
Representing Problems 8-5

ODE Solvers . 8-10

Creating ODE Files 8-14

Improving Solver Performance 8-17

Examples: Applying the ODE Solvers 8-34
8

Ordinary Differential
Equations

Quick Start . 8-3

8 Ordinary Differential Equations

8-2
This chapter describes how to use MATLAB to solve initial value problems of
ordinary differential equations (ODEs) and differential algebraic equations
(DAEs). It discusses how to represent initial value problems (IVPs) in
MATLAB and how to apply MATLAB’s ODE solvers to such problems. It
explains how to select a solver, and how to specify solver options for efficient,
customized execution. This chapter also includes a troubleshooting guide in the
Questions and Answers section and extensive examples in the Examples:
Applying the ODE Solver section.

Category Function Description

Ordinary differential
equation solvers

ode45 Nonstiff differential equations, medium order
method.

ode23 Nonstiff differential equations, low order method.

ode113 Nonstiff differential equations, variable order
method.

ode15s Stiff differential equations and DAEs, variable
order method.

ode23s Stiff differential equations, low order method.

ode23t Moderately stiff differential equations and DAEs,
trapezoidal rule.

ode23tb Stiff differential equations, low order method.

ODE option handling odeset Create/alter ODE OPTIONS structure.

odeget Get ODE OPTIONS parameters.

ODE output functions odeplot Time series plots.

odephas2 Two-dimensional phase plane plots.

odephas3 Three-dimensional phase plane plots.

odeprint Print to command window.

Quick Start
Quick Start
1 Write the ordinary differential equation as a

system of first-order equations by making the substitutions

Then

is a system of n first-order ODEs. For example, consider the initial value
problem

Solve the differential equation for its highest derivative, writing in
terms of t and its lower derivatives . If you let ,
and , then

is a system of three first-order ODEs with initial conditions

y n() f t y y ′ y n 1–(), , , ,()=

y1 y= y2 y′ ... yn, , y n 1–()
= =,

y1
′ y2=

y2′ y3=

.·

yn′ f t y1 y2 ... y, n, , ,()=

y′′′ 3y′′– y′y 0=– y 0() 0= y′ 0() 1= y′′ 0() 1–=

y′′′
y′′′ 3y′′ y′y+= y1 y= y2 y′=,

y3 y′′=

y1
′ y2=

y2
′ y3=

y3
′ 3y3 y2y1+=
8-3

8 Ordinary Differential Equations

8-4
Note that the IVP now has the form , where
.

2 Code the first-order system in an M-file that accepts two arguments, t and
y, and returns a column vector:

function dy = F(t,y)
dy = [y(2); y(3); 3*y(3)+y(2)*y(1)];

This ODE file must accept the arguments t and y, although it does not have
to use them. Here, the vector dy must be a column vector.

3 Apply a solver function to the problem. The general calling syntax for the
ODE solvers is

[T,Y] = solver(’F’,tspan,y0)

where solver is a solver function like ode45. The input arguments are:

For example, to use the ode45 solver to find a solution of the sample IVP on
the time interval [0 1], the calling sequence is

[T,Y] = ode45('F',[0 1],[0; 1; –1])

Each row in solution array Y corresponds to a time returned in column vector
T. Also, in the case of the sample IVP, Y(:,1) is the solution, Y(:,2) is the
derivative of the solution, and Y(:,3) is the second derivative of the
solution.

F String containing the ODE file name

tspan Vector of time values where [t0 tfinal] causes the solver
to integrate from t0 to tfinal

y0 Column vector of initial conditions at the initial time t0

y1 0() 0=

y2 0() 1=

y3 0() 1–=

Y′ F t Y,()= Y 0() Y0=,
Y y1 y2 y3;;[]=

Representing Problems
Representing Problems
This section describes how to represent ordinary differential equations as
systems for the MATLAB ODE solvers.

The MATLAB ODE solvers are designed to handle ordinary differential
equations. These are differential equations containing one or more derivatives
of a dependent variable y with respect to a single independent variable t,
usually referred to as time. The derivative of y with respect to t is denoted as

, the second derivative as , and so on. Often y(t) is a vector, having
elements y1, y2, ... yn.

ODEs often involve a number of dependent variables, as well as derivatives of
order higher than one. To use the MATLAB ODE solvers, you must rewrite
such equations as an equivalent system of first-order differential equations in
terms of a vector y and its first derivative.

Once you represent the equation in this way, you can code it as an ODE M-file
that a MATLAB ODE solver can use.

Initial Value Problems and Initial Conditions
Generally there are many functions y(t) that satisfy a given ODE, and
additional information is necessary to specify the solution of interest. In an
initial value problem, the solution of interest has a specific initial condition,
that is, y is equal to y0 at a given initial time t0. An initial value problem for
an ODE is then

If the function is sufficiently smooth, this problem has one and only one
solution. Generally there is no analytic expression for the solution, so it is
necessary to approximate by numerical means, such as one of the solvers
of the MATLAB ODE suite.

Example: The van der Pol Equation
An example of an ODE is the van der Pol equation

y′ y′′

y′ F t y,()=

y′ F t y,()=

y t0() y0=

F t y,()

y t()
8-5

8 Ordinary Differential Equations

8-6
where µ > 0 is a scalar parameter.

Rewriting the System
To express this equation as a system of first-order differential equations for
MATLAB, introduce a variable y2 such that y1′= y2. You can then express this
system as

Writing the ODE File
The code below shows how to represent the van der Pol system in a MATLAB
ODE file, an M-file that describes the system to be solved. An ODE file always
accepts at least two arguments, t and y. This simple two line file assumes a
value of 1 for µ. y1 and y2 become y(1) and y(2), elements in a two-element
vector.

function dy = vdp1(t,y)
dy = [y(2); (1–y(1)^2)*y(2)–y(1)];

Note This ODE file does not actually use the t argument in its computations.
It is not necessary for it to use the y argument either – in some cases, for
example, it may just return a constant. The t and y variables, however, must
always appear in the input argument list.

Calling the Solver
Once the ODE system is coded in an ODE file, you can use the MATLAB ODE
solvers to solve the system on a given time interval with a particular initial
condition vector. For example, to use ode45 to solve the van der Pol equation
on time interval [0 20] with an initial value of 2 for y(1) and an initial value
of 0 for y(2).

[T,Y] = ode45(’vdp1’,[0 20],[2; 0]);

y1″ µ 1 y1
2

–()y1′– y1 0=+

y1′ y2=

y2′ µ 1 y1
2

–()y2 y1–=

Representing Problems
The resulting output [T,Y] is a column vector of time points T and a solution
array Y. Each row in solution array Y corresponds to a time returned in column
vector T.

Viewing the Results
Use the plot command to view solver output.

plot(t,y(:,1),'–',t,y(:,2),'– –')
title('Solution of van der Pol Equation, mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y1','y2')

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

time t

so
lu

tio
n

y

Solution of van der Pol Equation, mu = 1

y1
y2
8-7

8 Ordinary Differential Equations

8-8
Example: The van der Pol Equation, µ = 1000 (Stiff)

Stiff ODE Problems This section presents a stiff problem. For a stiff problem,
solutions can change on a time scale that is very short compared to the
interval of integration, but the solution of interest changes on a much longer
time scale. Methods not designed for stiff problems are ineffective on intervals
where the solution changes slowly because they use time steps small enough
to resolve the fastest possible change.

When µ is increased to 1000, the solution to the van der Pol equation changes
dramatically and exhibits oscillation on a much longer time scale.
Approximating the solution of the initial value problem becomes a more
difficult task. Because this particular problem is stiff, a nonstiff solver such as
ode45 is so inefficient that it is impractical. The stiff solver ode15s is intended
for such problems.

This code shows how to represent the van der Pol system in an ODE file with
µ = 1000.

function dy = vdp1000(t,y)
dy = [y(2); 1000*(1–y(1)^2)*y(2)–y(1)];

Now use the ode15s function to solve vdp1000. Retain the initial condition
vector of [2; 0], but use a time interval of [0 3000]. For scaling purposes, plot
just the first component of y(t).

[t,y] = ode15s('vdp1000',[0 3000],[2; 0]);
plot(t,y(:,1),'o');
title('Solution of van der Pol Equation, mu = 1000');
xlabel('time t');
ylabel('solution y(:,1)');

Representing Problems
0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time t

so
lu

tio
n

y(
:,1

)

Solution of van der Pol Equation, mu = 1000
8-9

8 Ordinary Differential Equations

8-1
ODE Solvers
The MATLAB ODE solver functions implement numerical integration
methods. Beginning at the initial time and with initial conditions, they step
through the time interval, computing a solution at each time step. If the
solution for a time step satisfies the solver’s error tolerance criteria, it is a
successful step. Otherwise, it is a failed attempt; the solver shrinks the step
size and tries again.

This section describes how to represent problems for use with the MATLAB
solvers and how to optimize solver performance. You can also use the online
help facility to get information on the syntax for any function, as well as
information on demo files for these solvers.

Nonstiff Solvers
There are three solvers designed for nonstiff problems:

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn), it needs
only the solution at the immediately preceding time point, y(tn–1). In
general, ode45 is the best function to apply as a “first try” for most problems.

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances and in the
presence of mild stiffness. Like ode45, ode23 is a one-step solver.

• ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE
function is particularly expensive to evaluate. ode113 is a multistep solver –
it normally needs the solutions at several preceding time points to compute
the current solution.

Stiff Solvers
Not all difficult problems are stiff, but all stiff problems are difficult for solvers
not specifically designed for them. Stiff solvers can be used exactly like the
other solvers. However, you can often significantly improve the efficiency of the
stiff solvers by providing them with additional information about the problem.
See “Improving Solver Performance” on page 8-17 for details on how to provide
this information, and for details on how to change solver parameters such as
error tolerances.
0

ODE Solvers
There are four solvers designed for stiff (or moderately stiff) problems:

• ode15s is a variable-order solver based on the numerical differentiation
formulas (NDFs). Optionally it uses the backward differentiation formulas,
BDFs, (also known as Gear’s method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. If you suspect that a problem is stiff or
if ode45 failed or was very inefficient, try ode15s.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It
can solve some kinds of stiff problems for which ode15s is not effective.

• ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver
may be more efficient than ode15s at crude tolerances.

ODE Solver Basic Syntax
All of the ODE solver functions share a syntax that makes it easy to try any of
the different numerical methods if it is not apparent which is the most
appropriate. To apply a different method to the same problem, simply change
the ODE solver function name. The simplest syntax, common to all the solver
functions, is

[T,Y] = solver(’F’,tspan,y0)

where solver is one of the ODE solver functions listed previously.
8-11

8 Ordinary Differential Equations

8-1
The input arguments are:

The output arguments are:

Obtaining Solutions at Specific Time Points
To obtain solutions at specific time points t0, t1, ... tfinal, specify tspan as a
vector of the desired times. The time values must be in order, either increasing
or decreasing.

Specifying these time points in the tspan vector does not affect the internal
time steps that the solver uses to traverse the interval from tspan(1) to
tspan(end) and has little effect on the efficiency of computation. All solvers in
the MATLAB ODE suite obtain output values by means of continuous
extensions of the basic formulas. Although a solver does not necessarily step
precisely to a time point specified in tspan, the solutions produced at the
specified time points are of the same order of accuracy as the solutions
computed at the internal time points.

’F’ String containing the name of the file that describes the system of
ODEs.

tspan Vector specifying the interval of integration. For a two-element
vector tspan = [t0 tfinal], the solver integrates from t0 to
tfinal. For tspan vectors with more than two elements, the solver
returns solutions at the given time points, as described below. Note
that t0 > tfinal is allowed.

y0 Vector of initial conditions for the problem.

T Column vector of time points

Y Solution array. Each row in Y corresponds to the solution at a time
returned in the corresponding row of T.
2

ODE Solvers
Specifying Solver Options
In addition to the simple syntax, all of the ODE solvers accept a fourth input
argument, options, which can be used to change the default integration
parameters.

[t,y] = solver(’F’,tspan,y0,options)

The options argument is created with the odeset function (see “Creating an
Options Structure: The odeset Function” on page 8-20). Any input parameters
after the options argument are passed to the ODE file every time it is called.
For example,

[T,Y] = solver(’F’,tspan,y0,options,p1,p2,...)

calls

F(t,y,flag,p1,p2,...)

Obtaining Statistics About Solver Performance
Use an additional output argument S to obtain statistics about the ODE
solver’s computations.

[T,Y,S] = solver(’F’,tspan,y0,options,...)

S is a six-element column vector:

• Element 1 is the number of successful steps.

• Element 2 is the number of failed attempts.

• Element 3 is the number of times the ODE file was called to evaluate F(t,y).

• Element 4 is the number of times that the partial derivatives matrix
was formed.

• Element 5 is the number of LU decompositions.

• Element 6 is the number of solutions of linear systems.

The last three elements of the list apply to the stiff solvers only.

The solver automatically displays these statistics if the Stats property (see
8-25) is set in the options argument.

F∂ y∂⁄
8-13

8 Ordinary Differential Equations

8-1
Creating ODE Files
The van der Pol examples in the previous sections show some simple ODE files.
This section provides more detail and describes how to create more advanced
ODE files that can accept additional input parameters and return additional
information.

ODE File Overview
Look at the simple ODE file vdp1.m from earlier in this chapter.

function dy = vdp1(t,y)
dy = [y(2); (1–y(1)^2)*y(2)–y(1)];

Although this is a simple example, it demonstrates two important
requirements for ODE files:

• The first two arguments must be t and y.

• By default, the ODE file must return a column vector F(t,y).

Defining the Initial Values in the ODE File
It is possible to specify default tspan, y0 and options in the ODE file, defining
the entire initial value problem in the one file. In this case, the solver can be
called as

[T,Y] = solver(’F’,[],[]);

The solver extracts the default values from the ODE file. You can also omit
empty arguments at the end of the argument list. For example,

[T,Y] = solver(’F’);

When you call a solver with an empty or missing tspan or y0, the solver calls
the specified ODE file to obtain any values not supplied in the solver argument
list. It uses the syntax

[tspan,y0,options] = F([],[],’init’)
4

Creating ODE Files
The ODE file is then expected to return three outputs:

• Output 1 is the tspan vector.

• Output 2 is the initial value, y0.

• Output 3 is either an options structure created with the odeset function or
an empty matrix [].

Coding the ODE File to Return Initial Values
If you use this approach, your ODE file must check the value of the third
argument and return the appropriate output. For example, you can modify the
van der Pol ODE file vdp1.m to check the third argument, flag, and return
either the default vector F(t,y) or [tspan,y0,options] depending on the
value of flag.

function [out1,out2,out3] = vdp1(t,y,flag)
if strcmp(flag,’’)

 % Return dy/dt = F(t,y).
 out1 = [y(2); (1–y(1)^2)*y(2)–y(1)];

elseif strcmp(flag,'init')

 % Return [tspan,y0,options].
 out1 = [0; 20]; % tspan
 out2 = [2; 0]; % initial conditions
 out3 = odeset('RelTol',1e–4); % options

end

Note The third argument, referred to as the flag argument, is a special
argument that notifies the ODE file that the solver is expecting a specific kind
of information. The 'init' string, for initial values, is just one possible value
for this flag. For complete details on the flag argument, see “Special Purpose
ODE Files and the flag Argument” on page 8-17.
8-15

8 Ordinary Differential Equations

8-1
Passing Additional Parameters to the ODE File
In some cases your ODE system may require additional parameters beyond the
required t and y arguments. For example, you can generalize the van der Pol
ODE file by passing it a mu parameter, instead of specifying a value for mu
explicitly in the code.

function [out1,out2,out3] = vdpode(t,y,flag,mu)
if nargin < 4 | isempty(mu)

mu = 1;

end
if strcmp(flag,’’)

 % Return dy/dt = F(t,y).
 out1 = [y(2); mu*(1–y(1)^2)*y(2)–y(1)];

elseif strcmp(flag,'init')

 % Return [tspan,y0,options].
 out1 = [0; 20]; % tspan
 out2 = [2; 0]; % initial conditions
 out3 = odeset('RelTol',1e–4); % options

end

In this example, the parameter mu is an optional argument specific to the van
der Pol example. MATLAB and the ODE solvers do not set a limit on the
number of parameters you can pass to an ODE file.

Guidelines for Creating ODE Files
• The ode file must have at least two input arguments, t and y. It is not

necessary, however, for the function to use either t or y.

• The derivatives returned by F(t,y) must be column vectors.

• Any additional parameters beyond t and y must appear at the end of the
argument list and must begin at the fourth input parameter. The third
position is reserved for an optional flag, as shown above in “Coding the ODE
File to Return Initial Values.” The flag argument is described in more detail
in “Special Purpose ODE Files and the flag Argument” on 8-17.
6

Improving Solver Performance
Improving Solver Performance
In some cases, you can improve ODE solver performance by specially coding
your ODE file. For instance, you might accelerate the solution of a stiff problem
by coding the ODE file to compute the Jacobian matrix analytically.

Another way to improve solver performance, often used in conjunction with a
specially coded ODE file, is to tune solver parameters. The default parameters
in the ODE solvers are selected to handle common problems. In some cases,
however, tuning the parameters for a specific problem can improve
performance significantly. You do this by supplying the solvers with one or
more property values contained within an options argument.

[T,Y] = solver(’F’,tspan,y0,options)

The property values within the options argument are created with the odeset
function, in which named properties are given specified values.

Special Purpose ODE Files and the flag Argument
The MATLAB ODE solvers are capable of using additional information
provided in the ODE file. In this more general use, an ODE file is expected to
respond to the arguments odefile(t,y,flag,p1,p2,...) where t and y are the
integration variables, flag is a string indicating the type of information that

Category Property Name Page

Error tolerance RelTol, AbsTol 8-21

Solver output OutputFcn, OutputSel, Refine, Stats 8-22

Jacobian matrix Jacobian, JConstant, JPattern, Vectorized 8-25

Step size InitialStep, MaxStep 8-28

Mass matrix Mass, MassSingular 8-29

Event location Events 8-30

ode15s MaxOrder, BDF 8-32
8-17

8 Ordinary Differential Equations

8-1
the ODE file should return, and p1,p2,... are any additional parameters that
the problem requires. This table shows the currently supported flags.

The template below illustrates how to code an extended ODE file that uses the
switch construct and the ODE file’s third input argument, flag, to supply
additional information. For illustration, the file also accepts two additional
input parameters p1 and p2.

Flags Return Values

’’ (empty)

’init’ tspan, y0, and options for this problem

’jacobian’ Jacobian matrix =

’jpattern’ Matrix showing the Jacobian sparsity pattern

’mass’ Mass matrix for solving M(t, y) y’ = F(t, y)

’events’ Information to define an event location problem

F t y,()

J t y,() F∂ y∂⁄

M

8

Improving Solver Performance
Note The example below is only a template. In your own coding you should not
include all of the cases shown. For example, ’jacobian’ information is used
for evaluating Jacobians analytically, and ’jpattern’ information is used for
generating Jacobians numerically.

function varargout = odefile(t,y,flag,p1,p2)
switch flag
 case ’’ % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,p1,p2);
 case ’init’ % Return default [tspan,y0,options].
 [varargout{1:3}] = init(p1,p2);
 case ’jacobian’ % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,p1,p2);
 case ’jpattern’ % Return sparsity pattern matrix S.
 varargout{1} = jpattern(t,y,p1,p2);
 case ’mass ’ % Return mass matrix.
 varargout{1} = mass(t,y,p1,p2);
 case ’events’ % Return[value,isterminal,direction].
 [varargout{1:3}] = events(t,y,p1,p2);
 otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
 end
 % --
 function dydt = f(t,y,p1,p2)
 dydt = < Insert a function of t and/or y, p1, and p2 here. >;
 % --
 function [tspan,y0,options] = init(p1,p2)
 tspan = < Insert tspan here. >;
 y0 = < Insert y0 here. >;
 options = < Insert options = odeset(...) or [] here. >;
 % --
 function dfdy = jacobian(t,y,p1,p2)
 dfdy = < Insert Jacobian matrix here. >;
 % --
 function S = jpattern(t,y,p1,p2)
 S = < Insert Jacobian matrix sparsity pattern here. >;
 % --

8-19

8 Ordinary Differential Equations

8-2
function M = mass(t,y,p1,p2)
M = < Insert mass matrix here. >;
% --
function [value,isterminal,direction] = events(t,y,p1,p2)
value = < Insert event function vector here. >;
isterminal = < Insert logical ISTERMINAL vector here. >;
direction = < Insert DIRECTION vector here. >;

Creating an Options Structure: The odeset Function
The odeset function creates an options structure that you can supply to any
of the ODE solvers. odeset accepts property name/property value pairs using
the syntax

options = odeset(’name1’,value1,’name2’,value2,...)

This creates a structure options in which the named properties have the
specified values. Any unspecified properties contain default values in the
solvers. For all properties, it is sufficient to type only the leading characters
that uniquely identify the property name. odeset ignores case for property
names.

With no input arguments, odeset displays all property names and their
possible values, indicating defaults with { }.

AbsTol: [positive scalar or vector {1e–6}]
BDF: [on | {off}]
Events: [on | {off}]
InitialStep: [positive scalar]
Jacobian: [on | {off}]
JConstant: [on | {off}]
JPattern: [on | {off}]
Mass: [{none} | M | M(t) | M(t,y)]
MassSingular: [yes | no | {maybe}]
MaxOrder: [1 | 2 | 3 | 4 | {5}]
MaxStep: [positive scalar]
OutputFcn: [string]
OutputSel: [vector of integers]
Refine: [positive integer]
RelTol: [positive scalar {1e–3}]
Stats: [on | {off}]
Vectorized: [on | {off}]
0

Improving Solver Performance
Modifying an Existing Options Structure
To modify an existing options argument, use

options = odeset(oldopts,’name1’,value1,...)

This sets options equal to the existing structure oldopts, overwriting any
values in oldopts that are respecified using name/value pairs and adding to
the structure any new pairs. The modified structure is returned as an output
argument. In the same way, the command

options = odeset(oldopts,newopts)

combines the structures oldopts and newopts. In the output argument, any
values in the second argument (other than the empty matrix) overwrite those
in the first argument.

Querying Options: The odeget Function
The solvers use the odeget function to extract property values from an options
structure created with odeset.

o = odeget(options,’name’)

This returns the value of the specified property, or an empty matrix [] if the
property value is unspecified in the options structure.

As with odeset, it is sufficient to type only the leading characters that uniquely
identify the property name; case is ignored for property names.

Error Tolerance Properties
The solvers use standard local error control techniques for monitoring and
controlling the error of each integration step. At each step, the local error e in
the i’th component of the solution is estimated and is required to be less than
or equal to the acceptable error, which is a function of two user-defined
tolerances RelTol and AbsTol.

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

• RelTol is the relative accuracy tolerance, a measure of the error relative to
the size of each solution component. Roughly, it controls the number of
correct digits in the answer. The default, 1e–3, corresponds to 0.1%
accuracy.
8-21

8 Ordinary Differential Equations

8-2
• AbsTol is a scalar or vector of the absolute error tolerances for each solution
component. AbsTol(i) is a threshold below which the values of the
corresponding solution components are unimportant. The absolute error
tolerances determine the accuracy when the solution approaches zero. The
default value is 1e–6.

Set tolerances using odeset, either at the command line or in the ODE file.

The ODE solvers are designed to deliver, for routine problems, accuracy
roughly equivalent to the accuracy you request. They deliver less accuracy for
problems integrated over “long” intervals and problems that are moderately
unstable. Difficult problems may require tighter tolerances than the default
values. For relative accuracy, adjust RelTol. For the absolute error tolerance,
the scaling of the solution components is important: if |y| is somewhat smaller
than AbsTol, the solver is not constrained to obtain any correct digits in y. You
might have to solve a problem more than once to discover the scale of solution
components.

Solver Output Properties
The solver output properties available with odeset let you control the output
that the solvers generate. With these properties, you can specify an output
function, a function that executes if you call the solver with no output
arguments. In addition, the ODE solver output options let you obtain

Property Value Description

RelTol Positive scalar
{1e–3}

A relative error tolerance that applies
to all components of the solution vector
y. Default value is 10^(–3) (0.1%
accuracy).

AbsTol Positive scalar
or vector {1e–6}

Absolute error tolerances that apply to
the corresponding components of the
solution vector. If a scalar value is
specified, it applies to all components
of the solution vector y. Default value
is 10^(–6).
2

Improving Solver Performance
additional solutions at equally spaced points within each time step, or view
statistics about the computations.

OutputFcn
The OutputFcn property lets you define your own output function and pass the
name of this function to the ODE solvers. If no output arguments are specified,
the solvers call this function after each successful time step. You can use this
feature, for example, to plot results as they are computed.

You must code your output function in a specific way for it to interact properly
with the ODE solvers. When the name of an executable M-file function, e.g.,
myfun, is passed to an ODE solver as the OutputFcn property

options = odeset(’OutputFcn’,’myfun’)

Property Value Description

OutputFcn String The name of an output function.

OutputSel Vector of indices Indices of solver output components to
pass to an output function.

Refine Positive integer Produces smoother output, increasing
the number of output points by a factor
of Refine. If Refine is 1, the solver
returns solutions only at the end of
each time step. If Refine is n >1, the
solver uses continuous extension to
subdivide each time step into n smaller
intervals, and returns solutions at
each time point. Refine is 1 by default
in all solvers except ode45 where it is 4
because of the solver’s large step sizes.
Refine does not apply when
length(tspan)>2.

Stats on | {off} Specifies whether statistics about the
solver’s computations should be
displayed.
8-23

8 Ordinary Differential Equations

8-2
the solver calls it with myfun(tspan,y0,’init’) before beginning the
integration so that the output function can initialize. Subsequently, the solver
calls status = myfun(t,y) after each step. In addition to your intended use of
(t,y), code myfun so that it returns a status output value of 0 or 1. If
status = 1, integration halts. This might be used, for instance, to implement
a STOP button. When integration is complete, the solver calls the output
function with myfun([],[],’done’).

Some example output functions are included with the ODE solvers:

• odeplot – time series plotting

• odephas2 – two-dimensional phase plane plotting

• odephas3 – three-dimensional phase plane plotting

• odeprint – print solution as it is computed

Use these as models for your own output functions. odeplot is the default
output function for all the solvers. It is automatically invoked when the solvers
are called with no output arguments.

OutputSel
The OutputSel property is a vector of indices specifying which components of
the solution vector are to be passed to the output function. For example, if you
want to use the odeplot output function, but you want to plot only the first and
third components of the solution, you can do this using

 options = odeset(’OutputFcn’,’odeplot’,’OutputSel’,[1 3]);

Refine
The Refine property, an integer n, produces smoother output by increasing the
number of output points by a factor of n. This feature is especially useful when
using a medium or high order solver, such as ode45, for which solution
components can change substantially in the course of a single step. To obtain
smoother plots, increase the Refine property.

Note In all the solvers, the default value of Refine is 1.Within ode45, however,
Refine is 4 to compensate for the solver’s large step sizes. To override this and
see only the time steps chosen by ode45, set Refine to 1.
4

Improving Solver Performance
The extra values produced for Refine are computed by means of continuous
extension formulas. These are specialized formulas used by the ODE solvers to
obtain accurate solutions between computed time steps without significant
increase in computation time.

Stats
The Stats property specifies whether statistics about the computational cost of
the integration should be displayed. By default, Stats is off. If it is on, after
solving the problem the integrator displays:

• The number of successful steps

• The number of failed attempts

• The number of times the ODE file was called to evaluate F(t,y)

• The number of times that the partial derivatives matrix was formed

• The number of LU decompositions

• The number of solutions of linear systems

You can obtain the same values by including a third output argument in the
call to the ODE solver:

[T,Y,S] = ode45(’myfun’, ...);

This statement produces a vector S that contains these statistics.

Jacobian Matrix Properties
The stiff ODE solvers often execute faster if you provide additional information
about the Jacobian matrix , a matrix of partial derivatives of the
function defining the differential equation.

F∂ y∂⁄

F∂ y∂⁄

F1∂
x1∂---------

F1∂
x2∂---------

···

F2∂
x1∂---------

F2∂
x2∂---------

···

.

.

.

.

.

.

8-25

8 Ordinary Differential Equations

8-2
There are two aspects to providing information about the Jacobian:

• You can set up your ODE file to calculate and return the value of the
Jacobian matrix for the problem. In this case, you must also use odeset to
set the Jacobian property.

• If you do not calculate the Jacobian in the ODE file, ode15s and ode23s call
the helper function numjac to approximate Jacobians numerically by finite
differences. In this case, you may be able to use the JConstant, Vectorized,
or JPattern properties.

The Jacobian matrix properties pertain only to the stiff solvers ode15s and
ode23s for which the Jacobian matrix is critical to reliability and
efficiency.

Property Value Description

JConstant on | {off} Set on if the Jacobian matrix is
constant (does not depend on t or y).

Jacobian on | {off} Set on to inform the solver that the
ODE file is coded such that
F(t,y,’Jacobian’) returns .

JPattern on | {off} Set on if is a sparse matrix and
the ODE file is coded so that
F([],[],’JPattern’) returns a
sparsity pattern matrix.

Vectorized on | {off} Set on to inform the stiff solver that
the ODE file is coded so that
F(t,[y1 y2 ...]) returns
[F(t,y1) F(t,y2) ...].

F∂ y∂⁄

F∂ y∂⁄

F∂ y∂⁄

F∂ y∂⁄
6

Improving Solver Performance
JConstant
Set JConstant on if the Jacobian matrix is constant (does not depend on
t or y). Whether computing the Jacobians numerically or evaluating them
analytically, the solver takes advantage of this information to reduce solution
time. For the stiff van der Pol example, the Jacobian matrix is

J = [0 1
 (–2000*y(1)*y(2) – 1) (1000*(1–y(1)^2))]

(not constant) so the JConstant property does not apply.

Jacobian
Set Jacobian on to inform the solver that the ODE file is coded such that
F(t,y,'Jacobian') returns . By default, Jacobian is off, and
Jacobians are generated numerically.

Coding the ODE file to evaluate the Jacobian analytically often increases the
speed and reliability of the solution for the stiff problem. The Jacobian shown
above for the stiff van der Pol problem can be coded into the ODE file as

function out1 = vdp1000(t,y,flag)
if strcmp(flag,’’) % return dy
out1 = [y(2); 1000*(1–y(1)^2)*y(2)–y(1)];

elseif strcmp(flag,'jacobian') % return J
out1 = [0 1

(–2000*y(1)*y(2) – 1) (1000*(1–y(1)^2))];
end

JPattern
Set JPattern on if is a sparse matrix and the ODE file is coded so that
F([],[],'JPattern') returns a sparsity pattern matrix. This is a sparse
matrix with 1s where there are nonzero entries in the Jacobian. numjac uses
the sparsity pattern to generate a sparse Jacobian matrix numerically. If the
Jacobian matrix is large (size greater than approximately 100-by-100) and
sparse, this can accelerate execution greatly. For an example using the
JPattern property, see the brussode example on 8-37.

F∂ y∂⁄

F∂ y∂⁄

F∂ y∂⁄
8-27

8 Ordinary Differential Equations

8-2
Vectorized
Set Vectorized on to inform the stiff solver that the ODE file is coded so that
F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2) ...]. When computing
Jacobians numerically, the solver passes this information to the numjac
routine. This allows numjac to reduce the number of function evaluations
required to compute all the columns of the Jacobian matrix, and may reduce
solution time significantly.

With MATLAB’s array notation, it is typically an easy matter to vectorize an
ODE file. For example, the stiff van der Pol example shown previously can be
vectorized by introducing colon notation into the subscripts and by using the
array power (.^) and array multiplication (.*) operators.

function dy = vdp1000(t,y)
dy = [y(2,:); 1000*(1–y(1,:).^2).*y(2,:)–y(1,:)];

Step-Size Properties
The step-size properties let you specify the first step size tried by the solver,
potentially helping it to recognize better the scale of the problem. In addition,
you can specify bounds on the sizes of subsequent time steps.

Generally it is not necessary for you to adjust MaxStep and InitialStep
because the ODE solvers implement state-of-the-art variable time step control
algorithms. Adjusting these properties without good reason may result in
degraded solver performance.

MaxStep
MaxStep has a positive scalar value. This property sets an upper bound on the
magnitude of the step size the solver uses. If the differential equation has
periodic coefficients or solution, it may be a good idea to set MaxStep to some
fraction (such as 1/4) of the period. This guarantees that the solver does not
enlarge the time step too much and step over a period of interest.

Property Value Description

MaxStep Positive scalar Upper bound on solver step size.

InitialStep Positive scalar Suggested initial step size.
8

Improving Solver Performance
• Do not reduce MaxStep to produce more output points. This can slow down
solution time significantly. Instead, use Refine (8-24) to compute additional
outputs by continuous extension at very low cost.

• Do not reduce MaxStep when the solution does not appear to be accurate
enough. Instead, reduce the relative error tolerance RelTol, and use the
solution you just computed to determine appropriate values for the absolute
error tolerance vector AbsTol. (See “Error Tolerance Properties” on page 8-21
for a description of the error tolerance properties.)

• Generally you should not reduce MaxStep to make sure that the solver
doesn’t step over some behavior that occurs only once during the simulation
interval. If you know the time at which the change occurs, break the
simulation interval into two pieces and call the solvers twice. If you do not
know the time at which the change occurs, try reducing the error tolerances
RelTol and AbsTol. Use MaxStep as a last resort.

InitialStep
InitialStep has a positive scalar value. This property sets an upper bound on
the magnitude of the first step size the solver tries. Generally the automatic
procedure works very well. However, the initial step size is based on the slope
of the solution at the initial time tspan(1), and if the slope of all solution
components is zero, the procedure might try a step size that is much too large.
If you know this is happening or you want to be sure that the solver resolves
important behavior at the start of the integration, help the code start by
providing a suitable InitialStep.

Mass Matrix Properties
The solvers of the ODE suite can solve problems of the form M(t, y) y’ = F(t, y)
with a mass matrix M that is nonsingular and (usually) sparse. Use odeset to
set Mass to ’M’, ’M(t)’, or ’M(t,y)’ if the ODE file F.m is coded so that
F(t,y,’mass’) returns a constant, time-dependent, or time-and-state
dependent mass matrix, respectively. The default value of Mass is ’none’. The
ode23s solver can only solve problems with a constant mass matrix M. For
examples of mass matrix problems, see fem1ode, fem2ode, or batonode.

If M is singular, then M(t) * y’ = F(t, y) is a differential algebraic equation
(DAE). DAEs have solutions only when y0 is consistent, that is, if there is a
vector yp0 such that M(t0) * y0 = f(t0, y0). The ode15s and ode23t solvers can
solve DAEs of index 1 provided that M is not state-dependent and y0 is
8-29

8 Ordinary Differential Equations

8-3
sufficiently close to being consistent. If there is a mass matrix, you can use
odeset to set the MassSingular property to ’yes’, ’no’, or ’maybe’. The
default value of ’maybe’ causes the solver to test whether the problem is a
DAE. If it is, the solver treats y0 as a guess, attempts to compute consistent
initial conditions that are close to y0, and continues to solve the problem. When
solving DAEs, it is very advantageous to formulate the problem so that M is a
diagonal matrix (a semi-explicit DAE). For examples of DAE problems, see
hb1dae or amp1dae.

Mass
Change this property from ’none’ if the ODE file is coded so that
F(t,y,’mass’) returns a mass matrix. ’M’ indicates a constant mass matrix,
’M(t)’ indicates a time-dependent mass matrix, and ’M(t,y)’ indicates a
time- and state-dependent mass matrix.

MassSingular
Set this property to ’no’ if the mass matrix is not singular.

For an example of an ODE file with a mass matrix, see “Example 4: Finite
Element Discretization” on page 8-40.

Event Location Property
In some ODE problems the times of specific events are important, such as the
time at which a ball hits the ground, or the time at which a spaceship returns
to the earth, or the times at which the ODE solution reaches certain values.

Property Value Description

Mass {none} | M
| M(t)
| M(t,y)

Indicate whether the ODE file returns
a mass matrix.

MassSingular yes | no
| {maybe}

Indicate whether the mass matrix is
singular.
0

Improving Solver Performance
While solving a problem, the MATLAB ODE solvers can locate transitions to,
from, or through zeros of a vector of user-defined functions.

Events
Set this parameter on to inform the solver that the ODE file is coded so that
F(t,y,’events’) returns appropriate event function information. By default,
’events’ is off.

For example, the statement

[T,Y,TE,YE,IE] = solver(’F’,tspan,y0,options)

with the Events property in options set on solves an ODE problem while also
locating zero crossings of an events function defined in the ODE file. In this
case, the solver returns three additional outputs:

• TE is a column vector of times at which events occur.

• Rows of YE are solutions corresponding to times in TE.

• Indices in vector IE specify which event occurred at the time in TE.

The ODE file must be coded to return three values in response to the ’events’
flag.

[value,isterminal,direction] = F(t,y,’events’);

The first output argument value is the vector of event functions evaluated at
(t,y). The value vector may be any length. It is evaluated at the beginning
and end of each integration step, and if any elements make transitions to, from,
or through zero (with the directionality specified in constant vector direction),
the solver uses the continuous extension formulas to determine the time when
the transition occurred.

Terminal events halt the integration. The argument isterminal is a logical
vector of 1s and 0s that specifies whether a zero-crossing of the corresponding

String Value Description

Events on | {off} Set this on if the ODE file evaluates
and returns the event functions, and
returns information about the events.
8-31

8 Ordinary Differential Equations

8-3
value element is terminal. 1 corresponds to a terminal event, halting the
integration; 0 corresponds to a nonterminal event.

The direction vector specifies a desired directionality: positive (1), negative
(–1), or don’t care (0), for each value element.

The time an event occurs is located to machine precision within an interval of
[t– t+]. Nonterminal events are reported at t+. For terminal events, both t–
and t+ are reported.

For an example of an ODE file with an event location, see “Example 5: Simple
Event Location” on page 8-44.

ode15s Properties
The ode15s solver is a variable-order stiff solver based on the numerical
differentiation formulas (NDFs). The NDFs are generally more efficient than
the closely related family of backward differentiation formulas (BDFs), also
known as Gear’s methods. The ode15s properties let you choose between these
formulas, as well as specifying the maximum order for the solver.

MaxOrder
MaxOrder is an integer 1 through 5 used to set an upper bound on the order of
the formula that computes the solution. By default, the maximum order is 5.

BDF
Set BDF on to have ode15s use the BDFs. By default, BDF is off, and the solver
uses the NDFs.

For both the NDFs and BDFs, the formulas of orders 1 and 2 are A-stable (the
stability region includes the entire left half complex plane). The higher order
formulas are not as stable, and the higher the order the worse the stability.

Property Value Description

MaxOrder 1 | 2 | 3 | 4 |{5} The maximum order formula used.

BDF on | {off} Specifies whether the backward
differentiation formulas are to be
used instead of the default numerical
differentiation formulas.
2

Improving Solver Performance
There is a class of stiff problems (stiff oscillatory) that is solved more efficiently
if MaxOrder is reduced (for example to 2) so that only the most stable formulas
are used.
8-33

8 Ordinary Differential Equations

8-3
Examples: Applying the ODE Solvers
This section contains several examples of ODE files. These examples illustrate
the kinds of problems you can solve in MATLAB. For more examples, see
MATLAB’s demos directory.

Example 1: Simple Nonstiff Problem
rigidode is a nonstiff example that can be solved with all five solvers of the
ODE suite. It is a standard test problem, proposed by Krogh, for nonstiff
solvers. The analytical solutions are Jacobian elliptic functions accessible in
MATLAB. The interval here is about 1.5 periods.

The rigidode system consists of the Euler equations of a rigid body without
external forces as proposed by Krogh. rigidode is a system of three equations

rigidode([],[],’init’) returns the default tspan, y0, and options values
for this problem. These values are retrieved by an ODE solver if the solver is
invoked with empty tspan or y0 arguments. This example uses the default
solver options, so the third output argument is set to empty, [], instead of an
options structure created with odeset. By means of the ’init’ flag, the entire
initial value problem is defined in one file.

Reference Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations, W.H. Freeman & Co., 1975.

y′3 0.51 y– 1 y2=

y′2 y– 1 y3=

y′1 y2 y3=
4

Examples: Applying the ODE Solvers
function varargout = rigidode(t,y,flag)
%RIGIDODE Euler equations of a rigid body without external forces.
switch flag
case ’’ % Return dy/dt = f(t,y).
 varargout{1} = f(t,y);
case ’init’ % Return default [tspan,y0,options].
 [varargout{1:3}] = init;
otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
end
% --
function dydt = f(t,y)
dydt = [y(2)*y(3); -y(1)*y(3); -0.51*y(1)*y(2)];
% --
function [tspan,y0,options] = init
tspan = [0; 12];
y0 = [0; 1; 1];
options = [];

Example 2: van der Pol Equation
vdpode is a more general version of the van der Pol example that has been used
in various forms throughout this chapter. For illustrative purposes, it is coded
for both fast numerical Jacobian computation (Vectorized property) and for
analytical Jacobian evaluation (Jacobian property). In practice you would
supply only one or the other of these options. It is not necessary to supply
either.

The van der Pol equation is written as a system of two equations.

vdpode(t,y) or vdpode(t,y,[],mu) returns the derivatives vector for the van
der Pol equation. By default, mu is 1 and the problem is not stiff. Optionally,
pass in the mu parameter as an additional input argument to an ODE solver.
The problem becomes more stiff as mu is increased and the period of oscillation
becomes larger.

y′2 µ(1 y1
2–)y2 y1–=

y′1 y2=
8-35

8 Ordinary Differential Equations

8-3
When mu is 1000 the equation is in relaxation oscillation and the problem is
very stiff. The limit cycle has portions where the solution components change
slowly and the problem is quite stiff, alternating with regions of very sharp
change where it is not stiff (quasi-discontinuities).

This example sets Vectorized on with odeset because vdpode is coded so that
vdpode(t,[y1 y2 ...]) returns [vdpode(t,y1) vdpode(t,y2) ...] for scalar
time t and vectors y1,y2,... The stiff ODE solvers take advantage of this
feature only when approximating the columns of the Jacobian numerically.

vdpode([],[],’init’) returns the default tspan, y0, and options values for
this problem. The entire initial value problem is defined in this one file.

vdpode(t,y,’jacobian’) or vdpode(t,y,’jacobian’,mu) returns the
Jacobian matrix evaluated analytically at (t,y). By default, the stiff
solvers of the ODE suite approximate Jacobian matrices numerically.
However, if Jacobian is set on with odeset, a solver calls the ODE file with the
flag ’jacobian’ to obtain . Providing the solvers with an analytic
Jacobian is not necessary, but it can improve the reliability and efficiency of
integration.

F∂ y∂⁄

F∂ y∂⁄
6

Examples: Applying the ODE Solvers
function varargout = vdpode(t,y,flag,mu)
%VDPODE Parameterizable van der Pol equation (stiff for large mu).

if nargin < 4 | isempty(mu)
 mu = 1;
end
switch flag
case ’’ % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,mu);
case ’init’ % Return default [tspan,y0,options].
 [varargout{1:3}] = init(mu);
case ’jacobian’ % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,mu);
otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
end
% --
function dydt = f(t,y,mu)
dydt = [y(2,:); (mu*(1-y(1,:).^2).*y(2,:) - y(1,:))]; %
Vectorized
% --
function [tspan,y0,options] = init(mu)
tspan = [0; max(20,3*mu)]; % several periods
y0 = [2; 0];
options = odeset(’Vectorized’,’on’);
% --
function dfdy = jacobian(t,y,mu)
dfdy = [0 1
 (-2*mu*y(1)*y(2) - 1) (mu*(1-y(1)^2))];

Example 3: Large, Stiff Sparse Problem
This is an example of a (potentially) large stiff sparse problem. Like vdpode, the
file is coded to use both the Vectorized and Jacobian properties, but only one
is used during the course of a simulation. Like both previous examples,
brussode responds to the ’init’ flag.

The brussode example is the classic “Brusselator” system (Hairer and Wanner)
modeling diffusion in a chemical reaction.
8-37

8 Ordinary Differential Equations

8-3
and is solved on the time interval [0,10] with α = 1/50 and

There are 2N equations in the system, but the Jacobian is banded with a
constant width 5 if the equations are ordered as u1, v1, u2, v2, ...

brussode(t,y) or brussode(t,y,[],n) returns the derivatives vector for the
Brusselator problem. The parameter n ≥ 2 is used to specify the number of grid
points; the resulting system consists of 2n equations. By default, n is 2. The
problem becomes increasingly stiff and the Jacobian increasingly sparse as n is
increased.

brussode([],[],’jpattern’) or brussode([],[],’jpattern’,n) returns a
sparse matrix of 1s and 0s showing the locations of nonzeros in the Jacobian

. By default, the stiff ODE solvers generate Jacobians numerically as
full matrices. However, if JPattern is set on with odeset, a solver calls the
ODE file with the flag ’jpattern’. This provides the solver with a sparsity
pattern that it uses to generate the Jacobian numerically as a sparse matrix.
Providing a sparsity pattern can significantly reduce the number of function
evaluations required to generate the Jacobian and can accelerate integration.
For the Brusselator problem, if the sparsity pattern is not supplied, 2n
evaluations of the function are needed to compute the 2n-by-2n Jacobian
matrix. If the sparsity pattern is supplied, only four evaluations are needed,
regardless of the value of n.

Reference Hairer, E. and G. Wanner, Solving Ordinary Differential Equations
II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991,
pp. 5-8.

u′i 1 ui
2vi 4ui– α N 1+()2 ui 1– 2ui– ui 1++()+ +=

ui 0() 1 2πxi()
vi 0()

sin+
3

=
=

with xi i N 1+()⁄ for i 1, ..., N==}

F∂ y∂⁄
8

Examples: Applying the ODE Solvers
function varargout = brussode(t,y,flag,N)
%BRUSSODE Stiff problem modeling a chemical reaction.

if nargin < 4 | isempty(N)
 N = 2;
end
switch flag
case ’’ % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,N);
case ’init’ % Return default [tspan,y0,options].
 [varargout{1:3}] = init(N);
case ’jpattern’ % Return sparsity pattern of df/dy.
 varargout{1} = jpattern(t,y,N);
case ’jacobian’ % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,N);
otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
end
% --
function dydt = f(t,y,N)
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2));% preallocate dy/dt
% Evaluate the 2 components of the function at one edge of the grid
% (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
c*(3-2*y(i+1,:)+y(i+3,:));
% Evaluate the 2 components of the function at all interior grid
% points.
i = 3:2:2*N-3;

dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
 c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
 c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
% Evaluate the 2 components of the function at the other edge of
% the grid (with edge conditions).
i = 2*N-1;
8-39

8 Ordinary Differential Equations

8-4
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
c*(y(i-1,:)-2*y(i+1,:)+3);
% --
function [tspan,y0,options] = init(N)
tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); 3+zeros(1,N)];
y0 = y0(:);
options = odeset(’Vectorized’,’on’);
% --
function dfdy = jacobian(t,y,N)
c = 0.02 * (N+1)^2;
B = zeros(2*N,5);
B(1:2*(N-1),1) = B(1:2*(N-1),1) + c;
i = 1:2:2*N-1;
B(i,2) = 3 - 2*y(i).*y(i+1);
B(i,3) = 2*y(i).*y(i+1) - 4 - 2*c;
B(i+1,3) = -y(i).^2 - 2*c;
B(i+1,4) = y(i).^2;
B(3:2*N,5) = B(3:2*N,5) + c;
dfdy = spdiags(B,-2:2,2*N,2*N); % Note this is a SPARSE Jacobian.
% --
function S = jpattern(t,y,N)
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
if nargin < 4 | isempty(N)
 N = 2;
end

Example 4: Finite Element Discretization
fem1ode(t,y) or fem1ode(t,y,[],n) returns the derivatives vector for a finite
element discretization of a partial differential equation. The parameter n
controls the discretization, and the resulting system consists of n equations. By
default, n is 9.
0

Examples: Applying the ODE Solvers
This example involves a mass matrix. The system of ODE’s comes from a
method of lines solution of the partial differential equation

with initial condition u(0, x) = sin(x) and boundary conditions
u(t, 0) = u(t, π) = 0. An integer N is chosen, h is defined as 1/(N+1), and the
solution of the partial differential equation is approximated at xk = kπh for
k = 0, 1, , ..., N+1 by

Here φk(x) is a piecewise linear function that is 1 at xk and 0 at all the other xj.
A Galerkin discretization leads to the system of ODEs

and the tridiagonal matrices A(t) and R are given by

The initial values c(0) are taken from the initial condition for the partial
differential equation. The problem is solved on the time interval [0, π].

fem1ode(t,[],’mass’) or fem1ode(t,[],’mass’,n) returns the
time-dependent mass matrix evaluated at time t. By default, ode15s solves
systems of the form . However, if the Mass property is changed
from ’none’ to ’M’, ’M(t)’, or ’M(t,y)’ with odeset, the solver calls the ODE
file with the flag ’mass’. The ODE file returns a mass matrix, which the solver
uses to solve M(t, y) y’ = F(t, y). If the mass matrix is a constant , the problem
can be also be solved with ode23s.

e t– u∂
t∂------

∂2u
∂x2---------=

u t xk(,) ck t()φk x()

k 1=

N

∑≈

A t()c′ Rc where c t()
c1 t()

cN t()
= = .

.

exp t–()2h 3⁄ if i j
exp t–()h 6⁄ if i j 1
0 otherwise

±=
={

Aij = and
2– h⁄ if i j

1 h⁄ if i j 1
0 otherwise

±=
=

Rij =
{

M
y′ F t y,()=

M

8-41

8 Ordinary Differential Equations

8-4
For example, to solve a system of 20 equations, use

[T,Y] = ode15s(’fem1ode’,[],[],odeset(’Mass’,’M(t)’),20);
2

Examples: Applying the ODE Solvers
fem1ode also responds to the flag ’init’ (see the rigidode example for
details).

function varargout = fem1ode(t,y,flag,N)
%FEM1ODE Stiff problem with a time-dependent mass matrix.
if nargin == 0
 flag = ’demo’;
end
if nargin < 4 | isempty(N)
 N = 9;
end
switch flag
case ’’ % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,N);
case ’init’ % Return default.
[tspan,y0,options].
 [varargout{1:3}] = init(N);
case ’mass’ % Return mass matrix M(t).
 varargout{1} = mass(t,y,N);
case ’demo’ % Run a demo.
 demo;
otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
end
%---
function dydt = f(t,y,N)
e = ((N+1)/pi) + zeros(N,1); % h=pi/(N+1); e=(1/h)+zeros(N,1);
R = spdiags([e -2*e e], -1:1, N, N);
dydt = R*y;
%---
function [tspan,y0,options] = init(N)
tspan = [0; pi];
y0 = sin((pi/(N+1))*(1:N)’);
options = odeset(’Mass’,’M(t)’,’Vectorized’,’on’);

%---
8-43

8 Ordinary Differential Equations

8-4
function M = mass(t,y,N)
e = (exp(-t)*pi/(6*(N+1))) + zeros(N,1); % h=pi/(N+1);
e=exp(-t)*h/6+zeros
M = spdiags([e 4*e e], -1:1, N, N);
%---
function demo
[t,y] = ode15s(’fem1ode’);
surf(1:9,t,y);
set(gca,’ZLim’,[0 1]);
view(142.5,30);
title([’Finite element problem with time-dependent mass ’ ...
 ’matrix, solved by ODE15S’]);
xlabel(’space’);
ylabel(’time’);
zlabel(’solution’);

Example 5: Simple Event Location
ballode(t,y) returns the derivatives vector for the equations of motion of a
bouncing ball. This ODE file illustrates the event location capabilities of the
ODE solvers.

The equations for the bouncing ball are:

ballode(t,y,’events’) returns a zero-crossing vector value evaluated at
(t,y), as well as two constant vectors isterminal and direction. By default,
the ODE solvers do not locate zero-crossings. However, if the Events property
is set on with odeset, a solver calls the ODE file with the flag ’events’. This
provides the solver with information that it uses to locate zero-crossings of the
elements in the value vector. The value vector may be any length. It is
evaluated at the beginning and end of a step, and if any elements change sign
(with the directionality specified in direction), the zero-crossing point is
located. The isterminal vector consists of logical 1s and 0s, enabling you to
specify whether or not a zero-crossing of the corresponding value element halts
the integration. The direction vector enables you to specify a desired

y′2 9.8–=

y′1 y2=
4

Examples: Applying the ODE Solvers
directionality, positive (1), negative (–1), or don’t care (0) for each value
element.

ballode also responds to the flag ’init’ (see the rigidode example for
details).

function varargout = ballode(t,y,flag)
%BALLODE Equations of motion for a bouncing ball.
switch flag
case ’’ % Return dy/dt = f(t,y).
 varargout{1} = f(t,y);
case ’init’ % Return default [tspan,y0,options].
 [varargout{1:3}] = init;
case ’events’ % Return [value,isterminal,direction].
 [varargout{1:3}] = events(t,y);
otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
end
% --
function dydt = f(t,y)
dydt = [y(2); -9.8];
% --
function [tspan,y0,options] = init
tspan = [0; 10];
y0 = [0; 20];
options = odeset(’Events’,’on’);
% --
function [value,isterminal,direction] = events(t,y)
% Locate the time when height passes through zero in a decreasing
% direction and stop integration. Also locate both decreasing and
% increasing zero-crossings of velocity,and don’t stop
% integration.
value = y; % [height; velocity]
isterminal = [1; 0];
direction = [-1; 0];
8-45

8 Ordinary Differential Equations

8-4
Example 6: Advanced Event Location
orbitode is a standard test problem for nonstiff solvers presented in Shampine
and Gordon, (see reference that follows).

The orbitode problem is a system of four equations.

where

The first two solution components are coordinates of the body of infinitesimal
mass, so plotting one against the other gives the orbit of the body around the
other two bodies. The initial conditions have been chosen so as to make the
orbit periodic. This corresponds to a spaceship traveling around the moon and
returning to the earth. Moderately stringent tolerances are necessary to
reproduce the qualitative behavior of the orbit. Suitable values are 1e–5 for
RelTol and 1e–4 for AbsTol.

The event functions implemented in this example locate the point of maximum
distance from the earth and the time the spaceship returns to earth.

y′2 y4=

y′1 y3=

y′3 2y4 y1

µ∗ y1 µ+()

r3
1

---------------------------–
µ y1 µ∗–()

r2
3---------------------------–+=

y′4 2y3– y2

µ∗y2

r3
1

------------–
µy2

r2
3---------–+=

µ 1 82.45⁄=

r2 y1 µ– ∗()2 y2
2+=

r1 y1 µ+()2 y2
2+=

µ∗ 1 µ–=
6

Examples: Applying the ODE Solvers
Reference Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations, W.H. Freeman & Co., 1975, p. 246.
8-47

8 Ordinary Differential Equations

8-4
function varargout = orbitode(t,y,flag)
%ORBITODE Restricted three body problem.
y0 = [1.2; 0; 0; -1.04935750983031990726];
switch flag
case ’’% Return dy/dt = f(t,y).
 varargout{1} = f(t,y);
case ’init’ % Return default [tspan,y0,options].
 [varargout{1:3}] = init(y0);
case ’events’ % Return [value,isterminal,direction].
 [varargout{1:3}] = events(t,y,y0);
otherwise
 error([’Unknown flag ’’’ flag ’’’.’]);
end
% --
function dydt = f(t,y)
mu = 1 / 82.45;
mustar = 1 - mu;
r13 = ((y(1) + mu)^2 + y(2)^2) ^ 1.5;
r23 = ((y(1) - mustar)^2 + y(2)^2) ^ 1.5;
dydt = [y(3)
 y(4)
 (2*y(4) + y(1) - mustar*((y(1)+mu)/r13) -
mu*((y(1)-mustar)/r23))
 (-2*y(3) + y(2) - mustar*(y(2)/r13) - mu*(y(2)/r23))];
% --
function [tspan,y0,options] = init(y)
tspan = [0; 6.19216933131963970674];
y0 = y;
options = odeset(’RelTol’,1e-5,’AbsTol’,1e-4);
% --
function [value,isterminal,direction] = events(t,y,y0)
% Locate the time when the object returns closest to the initial
% point y0 and starts to move away, and stop integration. Also
% locate the time when the object is farthest from the initial
% point y0 and starts to move closer.
%
% The current distance of the body is
%
% DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2 = <y(1:2)-y0,y(1:2)-y0>
%
8

Examples: Applying the ODE Solvers
% A local minimum of DSQ occurs when d/dt DSQ crosses zero heading
% in the positive direction. We can compute d/dt DSQ as
%
% d/dt DSQ = 2*(y(1:2)-y0)’*dy(1:2)/dt = 2*(y(1:2)-y0)’*y(3:4)
%
dDSQdt = 2 * ((y(1:2)-y0(1:2))’ * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0];% stop at local minimum
direction = [1; -1];% [local minimum, local maximum]
8-49

8 Ordinary Differential Equations

8-5
Questions and Answers
This section contains a number of tables that answer questions about the use
and operation of the MATLAB ODE solvers. This section also contains a
troubleshooting table. The question and answer tables cover the following
categories:

• General ODE Solver Questions

• Problem Size, Memory Use, and Computation Speed

• Time Steps for Integration

• Error Tolerance and Other Options

• Solving Different Kinds of Systems

General ODE Solver Questions

Question Answer

How do the ODE solvers
differ from quad or quad8?

quad and quad8 solve problems of the form . The ODE
suite solves more general problems of the form .

Can I solve ODE systems in
which there are more
equations than unknowns,
or vice-versa?

No.

y′ F t()=
y′ F t y,()=

Problem Size, Memory Use, and Computation Speed

Question Answer

How large a problem can I
solve with the ODE suite?

The primary constraints are memory and time. At each time step,
the nonstiff solvers allocate vectors of length n, where n is the
number of equations in the system. The stiff solvers allocate
vectors of length n, but also an n-by-n Jacobian matrix. For these
solvers it may be advantageous to use the sparse option.

If the problem is nonstiff, or if you are using the sparse option, it
may be possible to solve a problem with thousands of unknowns.
In this case, however, storage of the result can be problematic.
0

Questions and Answers
I’m solving a very large
system, but only care about
a couple of the components
of y. Is there any way to
avoid storing all of the
elements?

 Yes. The user-installable output function capability is designed
specifically for this purpose. When an output function is installed
and the solver call does not include output arguments, the solver
does not allocate storage to hold the entire solution history.
Instead, the solver calls OutputFcn(t,y) at each time step. To
keep the history of specific elements, write an output function that
stores or plots only the elements you care about.

How many time steps is too
many?

If your integration uses more than 200 time steps, it’s likely that
your tspan is too long, or your problem is stiff. Divide tspan into
pieces or try ode15s.

What is the startup cost of
the integration and how
can I reduce it?

The biggest startup cost occurs as the solver attempts to find a
step size appropriate to the scale of the problem. If you happen to
know an appropriate step size, use the InitialStep property. For
example, if you repeatedly call the integrator in an event location
loop, the last step that was taken before the event is probably on
scale for the next integration. See ballode for an example.

Problem Size, Memory Use, and Computation Speed

Question Answer

Time Steps for Integration

Question Answer

The first step size that the
integrator takes is too
large, and it misses
important behavior.

You can specify the first step size with the InitialStep property.
The integrator tries this value, then reduces it if necessary.

Can I integrate with fixed
step sizes?

No.
8-51

8 Ordinary Differential Equations

8-5
Error Tolerance and Other Options

Question Answer

How do I choose RelTol and
AbsTol?

RelTol, the relative accuracy tolerance, controls the number of
correct digits in the answer. AbsTol, the absolute error tolerance,
controls the difference between the answer and the solution. A
relative error tolerance gets into trouble when a solution
component vanishes. An absolute error tolerance gets into trouble
when a solution component is unexpectedly large. The solvers
require nonzero tolerances and use a mixed test to avoid these
problems. At each step the error e in the i’th component of the
solution is required to satisfy this condition

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

The use of RelTol is clear – to obtain p correct digits let
RelTol = 10^(–p), or slightly smaller. The use of AbsTol depends
on the problem scale. AbsTol is a threshold – the solver does not
guarantee correct digits for solution components smaller than
AbsTol(i). If the problem has a natural threshold, use it as
AbsTol.

A small value of AbsTol does not adversely affect the computation,
but be aware that the problem’s scaling might mean that an
important component is smaller than the specified AbsTol. You
might think that you computed the component with the relative
accuracy of RelTol, when in fact it is below the AbsTol threshold,
and you have few if any correct digits. Even if you are not
interested in correct digits in this component, failing to compute it
accurately may harm the accuracy of components you do care
about. Generally the solvers handle this situation automatically,
but not always.

I want answers that are
correct to the precision of
the computer. Why can’t I
simply set RelTol to eps?

You can get close to machine precision, but not that close. The
solvers do not allow RelTol near eps because they try to
approximate a continuous function. At tolerances comparable to
eps, the machine arithmetic causes all functions to look
discontinuous.
2

Questions and Answers
How do I tell the solver that
I don’t care about getting an
accurate answer for one of
the solution components?

You can increase the absolute error tolerance corresponding to
this solution component. If the tolerance is bigger than the
component, this specifies no correct digits for the component. The
solver may have to get some correct digits in this component to
compute other components accurately, but it generally handles
this automatically.

Error Tolerance and Other Options

Question Answer

Solving Different Kinds of Systems

Question Answer

Can the solvers handle
PDEs that have been
discretized by the Method
of Lines?

Yes. What you obtain is a system of ODEs. Depending on the
discretization, you might have a form involving mass matrices –
ode15s, ode23s, ode23t, and ode23tb provide for this. Often the
system is stiff. This is to be expected when the PDE is parabolic
and when there are phenomena that happen on very different
time scales such as a chemical reaction in a fluid flow. In such
cases, use one of the four solvers mentioned above. If, as usual,
there are many equations, set the JPattern property. This is easy
and might make the difference between success and failure due
to the computation being too expensive. When the system is not
stiff, or not very stiff, ode23 or ode45 will be more efficient than
ode15s, ode23s, ode23t, or ode23tb.

Can I solve differential
algebraic equation (DAE)
systems?

Yes. The solvers ode15s and ode23t can solve some DAEs of the
form M(t)y’ = f(t,y) where M(t) is singular (the DAEs must be
index 1). For examples, see amp1dae and hb1dae.
8-53

8 Ordinary Differential Equations

8-5
Troubleshooting
The following table provides troubleshooting questions and answers.

Can I integrate a set of
sampled data?

Not directly. You have to represent the data as a function by
interpolation or some other scheme for fitting data. The
smoothness of this function is critical. A piecewise polynomial fit
like a spline can look smooth to the eye, but rough to a solver; the
solver will take small steps where the derivatives of the fit have
jumps. Either use a smooth function to represent the data or use
one of the lower order solvers (ode23, ode23s, ode23t, ode23tb)
that is less sensitive to this.

Can I solve
delay-differential
equations?

Not directly. In some cases it is possible to use the initial value
problem solvers to solve delay-differential equations by breaking
the simulation interval into smaller intervals the length of a
single delay. For more information about this approach, see
Shampine, L. F., Numerical Solution of Ordinary Differential
Equations, Chapman & Hall Mathematics, 1994.

What do I do when I have
the final and not the initial
value?

ode45 and the other solvers that are available in this version of
the MATLAB ODE suite allow you to solve backwards or
forwards in time. The syntax for the solvers is

[T,Y] = ode45(’ydot’,[t0 tfinal],y0);

and the syntax accepts t0 > tfinal.

Solving Different Kinds of Systems

Question Answer
4

Questions and Answers
Troubleshooting

Question Answer

The solution doesn’t look
like what I expected.

If you’re right about its appearance, you need to reduce the error
tolerances from their default values. A smaller relative error
tolerance is needed to compute accurately the solution of problems
integrated over “long” intervals, as well as solutions of problems
that are moderately unstable. You should check whether there are
solution components that stay smaller than their absolute error
tolerance for some time. If so, you are not asking for any correct
digits in these components. This may be acceptable for these
components, but failing to compute them accurately may degrade
the accuracy of other components that depend on them.

My plots aren’t smooth
enough.

Increase the value of Refine from its default of 4 in ode45 and 1 in
the other solvers. The bigger the value of Refine, the more output
points. Execution speed is not affected much by the value of
Refine.

I’m plotting the solution as
it is computed and it looks
fine, but the code gets stuck
at some point.

First verify that the ODE function is smooth near the point where
the code gets stuck. If it isn’t, the solver must take small steps to
deal with this. It may help to break tspan into pieces on which the
ODE function is smooth.

If the function is smooth and the code is taking extremely small
steps, you are probably trying to solve a stiff problem with a solver
not intended for this purpose. Switch to ode15s, ode23s, or
ode23tb.
8-55

8 Ordinary Differential Equations

8-5
My integration proceeds
very slowly, using too many
time steps.

First, check that your tspan is not too long. Remember that the
solver will use as many time points as necessary to produce a
smooth solution. If the ODE function changes on a time scale that
is very short compared to the tspan, then the solver will use a lot
of time steps. Long-time integration is a hard problem. Break
tspan into smaller pieces.

If the ODE function does not change noticeably on the tspan
interval, it could be that your problem is stiff. Try using ode15s or
ode23s.

Finally, make sure that the ODE function is written in an efficient
way. The solvers evaluate the derivatives in the ODE function
many times. The cost of numerical integration depends critically
on the expense of evaluating the ODE function. Rather than
recompute complicated constant parameters every evaluation,
store them in globals or calculate them once outside the function
and pass them in as additional parameters.

I know that the solution
undergoes a radical change
at time t where

t0 ≤ t ≤ tfinal

but the integrator steps
past without “seeing” it.

If you know there is a sharp change at time t, it might help to
break the tspan interval into two pieces, [t0 t] and [t tfinal],
and call the integrator twice.

If the differential equation has periodic coefficients or solution,
you might restrict the maximum step size to the length of the
period so the integrator won’t step over periods.

Troubleshooting

Question Answer
6

	Ordinary Differential Equations
	Quick Start
	Representing Problems
	Initial Value Problems and Initial Conditions
	Example: The van der Pol Equation
	Rewriting the System
	Writing the ODE File
	Calling the Solver
	Viewing the Results

	Example: The van der Pol Equation, m = 1000 (Stiff...

	ODE Solvers
	Nonstiff Solvers
	Stiff Solvers
	ODE Solver Basic Syntax
	Obtaining Solutions at Specific Time Points
	Specifying Solver Options
	Obtaining Statistics About Solver Performance

	Creating ODE Files
	ODE File Overview
	Defining the Initial Values in the ODE File
	Coding the ODE File to Return Initial Values

	Passing Additional Parameters to the ODE File
	Guidelines for Creating ODE Files

	Improving Solver Performance
	Special Purpose ODE Files and the flag Argument
	Creating an Options Structure: The odeset Function...
	Modifying an Existing Options Structure
	Querying Options: The odeget Function

	Error Tolerance Properties
	Solver Output Properties
	OutputFcn
	OutputSel
	Refine
	Stats

	Jacobian Matrix Properties
	JConstant
	Jacobian
	JPattern
	Vectorized

	Step-Size Properties
	MaxStep
	InitialStep

	Mass Matrix Properties
	Mass
	MassSingular

	Event Location Property
	Events

	ode15s Properties
	MaxOrder
	BDF

	Examples: Applying the ODE Solvers
	Example 1: Simple Nonstiff Problem
	Example 2: van der Pol Equation
	Example 3: Large, Stiff Sparse Problem
	Example 4: Finite Element Discretization
	Example 5: Simple Event Location
	Example 6: Advanced Event Location

	Questions and Answers
	Troubleshooting

