
describe real world actions like the UNIX rmdir command which deletes
a directory only if all �les inside it have already been deleted. Universally
quanti�ed e�ects allow one to describe actions like chmod * which set the pro-
tection of all �les in a given directory. Naturally, universal quanti�cation is
equally useful in describing physical domains. One can use universally quan-
ti�ed preconditions to avoid the need for a special clear predicate (with its

28

attendant need for the user to specify how each action a�ects the clearness
of other objects). Instead, one could provide move with a precondition that
says ?b can't be picked up unless all other blocks aren't on ?b. Univers-
ally quanti�ed conditional e�ects allow speci�cation of objects like briefcases
where moving the briefcase causes all objects inside to move as well. For
example, see Figure 17.

(define (operator move)

:parameters (?b ?l ?m)

:precondition (and (briefcase ?b) (at ?b ?l) (6= ?m ?l))

:effect (and (at ?b ?m)

(not (at ?b ?l))

(forall ((object ?x))

(when (in ?x ?b)

(and (at ?x ?m) (not (at ?x ?l)))))))

Figure 17: Moving a briefcase causes all objects inside the briefcase to move
as well. Describing this requires universally quanti�ed conditional e�ects.
The forall quanti�es over all ?x that have type object.

7.1 Assumptions

To implement a planner, ucpop, that handles universally quanti�ed precon-
ditions and e�ects, we'll make a few simplifying assumptions.17 Speci�cally,
we assume that the world being modeled has a �nite, static universe of ob-

jects. Furthermore, we assume that each object has a type. For each object
in the universe, the initial state description must include a unary atomic
sentence declaring its type. For example, the initial description might in-
clude sentences of the form (block A) and (briefcase B) where block

and briefcase are two types.18

Our assumption that the universe is static means that action e�ects
may not assert type information. If an action were allowed to assert (not
(briefcase B)) then that would amount to the destruction of an object.
Similarly, execution of an e�ect that said (block G001) would create a new
block. For now, we don't allow either of these types of e�ects.

17These assumptions can be relaxed, but this is beyond the scope of this paper.
18It's �ne for a given object to have multiple types, but this must be stated explicitly.

For example, the initial state could specify (briefcase B) and also (object B), but we
do not allow a general facility for stating that all briefcases are objects.

29

7.2 The Universal Base

To assure systematic establishment of goals and subgoals that have univers-
ally quanti�ed clauses, ucpop maps these formulae into a corresponding
ground version. The universal base � of a �rst-order, function-free sentence,
�, is de�ned recursively as follows:

�(�) = � if � contains no quanti�ers

�(8t1x �(x)) = �(�1) ^ : : : ^�(�n)

where the �i correspond to each possible interpretation of �(x) under the
universe of discourse, fC1; : : : ; Cng, i.e. the possible objects of type t1 [Gene-
sereth and Nilsson, 1987, p. 10]. In each �i, all references to x have been re-
placed with the constant Ci. For example, suppose that the universe of book
is fmoby; crime; dictg. If � is (forall ((book ?y)) (in ?y B)) then the
universal base �(�) is the following conjunction:

(and (in moby B) (in crime B) (in dict B))

Under the static universe assumption, if this goal is satis�ed, then the
universally quanti�ed goal is satis�ed as well. We call this the universal base
because all universally quanti�ed variables are replaced with constants.

To handle interleaved universal and existential quanti�ers, we need to
extend the de�nition as follows.

�(9t1y �(y)) = t1(y) ^ �(�(y))

�(8t1x 9t2y �(x; y)) = t2(y1) ^ �(�1) ^ : : : ^ t2(yn) ^ �(�n)

Once again the �i correspond to each possible interpretation of �(x; y) under
the universe of discourse for type t1: fC1; : : : ; Cng. In each �i all references
to x have been replaced with the constant Ci. In addition, references to
y have been replaced with Skolem constants (i.e., the yi).

19 All existential
quanti�ers are eliminated as well, but the remaining, free variables (which
act as Skolem constants) are implicitly existentially quanti�ed. Since we are
careful to generate one such Skolem constant for each possible assignment
of values to the universally quanti�ed variables in the enclosing scope, there
is no need to generate and reason about Skolem functions. In other words,
instead of using y = f(x), we enumerate the set ff(C1); f(C2); : : : ; f(Cn)g
for each member of the universe of x and then generate the appropriate set
of clauses �i by substitution and renaming. Since each type's universe is
assumed �nite, the universal base is guaranteed �nite as well. Two more
examples illustrate the handling of existential quanti�cation. If � is

19Note that this de�nition relies on the fact that type t1 has a �nite universe; as a
result n Skolem constants are generated. If there were two leading, universally quanti�ed
variables of the same type, then n2 Skolem constants (yi;j) would be necessary.

30

(exists ((briefcase ?b))

(forall ((book ?y)) (in ?y ?b)))

then the universal base is the following:20

(and (briefcase ?b) (in moby ?b) (in crime ?b) (in dict ?b))

As a �nal example, suppose that the universe of briefcase is fB1; B2g,
and � is

(forall ((briefcase ?b))

(exists ((book ?y)) (in ?y ?b)))

Then the universal base contains two Skolem constants (?y1 and ?y2):

(and (book ?y1) (in ?y1 B1) (book ?y2) (in ?y2 B2))

Since there are only two briefcases, the Skolem constants ?y1 and ?y2

exhaust the range of the Skolem function whose domain is the the universe
of briefcases. Because of the �nite, static universe assumption, we can always
do this expansion when creating the universal base.

7.3 The ucpop Algorithm

The ucpop planning algorithm is based on pop (Figure 8), modi�ed to allow
action schemata with variables, conditional e�ects, disjunctive preconditions
and universal quanti�cation. Previous sections have discussed the modi�ca-
tions required by most of these language enhancements, and now that the
universal base has been de�ned, it's easy to explain the last. Before we do,
however, it helps to de�ne a few utility functions:

� If a goal or precondition is a universally quanti�ed sentence, then
ucpop computes the universal base and plans to achieve that instead.

� If an e�ect involves universal quanti�cation, ucpop does not immedi-
ately compute the universal base. Instead, the universal base is gener-
ated incrementally as the e�ect is used to support causal links.

� Finally, we need to change the de�nition of threaten to account for

universally quanti�ed e�ects. Let Ap
Q
!Ac be a causal link. If there

exists a step At satisfying the following conditions, then it is a threat

to Ap
Q
!Ac.

20Since ?b is free, it is implicitly existentially quanti�ed. Of course, since there are only
two briefcases, (briefcase ?b) is equivalent to saying that the books have to be in B1 or
B2. Hence, in this case � and �(�) both specify an (implicit) disjunction. As a result,
while this will be a legal goal for ucpop, we can not allow it as an action e�ect for the
reasons described in Section 6.2.

31

1. Ap < At < Ac is consistent with O, and

2. At has an e�ect conjunct R (or has a conditional e�ect whose
consequent has a conjunct R), and

3. MGU(Q;:R;B) does not equal ?, and

4. for all pairs (u; v) 2 MGU(Q;:R;B), either u or v is a member of
the e�ect's universally quanti�ed variables.

In other words, an action is considered a threat when uni�cation re-
turns bindings on nothing but the e�ect's universally quanti�ed vari-
ables. Previously we mentioned that we wanted to consider an action
to be a threat only if B necessarily forced the codesignation. With
ordinary least-commitment variables, this happens when MGU() returns
the empty set. But with universally quanti�ed e�ects, the situation is
di�erent. For example, consider a UNIX chmod * action whose e�ect
makes all �les ?f write protected. This action necessarily threatens a
link labeled (writable foo.tex) even though MGU() returns a binding,
(?f, foo.tex), on the e�ect's universally quanti�ed variable ?f.

Put another way, the chmod * action is a threat because (writable

foo.tex) is a member of the universal base of its e�ect. If all uni-
versally quanti�ed e�ects were replaced with their universal base at
operator instantiation time, then MGU() would never return bindings
on universally quanti�ed variables (because there wouldn't be any!).
While this substitution would eliminate the need for bullet 4's special
treatment of universal variables in the de�nition of threats, it would
be very ine�cient. Since universally quanti�ed e�ects are expanded
into their universal base incrementally, the de�nition of threat must be
altered.

Figure 18 summarizes the algorithm.
Although we shall not prove it here (see [Penberthy and Weld, 1992]

instead), ucpop is both sound and complete for its action representation
given the assumptions of the �xed, static universe.

7.4 Confrontation Example

To see a concrete example of ucpop in action, recall the move operator
de�ned in Figure 17 which transports a briefcase from location ?l to ?m

along with its contents. Remember, unlike our previous de�nition, move lets
the agent directly move only the briefcase; all other objects must be moved
indirectly. Suppose we now de�ne an operator that removes an item ?x from
the briefcase, as shown in Figure 19.

Note that take-out doesn't change the location of ?x, so it will remain
in the location to which the briefcase was last moved.

32

Algorithm: ucpop(hA;O;L;Bi, agenda,�)

1. Termination: If agenda is empty, return hA;O;L;Bi.

2. Goal reduction: Remove a goal �Q;Ac� from agenda.

(a) If Q is a quanti�ed sentence then post the universal base
��(Q); Ac� to agenda. Go to 2.

(b) If Q is a conjunction of Qi then post each �Qi; Ac� to agenda.
Go to 2.

(c) If Q is a disjunction of Qi then nondeterministically choose one
disjunct, Qk, and post �Qk; Ac� to agenda. Go to 2.

(d) If Q is a literal and a link Ap
:Q
!Ac exists in L, fail (an impossible

plan).

3. Operator selection: Nondeterministically choose any existing (from
A) or new (instantiated from �) action Ap with e�ect conjunct R such
that Ap < Ac is consistent with O, and R (note R is a consequent
conjunct if the e�ect is conditional) uni�es with Q given B. If no such
choice exists then fail. Otherwise, let

(a) L0 = L [fAp

Q
!Acg

(b) B0 = B [f(u; v)j(u; v) 2 MGU(Q;R;B) ^ u; v not universally quan-
ti�ed variables of the e�ect g

(c) O0 = O [fAp < Acg

4. Enable new actions and e�ects: Let A0 = A and agenda0 = agenda.
If Ap 62 A then add Ap to A

0, add �preconds(Ap)nMGU(Q;R;B); Ap� to
agenda0, add fA0 < Ap < A

1
g to O, and add non-cd-constraints(Ap) to

B0. If the e�ect is conditional and it has not already been used to es-
tablish a link in L, then add its antecedant to agenda after substituting
with MGU(Q;R;B).

5. Causal link protection: For each causal link l = Ai
P
!Aj in L and

for each action At which threatens l nondeterministically choose one
of the following (or, if no choice exists, fail):

(a) Promotion If consistent, let O0 = O0 [fAj < Atg.

(b) Demotion If consistent, let O0 = O0 [fAt < Aig.

(c) Confrontation If At's threatening e�ect is conditional with an-
tecendant S and consequent R, then add �:SnMGU(P;:R); At�
to agenda0.

6. Recursive invocation: If B is inconsistent then fail; else call
ucpop(hA0;O0;L0;B0i, agenda0, �).

Figure 18: The ucpop partial order planning algorithm

33

(define (operator take-out)

:parameters (?x ?b)

:precondition (in ?x ?b)

:effect (not (in ?x ?b)))

Figure 19: This action removes an item from the briefcase.

Suppose that there is just one briefcase B which is at home with a pay-
check, P, inside it, as codi�ed by the initial conditions: (and (briefcase B)

(at B home) (in P B) (at P home)). Furthermore suppose that we like
P at home, but we want the briefcase at work; in other words, our goal is
(and (at B office) (at P home)). We call ucpop with the null plan and
agenda containing the pair h(and (at B office) (at P home)); A

1
i,21 and

� = the move and take-out operators. Since agenda is nonempty, the goal
is removed from the agenda, recognized as a conjunction, and reduced into
two literals which are both put back on the agenda (line 2b). Line 2 is now
executed again and the goal (at P home) is removed from agenda; since it
is a literal, control proceeds to line 3 (operator selection). There are two
ways to support this goal: by creating a new instance of a move action or
by linking to the initial conditions (i.e., the existing step A0). Suppose that
ucpop makes the correct nondeterministic choice and links to the initial
state. Since the one link isn't threatened, ucpop calls itself recursively with
the plan shown in �gure 20.

(at B office) (at P home)

end

(briefcase B) (at B home) (in P B) (at P home)

start

Figure 20: One subgoal is easy to support

Now ucpop removes the last goal, (at B office) from the agenda (line
2) and shifts control to line 3 of the algorithm. There are two ways to
achieve this goal, but since no existing steps have e�ects matching the goal,
both options involve instantiating a new move step. One obvious way to
achieve the goal is to move B directly to the o�ce, but the other method is
to move a di�erent briefcase to work and subgoal on getting B inside that

21Recall that we often refer to the agenda as if it contains just the logical halves of these
pairs. For example, we might say that agenda contains one entry, (and (at B office)

(at P home)), tagged with the step A1. In either case, the idea is the same: A1 is the
step that has the logical sentence as a precondition.

34

other briefcase. Since there isn't any other briefcase, the second approach
would result in backtracking; suppose instead that ucpop makes the correct
nondeterministic choice and updates the set of actions, links and bindings
appropriately. Since the move action is newly added, its precondition, (and
(briefcase B) (at B ?l)), is added to the goal agenda. At this point
there are no threatened links, so ucpop calls itself recursively with the plan
shown in �gure 21. Note that some of the e�ects of move are shown in gray
rather than black | this signi�es that they are conditional. Furthermore,
note that the variable ?o1 is surrounded by a circle to denote that it is
universally quanti�ed.

move B ?l office
(briefcase B) (at B ?l) (in ?o1 B)

(at B office) (at P home)

end

(at B office) ~(at B ?l) (at ?o1 office) ~(at ?o1 ?l)

(briefcase B) (at B home) (in P B) (at P home)

start

Figure 21: A new move step supports the second goal without threatening
the �rst link.

The conjunctive goal, (and (briefcase B) (at B ?l)), gets reduced
into its component literals which get chosen in turn. In both cases it is
possible to link them to the initial state in the same way that was illustrated
above. However, when ucpop uses the initial condition (at B home) to
support move's precondition (at B ?l), it is forced to add (?l, home) to
the plan's set of codesignation constraints. This change to B causes move
to threaten the link labeled (at P home) as signi�ed by the dashed line in
�gure 22.

Previously, the link wasn't threated by move because MGU((at ?o1 ?l)); (at P home);B)
uni�ed with a complex uni�er: f(?l, home); (?o1, P)g; although the second
binding pair contains a universally quanti�ed variable ?o1, the �rst pair does
not, so the de�nition of threat is unsatisifed. However, after the B is extended
to constrain ?l to the value home, the most general uni�er consists solely of
(?o1, P). Now the threat is real as �gure 22 shows.

To protect against the threat (line 5 of the algorithm), ucpopmust choose
nondeterministically between three techniques: promotion, demotion, and
confrontation. In the current situation, however, both promotion and demo-
tion are impossible because move can't come before the *start*" action A0

nor after the *end*" action A
1
. Fortunately, the threatening e�ect is con-

35

move B home office
(briefcase B) (at B home) (in ?o1 B)

(at B office) (at P home)

end

(at B office) ~(at B home) (at ?o1 office) ~(at ?o1 home)

(briefcase B) (at B home) (in P B) (at P home)

start

Figure 22: Now that codesignation constraints bind ?l to home the move step
threatens an existing link.

ditional so confrontation is a viable technique. Intuitively, this makes sense.
The move step a�ects the location of the paycheck only when (in P B) so
ucpop posts its negation as a new subgoal of move on the agenda. Note that
although uni�cation with universally quanti�ed variables was ignored during
threat detection, the constraints on ?o1 are crucially important when posting
this new subgoal | ucpop need not ensure that nothing is in the briefcase,
it just has to remove the paycheck. As a result, the subgoal generated by
confrontation is speci�c to P as illustrated in �gure 23.

move B home office
(briefcase B) (at B home) ~(in P B) (in ?o1 B)

(at B office) (at P home)

end

(at B office) ~(at B home) (at ?o1 office) ~(at ?o1 home)

(briefcase B) (at B home) (in P B) (at P home)

start

Figure 23: After Confronting the Threat

Satisfying the new sugoal requires instantiating and adding a take-out

step to A which adds another subgoal to the agenda. But the goal of (in P

B) is easily satis�ed by the initial conditions, so ucpop quickly returns the
plan shown in �gure 24 as its solution to this planning problem.

36

(briefcase B) (at B home) (in P B) (at P home)

start

(in P B)

~(in P B)

move B home office
(briefcase B) (at B home) ~(in P B) (in ?o1 B)

(at B office) ~(at B home) (at ?o1 office) ~(at ?o1 home)

(at B office) (at P home)

end

take-out P B

Figure 24: Final Plan.

7.5 Quanti�cation Example

While the example of the previous section illustrated ucpop's basic operation
and use of confrontation to protect threatened links, it did not demonstrate
the planner's capability to handle universally quanti�ed goals. Nor did we
link to a universally quanti�ed e�ect to demonstrate the incremental ex-
pansion of the universal base. To demonstrate these features, we consider
another primitive operator and another problem. The new action schema
allows one to add items to the briefcase.

(define (operator put-in)

:parameters (?x ?b ?l)

:precondition (and (6= ?x ?b) (at ?x ?l) (at ?b ?l) (briefcase ?b))

:effect (in ?x ?b))

Figure 25: What good is a briefcase if we can't put things into it?

Note that put-in requires that ?x and the briefcase be in the same loca-
tion and that it disallows putting the briefcase inside itself.

Suppose that the initial conditions specify that the following facts are
true (and all others are false):

(and (object D) (object B) (briefcase B) (at B home) (at D office))

As our goal, we request that every object be at home:

37

(forall ((object ?o)) (at ?o home))

The null plan corresponding to this problem is shown in Figure 26.

(forall ((object ?x)) (at ?x home))

end

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

start

Figure 26: Dummy plan representing problem. Note that (in D B) is ex-
plicitly listed as false because it is relevant later in the example. In fact, the
closed world assumption states that all propositions which are not explicitly
listed as true are presumed false.

When ucpop is �rst called, line 2a immediately recognizes the sole agenda
entry, (forall ((object ?o)) (at ?o home))) as a quanti�ed sentence
and expands it into the universal base. Control shifts back to line 2 with
agenda containing (and (at B home) (at D home)). On this iteration, line
2b splits the conjunction into its component parts and jumps back to line
2. At this point the agenda contains two entries, (at B home) and (at D

home), both tagged with A
1
. On the next iteration, suppose Q = (at B

home); this time, none of line 2's cases are satis�ed, so control proceeds to
line 3. Suppose that ucpop nondeterministically chooses to instantiate a new
instance of move to support the goal. The links, bindings, and orderings are
updated; then in line 4, the new action is added to A and its preconditions
are stu�ed on agenda. When the recursive call occurs (line 6), the updated
plan is shown in Figure 27.

(at B home) (at D home)

end

move B ?l home
(briefcase B) (at B ?l) (in ?o1 B)

(at B home) ~(at B ?l) (at ?o1 home) ~(at ?o1 ?l)

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

start

Figure 27: After supporting �rst conjunct

38

On the next iteration, suppose that Q = (at D home). Since this is a
literal, control goes to line 3. Suppose that ucpop wisely (nondeterministic-
ally) chooses to support this goal with the existing move action. In particular,
it decides to use the universally quanti�ed conditional e�ect that any object
?o1 in the briefcase will get moved as well as the briefcase. Now is the time to
incrementally expand the e�ect's universal base. The key step is at the end
of line 4 where ucpop adds the new goal, (in D B), instantiated from the
antecedant of the conditional e�ect to agenda. The resulting plan is shown
in Figure 28. Note that while we have drawn (at D home) and (at D ?l)

as instantiated e�ects of move, they actually don't get explicitly added to
the data structures. There's no point as long as the universaly quanti�ed
version is there. So perhaps the catch phrase of incrementally generating the
universal base for e�ects is misleading. If you prefer to think of it as not
being generated at all, that's �ne.

(at B home) (at D home)

end

move B ?l home
(briefcase B) (at B ?l) (in D B) (in ?o1 B)

(at B home) ~(at B ?l) (at D home) ~(at D ?l) (at ?o1 home) ...

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

start

Figure 28: After incrementally expanding part of the universal base of the
universally quanti�ed e�ect

Now we've covered most of the interesting stu�, so we'll fast-forward to
the end (Figure 29).

7.6 Quanti�cation over Dynamic Universes

So far the discussion of universal quanti�cation has assumed that the uni-
verse of discourse for each type is �nite, static and known to the agent. In
this section we explain how to handle dynamic universes, i.e. domains whose
action e�ects can create new objects or delete existing ones.22 There are two
independent questions which we address in turn: (1) how should object cre-
ation and destruction be represented (syntactically) in the action language,

22In�nite universes of discourse and situations in which the agent has only incomplete
information can also be handled, but this is considerably more di�cult. See [Golden et

al., 1994b] for more information.

39

(at B home) (at D home)

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

end

start

move B home office
(briefcase B) (at B home) ~(in D B) (in ?o3 B)

(at B office) ~(at B home) (at ?o3 office) ~(at ?o3 home)

put-in D B
(briefcase B) (at B office) (at D office)

(in D B)

move B office home
(object D) (briefcase B) (at B office) (in D B) (in ?o1 B)

(at B home) ~(at B office) (at D home) ~(at D office) (at ?o1 home) ...

Figure 29: Final Plan

and (2) how should the planner handle universally quanti�ed goals in the
face of these possible e�ects.

One can model an action that destroys an object with an e�ect that
negates the object's type predicate. For example, if dict is of type book

then destroying the dictionary can be represented with an e�ect asserting
(not (book dict)). Similarly, an action that creates a new book need only
have an e�ect that asserts (book G0053) for some newly generated symbol
G0053.

Extending ucpop to handle object destruction is straightforward. For
example, suppose that the universe of book is fmoby; dictg and � is (forall
((book ?y)) (in ?y B)). Recall that if the universe of books is static then
ucpop generates (and (in moby B) (in dict B)) as the universal base.
To account for potential destruction, ucpop must simply generate a slightly
more elaborate universal base:

(and (or (in moby B) (not (book moby)))

(or (in dict B) (not (book dict))))

As long as no new books are created, this goal is satis�ed exactly when
the quanti�ed expression is satis�ed. Note that this expression reduces im-

40

mediately to the simpler one if there are no destructive actions since there
will be no way to achieve the (not (book : : : subgoals.23

It's somewhat trickier to handle actions that create new objects. Without
object creation, ucpop can determine the universe of discourse for a type
such as book by matching (book ?x) against the e�ects of the initial state.
In the example above, this is how ucpop determines that moby and dict

are the only possible books. However, if arbitrary actions can create objects
of type book, then when expanding the universal base for a precondition of
action Ac, ucpop must consider all books that are possibly created by all
actions that are possibly ordered prior to Ac. But that's not all. Since subse-
quent problem solving might add new actions to the plan and these actions
might be ordered prior to Ac, ucpop has to maintain a list of previously ex-
panded forall goals. Whenever a new action is added, it is checked against
the list of forall goals | if the new action creates an object whose type
has previously been expanded, then that forall goal is reconsidered and
the universal base is incrementally updated.24 This gets tricky if the goal
expression involves nested universal and existential quanti�ers, because the
incremental expansion must create the appropriate number of new Skolem
constants.

7.7 Implementation

Common Lisp source code for the ucpop planner is available for nonpro�t
use via annonymous FTP. The code is simple enough for classroom use, yet
quite e�cient (i.e., it takes about 2-20ms to explore and re�ne a partial
plan on a SPARC-IPX). In addition to the features described in this Section,
ucpop version 2.0 provides the following enhancements:

� Declarative speci�cation of control rules that guide the nondeterminis-
tic search.

� A graphic plan-space browser written in clim for portability.

� Domain axioms

� Predicates that call lisp code when used in action preconditions (useful
when the domain theory involves arithmetic, etc.)

23While our strategy handles the standard logical interpretation of the quanti�ed ex-
pression, the technique raises the question of whether one wants one's planner plotting
out book burning strategies. We claim that this issue of plan quality and harmful side
e�ects is best treated separately since it crops up in many situations other than uni-
versally quanti�ed goals. See [Weld and Etzioni, 1994, Lansky, 1993, Pollack, 1992,
Wilkins, 1988b] for discussion of this topic.

24This technique was �rst used in the Gordius planner [Simmons, 1988a, Simmons,
1992].

41

� A set of domain theories (including those used in this paper and many
more) for experimentation.

� A users manual [Barrett et al., 1993]

The planner is available via anonymous FTP on june.cs.washington.edu
as the compressed �le ftp/pub/ai/ucpop.tar.Z (use binary mode for trans-
fer).

8 Advanced Topics

The discussion of Sections 2{7 has been restricted to goals of attainment.
While we've explained how to handle goal descriptions involving disjunction
and universal quanti�cation (not just conjunction as in strips), we've as-
sumed that the goal is a logical expression describing a single world state
| the one attained after the complete plan is executed. However, it's often
useful to specify general constraints on the agent's behavior over time as part
of the goal. For example, one might wish to specify that a household robot
should never set the house on �re and that a software robot (i.e., a \Soft-
bot" [Etzioni and Segal, 1992, Etzioni et al., 1993, Etzioni, 1993b]) shouldn't
delete valuable �les. One class of behavioral constraints, called maintenance

goals, can be implemented very easily on top of ucpop by an extension
of the causal link threat detection meachnism; see [Etzioni et al., 1992,
Weld and Etzioni, 1994]. Drummond [Drummond, 1989] describes a rich
language for expressing goals, including those of maintenance. The Gem-
plan planner also handles a wide range of behavioral goals [Lansky, 1988].
zeno synthesizes plans to achieve universally quanti�ed temporal and metric
goals [Penberthy and Weld, 1994].

Even simple propositional strips planning is PSPACE complete if ac-
tions can have more than two conjuncts in their preconditions [Bylander,
1991]. In some cases, planning is undecidable [Erol et al., 1992]. As a re-
sult, we can't expect any of the planners described in this paper to per-
form quickly on all problems all of the time. In fact, to achieve reason-
able performance much of the time it is usually necessary to add domain-
dependent control knowledge and often necessary to sacri�ce completeness.
Since the nondeterministic choose function is implemented with search,
this amounts to using an aggressive, heuristic search algorithm rather than
breadth-�rst or iterative deepening depth-�rst. A simple way to do this is
to provide a ranking function (i.e., a function that takes a plan and returns
a real number indicating metrically how good it is). Unfortunately, few es-
timators are known that are both e�cient and useful. A better idea is to
use knowledge-based search | i.e., to build a miniature production system
that uses a knowledge base of forward chaining rules to guide each non-
deterministic choice. Acquiring domain-dependent knowledge in this rule-

42

like form is much easier, because individual rules refer to local decisions
and there is no need to weight the pieces as is required when computing
a single metric rank. These ideas were �rst explored in the Soar system
[Laird et al., 1987] and re�ned in the Prodigy planner [Minton et al., 1989b,
Minton et al., 1989a]; they have also been incorporated in the ucpop imple-
mentation as described in [Barrett et al., 1993].

Machine learning techniques can be used to automatically derive these
production rules. Many learning algorithms have been explored, including
explanation-based learning [Minton, 1988], static domain compilation [Et-
zioni, 1993a, Etzioni, 1993c, Smith and Peot, 1993], abstraction [Knoblock,
1990], and derivational analogy [Veloso, 1992]. See also the case-based plan-
ner built in the pop (snlp) framework [Hanks and Weld, 1992] and a similar
system, [Kambhampati and Hendler, 1992], that was built on a reduction
schemata planner.

Production-rule control can also be used to implement re�nement by hi-
erarchical reduction schemata, a traditional planning method [Tate, 1977,
Currie and Tate, 1991, Charniak and McDermott, 1984, Yang, 1990].

Another form of search control exploits the notion of resources; sipe
[Wilkins, 1988a, Wilkins, 1990] is an impressive planner that uses sophis-
ticated heuristics to handle domains of industrial complexity.

Both the pop and ucpop planners support open conditions with a single
causal link, even when other actions in the plan provide redundant sup-
port. This can be seen as a violation of least commitment because it de-
mands that the planner respond to threats even in cases when one of the
redundant supports is not in jeopardy. The idea of multiple causal support
dates back to the nonlin planner [Tate, 1977], but see [Kambhampati, 1992,
Kambhampati, June 1992] for a clean formalization. See [Kambhampati,
1993b] for an excellent analysis of the di�erent design choices in planning
algorithms.

It's also possible to build planners that handle even more expressive ac-
tion languages than the ones described here. Pednault [Pednault, 1989] de-
scribes the adl language, which is slightly more expressive that that handled
by ucpop; he discusses the theory behind regression planning for this lan-
guage in [Pednault, 1988], but noone has implemented a planner for the full
language.25 Many other extensions have been implemented, however, in-
cluding incomplete information, execution, and sensing operations [Etzioni
et al., 1992, Peot and Smith, 1992, Golden et al., 1994a], probabilistic plan-
ning [Kushmerick et al., 1993, Draper et al., 1994], decision theoretic spec-
i�cation of goals [Williamson and Hanks, 1994], and metric time and con-
tinuous change [Penberthy and Weld, 1994]. Many extensions remain to be
investigated, for example, richer utility models [Haddawy and Hanks, 1992,

25McDermott's Pedestal planner [McDermott, 1991] is a total order planner which
handles roughly the same subset of adl as does ucpop.

43

Wellman, 1993], domain axioms, exogeneous events, the generation of \safe"
plans [Weld and Etzioni, 1994], and multiple cooperating agents [Shoham,
1993].

There's much more of interest, but we can't describe it here. See [Allen
et al., 1990] for the tip of the iceberg.

References

[Allen et al., 1990] J. Allen, J. Hendler, and A. Tate, editors. Readings in

Planning. Morgan Kaufmann, San Mateo, CA, August 1990.

[Ambros-Ingerson and Steel, 1988] J Ambros-Ingerson and S. Steel. Inte-
grating planning, execution, and monitoring. In Proc. 7th Nat. Conf. on

A.I., pages 735{740, 1988.

[Barrett and Weld, 1993] A. Barrett and D. Weld. Characterizing subgoal
interactions for planning. In Proc. 13th Int. Joint Conf. on A.I., pages
1388{1393, September 1993.

[Barrett and Weld, 1994] A. Barrett and D. Weld. Partial order planning:
Evaluating possible e�ciency gains. Arti�cial Intelligence, 1994. To ap-
pear. Available via FTP from pub/ai/ at cs.washington.edu.

[Barrett et al., 1993] A. Barrett, K. Golden, J.S. Penberthy, and D. Weld.
UCPOP user's manual, (version 2.0). Technical Report 93-09-06, Uni-
versity of Washington, Department of Computer Science and Engineering,
September 1993. Available via FTP from pub/ai/ at cs.washington.edu.

[Bylander, 1991] T. Bylander. Complexity results for planning. In Proceed-

ings of IJCAI-91, pages 274{279, 1991.

[Chapman, 1987] D. Chapman. Planning for conjunctive goals. Arti�cial

Intelligence, 32(3):333{377, 1987.

[Charniak and McDermott, 1984] E. Charniak and D. McDermott. Intro-

duction to Arti�cial Intelligence. Addison-Wesley Publishing Company,
Reading, MA, 1984.

[Collins and Pryor, 1992] G. Collins and L. Pryor. Achieving the functional-
ity of �lter conditions in a partial order planner. In Proc. 10th Nat. Conf.

on A.I., August 1992.

[Cormen et al., 1991] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. MIT Press, 1991.

[Currie and Tate, 1991] K. Currie and A. Tate. O-plan: the open planning
architecture. Arti�cial Intelligence, 52(1):49{86, November 1991.

44

[Draper et al., 1994] D. Draper, S. Hanks, and D. Weld. Probabilistic plan-
ning with information gathering and contingent execution. In Proc. 2nd

Int. Conf. on A.I. Planning Systems, June 1994.

[Drummond, 1989] M. Drummond. Situated control rules. In Proceedings

of the First International Conference on Knowledge Representation and

Reasoning, May 1989.

[Erol et al., 1992] K. Erol, D. Nau, and V. Subrahmanian. When is planning
decidable? In Proc. 1st Int. Conf. on A.I. Planning Systems, pages 222{
227, June 1992.

[Etzioni and Segal, 1992] Oren Etzioni and Richard Segal. Softbots as
testbeds for machine learning. In Working Notes of the AAAI Spring

Symposium on Knowledge Assimilation, Menlo Park, CA, 1992. AAAI
Press.

[Etzioni et al., 1992] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh,
and M. Williamson. An Approach to Planning with Incomplete Infor-
mation. In Proc. 3rd Int. Conf. on Principles of Knowledge Representa-

tion and Reasoning, October 1992. Available via FTP from pub/ai/ at
cs.washington.edu.

[Etzioni et al., 1993] Oren Etzioni, Neal Lesh, and Richard Segal. Build-
ing softbots for UNIX (preliminary report). Technical Report 93-09-01,
University of Washington, 1993. Available via anonymous FTP from
pub/etzioni/softbots/ at cs.washington.edu.

[Etzioni, 1993a] Oren Etzioni. Acquiring search-control knowledge via static
analysis. Arti�cial Intelligence, 62(2):255{302, August 1993.

[Etzioni, 1993b] Oren Etzioni. Intelligence without robots (a reply to
brooks). AI Magazine, 14(4), December 1993. Available via anonymous
FTP from pub/etzioni/softbots/ at cs.washington.edu.

[Etzioni, 1993c] Oren Etzioni. A structural theory of explanation-based
learning. Arti�cial Intelligence, 60(1):93{140, March 1993.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS: A new approach
to the application of theorem proving to problem solving. Arti�cial Intel-
ligence, 2(3/4), 1971.

[Genesereth and Nilsson, 1987] M. Genesereth and N. Nilsson. Logical Foun-
dations of Arti�cial Intelligence. Morgan Kaufmann Publishers, Inc., Los
Altos, CA, 1987.

45

[Golden et al., 1994a] K. Golden, O. Etzioni, and D. Weld. Omnipotence
without omniscience: Sensor management in planning. In Proc. 12th Nat.

Conf. on A.I., July 1994.

[Golden et al., 1994b] K. Golden, O. Etzioni, and D. Weld. To Sense or Not
to Sense? (A Planner's Question). Technical Report 94-01-03, Univer-
sity of Washington, Department of Computer Science and Engineering,
January 1994. Available via FTP from pub/ai/ at cs.washington.edu.

[Haddawy and Hanks, 1992] P. Haddawy and S. Hanks. Representations for
Decision-Theoretic Planning: Utility Functions for Dealine Goals. In Proc.

3rd Int. Conf. on Principles of Knowledge Representation and Reasoning,
1992.

[Hammond, 1990] K. Hammond. Explaining and repairing plans that fail.
Arti�cial Intelligence, 45:173{228, 1990.

[Hanks and McDermott, 1994] Steve Hanks and Drew McDermott. Model-
ing a Dynamic and Uncertain World I: Symbolic and Probabilistic Rea-
soning about Change. Arti�cial Intelligence, 65(2), 1994.

[Hanks and Weld, 1992] Steven Hanks and Daniel Weld. Systematic adap-
tation for case-based planning. In Proc. 1st Int. Conf. on A.I. Planning

Systems, June 1992.

[Hanks, 1990] S. Hanks. Practical temporal projection. In Proc. 8th Nat.

Conf. on A.I., pages 158{163, August 1990.

[Kaelbling, 1988] Leslie Pack Kaelbling. Goals as parallel program speci�ca-
tions. In Proc. 7th Nat. Conf. on A.I. Morgan Kaufmann, 1988.

[Kambhampati and Hendler, 1992] S. Kambhampati and J. Hendler. A val-
idation structure based theory of plan modi�cation and reuse. Arti�cial

Intelligence, 55:193{258, 1992.

[Kambhampati and Nau, 1993] S. Kambhampati and D.S. Nau. On the na-
ture and role of modal truth criteria in planning. Technical Report ISR-
TR-93-30, University of Maryland, Inst. for systems research, March 1993
1993. Submitted to Arti�cial Intelligence.

[Kambhampati, 1992] S. Kambhampati. Characterizing multi-contributor
causal structures for planning. In Proc. 1st Int. Conf. on A.I. Planning

Systems, pages 116{125, June 1992.

[Kambhampati, 1993a] S. Kambhampati. On the utility of systematicity:
Understanding the tradeo�s between redundancy and commitment in
partial-order planning. In Proceedings of IJCAI-93, pages 1380{1385, 1993.

46

[Kambhampati, 1993b] S. Kambhampati. Planning as re�nement search: A
uni�ed framework for compariitive analysis of search space size and per-
formance. Department of Computer Science and Engineering TR-93-004,
Arizona State University, 1993.

[Kambhampati, June 1992] S. Kambhampati. Multi-contributor causal
structures for planning: A formalization and evaluation. Technical Re-
port CS TR-92-019, Dept. of Computer Science and Engg, Arizona State
University, June 1992. (To appear in Arti�cial Intelligence, Fall 1994).

[Knoblock, 1990] C. Knoblock. Learning abstraction hierarchies for problem
solving. In Proc. 8th Nat. Conf. on A.I., pages 923{928, August 1990.

[Korf, 1988] R. Korf. Search: A survey of recent results. In H. Shrobe, editor,
Exploring Arti�cial Intelligence, pages 197{237. Morgan Kaufmann, San
Mateo, CA, 1988.

[Korf, 1992] R. Korf. Linear-space best-�rst search: Summary of results. In
Proc. 10th Nat. Conf. on A.I., pages 533{538, July 1992.

[Krebsbach et al., 1992] K. Krebsbach, D. Olawsky, and M. Gini. An empir-
ical study of sensing and defaulting in planning. In Proc. 1st Int. Conf.

on A.I. Planning Systems, pages 136{144, June 1992.

[Kushmerick et al., 1993] N. Kushmerick, S. Hanks, and D. Weld. An Al-
gorithm for Probabilistic Planning. Technical Report 93-06-03, Univ.
of Washington, Dept. of Computer Science and Engineering, 1993. To
appear in Arti�cial Intelligence. Available via FTP from pub/ai/ at
cs.washington.edu.

[Laird et al., 1987] J. Laird, A. Newell, and P. Rosenbloom. SOAR: An ar-
chitecture for general intelligence. Arti�cial Intelligence, 33(1), 1987.

[Lansky, 1988] A. Lansky. Localized event-based reasoning for multiagent
domains. Computational Intelligence, 4(4):319{340, 1988.

[Lansky, 1993] Amy Lansky, editor. Working Notes of the AAAI Spring

Symposium: Foundations of Automatic Planning: The Classical Approach

and Beyond, Menlo Park, CA, 1993. AAAI Press.

[McAllester and Rosenblitt, 1991] D. McAllester and D. Rosenblitt. System-
atic nonlinear planning. In Proc. 9th Nat. Conf. on A.I., pages 634{639,
July 1991.

[McDermott, 1991] D. McDermott. Regression planning. International Jour-
nal of Intelligent Systems, 6:357{416, 1991.

47

[Minton et al., 1989a] S. Minton, C. Knoblock, D. Koukka, Y. Gil,
R. Joseph, and J. Carbonell. PRODIGY 2.0: The Manual and Tutorial.
CMU-CS-89-146, Carnegie-Mellon University, May 1989.

[Minton et al., 1989b] Steven Minton, Jaime G. Carbonell, Craig A.
Knoblock, Daniel R. Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-
based learning: A problem-solving perspective. Arti�cial Intelligence,
40:63{118, 1989. Available as technical report CMU-CS-89-103.

[Minton et al., 1991] S. Minton, J. Bresina, and M. Drummond. Commit-
ment strategies in planning: A comparative analysis. In Proceedings of

IJCAI-91, pages 259{265, August 1991.

[Minton et al., 1992] S. Minton, M. Drummond, J. Bresina, and A. Phillips.
Total order vs. partial order planning: Factors in
uencing performance.
In Proc. 3rd Int. Conf. on Principles of Knowledge Representation and

Reasoning, October 1992.

[Minton, 1988] S. Minton. Quantitative results concerning the utility of
explanation-based learning. In Proc. 7th Nat. Conf. on A.I., pages 564{
569, August 1988.

[Newell and Simon, 1963] A. Newell and H. Simon. GPS, a program that
simulates human thought. In E. Feigenbaum and J. Feldman, editors,
Computers and Thought. McGraw-Hill, New York, 1963.

[Nilsson, 1980] N. Nilsson. Principles of Arti�cial Intelligence. Tioga Pub-
lishing Company, Palo Alto, CA, 1980.

[Olawsky and Gini, 1990] D. Olawsky and M. Gini. Deferred planning and
sensor use. In Proceedings, DARPA Workshop on Innovative Approaches

to Planning, Scheduling, and Control. Morgan Kaufmann, 1990.

[Pednault, 1988] E. Pednault. Synthesizing plans that contain actions with
context-dependent e�ects. Computational Intelligence, 4(4):356{372, 1988.

[Pednault, 1989] E. Pednault. ADL: Exploring the middle ground between
STRIPS and the situation calculus. In Proceedings Knowledge Represen-

tation Conf.,, 1989.

[Pednault, 1991] E.. Pednault. Generalizing nonlinear planning to handle
complex goals and actions with context-dependent e�ects. In Proc. 12th

Int. Joint Conf. on A.I., July 1991.

[Penberthy and Weld, 1992] J.S. Penberthy and D. Weld. UCPOP: A sound,
complete, partial order planner for ADL. In Proc. 3rd Int. Conf. on Princi-

ples of Knowledge Representation and Reasoning, pages 103{114, October
1992. Available via FTP from pub/ai/ at cs.washington.edu.

48

[Penberthy and Weld, 1994] J.S. Penberthy and D. Weld. Temporal plan-
ning with continuous change. In Proc. 12th Nat. Conf. on A.I., July 1994.

[Peot and Smith, 1992] M. Peot and D. Smith. Conditional Nonlinear Plan-
ning. In Proc. 1st Int. Conf. on A.I. Planning Systems, pages 189{197,
June 1992.

[Peot and Smith, 1993] M. Peot and D. Smith. Threat-removal strategies for
partial-order planning. In Proc. 11th Nat. Conf. on A.I., pages 492{499,
June 1993.

[Pollack, 1992] Martha Pollack. The uses of plans. Arti�cial Intelligence,
57(1), 1992.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Arti�cial Intelligence,
13:81{132, 1980.

[Russell, 1992] S. Russell. E�cient memory-bounded search algorithms. In
Proceedings of the Tenth European Conference on Arti�cial Intelligence,
Vienna, 1992. Wiley.

[Sacerdoti, 1975] E. Sacerdoti. The nonlinear nature of plans. In Proceedings

of IJCAI-75, pages 206{214, 1975.

[Schoppers, 1987] M. Schoppers. Universal plans for reactive robots in un-
predictable environments. In Proceedings of IJCAI-87, pages 1039{1046,
August 1987.

[Shoham, 1993] Y. Shoham. Agent-oriented programming. Arti�cial Intelli-
gence, 60(1):51{92, March 1993.

[Simmons, 1988a] R. Simmons. Combining associational and causal reason-
ing to solve interpretation and planning problems. AI-TR-1048, MIT AI
Lab, September 1988.

[Simmons, 1988b] R. Simmons. A theory of debugging plans and interpreta-
tions. In Proc. 7th Nat. Conf. on A.I., pages 94{99, August 1988.

[Simmons, 1992] R. Simmons. The roles of associational and causal reasoning
in problem solving. Arti�cial Intelligence, pages 159{208, February 1992.

[Smith and Peot, 1993] D. Smith and M. Peot. Postponing threats in partial-
order planning. In Proc. 11th Nat. Conf. on A.I., pages 500{506, June
1993.

[Tate, 1975] A. Tate. Interacting goals and their use. In Proceedings of

IJCAI-75, pages 215{218, 1975.

49

[Tate, 1977] A. Tate. Generating project networks. In Proc. 5th Int. Joint

Conf. on A.I., pages 888{893, 1977.

[Veloso and Carbonell, 1993] M. Veloso and J. Carbonell. Derivational Anal-
ogy in prodigy: Automating Case Acquisition, Storage, and Utilization.
Machine Learning, 10:249{278, 1993.

[Veloso, 1992] Manuela Veloso. Learning by Analogical Reasoning in General

Problem Solving. PhD thesis, Carnegie Mellon University, 1992. Available
as technical report CMU-CS-92-174.

[Waldinger, 1977] R. Waldinger. Achieving several goals simultaneously.
In Machine Intelligence 8. Ellis Horwood Limited, Chichester, 1977.
Reprinted in [Allen et al., 1990].

[Warren, 1976] D. Warren. Generating Conditional Plans and Programs. In
Proceedings of AISB Summer Conference, pages 344{354, University of
Edinburgh, 1976.

[Weld and Etzioni, 1994] D. Weld and O. Etzioni. The �rst law of softbotics.
In Proc. 12th Nat. Conf. on A.I., July 1994. Available via FTP from
pub/ai/ at cs.washington.edu.

[Wellman, 1993] M. Wellman. Challenges for decision-theoretic planning. In
Proceedings of the AAAI 1993 Symposium on Foundations of Automatic

Planning: The Classical Approach and Beyond, March 1993.

[Wilkins, 1988a] D. Wilkins. Causal reasoning in planning. Computational

Intelligence, 4(4):373{380, 1988.

[Wilkins, 1988b] D. E. Wilkins. Practical Planning. Morgan Kaufmann, San
Mateo, CA, 1988.

[Wilkins, 1990] D. Wilkins. Can AI planners solve practical problems? Com-

putational Intelligence, 6(4):232{246, November 1990.

[Williamson and Hanks, 1993] Mike Williamson and Steve Hanks. Exploit-
ing domain structure to achieve e�cient temporal reasoning. In Proc. 13th

Int. Joint Conf. on A.I., pages 152{157, September 1993.

[Williamson and Hanks, 1994] M. Williamson and S. Hanks. Optimal plan-
ning with a goal-directed utility model. In Proc. 2nd Int. Conf. on A.I.

Planning Systems, June 1994.

[Yang, 1990] Q. Yang. Formalizing planning knowledge for hierarchical plan-
ning. Computational Intelligence, 6(1):12{24, February 1990.

50

