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This chapter describes how to use MATLAB to solve initial value problems of 
ordinary differential equations (ODEs) and differential algebraic equations 
(DAEs). It discusses how to represent initial value problems (IVPs) in 
MATLAB and how to apply MATLAB’s ODE solvers to such problems. It 
explains how to select a solver, and how to specify solver options for efficient, 
customized execution. This chapter also includes a troubleshooting guide in the 
Questions and Answers section and extensive examples in the Examples: 
Applying the ODE Solver section.

Category Function Description

Ordinary differential 
equation solvers

ode45 Nonstiff differential equations, medium order 
method.

ode23 Nonstiff differential equations, low order method.

ode113 Nonstiff differential equations, variable order 
method.

ode15s Stiff differential equations and DAEs, variable 
order method.

ode23s Stiff differential equations, low order method.

ode23t Moderately stiff differential equations and DAEs, 
trapezoidal rule.

ode23tb Stiff differential equations, low order method.

ODE option handling odeset Create/alter ODE OPTIONS structure.

odeget Get ODE OPTIONS parameters.

ODE output functions odeplot Time series plots.

odephas2 Two-dimensional phase plane plots.

odephas3 Three-dimensional phase plane plots.

odeprint Print to command window.



Quick Start
Quick Start
1 Write the ordinary differential equation as a 

system of first-order equations by making the substitutions

Then

is a system of n first-order ODEs. For example, consider the initial value 
problem

Solve the differential equation for its highest derivative, writing  in 
terms of t and its lower derivatives . If you let , 
and , then

is a system of three first-order ODEs with initial conditions

y n( ) f t y y ′ .... y n 1–( ), , , ,( )=

y1 y= y2 y′ ... yn, , y n 1–( )
= =,

y1
′ y2=

y2′ y3=

.·

yn′ f t y1 y2 ... y, n, , ,( )=

y′′′ 3y′′– y′y 0=– y 0( ) 0= y′ 0( ) 1= y′′ 0( ) 1–=

y′′′
y′′′ 3y′′ y′y+= y1 y= y2 y′=,

y3 y′′=

y1
′ y2=

y2
′ y3=

y3
′ 3y3 y2y1+=
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Note that the IVP now has the form , where 
.

2 Code the first-order system in an M-file that accepts two arguments, t and 
y, and returns a column vector:

function dy = F(t,y)
dy = [y(2); y(3); 3*y(3)+y(2)*y(1)];

This ODE file must accept the arguments t and y, although it does not have 
to use them. Here, the vector dy must be a column vector.

3 Apply a solver function to the problem. The general calling syntax for the 
ODE solvers is

[T,Y] = solver(’F’,tspan,y0)

where solver is a solver function like ode45. The input arguments are:

For example, to use the ode45 solver to find a solution of the sample IVP on 
the time interval [0 1], the calling sequence is

[T,Y] = ode45('F',[0 1],[0; 1; –1])

Each row in solution array Y corresponds to a time returned in column vector 
T. Also, in the case of the sample IVP, Y(:,1) is the solution, Y(:,2) is the 
derivative of the solution, and Y(:,3) is the second derivative of the 
solution.

F String containing the ODE file name

tspan Vector of time values where [t0 tfinal] causes the solver 
to integrate from t0 to tfinal

y0 Column vector of initial conditions at the initial time t0

y1 0( ) 0=

y2 0( ) 1=

y3 0( ) 1–=

Y′ F t Y,( )= Y 0( ) Y0=,
Y y1  y2  y3;;[ ]=



Representing Problems
Representing Problems 
This section describes how to represent ordinary differential equations as 
systems for the MATLAB ODE solvers.

The MATLAB ODE solvers are designed to handle ordinary differential 
equations. These are differential equations containing one or more derivatives 
of a dependent variable y with respect to a single independent variable t, 
usually referred to as time. The derivative of y with respect to t is denoted as 

, the second derivative as , and so on. Often y(t) is a vector, having 
elements y1, y2, ... yn.

ODEs often involve a number of dependent variables, as well as derivatives of 
order higher than one. To use the MATLAB ODE solvers, you must rewrite 
such equations as an equivalent system of first-order differential equations in 
terms of a vector y and its first derivative.

Once you represent the equation in this way, you can code it as an ODE M-file 
that a MATLAB ODE solver can use.

Initial Value Problems and Initial Conditions
Generally there are many functions y(t) that satisfy a given ODE, and 
additional information is necessary to specify the solution of interest. In an 
initial value problem, the solution of interest has a specific initial condition, 
that is, y is equal to  y0 at a given initial time t0. An initial value problem for 
an ODE is then

If the function  is sufficiently smooth, this problem has one and only one 
solution. Generally there is no analytic expression for the solution, so it is 
necessary to approximate by numerical means, such as one of the solvers 
of the MATLAB ODE suite.

Example: The van der Pol Equation
An example of an ODE is the van der Pol equation

y′ y′′

y′ F t y,( )=

y′ F t y,( )=

y t0( ) y0=

F t y,( )

y t( )
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where µ > 0 is a scalar parameter.

Rewriting the System
To express this equation as a system of first-order differential equations for 
MATLAB, introduce a variable y2 such that y1′= y2. You can then express this 
system as

Writing the ODE File
The code below shows how to represent the van der Pol system in a MATLAB 
ODE file, an M-file that describes the system to be solved. An ODE file always 
accepts at least two arguments, t and y. This simple two line file assumes a 
value of 1 for µ. y1 and y2 become y(1) and y(2), elements in a two-element 
vector.

function dy = vdp1(t,y)
dy = [y(2); (1–y(1)^2)*y(2)–y(1)];

Note This ODE file does not actually use the t argument in its computations. 
It is not necessary for it to use the y argument either – in some cases, for 
example, it may just return a constant. The t and y variables, however, must 
always appear in the input argument list.

Calling the Solver
Once the ODE system is coded in an ODE file, you can use the MATLAB ODE 
solvers to solve the system on a given time interval with a particular initial 
condition vector. For example, to use ode45 to solve the van der Pol equation 
on time interval [0 20] with an initial value of 2 for y(1) and an initial value 
of 0 for y(2).

[T,Y] = ode45(’vdp1’,[0 20],[2; 0]);

y1″ µ 1 y1
2

–( )y1′– y1 0=+

y1′ y2=

y2′ µ 1 y1
2

–( )y2 y1–=



Representing Problems
The resulting output [T,Y] is a column vector of time points T and a solution 
array Y. Each row in solution array Y corresponds to a time returned in column 
vector T. 

Viewing the Results
Use the plot command to view solver output.

plot(t,y(:,1),'–',t,y(:,2),'– –')
title('Solution of van der Pol Equation, mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y1','y2')
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Example: The van der Pol Equation, µ = 1000 (Stiff)

Stiff ODE Problems This section presents a stiff problem. For a stiff problem, 
solutions can change on a time scale that is very short compared to the 
interval of integration, but the solution of interest changes on a much longer 
time scale. Methods not designed for stiff problems are ineffective on intervals 
where the solution changes slowly because they use time steps small enough 
to resolve the fastest possible change.

When µ is increased to 1000, the solution to the van der Pol equation changes 
dramatically and exhibits oscillation on a much longer time scale. 
Approximating the solution of the initial value problem becomes a more 
difficult task. Because this particular problem is stiff, a nonstiff solver such as 
ode45 is so inefficient that it is impractical. The stiff solver ode15s is intended 
for such problems.

This code shows how to represent the van der Pol system in an ODE file with 
µ = 1000.

function dy = vdp1000(t,y)
dy = [y(2); 1000*(1–y(1)^2)*y(2)–y(1)];

Now use the ode15s function to solve vdp1000. Retain the initial condition 
vector of [2; 0], but use a time interval of [0 3000]. For scaling purposes, plot 
just the first component of y(t).

[t,y] = ode15s('vdp1000',[0 3000],[2; 0]);
plot(t,y(:,1),'o');
title('Solution of van der Pol Equation, mu = 1000');
xlabel('time t');
ylabel('solution y(:,1)');
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ODE Solvers
The MATLAB ODE solver functions implement numerical integration 
methods. Beginning at the initial time and with initial conditions, they step 
through the time interval, computing a solution at each time step. If the 
solution for a time step satisfies the solver’s error tolerance criteria, it is a 
successful step. Otherwise, it is a failed attempt; the solver shrinks the step 
size and tries again.

This section describes how to represent problems for use with the MATLAB 
solvers and how to optimize solver performance. You can also use the online 
help facility to get information on the syntax for any function, as well as 
information on demo files for these solvers.

Nonstiff Solvers
There are three solvers designed for nonstiff problems: 

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the 
Dormand-Prince pair. It is a one-step solver – in computing  y(tn), it needs 
only the solution at the immediately preceding time point, y(tn–1). In 
general, ode45 is the best function to apply as a “first try” for most problems.

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and 
Shampine. It may be more efficient than ode45 at crude tolerances and in the 
presence of mild stiffness. Like ode45, ode23 is a one-step solver.

• ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be 
more efficient than ode45 at stringent tolerances and when the ODE 
function is particularly expensive to evaluate. ode113 is a multistep solver – 
it normally needs the solutions at several preceding time points to compute 
the current solution.

Stiff Solvers
Not all difficult problems are stiff, but all stiff problems are difficult for solvers 
not specifically designed for them. Stiff solvers can be used exactly like the 
other solvers. However, you can often significantly improve the efficiency of the 
stiff solvers by providing them with additional information about the problem. 
See “Improving Solver Performance” on page 8-17 for details on how to provide 
this information, and for details on how to change solver parameters such as 
error tolerances.
0



ODE Solvers
There are four solvers designed for stiff (or moderately stiff) problems:

• ode15s is a variable-order solver based on the numerical differentiation 
formulas (NDFs). Optionally it uses the backward differentiation formulas, 
BDFs, (also known as Gear’s method) that are usually less efficient. Like 
ode113, ode15s is a multistep solver. If you suspect that a problem is stiff or 
if ode45 failed or was very inefficient, try ode15s.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is a 
one-step solver, it may be more efficient than ode15s at crude tolerances. It 
can solve some kinds of stiff problems for which ode15s is not effective.

• ode23t is an implementation of the trapezoidal rule using a “free” 
interpolant. Use this solver if the problem is only moderately stiff and you 
need a solution without numerical damping. 

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula 
with a first stage that is a trapezoidal rule step and a second stage that is a 
backward differentiation formula of order two. By construction, the same 
iteration matrix is used in evaluating both stages. Like ode23s, this solver 
may be more efficient than ode15s at crude tolerances.

ODE Solver Basic Syntax
All of the ODE solver functions share a syntax that makes it easy to try any of 
the different numerical methods if it is not apparent which is the most 
appropriate. To apply a different method to the same problem, simply change 
the ODE solver function name. The simplest syntax, common to all the solver 
functions, is

[T,Y] = solver(’F’,tspan,y0)

where solver is one of the ODE solver functions listed previously. 
8-11
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The input arguments are:

The output arguments are:

Obtaining Solutions at Specific Time Points
To obtain solutions at specific time points t0, t1, ... tfinal, specify tspan as a 
vector of the desired times. The time values must be in order, either increasing 
or decreasing.

Specifying these time points in the tspan vector does not affect the internal 
time steps that the solver uses to traverse the interval from tspan(1) to 
tspan(end) and has little effect on the efficiency of computation. All solvers in 
the MATLAB ODE suite obtain output values by means of continuous 
extensions of the basic formulas. Although a solver does not necessarily step 
precisely to a time point specified in tspan, the solutions produced at the 
specified time points are of the same order of accuracy as the solutions 
computed at the internal time points. 

’F’ String containing the name of the file that describes the system of 
ODEs.

tspan Vector specifying the interval of integration. For a two-element 
vector tspan = [t0 tfinal], the solver integrates from t0 to 
tfinal. For tspan vectors with more than two elements, the solver 
returns solutions at the given time points, as described below. Note 
that t0 > tfinal is allowed.

y0 Vector of initial conditions for the problem.

T Column vector of time points 

Y Solution array. Each row in Y corresponds to the solution at a time 
returned in the corresponding row of T.
2



ODE Solvers
Specifying Solver Options
In addition to the simple syntax, all of the ODE solvers accept a fourth input 
argument, options, which can be used to change the default integration 
parameters. 

[t,y] = solver(’F’,tspan,y0,options)

The options argument is created with the odeset function (see “Creating an 
Options Structure: The odeset Function” on page 8-20). Any input parameters 
after the options argument are passed to the ODE file every time it is called. 
For example,

[T,Y] = solver(’F’,tspan,y0,options,p1,p2,...)

calls

F(t,y,flag,p1,p2,...)

Obtaining Statistics About Solver Performance
Use an additional output argument S to obtain statistics about the ODE 
solver’s computations.

[T,Y,S] = solver(’F’,tspan,y0,options,...)

S is a six-element column vector:

• Element 1 is the number of successful steps.

• Element 2 is the number of failed attempts.

• Element 3 is the number of times the ODE file was called to evaluate F(t,y).

• Element 4 is the number of times that the partial derivatives matrix  
was formed.

• Element 5 is the number of LU decompositions.

• Element 6 is the number of solutions of linear systems.

The last three elements of the list apply to the stiff solvers only.

The solver automatically displays these statistics if the Stats property (see 
8-25) is set in the options argument.

F∂ y∂⁄
8-13
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Creating ODE Files
The van der Pol examples in the previous sections show some simple ODE files. 
This section provides more detail and describes how to create more advanced 
ODE files that can accept additional input parameters and return additional 
information.

ODE File Overview
Look at the simple ODE file vdp1.m from earlier in this chapter.

function dy = vdp1(t,y)
dy = [y(2); (1–y(1)^2)*y(2)–y(1)];

Although this is a simple example, it demonstrates two important 
requirements for ODE files:

• The first two arguments must be t and y.

• By default, the ODE file must return a column vector F(t,y).

Defining the Initial Values in the ODE File
It is possible to specify default tspan, y0 and options in the ODE file, defining 
the entire initial value problem in the one file. In this case, the solver can be 
called as

[T,Y] = solver(’F’,[],[]);

The solver extracts the default values from the ODE file.  You can also omit 
empty arguments at the end of the argument list. For example,

[T,Y] = solver(’F’);

When you call a solver with an empty or missing tspan or y0, the solver calls 
the specified ODE file to obtain any values not supplied in the solver argument 
list. It uses the syntax

[tspan,y0,options] = F([],[],’init’) 
4



Creating ODE Files
The ODE file is then expected to return three outputs:

• Output 1 is the tspan vector.

• Output 2 is the initial value, y0.

• Output 3 is either an options structure created with the odeset function or 
an empty matrix [].

Coding the ODE File to Return Initial Values
If you use this approach, your ODE file must check the value of the third 
argument and return the appropriate output. For example, you can modify the 
van der Pol ODE file vdp1.m to check the third argument, flag, and return 
either the default vector F(t,y) or [tspan,y0,options] depending on the 
value of flag.

function [out1,out2,out3] = vdp1(t,y,flag)
if strcmp(flag,’’)

   % Return dy/dt = F(t,y).
   out1 = [y(2); (1–y(1)^2)*y(2)–y(1)];

elseif strcmp(flag,'init')

   % Return [tspan,y0,options].
   out1 = [0; 20]; % tspan
   out2 = [2; 0]; % initial conditions
   out3 = odeset('RelTol',1e–4); % options

end

Note The third argument, referred to as the flag argument, is a special 
argument that notifies the ODE file that the solver is expecting a specific kind 
of information. The 'init' string, for initial values, is just one possible value 
for this flag. For complete details on the flag argument, see “Special Purpose 
ODE Files and the flag Argument” on page 8-17. 
8-15
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Passing Additional Parameters to the ODE File
In some cases your ODE system may require additional parameters beyond the 
required t and y arguments. For example, you can generalize the van der Pol 
ODE file by passing it a mu parameter, instead of specifying a value for mu 
explicitly in the code.

function [out1,out2,out3] = vdpode(t,y,flag,mu)
if nargin < 4 | isempty(mu)

mu = 1;

end
if strcmp(flag,’’)

   % Return dy/dt = F(t,y).
   out1 = [y(2); mu*(1–y(1)^2)*y(2)–y(1)];

elseif strcmp(flag,'init')

   % Return [tspan,y0,options].
   out1 = [0; 20]; % tspan
   out2 = [2; 0]; % initial conditions
   out3 = odeset('RelTol',1e–4); % options

end

In this example, the parameter mu is an optional argument specific to the van 
der Pol example. MATLAB and the ODE solvers do not set a limit on the 
number of parameters you can pass to an ODE file. 

Guidelines for Creating ODE Files
• The ode file must have at least two input arguments, t and y. It is not 

necessary, however, for the function to use either t or y.

• The derivatives returned by F(t,y) must be column vectors.

• Any additional parameters beyond t and y must appear at the end of the 
argument list and must begin at the fourth input parameter. The third 
position is reserved for an optional flag, as shown above in “Coding the ODE 
File to Return Initial Values.” The flag argument is described in more detail 
in “Special Purpose ODE Files and the flag Argument” on 8-17.
6



Improving Solver Performance
Improving Solver Performance
In some cases, you can improve ODE solver performance by specially coding 
your ODE file. For instance, you might accelerate the solution of a stiff problem 
by coding the ODE file to compute the Jacobian matrix analytically.

Another way to improve solver performance, often used in conjunction with a 
specially coded ODE file, is to tune solver parameters. The default parameters 
in the ODE solvers are selected to handle common problems. In some cases, 
however, tuning the parameters for a specific problem can improve 
performance significantly. You do this by supplying the solvers with one or 
more property values contained within an options argument.

[T,Y] = solver(’F’,tspan,y0,options)

The property values within the options argument are created with the odeset 
function, in which named properties are given specified values.

Special Purpose ODE Files and the flag Argument
The MATLAB ODE solvers are capable of using additional information 
provided in the ODE file. In this more general use, an ODE file is expected to 
respond to the arguments odefile(t,y,flag,p1,p2,...) where t and y are the 
integration variables, flag is a string indicating the type of information that 

Category Property Name Page

Error tolerance RelTol, AbsTol 8-21

Solver output OutputFcn, OutputSel, Refine, Stats 8-22

Jacobian matrix Jacobian, JConstant, JPattern, Vectorized 8-25

Step size InitialStep, MaxStep 8-28

Mass matrix Mass, MassSingular 8-29

Event location Events 8-30

ode15s MaxOrder, BDF 8-32
8-17
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the ODE file should return, and p1,p2,... are any additional parameters that 
the problem requires. This table shows the currently supported flags.

The template below illustrates how to code an extended ODE file that uses the 
switch construct and the ODE file’s third input argument, flag, to supply 
additional information.  For illustration, the file also accepts two additional 
input parameters p1 and p2.

Flags Return Values

’’ (empty)

’init’ tspan, y0, and options for this problem

’jacobian’ Jacobian matrix  = 

’jpattern’ Matrix showing the Jacobian sparsity pattern

’mass’ Mass matrix  for solving M(t, y) y’ = F(t, y) 

’events’ Information to define an event location problem

F t y,( )

J t y,( ) F∂ y∂⁄

M
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Note The example below is only a template. In your own coding you should not 
include all of the cases shown. For example, ’jacobian’ information is used 
for evaluating Jacobians analytically, and ’jpattern’ information is used for 
generating Jacobians numerically.

function varargout = odefile(t,y,flag,p1,p2)
switch flag
 case ’’                                 % Return dy/dt = f(t,y).
   varargout{1} = f(t,y,p1,p2);
 case ’init’                      % Return default [tspan,y0,options].
   [varargout{1:3}] = init(p1,p2);
 case ’jacobian’                        % Return Jacobian matrix df/dy.
   varargout{1} = jacobian(t,y,p1,p2);
 case ’jpattern’                  % Return sparsity pattern matrix S.
   varargout{1} = jpattern(t,y,p1,p2);
 case ’mass    ’                         % Return mass matrix.
   varargout{1} = mass(t,y,p1,p2);
 case ’events’                  % Return[value,isterminal,direction].
   [varargout{1:3}] = events(t,y,p1,p2);
 otherwise
   error([’Unknown flag ’’’ flag ’’’.’]);
 end
 % ------------------------------------------------------------
 function dydt = f(t,y,p1,p2)
 dydt = < Insert a function of t and/or y, p1, and p2 here. >;
 % ------------------------------------------------------------
 function [tspan,y0,options] = init(p1,p2)
 tspan = < Insert tspan here. >;
 y0 = < Insert y0 here. >;
 options = < Insert options = odeset(...) or [] here. >;
 % ------------------------------------------------------------
 function dfdy = jacobian(t,y,p1,p2)
 dfdy = < Insert Jacobian matrix here. >;
 % ------------------------------------------------------------
 function S = jpattern(t,y,p1,p2)
 S = < Insert Jacobian matrix sparsity pattern here. >;
 % ------------------------------------------------------------
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function M = mass(t,y,p1,p2)
M = < Insert mass matrix here. >;
% ------------------------------------------------------------
function [value,isterminal,direction] = events(t,y,p1,p2)
value = < Insert event function vector here. >;
isterminal = < Insert logical ISTERMINAL vector here. >;
direction = < Insert DIRECTION vector here. >;

Creating an Options Structure: The odeset Function
The odeset function creates an options structure that you can supply to any 
of the ODE solvers. odeset accepts property name/property value pairs using 
the syntax

options = odeset(’name1’,value1,’name2’,value2,...) 

This creates a structure options in which the named properties have the 
specified values. Any unspecified properties contain default values in the 
solvers. For all properties, it is sufficient to type only the leading characters 
that uniquely identify the property name. odeset ignores case for property 
names.

With no input arguments, odeset displays all property names and their 
possible values, indicating defaults with { }.

AbsTol: [ positive scalar or vector {1e–6} ]
BDF: [ on | {off} ]
Events: [ on | {off} ]
InitialStep: [positive scalar]
Jacobian: [ on | {off} ]
JConstant: [ on | {off} ]
JPattern: [ on | {off} ]
Mass: [ {none} | M | M(t) | M(t,y) ]
MassSingular: [ yes | no | {maybe} ]
MaxOrder: [ 1 | 2 | 3 | 4 | {5} ]
MaxStep: [ positive scalar ]
OutputFcn: [ string ]
OutputSel: [ vector of integers ]
Refine: [ positive integer ]
RelTol: [ positive scalar {1e–3} ]
Stats: [ on | {off} ]
Vectorized: [on | {off}]
0
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Modifying an Existing Options Structure
To modify an existing options argument, use

options = odeset(oldopts,’name1’,value1,...)

This sets options equal to the existing structure oldopts, overwriting any 
values in oldopts that are respecified using name/value pairs and adding to 
the structure any new pairs. The modified structure is returned as an output 
argument. In the same way, the command

options = odeset(oldopts,newopts)

combines the structures oldopts and newopts.  In the output argument, any 
values in the second argument (other than the empty matrix) overwrite those 
in the first argument.

Querying Options: The odeget Function
The solvers use the odeget function to extract property values from an options 
structure created with odeset.

o = odeget(options,’name’)

This returns the value of the specified property, or an empty matrix [] if the 
property value is unspecified in the options structure.

As with odeset, it is sufficient to type only the leading characters that uniquely 
identify the property name; case is ignored for property names. 

Error Tolerance Properties
The solvers use standard local error control techniques for monitoring and 
controlling the error of each integration step. At each step, the local error e in 
the i’th component of the solution is estimated and is required to be less than 
or equal to the acceptable error, which is a function of two user-defined 
tolerances RelTol and AbsTol.

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

• RelTol is the relative accuracy tolerance, a measure of the error relative to 
the size of each solution component. Roughly, it controls the number of 
correct digits in the answer.  The default, 1e–3, corresponds to 0.1% 
accuracy. 
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• AbsTol is a scalar or vector of the absolute error tolerances for each solution 
component. AbsTol(i) is a threshold below which the values of the 
corresponding solution components are unimportant. The absolute error 
tolerances determine the accuracy when the solution approaches zero. The 
default value is 1e–6.

Set tolerances using odeset, either at the command line or in the ODE file.

The ODE solvers are designed to deliver, for routine problems, accuracy 
roughly equivalent to the accuracy you request. They deliver less accuracy for 
problems integrated over “long” intervals and problems that are moderately 
unstable. Difficult problems may require tighter tolerances than the default 
values. For relative accuracy, adjust RelTol. For the absolute error tolerance, 
the scaling of the solution components is important: if |y| is somewhat smaller 
than AbsTol, the solver is not constrained to obtain any correct digits in y. You 
might have to solve a problem more than once to discover the scale of solution 
components.

Solver Output Properties
The solver output properties available with odeset let you control the output 
that the solvers generate. With these properties, you can specify an output 
function, a function that executes if you call the solver with no output 
arguments. In addition, the ODE solver output options let you obtain 

Property Value Description

RelTol Positive scalar 
{1e–3}

A relative error tolerance that applies 
to all components of the solution vector 
y. Default value is 10^(–3) (0.1% 
accuracy).

AbsTol Positive scalar 
or vector {1e–6}

Absolute error tolerances that apply to 
the corresponding components of the 
solution vector. If a scalar value is 
specified, it applies to all components 
of the solution vector y. Default value 
is 10^(–6).
2



Improving Solver Performance
additional solutions at equally spaced points within each time step, or view 
statistics about the computations.

OutputFcn 
The OutputFcn property lets you define your own output function and pass the 
name of this function to the ODE solvers. If no output arguments are specified, 
the solvers call this function after each successful time step. You can use this 
feature, for example, to plot results as they are computed.

You must code your output function in a specific way for it to interact properly 
with the ODE solvers. When the name of an executable M-file function, e.g., 
myfun, is passed to an ODE solver as the OutputFcn property

options = odeset(’OutputFcn’,’myfun’)

Property Value Description

OutputFcn String The name of an output function.

OutputSel Vector of indices Indices of solver output components to 
pass to an output function.

Refine Positive integer Produces smoother output, increasing 
the number of output points by a factor 
of Refine. If Refine is 1, the solver 
returns solutions only at the end of 
each time step. If Refine is n >1, the 
solver uses continuous extension to 
subdivide each time step into n smaller 
intervals, and returns solutions at 
each time point. Refine is 1 by default 
in all solvers except ode45 where it is 4 
because of the solver’s large step sizes. 
Refine does not apply when 
length(tspan)>2.

Stats on | {off} Specifies whether statistics about the 
solver’s computations should be 
displayed. 
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the solver calls it with myfun(tspan,y0,’init’) before beginning the 
integration so that the output function can initialize. Subsequently, the solver 
calls status = myfun(t,y) after each step. In addition to your intended use of 
(t,y), code myfun so that it returns a status output value of 0 or 1. If 
status = 1, integration halts. This might be used, for instance, to implement 
a STOP button. When integration is complete, the solver calls the output 
function with myfun([],[],’done’).

Some example output functions are included with the ODE solvers: 

• odeplot – time series plotting

• odephas2 – two-dimensional phase plane plotting

• odephas3 – three-dimensional phase plane plotting

• odeprint – print solution as it is computed

Use these as models for your own output functions. odeplot is the default 
output function for all the solvers. It is automatically invoked when the solvers 
are called with no output arguments.

OutputSel 
The OutputSel property is a vector of indices specifying which components of 
the solution vector are to be passed to the output function. For example, if you 
want to use the odeplot output function, but you want to plot only the first and 
third components of the solution, you can do this using

  options = odeset(’OutputFcn’,’odeplot’,’OutputSel’,[1 3]);

Refine 
The Refine property, an integer n, produces smoother output by increasing the 
number of output points by a factor of n. This feature is especially useful when 
using a medium or high order solver, such as ode45, for which solution 
components can change substantially in the course of a single step. To obtain 
smoother plots, increase the Refine property.

Note In all the solvers, the default value of Refine is 1.Within ode45, however, 
Refine is 4 to compensate for the solver’s large step sizes. To override this and 
see only the time steps chosen by ode45, set Refine to 1.
4
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The extra values produced for Refine are computed by means of continuous 
extension formulas. These are specialized formulas used by the ODE solvers to 
obtain accurate solutions between computed time steps without significant 
increase in computation time.

Stats 
The Stats property specifies whether statistics about the computational cost of 
the integration should be displayed. By default, Stats is off. If it is on, after 
solving the problem the integrator displays:

• The number of successful steps

• The number of failed attempts

• The number of times the ODE file was called to evaluate F(t,y)

• The number of times that the partial derivatives matrix  was formed

• The number of LU decompositions

• The number of solutions of linear systems

You can obtain the same values by including a third output argument in the 
call to the ODE solver:

[T,Y,S] = ode45(’myfun’, ...);

This statement produces a vector S that contains these statistics.

Jacobian Matrix Properties
The stiff ODE solvers often execute faster if you provide additional information 
about the Jacobian matrix , a matrix of partial derivatives of the 
function defining the differential equation.
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There are two aspects to providing information about the Jacobian:

• You can set up your ODE file to calculate and return the value of the 
Jacobian matrix for the problem. In this case, you must also use odeset to 
set the Jacobian property.

•  If you do not calculate the Jacobian in the ODE file, ode15s and ode23s call 
the helper function numjac to approximate Jacobians numerically by finite 
differences.  In this case, you may be able to use the JConstant, Vectorized, 
or JPattern properties.

The Jacobian matrix properties pertain only to the stiff solvers ode15s and 
ode23s for which the Jacobian matrix  is critical to reliability and 
efficiency.

Property Value Description

JConstant on | {off} Set on if the Jacobian matrix  is 
constant (does not depend on t or y).

Jacobian on | {off} Set on to inform the solver that the 
ODE file is coded such that 
F(t,y,’Jacobian’) returns .

JPattern on | {off} Set on if  is a sparse matrix and 
the ODE file is coded so that 
F([],[],’JPattern’) returns a 
sparsity pattern matrix.

Vectorized on | {off} Set on to inform the stiff solver that 
the ODE file is coded so that 
F(t,[y1 y2 ...]) returns 
[F(t,y1) F(t,y2) ...].
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JConstant 
Set JConstant on if the Jacobian matrix  is constant (does not depend on 
t or y).  Whether computing the Jacobians numerically or evaluating them 
analytically, the solver takes advantage of this information to reduce solution 
time. For the stiff van der Pol example, the Jacobian matrix is 

J = [ 0                       1
      (–2000*y(1)*y(2) – 1)  (1000*(1–y(1)^2)) ]

(not constant) so the JConstant property does not apply.

Jacobian 
Set Jacobian on to inform the solver that the ODE file is coded such that 
F(t,y,'Jacobian') returns . By default, Jacobian is off, and 
Jacobians are generated numerically.

Coding the ODE file to evaluate the Jacobian analytically often increases the 
speed and reliability of the solution for the stiff problem. The Jacobian shown 
above for the stiff van der Pol problem can be coded into the ODE file as

function out1 = vdp1000(t,y,flag)
if strcmp(flag,’’)               % return dy
out1 = [y(2); 1000*(1–y(1)^2)*y(2)–y(1)];

elseif strcmp(flag,'jacobian')   % return J
out1 = [ 0                      1

(–2000*y(1)*y(2) – 1)  (1000*(1–y(1)^2)) ];
end

JPattern 
Set JPattern on if  is a sparse matrix and the ODE file is coded so that 
F([],[],'JPattern') returns a sparsity pattern matrix. This is a sparse 
matrix with 1s where there are nonzero entries in the Jacobian. numjac uses 
the sparsity pattern to generate a sparse Jacobian matrix numerically. If the 
Jacobian matrix is large (size greater than approximately 100-by-100) and 
sparse, this can accelerate execution greatly. For an example using the 
JPattern property, see the brussode example on 8-37.
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Vectorized 
Set Vectorized on to inform the stiff solver that the ODE file is coded so that 
F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2) ...]. When computing 
Jacobians numerically, the solver passes this information to the numjac 
routine. This allows numjac to reduce the number of function evaluations 
required to compute all the columns of the Jacobian matrix, and may reduce 
solution time significantly.

With MATLAB’s array notation, it is typically an easy matter to vectorize an 
ODE file. For example, the stiff van der Pol example shown previously can be 
vectorized by introducing colon notation into the subscripts and by using the 
array power (.^) and array multiplication (.*) operators.

function dy = vdp1000(t,y)
dy = [y(2,:); 1000*(1–y(1,:).^2).*y(2,:)–y(1,:)];

Step-Size Properties
The step-size properties let you specify the first step size tried by the solver, 
potentially helping it to recognize better the scale of the problem. In addition, 
you can specify bounds on the sizes of subsequent time steps.

Generally it is not necessary for you to adjust MaxStep and InitialStep 
because the ODE solvers implement state-of-the-art variable time step control 
algorithms. Adjusting these properties without good reason may result in 
degraded solver performance. 

MaxStep 
MaxStep has a positive scalar value. This property sets an upper bound on the 
magnitude of the step size the solver uses.  If the differential equation has 
periodic coefficients or solution, it may be a good idea to set MaxStep to some 
fraction (such as 1/4) of the period. This guarantees that the solver does not 
enlarge the time step too much and step over a period of interest.

Property Value Description

MaxStep Positive scalar Upper bound on solver step size.

InitialStep Positive scalar Suggested initial step size.
8
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• Do not reduce MaxStep to produce more output points. This can slow down 
solution time significantly. Instead, use Refine (8-24) to compute additional 
outputs by continuous extension at very low cost.

• Do not reduce MaxStep when the solution does not appear to be accurate 
enough. Instead, reduce the relative error tolerance RelTol, and use the 
solution you just computed to determine appropriate values for the absolute 
error tolerance vector AbsTol. (See “Error Tolerance Properties” on page 8-21 
for a description of the error tolerance properties.)

• Generally you should not reduce MaxStep to make sure that the solver 
doesn’t step over some behavior that occurs only once during the simulation 
interval. If you know the time at which the change occurs, break the 
simulation interval into two pieces and call the solvers twice.  If you do not 
know the time at which the change occurs, try reducing the error tolerances 
RelTol and AbsTol. Use MaxStep as a last resort.

InitialStep 
InitialStep has a positive scalar value. This property sets an upper bound on 
the magnitude of the first step size the solver tries. Generally the automatic 
procedure works very well. However, the initial step size is based on the slope 
of the solution at the initial time tspan(1), and if the slope of all solution 
components is zero, the procedure might try a step size that is much too large.  
If you know this is happening or you want to be sure that the solver resolves 
important behavior at the start of the integration, help the code start by 
providing a suitable InitialStep.

Mass Matrix Properties
The solvers of the ODE suite can solve problems of the form M(t, y) y’ = F(t, y) 
with a mass matrix M that is nonsingular and (usually) sparse. Use odeset to 
set Mass to ’M’, ’M(t)’, or ’M(t,y)’ if the ODE file F.m is coded so that  
F(t,y,’mass’) returns a constant, time-dependent, or time-and-state 
dependent mass matrix, respectively. The default value of Mass is ’none’. The 
ode23s solver can only solve problems with a constant mass matrix M. For 
examples of mass matrix problems, see fem1ode, fem2ode, or batonode.

If M is singular, then M(t) * y’ = F(t, y) is a differential algebraic equation 
(DAE). DAEs have solutions only when y0 is consistent, that is, if there is a 
vector yp0 such that M(t0) * y0 = f(t0, y0). The ode15s and ode23t solvers can 
solve DAEs of index 1 provided that M is not state-dependent and y0 is 
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sufficiently close to being consistent. If there is a mass matrix, you can use 
odeset to set the MassSingular property to ’yes’, ’no’, or ’maybe’. The 
default value of ’maybe’ causes the solver to test whether the problem is a 
DAE. If it is, the solver treats y0 as a guess, attempts to compute consistent 
initial conditions that are close to y0, and continues to solve the problem. When 
solving DAEs, it is very advantageous to formulate the problem so that M is a 
diagonal matrix (a semi-explicit DAE). For examples of DAE problems, see 
hb1dae or amp1dae.

Mass 
Change this property from ’none’ if the ODE file is coded so that   
F(t,y,’mass’) returns a mass matrix. ’M’ indicates a constant mass matrix, 
’M(t)’ indicates a time-dependent mass matrix, and ’M(t,y)’ indicates a 
time- and state-dependent mass matrix.

MassSingular 
Set this property to ’no’ if the mass matrix is not singular.

For an example of an ODE file with a mass matrix, see “Example 4: Finite 
Element Discretization” on page 8-40.

Event Location Property
In some ODE problems the times of specific events are important, such as the 
time at which a ball hits the ground, or the time at which a spaceship returns 
to the earth, or the times at which the ODE solution reaches certain values. 

Property Value Description

Mass {none} | M 
| M(t)       
| M(t,y)

Indicate whether the ODE file returns 
a mass matrix.

MassSingular yes | no     
| {maybe}

Indicate whether the mass matrix is 
singular.
0
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While solving a problem, the MATLAB ODE solvers can locate transitions to, 
from, or through zeros of a vector of user-defined functions. 

Events 
Set this parameter on to inform the solver that the ODE file is coded so that 
F(t,y,’events’) returns appropriate event function information. By default, 
’events’ is off. 

For example, the statement

[T,Y,TE,YE,IE] = solver(’F’,tspan,y0,options) 

with the Events property in options set on solves an ODE problem while also 
locating zero crossings of an events function defined in the ODE file. In this 
case, the solver returns three additional outputs:

• TE is a column vector of times at which events occur.

• Rows of YE are solutions corresponding to times in TE.

• Indices in vector IE specify which event occurred at the time in TE.

The ODE file must be coded to return three values in response to the ’events’ 
flag.

[value,isterminal,direction] = F(t,y,’events’);

The first output argument value is the vector of event functions evaluated at 
(t,y).  The value vector may be any length.  It is evaluated at the beginning 
and end of each integration step, and if any elements make transitions to, from, 
or through zero (with the directionality specified in constant vector direction), 
the solver uses the continuous extension formulas to determine the time when 
the transition occurred.

Terminal events halt the integration. The argument isterminal is a logical 
vector of 1s and 0s that specifies whether a zero-crossing of the corresponding 

String Value Description

Events on | {off} Set this on if the ODE file evaluates 
and returns the event functions, and 
returns information about the events.
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value element is terminal. 1 corresponds to a terminal event, halting the 
integration; 0 corresponds to a nonterminal event.

The direction vector specifies a desired directionality: positive (1), negative 
(–1), or don’t care (0), for each value element.

The time an event occurs is located to machine precision within an interval of 
[t– t+].  Nonterminal events are reported at t+.  For terminal events, both t– 
and t+ are reported.

For an example of an ODE file with an event location, see “Example 5: Simple 
Event Location” on page 8-44.

ode15s Properties
The ode15s solver is a variable-order stiff solver based on the numerical 
differentiation formulas (NDFs). The NDFs are generally more efficient than 
the closely related family of backward differentiation formulas (BDFs), also 
known as Gear’s methods. The ode15s properties let you choose between these 
formulas, as well as specifying the maximum order for the solver.

MaxOrder
MaxOrder is an integer 1 through 5 used to set an upper bound on the order of 
the formula that computes the solution. By default, the maximum order is 5.  

BDF
Set BDF on to have ode15s use the BDFs.  By default, BDF is off, and the solver 
uses the NDFs.

For both the NDFs and BDFs, the formulas of orders 1 and 2 are A-stable (the 
stability region includes the entire left half complex plane). The higher order 
formulas are not as stable, and the higher the order the worse the stability. 

Property Value Description

MaxOrder 1 | 2 | 3 | 4 |{5} The maximum order formula used.

BDF on | {off} Specifies whether the backward 
differentiation formulas are to be 
used instead of the default numerical 
differentiation formulas.
2
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There is a class of stiff problems (stiff oscillatory) that is solved more efficiently 
if MaxOrder is reduced (for example to 2) so that only the most stable formulas 
are used.
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Examples: Applying the ODE Solvers
This section contains several examples of ODE files. These examples illustrate 
the kinds of problems you can solve in MATLAB. For more examples, see 
MATLAB’s demos directory.

Example 1: Simple Nonstiff Problem
rigidode is a nonstiff example that can be solved with all five solvers of the 
ODE suite. It is a standard test problem, proposed by Krogh, for nonstiff 
solvers. The analytical solutions are Jacobian elliptic functions accessible in 
MATLAB. The interval here is about 1.5 periods.

The rigidode system consists of the Euler equations of a rigid body without 
external forces as proposed by Krogh. rigidode is a system of three equations

rigidode([],[],’init’) returns the default tspan, y0, and options values 
for this problem. These values are retrieved by an ODE solver if the solver is 
invoked with empty tspan or y0 arguments. This example uses the default 
solver options, so the third output argument is set to empty, [], instead of an 
options structure created with odeset. By means of the ’init’ flag, the entire 
initial value problem is defined in one file.

Reference Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary 
Differential Equations, W.H. Freeman & Co., 1975.

y′3 0.51 y– 1 y2=

y′2 y– 1 y3=

y′1 y2 y3=
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function varargout = rigidode(t,y,flag) 
%RIGIDODE Euler equations of a rigid body without external forces.
switch flag
case ’’                     % Return dy/dt = f(t,y).
  varargout{1} = f(t,y);
case ’init’                       % Return default [tspan,y0,options].
  [varargout{1:3}] = init;
otherwise
  error([’Unknown flag ’’’ flag ’’’.’]);
end
% ------------------------------------------------------------
function dydt = f(t,y)
dydt = [y(2)*y(3); -y(1)*y(3); -0.51*y(1)*y(2)];
% ------------------------------------------------------------
function [tspan,y0,options] = init
tspan = [0; 12];
y0 = [0; 1; 1];
options = [];

Example 2: van der Pol Equation 
vdpode is a more general version of the van der Pol example that has been used 
in various forms throughout this chapter.  For illustrative purposes, it is coded 
for both fast numerical Jacobian computation (Vectorized property) and for 
analytical Jacobian evaluation (Jacobian property). In practice you would 
supply only one or the other of these options.  It is not necessary to supply 
either.

The van der Pol equation is written as a system of two equations.

vdpode(t,y) or vdpode(t,y,[],mu) returns the derivatives vector for the van 
der Pol equation.  By default, mu is 1 and the problem is not stiff. Optionally, 
pass in the mu parameter as an additional input argument to an ODE solver. 
The problem becomes more stiff as mu is increased and the period of oscillation 
becomes larger.

y′2 µ(1 y1
2– )y2 y1–=

y′1 y2=
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When mu is 1000 the equation is in relaxation oscillation and the problem is 
very stiff. The limit cycle has portions where the solution components change 
slowly and the problem is quite stiff, alternating with regions of very sharp 
change where it is not stiff (quasi-discontinuities).

This example sets Vectorized on with odeset because vdpode is coded so that 
vdpode(t,[y1 y2 ...]) returns [vdpode(t,y1) vdpode(t,y2) ...] for scalar 
time t and vectors y1,y2,...  The stiff ODE solvers take advantage of this 
feature only when approximating the columns of the Jacobian numerically.

vdpode([],[],’init’) returns the default tspan, y0, and options values for 
this problem.  The entire initial value problem is defined in this one file.

vdpode(t,y,’jacobian’) or vdpode(t,y,’jacobian’,mu) returns the 
Jacobian matrix  evaluated analytically at (t,y).  By default, the stiff 
solvers of the ODE suite approximate Jacobian matrices numerically.  
However, if Jacobian is set on with odeset, a solver calls the ODE file with the 
flag ’jacobian’ to obtain . Providing the solvers with an analytic 
Jacobian is not necessary, but it can improve the reliability and efficiency of 
integration.
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function varargout = vdpode(t,y,flag,mu)
%VDPODE Parameterizable van der Pol equation (stiff for large mu).

if nargin < 4 | isempty(mu)
  mu = 1;
end
switch flag
case ’’                     % Return dy/dt = f(t,y).
  varargout{1} = f(t,y,mu);
case ’init’                       % Return default [tspan,y0,options].
  [varargout{1:3}] = init(mu);
case ’jacobian’             % Return Jacobian matrix df/dy.
  varargout{1} = jacobian(t,y,mu);
otherwise
  error([’Unknown flag ’’’ flag ’’’.’]);
end
% ------------------------------------------------------------
function dydt = f(t,y,mu)
dydt = [y(2,:); (mu*(1-y(1,:).^2).*y(2,:) - y(1,:))]; % 
Vectorized
% ------------------------------------------------------------
function [tspan,y0,options] = init(mu)
tspan = [0; max(20,3*mu)];  % several periods
y0 = [2; 0];
options = odeset(’Vectorized’,’on’);
% ------------------------------------------------------------
function dfdy = jacobian(t,y,mu)
dfdy = [ 0                      1
         (-2*mu*y(1)*y(2) - 1)  (mu*(1-y(1)^2)) ];

Example 3: Large, Stiff Sparse Problem
This is an example of a (potentially) large stiff sparse problem. Like vdpode, the 
file is coded to use both the Vectorized and Jacobian properties, but only one 
is used during the course of a simulation. Like both previous examples, 
brussode responds to the ’init’ flag.

The brussode example is the classic “Brusselator” system (Hairer and Wanner) 
modeling diffusion in a chemical reaction.
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and is solved on the time interval [0,10] with α = 1/50 and

There are 2N equations in the system, but the Jacobian is banded with a 
constant width 5 if the equations are ordered as u1, v1, u2, v2, ...

brussode(t,y) or brussode(t,y,[],n) returns the derivatives vector for the 
Brusselator problem. The parameter n ≥ 2 is used to specify the number of grid 
points; the resulting system consists of 2n equations.  By default, n is 2.  The 
problem becomes increasingly stiff and the Jacobian increasingly sparse as n is 
increased. 

brussode([],[],’jpattern’) or brussode([],[],’jpattern’,n) returns a 
sparse matrix of 1s and 0s showing the locations of nonzeros in the Jacobian 

.  By default, the stiff ODE solvers generate Jacobians numerically as 
full matrices.  However, if JPattern is set on with odeset, a solver calls the 
ODE file with the flag ’jpattern’. This provides the solver with a sparsity 
pattern that it uses to generate the Jacobian numerically as a sparse matrix. 
Providing a sparsity pattern can significantly reduce the number of function 
evaluations required to generate the Jacobian and can accelerate integration.  
For the Brusselator problem, if the sparsity pattern is not supplied, 2n 
evaluations of the function are needed to compute the 2n-by-2n Jacobian 
matrix. If the sparsity pattern is supplied, only four evaluations are needed, 
regardless of the value of n.

Reference Hairer, E. and G. Wanner, Solving Ordinary Differential Equations 
II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991, 
pp. 5-8.
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function varargout = brussode(t,y,flag,N)
%BRUSSODE Stiff problem modeling a chemical reaction. 

if nargin < 4 | isempty(N)
  N = 2;
end
switch flag
case ’’                     % Return dy/dt = f(t,y).
  varargout{1} = f(t,y,N);
case ’init’                       % Return default [tspan,y0,options].
  [varargout{1:3}] = init(N);
case ’jpattern’              % Return sparsity pattern of df/dy.
  varargout{1} = jpattern(t,y,N);
case ’jacobian’             % Return Jacobian matrix df/dy.
  varargout{1} = jacobian(t,y,N);
otherwise
  error([’Unknown flag ’’’ flag ’’’.’]);
end
% ------------------------------------------------------------
function dydt = f(t,y,N)
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2));% preallocate dy/dt
% Evaluate the 2 components of the function at one edge of the grid
% (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ... 
c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ... 
c*(3-2*y(i+1,:)+y(i+3,:));
% Evaluate the 2 components of the function at all interior grid 
% points.
i = 3:2:2*N-3;

dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
    c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
    c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
% Evaluate the 2 components of the function at the other edge of 
% the grid (with edge conditions).
i = 2*N-1;
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dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ... 
c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ... 
c*(y(i-1,:)-2*y(i+1,:)+3);
% ------------------------------------------------------------
function [tspan,y0,options] = init(N)
tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); 3+zeros(1,N)];
y0 = y0(:);
options = odeset(’Vectorized’,’on’);
% ------------------------------------------------------------
function dfdy = jacobian(t,y,N)
c = 0.02 * (N+1)^2;
B = zeros(2*N,5);
B(1:2*(N-1),1) = B(1:2*(N-1),1) + c;
i = 1:2:2*N-1;
B(i,2) = 3 - 2*y(i).*y(i+1);
B(i,3) = 2*y(i).*y(i+1) - 4 - 2*c;
B(i+1,3) = -y(i).^2 - 2*c;
B(i+1,4) = y(i).^2;
B(3:2*N,5) = B(3:2*N,5) + c;
dfdy = spdiags(B,-2:2,2*N,2*N);  % Note this is a SPARSE Jacobian.
% ------------------------------------------------------------
function S = jpattern(t,y,N)
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
if nargin < 4 | isempty(N)
  N = 2;
end

Example 4: Finite Element Discretization 
fem1ode(t,y) or fem1ode(t,y,[],n) returns the derivatives vector for a finite 
element discretization of a partial differential equation.  The parameter n 
controls the discretization, and the resulting system consists of n equations. By 
default, n is 9.
0
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This example involves a mass matrix. The system of ODE’s comes from a 
method of lines solution of the partial differential equation

with initial condition u(0, x) = sin(x) and boundary conditions 
u(t, 0) = u(t, π) = 0. An integer N is chosen, h is defined as 1/(N+1), and the 
solution of the partial differential equation is approximated at xk = kπh for
k = 0, 1, , ..., N+1 by

Here φk(x) is a piecewise linear function that is 1 at xk and 0 at all the other xj. 
A Galerkin discretization leads to the system of ODEs

and the tridiagonal matrices A(t) and R are given by

The initial values c(0) are taken from the initial condition for the partial 
differential equation. The problem is solved on the time interval [0, π].

fem1ode(t,[],’mass’) or fem1ode(t,[],’mass’,n) returns the 
time-dependent mass matrix  evaluated at time t. By default, ode15s solves 
systems of the form . However, if the Mass property is changed 
from ’none’ to ’M’, ’M(t)’, or ’M(t,y)’ with odeset, the solver calls the ODE 
file with the flag ’mass’. The ODE file returns a mass matrix, which the solver 
uses to solve M(t, y) y’ = F(t, y). If the mass matrix is a constant , the problem 
can be also be solved with ode23s.
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For example, to solve a system of 20 equations, use

[T,Y] = ode15s(’fem1ode’,[],[],odeset(’Mass’,’M(t)’),20);
2
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fem1ode also responds to the flag ’init’ (see the rigidode example for 
details).

function varargout = fem1ode(t,y,flag,N)
%FEM1ODE Stiff problem with a time-dependent mass matrix.
if nargin == 0
  flag = ’demo’;
end
if nargin < 4 | isempty(N)
  N = 9;
end
switch flag
case ’’                                 % Return dy/dt = f(t,y).
  varargout{1} = f(t,y,N);
case ’init’                             % Return default. 
[tspan,y0,options].
  [varargout{1:3}] = init(N);
case ’mass’                             % Return mass matrix M(t).
  varargout{1} = mass(t,y,N);
case ’demo’                             % Run a demo.
  demo;
otherwise
  error([’Unknown flag ’’’ flag ’’’.’]);
end
%---------------------------------------------------------------
function dydt = f(t,y,N)
e = ((N+1)/pi) + zeros(N,1);   % h=pi/(N+1); e=(1/h)+zeros(N,1);
R = spdiags([e -2*e e], -1:1, N, N);
dydt = R*y;
%---------------------------------------------------------------
function [tspan,y0,options] = init(N)
tspan = [0; pi];
y0 = sin((pi/(N+1))*(1:N)’);
options = odeset(’Mass’,’M(t)’,’Vectorized’,’on’);
    

%---------------------------------------------------------------
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function M = mass(t,y,N)
e = (exp(-t)*pi/(6*(N+1))) + zeros(N,1); % h=pi/(N+1); 
e=exp(-t)*h/6+zeros
M = spdiags([e 4*e e], -1:1, N, N);
%---------------------------------------------------------------
function demo
[t,y] = ode15s(’fem1ode’);
surf(1:9,t,y);
set(gca,’ZLim’,[0 1]);
view(142.5,30);
title([’Finite element problem with time-dependent mass ’ ...
      ’matrix, solved by ODE15S’]);
xlabel(’space’);
ylabel(’time’);
zlabel(’solution’);

Example 5: Simple Event Location
ballode(t,y) returns the derivatives vector for the equations of motion of a 
bouncing ball. This ODE file illustrates the event location capabilities of the 
ODE solvers.

The equations for the bouncing ball are:

ballode(t,y,’events’) returns a zero-crossing vector value evaluated at 
(t,y), as well as two constant vectors isterminal and direction. By default, 
the ODE solvers do not locate zero-crossings. However, if the Events property 
is set on with odeset, a solver calls the ODE file with the flag ’events’. This 
provides the solver with information that it uses to locate zero-crossings of the 
elements in the value vector. The value vector may be any length. It is 
evaluated at the beginning and end of a step, and if any elements change sign 
(with the directionality specified in direction), the zero-crossing point is 
located. The isterminal vector consists of logical 1s and 0s, enabling you to 
specify whether or not a zero-crossing of the corresponding value element halts 
the integration. The direction vector enables you to specify a desired 

y′2 9.8–=

y′1 y2=
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directionality, positive (1), negative (–1), or don’t care (0) for each value 
element.

ballode also responds to the flag ’init’ (see the rigidode example for 
details).

function varargout = ballode(t,y,flag)
%BALLODE Equations of motion for a bouncing ball.
switch flag
case ’’                   % Return dy/dt = f(t,y).
  varargout{1} = f(t,y);
case ’init’               % Return default [tspan,y0,options].
  [varargout{1:3}] = init;
case ’events’                  % Return [value,isterminal,direction].
  [varargout{1:3}] = events(t,y);
otherwise
  error([’Unknown flag ’’’ flag ’’’.’]);
end
% ------------------------------------------------------------
function dydt = f(t,y)
dydt = [y(2); -9.8];
% ------------------------------------------------------------
function [tspan,y0,options] = init
tspan = [0; 10];
y0 = [0; 20];
options = odeset(’Events’,’on’);
% ------------------------------------------------------------
function [value,isterminal,direction] = events(t,y)
% Locate the time when height passes through zero in a decreasing 
% direction and stop integration. Also locate both decreasing and 
% increasing zero-crossings of velocity,and don’t stop 
% integration.
value = y;                % [height; velocity]
isterminal = [1; 0];
direction = [-1; 0];
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Example 6: Advanced Event Location
orbitode is a standard test problem for nonstiff solvers presented in Shampine 
and Gordon, (see reference that follows).  

The orbitode problem is a system of four equations.

where

The first two solution components are coordinates of the body of infinitesimal 
mass, so plotting one against the other gives the orbit of the body around the 
other two bodies. The initial conditions have been chosen so as to make the 
orbit periodic. This corresponds to a spaceship traveling around the moon and 
returning to the earth. Moderately stringent tolerances are necessary to 
reproduce the qualitative behavior of the orbit. Suitable values are 1e–5 for 
RelTol and 1e–4 for AbsTol.

The event functions implemented in this example locate the point of maximum 
distance from the earth and the time the spaceship returns to earth.
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Reference Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary 
Differential Equations, W.H. Freeman & Co., 1975, p. 246.
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function varargout = orbitode(t,y,flag)
%ORBITODE Restricted three body problem.
y0 = [1.2; 0; 0; -1.04935750983031990726];
switch flag
case ’’% Return dy/dt = f(t,y).
  varargout{1} = f(t,y);
case ’init’              % Return default [tspan,y0,options].
  [varargout{1:3}] = init(y0);
case ’events’                % Return [value,isterminal,direction].
  [varargout{1:3}] = events(t,y,y0);
otherwise
  error([’Unknown flag ’’’ flag ’’’.’]);
end
% ------------------------------------------------------------
function dydt = f(t,y)
mu = 1 / 82.45;
mustar = 1 - mu;
r13 = ((y(1) + mu)^2 + y(2)^2) ^ 1.5;
r23 = ((y(1) - mustar)^2 + y(2)^2) ^ 1.5;
dydt = [ y(3)
         y(4)
         (2*y(4) + y(1) - mustar*((y(1)+mu)/r13) - 
mu*((y(1)-mustar)/r23))
         (-2*y(3) + y(2) - mustar*(y(2)/r13) - mu*(y(2)/r23)) ];
% ------------------------------------------------------------
function [tspan,y0,options] = init(y)
tspan = [0; 6.19216933131963970674];
y0 = y;
options = odeset(’RelTol’,1e-5,’AbsTol’,1e-4);
% ------------------------------------------------------------
function [value,isterminal,direction] = events(t,y,y0)
% Locate the time when the object returns closest to the initial 
% point y0 and starts to move away, and stop integration.  Also 
% locate the time when the object is farthest from the initial
% point y0 and starts to move closer.
% 
% The current distance of the body is
% 
%   DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2 = <y(1:2)-y0,y(1:2)-y0>
%   
8
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% A local minimum of DSQ occurs when d/dt DSQ crosses zero heading 
% in the positive direction. We can compute d/dt DSQ as
% 
%   d/dt DSQ = 2*(y(1:2)-y0)’*dy(1:2)/dt = 2*(y(1:2)-y0)’*y(3:4)
%   
dDSQdt = 2 * ((y(1:2)-y0(1:2))’ * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0];% stop at local minimum
direction = [1; -1];% [local minimum, local maximum]
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Questions and Answers
This section contains a number of tables that answer questions about the use 
and operation of the MATLAB ODE solvers. This section also contains a 
troubleshooting table. The question and answer tables cover the following 
categories:

• General ODE Solver Questions

• Problem Size, Memory Use, and Computation Speed

• Time Steps for Integration

• Error Tolerance and Other Options

• Solving Different Kinds of Systems

General ODE Solver Questions

Question Answer

How do the ODE solvers 
differ from quad or quad8?

quad and quad8 solve problems of the form . The ODE 
suite solves more general problems of the form .

Can I solve ODE systems in 
which there are more 
equations than unknowns, 
or vice-versa?

No.

y′ F t( )=
y′ F t y,( )=

Problem Size, Memory Use, and Computation Speed

Question Answer

How large a problem can I 
solve with the ODE suite?

The primary constraints are memory and time. At each time step, 
the nonstiff solvers allocate vectors of length n, where n is the 
number of equations in the system. The stiff solvers allocate 
vectors of length n, but also an n-by-n Jacobian matrix. For these 
solvers it may be advantageous to use the sparse option.

If the problem is nonstiff, or if you are using the sparse option, it 
may be possible to solve a problem with thousands of unknowns. 
In this case, however, storage of the result can be problematic.
0
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I’m solving a very large 
system, but only care about 
a couple of the components 
of y. Is there any way to 
avoid storing all of the 
elements?

 Yes. The user-installable output function capability is designed 
specifically for this purpose. When an output function is installed 
and the solver call does not include output arguments, the solver 
does not allocate storage to hold the entire solution history. 
Instead, the solver calls OutputFcn(t,y) at each time step. To 
keep the history of specific elements, write an output function that 
stores or plots only the elements you care about.

How many time steps is too 
many?

If your integration uses more than 200 time steps, it’s likely that 
your tspan is too long, or your problem is stiff. Divide tspan into 
pieces or try ode15s.

What is the startup cost of 
the integration and how 
can I reduce it?

The biggest startup cost occurs as the solver attempts to find a 
step size appropriate to the scale of the problem. If you happen to 
know an appropriate step size, use the InitialStep property. For 
example, if you repeatedly call the integrator in an event location 
loop, the last step that was taken before the event is probably on 
scale for the next integration. See ballode for an example.

Problem Size, Memory Use, and Computation Speed

Question Answer

Time Steps for Integration

Question Answer

The first step size that the 
integrator takes is too 
large, and it misses 
important behavior.

You can specify the first step size with the InitialStep property. 
The integrator tries this value, then reduces it if necessary.

Can I integrate with fixed 
step sizes?

No.
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Error Tolerance and Other Options

Question Answer

How do I choose RelTol and 
AbsTol?

RelTol, the relative accuracy tolerance, controls the number of 
correct digits in the answer. AbsTol, the absolute error tolerance, 
controls the difference between the answer and the solution. A 
relative error tolerance gets into trouble when a solution 
component vanishes. An absolute error tolerance gets into trouble 
when a solution component is unexpectedly large. The solvers 
require nonzero tolerances and use a mixed test to avoid these 
problems. At each step the error e in the i’th component of the 
solution is required to satisfy this condition

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

The use of RelTol is clear – to obtain p correct digits let 
RelTol = 10^(–p), or slightly smaller. The use of AbsTol depends 
on the problem scale. AbsTol is a threshold – the solver does not 
guarantee correct digits for solution components smaller than 
AbsTol(i). If the problem has a natural threshold, use it as 
AbsTol. 

A small value of AbsTol does not adversely affect the computation, 
but be aware that the problem’s scaling might mean that an 
important component is smaller than the specified AbsTol. You 
might think that you computed the component with the relative 
accuracy of RelTol, when in fact it is below the AbsTol threshold, 
and you have few if any correct digits. Even if you are not 
interested in correct digits in this component, failing to compute it 
accurately may harm the accuracy of components you do care 
about. Generally the solvers handle this situation automatically, 
but not always.

I want answers that are 
correct to the precision of 
the computer. Why can’t I 
simply set RelTol to eps?

You can get close to machine precision, but not that close. The 
solvers do not allow RelTol near eps because they try to 
approximate a continuous function. At tolerances comparable to 
eps, the machine arithmetic causes all functions to look 
discontinuous.
2
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How do I tell the solver that 
I don’t care about getting an 
accurate answer for one of 
the solution components?

You can increase the absolute error tolerance corresponding to 
this solution component. If the tolerance is bigger than the 
component, this specifies no correct digits for the component. The 
solver may have to get some correct digits in this component to 
compute other components accurately, but it generally handles 
this automatically.

Error Tolerance and Other Options

Question Answer

Solving Different Kinds of Systems

Question Answer

Can the solvers handle 
PDEs that have been 
discretized by the Method 
of Lines?

Yes. What you obtain is a system of ODEs. Depending on the 
discretization, you might have a form involving mass matrices – 
ode15s, ode23s, ode23t, and ode23tb provide for this. Often the 
system is stiff. This is to be expected when the PDE is parabolic 
and when there are phenomena that happen on very different 
time scales such as a chemical reaction in a fluid flow. In such 
cases, use one of the four solvers mentioned above. If, as usual, 
there are many equations, set the JPattern property. This is easy 
and might make the difference between success and failure due 
to the computation being too expensive. When the system is not 
stiff, or not very stiff, ode23 or ode45 will be more efficient than 
ode15s, ode23s, ode23t, or ode23tb.

Can I solve differential 
algebraic equation (DAE) 
systems?

Yes. The solvers ode15s and ode23t can solve some DAEs of the 
form M(t)y’ = f(t,y) where M(t) is singular (the DAEs must be 
index 1). For examples, see amp1dae and hb1dae.
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Troubleshooting
The following table provides troubleshooting questions and answers.

Can I integrate a set of 
sampled data?

Not directly. You have to represent the data as a function by 
interpolation or some other scheme for fitting data. The 
smoothness of this function is critical. A piecewise polynomial fit 
like a spline can look smooth to the eye, but rough to a solver; the 
solver will take small steps where the derivatives of the fit have 
jumps. Either use a smooth function to represent the data or use 
one of the lower order solvers (ode23, ode23s, ode23t, ode23tb) 
that is less sensitive to this.

Can I solve 
delay-differential 
equations?

Not directly. In some cases it is possible to use the initial value 
problem solvers to solve delay-differential equations by breaking 
the simulation interval into smaller intervals the length of a 
single delay. For more information about this approach, see 
Shampine, L. F., Numerical Solution of Ordinary Differential 
Equations, Chapman & Hall Mathematics, 1994.

What do I do when I have 
the final and not the initial 
value?

ode45 and the other solvers that are available in this version of 
the MATLAB ODE suite allow you to solve backwards or 
forwards in time. The syntax for the solvers is

[T,Y] = ode45(’ydot’,[t0 tfinal],y0);

and the syntax accepts t0 > tfinal.

Solving Different Kinds of Systems

Question Answer
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Troubleshooting

Question Answer

The solution doesn’t look 
like what I expected.

If you’re right about its appearance, you need to reduce the error 
tolerances from their default values. A smaller relative error 
tolerance is needed to compute accurately the solution of problems 
integrated over “long” intervals, as well as solutions of problems 
that are moderately unstable. You should check whether there are 
solution components that stay smaller than their absolute error 
tolerance for some time. If so, you are not asking for any correct 
digits in these components. This may be acceptable for these 
components, but failing to compute them accurately may degrade 
the accuracy of other components that depend on them.

My plots aren’t smooth 
enough.

Increase the value of Refine from its default of 4 in ode45 and 1 in 
the other solvers. The bigger the value of Refine, the more output 
points. Execution speed is not affected much by the value of 
Refine.

I’m plotting the solution as 
it is computed and it looks 
fine, but the code gets stuck 
at some point.

First verify that the ODE function is smooth near the point where 
the code gets stuck. If it isn’t, the solver must take small steps to 
deal with this. It may help to break tspan into pieces on which the 
ODE function is smooth.

If the function is smooth and the code is taking extremely small 
steps, you are probably trying to solve a stiff problem with a solver 
not intended for this purpose. Switch to ode15s, ode23s, or 
ode23tb.
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My integration proceeds 
very slowly, using too many 
time steps.

First, check that your tspan is not too long. Remember that the 
solver will use as many time points as necessary to produce a 
smooth solution. If the ODE function changes on a time scale that 
is very short compared to the tspan, then the solver will use a lot 
of time steps. Long-time integration is a hard problem. Break 
tspan into smaller pieces.

If the ODE function does not change noticeably on the tspan 
interval, it could be that your problem is stiff. Try using ode15s or 
ode23s.

Finally, make sure that the ODE function is written in an efficient 
way. The solvers evaluate the derivatives in the ODE function 
many times. The cost of numerical integration depends critically 
on the expense of evaluating the ODE function. Rather than 
recompute complicated constant parameters every evaluation, 
store them in globals or calculate them once outside the function 
and pass them in as additional parameters.

I know that the solution 
undergoes a radical change 
at time t where 

t0 ≤ t ≤ tfinal

but the integrator steps 
past without “seeing” it.

If you know there is a sharp change at time t, it might help to 
break the tspan interval into two pieces, [t0 t] and [t tfinal], 
and call the integrator twice.

If the differential equation has periodic coefficients or solution, 
you might restrict the maximum step size to the length of the 
period so the integrator won’t step over periods.

Troubleshooting

Question Answer
6
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