USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Embedded Systems Workshop

Cambridge, Massachusetts, USA, March 29-31, 1999

RETHER: A Software-Only Real-Time Ethernet
for PLC Networks

Tzi-cker Chiueh
State University of New York at Stony Brook

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

RETHER: A Software-Only Real-Time Ethernet for PLC
Networks

Tzi-cker Chiueh
Computer Science Department
State University of New York at Stony Brook
Stony Brook, NY 11794-4400

chiueh@cs.sunysb.edu http://www.ecsl.cs.sunysb.edu/~chiueh

Abstract

The networking technologies used in industrial au-
tomation are required to support real-time perfor-
mance guarantees to ensure that sensor/command
data reach target nodes within a delay bound. With
the continuing popularity and thus the accompa-
nied price drop of the Ethernet technology, replac-
ing the typically closed and proprietary automation
networks with Ethernet is emerging as a very attrac-
tive solution, because of the cost-effectiveness and
its compatibility with the trend of moving indus-
trial control systems to PC-based hardware. Due
to its contention-based media access control proto-
col, Ethernet theoretically can not bound the net-
work access delay without additional traffic con-
trol mechanisms. In this work, we present the de-
sign, implementation, and programming interface
of a software-based traffic control protocol called
RETHER , which turns off-the-shelf Ethernets into
real-time networks without any hardware modifica-
tions. RETHER works both in a single-segment
as well as a multi-segment environment. This pa-
per reports the performance measurements and im-
plementation experiences with the RETHER proto-
type, which has been fully operational for over 12
months.

1 Introduction

The basic building blocks in industrial automa-
tion systems are programmable logic controllers
(PLC), dedicated control devices that interface with
the physical instruments or sensors. Tradition-
ally PLCs are connected together and with cen-

tral control computers through a closed and propri-
etary network technology, because of special timing
and/or hardware constraints. As Ethernet domi-
nates the desktop computer world, its price is drop-
ping precipitously. For example, 10 Mbits/sec ISA-
based Ethernet adapters cost about $15, and yet 10
Mbits/sec is abundant for automation control appli-
cations. Moreover, as PLCs are themselves evolving
towards PC-based hardware, choosing Ethernet as
the backplane network technology makes even more
sense.

The only problem is that commodity Ethernet hard-
ware can not provide any performance guarantee,
for the following two reasons. First, Ethernet’s me-
dia access control protocol is CSMA/CD, which re-
lies on an exponential backoff algorithm to resolve
link collision among multiple nodes when they at-
tempt to send data simultaneously. Due to the
probabilistic nature of the exponential backoff al-
gorithm, network access delay is inherently non-
deterministic. Second, Ethernet does not support
prioritization of packets. This means that time-
critical network packets could be held up waiting
for time-insensitive packets.

The RETHER project set out to develop an effi-
cient delay/bandwidth bandwidth guarantee mech-
anism over off-the-shelf Ethernet without any hard-
ware modification. With RETHER , industrial au-
tomation systems could use commodity Ethernet
as the underlying network, thus reaping the ben-
efits of economies of scale from the PC industry.
RETHER is designed to be a software-only solu-
tion that is built into the device driver of the host
operating system. Because it is part of the device
driver, RETHER is transparent to higher-level net-
work protocols such as TCP/UDP and IP. Conse-
quently, all existing network applications can con-

tinue to run on a RETHER network without any
changes. New real-time applications have to be
specifically written against the API provided by
RETHER , which is based on the industry-standard
socket interface.

The design of RETHER also minimizes the per-
formance overhead associated with supporting de-
lay/bandwidth guarantees. In particular, RETHER
features a hybrid mode of operation that automat-
ically switches an Ethernet network between the
RETHER mode and the CSMA /CD mode, depend-
ing on whether there are real-time connections ac-
tive at the time. In the case of no active real-time
connections, the network operates according to the
CSMA/CD protocol, thus providing the same per-
formance to non-real-time applications. To avoid
starvation, RETHER ensures that a certain amount
of bandwidth be reserved for non-real-time traf-
fic. The reserved amount is chosen so that existing
higher level network protocols such as TCP or NFS
would not time out unnecessarily, and thus are to a
large extent isolated from the existence of RETHER

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the programming interface and
performance guarantee mechanisms of RETHER in
the single-segment Ethernet environment. Then we
use the single-segment RETHER protocol as the
building block for multi-segment RETHER in Sec-
tion 3. In Section 4, we present the performance
measurements and implementation experiences of
RETHER from our operational prototype. Section
5 reviews related work in this area to put the contri-
bution of RETHER in perspective. Section 6 con-
cludes this paper with a summary of the RETHER
project and the current status of the report.

2 Single-Segment RETHER

2.1 Overview

RETHER provides a set of procedural interfaces
for applications to reserve network bandwidth, and
guarantees the reservations throughout the lifetime
of the applications once they are admitted. Cur-
rently RETHER is implemented within the Eth-
ernet device driver under FreeBSD UNIX, Linux
and DOS. Under RETHER , individual applica-

tions can send a certain amount of data (D) in
each periodic cycle, T'. The amount of data is spec-
ified in the reservations and thus varies from ap-
plication to application. The length of the cycle is
fixed but can be changed at the system initialization
time. To start a RETHER connection, which is uni-
directional, the sender application makes a library
call, reservation(), which, upon successfully cre-
ating a RETHER connection, returns a socket de-
scriptor. From that time on, the sender application
can send() the reserved amount of data through
the returned socket descriptor, and RETHER en-
sures that the data be delivered at the rate %. The
receiver application simply receives the sent data
using normal receive() calls without making any
special arrangements.

The current implementation of reservation() is
based on the socket interface and uses a special un-
used Ethernet address® to alert the local RETHER
module in the device driver of the reservation re-
quest. Upon detecting such a request, RETHER re-
serves a RETHER connection to the target receiver
according to the requested bandwidth requirement,
and if successful, records a mapping between the
reserved RETHER connection’s ID and the source
port number associated with the socket descriptor
to be returned to the sender application. At run
time, RETHER consults with this mapping to de-
termine which RETHER connection each IP packet
should be sent on. Packets that are not parts of
reserved connections are sent on a pre-established
RETHER connection by default.

In the absence of real-time connections, the
RETHER network operates under the original
CSMA/CD protocol. When the first real-
time bandwidth reservation request arrives, the
RETHER network switches to a token-passing
mode. In this mode, channel access for all traf-
fic, real-time and non-real-time, is regulated by a
token. Intuitively time is divided into cycles. In
each cycle, the token first services all the nodes that
have real-time data to send (called real-time (RT)
nodes), and then it attempts to service non-real-
time (NRT) nodes in a round-robin fashion. Essen-
tially NRT nodes share the bandwidth remaining in
each cycle after all RT nodes have been serviced.
Note that all network nodes, including those mak-
ing bandwidth reservations, are NRT nodes. The
network stays in the token-passing mode until the

lreservation() itself uses a special IP address, which is

mapped to the special Ethernet address through an artificial
and persistent ARP cache entry.

last real-time session terminates. At this time, the
network switches back to the CSMA/CD protocol.
This hybrid scheme reduces the performance impact
due to token passing on non-real-time traffic.

2.2 Token Passing

The token circulates in cycles so that real-time con-
nections can access the network periodically. Be-
cause RETHER does not assume a globally synchro-
nized clock, the token cycle time is maintained as a
counter called the residual cycle time in the token
itself. At the beginning of each cycle, the residual
cycle time is set equal to a full token cycle time?.
When the token visits a node, the node subtracts
its token-holding time from this counter. Once the
residual cycle time reaches zero3, the token is passed
back to the first real-time node and a new cycle be-
gins. Figure 1 shows an example token visit schedule
within a token cycle.

The token-holding time at each node is based on the
amount of data the node is allowed to send. For real-
time nodes, the bandwidth reservation determines
the amount of data that needs to be sent out during
every cycle. For non-real-time nodes, the amount
of data that can be sent out is limited by the the
total unreserved bandwidth and the size of messages
in their output queues. RETHER has incorporated
a mechanism to ensure that all the nodes use the
unreserved bandwidth fairly. When the token visits
a node, if it does not have data to send, it merely
hands the token to its successor after subtracting
the time to process the token.

2.3 Fault Tolerance

As the control token represents a single point of
failure, RETHER incorporates a built-in fault tol-
erance mechanism to ensure continued network op-
eration despite token loss due to machine failures,
or token corruption due to random bit errors. Each

2This is a system initialization parameter and can be, for
instance, set to 33 msec for applications requiring 30 video
frames per second.

3In practice, the token is passed back to the first RT node
when a non-real-time node determines that the residual cycle
time in the counter is less than that needed to send out the
packet at the head of its message queue. Therefore, the token
cycle counter need not be zero when a new token cycle is
started.

RETHER node is required to monitor the health of
its successor in the token passing schedule. When a
node N sends the token to its successor S, it starts
an acknowledgment timer waiting to hear from S.
If S is alive, it sends an acknowledgment back to N
when it sends the token forward to its own succes-
sor. If the successor node is dead for some reasons,
the timer at the monitoring node times out and it
pings the successor to ensure that the successor in-
deed dies. This extra ping is necessary to check
if the successor is still alive but actually drops the
token due to reasons like bit errors. On detecting
a failure, the monitoring node broadcasts a mes-
sage announcing the failure and regenerates a new
token. The choice of the timeout value and other
failure scenarios are discussed in greater detail in
[10]. Although token recovery can take place within
the same token cycle, in practice, it takes a little
bit longer than one token cycle to recover. This is
dependent on the precision with which we can set
the acknowledgment timer value in the operating
system*. RETHER also addresses many other fail-
ure scenarios such as multiple node failures in [10].
When a new node boots up, it broadcasts a mes-
sage identifying itself. The node currently holding
the token adds the new node to the list of live nodes
maintained in the token. As a result the token will
visit the new node in the next cycle.

2.4 Admission Control

RETHER incorporates a distributed admission con-
trol scheme that is guaranteed to be free of race con-
ditions. The admission decision at a node is post-
poned until it receives the token, because the token
carries the most up-to-date information about all
active real-time and their bandwidth reservations.
Since only one node holds the token at a time, mu-
tual exclusion is automatic. A disadvantage with
this scheme is that bandwidth reservation requests
are delayed due to the waiting for the token to arrive
before the admission decision can be made.

RETHER intends to support both real-time and
non-real-time traffic on the same Ethernet segment.
To prevent starvation for non-real-time traffic, only
a fixed fraction of the total raw bandwidth is set
aside for real-time connections. The reserved band-
width for non-real-time traffic minimizes unneces-
sary timeouts for existing network protocols such as
NFS, and places an upper bound on the token inter-

4Most UNIX systems’ timer resolution is 10 msec.

Token Cycle = 33 msec

1, 3 , 6

.
[10)
B e A

12345

Nodes with no RT data

Nodes with RT and
possibly NRT data.

1, 3, 6 ,789101112
I

I
6 ms
(real-time mode)

N\t

c
(non-real-time mode)

Figure 1: Node 1, 3, and 6 are real-time nodes, each of which is assumed to have a token holding time of
6 msec every time the token visits them in the real-time mode. As every network node has non-real-time
data to send, ALL network nodes are non-real-time nodes. In this example, the token visits real-time nodes
in the first 18 msec of the 33-msec token cycle, and then visits non-real-time nodes in the rest of the cycle
in a round robin fashion. Note that the token continues the visiting schedule for non-real-time nodes in the
next cycle (Node 6) from where it left off in the previous cycle (Node 5) .

arrival time as seen by NRT nodes. This bound is
critical to a timer-based mechanism for detecting
and recovering from disastrous failure scenarios.

3 Multi-Segment RETHER

Due to electrical signal considerations, multiple
Ethernet segments connected by bridges or switches
are required to accommodate a large number of PLC
nodes. To provide end-to-end network bandwidth
guarantees between any pair of nodes in a multi-
segment Ethernet environment, RETHER has been
extended to operate across switches. Conceptually,
a real-time connection applies the single-segment
RETHER protocol to reserve on each of the seg-
ments on the path from its source to the destina-
tion. The per-segment reservations along the way
are parts of one logical real-time connection. Con-
sider the network configuration in Figure 2. Sup-
pose a real-time connection runs from Al to CI.
This connection is broken down into three sub-
connections namely A1-Gwl on Segment 1, Gwl-
Gw2 on Segment 2, and Gw2-Cl on Segment 3,
where the nodes on the left are the sender and those
on the right are the receivers. For a multi-segment
real-time connection, each intermediate switch acts

Bac@ne
Network

-~ = Multi-segment Connection from Alto C1.

Figure 2: A sample multi-segment RETHER. con-
nection from Node A1 to C1, through two interme-
diate switches Gwl and Gw2.

as a sender on one segment and a receiver on the
other. All Ethernet segments run the single-segment
RETHER protocol, with the token cycles on differ-
ent segments proceeding completely independently
of one another. That is, token cycles associated with
adjoining segments, although of the same length, are
not synchronized at all.

3.1 Connection Setup and Admission
Control

In single-segment RETHER , connections are set up
by modifying the information on the token when
it arrives. It is not necessary to contact any
other node, including the receiver. Multi-segment
RETHER , however, needs an explicit connection
setup protocol to establish end-to-end real-time con-
nections across bridges/switches. RETHER con-
nection messages are initiated by the senders and
routed via the static routing tables in the switches.
As a multi-segment RETHER connection is estab-
lished, resources, namely buffers and network band-
width, on the nodes along the way are reserved ac-
cordingly. More concretely, as each intermediate
switch receives a connection request, it creates a
single-segment RETHER connection on the network
link through which the message is forwarded. In ad-
dition, the switch maintains the following informa-
tion:

e The multi-segment RETHER connection ID, in
the form of the sender’s IP address and source
port number, and the local single-segment
RETHER connection ID.

e The next-hop interface and the Ethernet ad-
dress of the next-hop node.

e The previous-hop interface and the Ethernet
address of the previous-hop node.

When the last-hop switch successfully reserves a
single-segment RETHER connection to the destina-
tion node, it sends back an acknowledgment through
the same path to commit the resource reservations
made by intermediate switches and the sender. Only
when the sender receives a success acknowledgment
for connection establishment will it start to send
real-time data out.

In multi-segment RETHER , admission control is
performed independently on each of the segments on
a hop-by-hop basis. Each intermediate switch ap-
plies the same admission control criterion as single-
segment RETHER . If the admission test fails in any
of the segments, a connection termination message
is sent on the same path back to the sender node,
to camncel all resource reservations. Note that each
single-segment RETHER connection is only aware
of its other end-point in the same segment. The in-
formation about the final source and destination of

the multi-segment RETHER connection is hidden
from non-periphery switches.

3.2 Fault Tolerance

When the token on an Ethernet segment is lost
or corrupted, the single-segment RETHER proto-
col’s fault tolerance mechanism recovers from the
fault by reintroducing the token in that segment.
All the real-time connections that pass through
the segment continue to work after token recovery.
Therefore, multi-segment RETHER does not intro-
duce any new problems compared to single-segment
RETHER in this case. However, when network
nodes crash, new mechanisms need to be devised
to handle multi-segment connections in which the
failed nodes participate.

For a multi-segment RETHER connection, either
the crashed node is involved in the real-time con-
nection or it is not. If the failed node is one of the
intermediate switch or an end-point of a RETHER
connection, the state associated with the connec-
tion needs to be cleaned up and the connection
has to be reestablished, if possible. Connection
re-establishment only makes sense when the failed
node is one of the intermediate switches and there
is an alternative route that can be used to bypass
the failed switch. The cleanup of the state asso-
ciated with a RETHER connection whose interme-
diate switch has crashed is triggered by the detec-
tion of this failure in all the segments to which the
switch is connected. Because a RETHER switch
participates in the token passing on all segments
that are connected to it, the switch failure is de-
tected independently on each of the segments via
the fault tolerance scheme built into the single-
segment RETHER . The nodes that detect the fail-
ure then broadcast a message to that effect on their
respective segments. The other end points of the
sub-connection to which the crashed node was con-
nected, upon receiving such a message, frees up as-
sociated resources, and sends an abort message to
the next sub-connection. The message eventually
reaches the actual end-points of the connection in
either direction and all the reserved resources for
the connection are released. Just like the termina-
tion message due to failure of admission, a message
travels along the path of the connection on both
sides of the failed node. If the failed node is an
end point of a real-time connection, the processing
is similar except the clean-up message for each af-

---= Multi-segment Connection from Al to C1.

Fault Detectors

Connection
Terminate
Messsage

Gw3 }

Segment 3

Figure 3: Failure of an intermediate switch in a
multi-segment connection. The failure is detected
independently on all the segments the switch is con-
nected to, in this case, Segment 1 and 2.

fected real-time connection only propagates in one
direction.

For instance, in Figure 3, suppose Gw1 were to crash
and Node A2 detects the failure on Segment 1 and
Node B2 detects it on Segment 2. A2 and B2 inform
all the node on their respective segments by broad-
casting a message. On receiving the message, Al
terminates its sub-connection and frees up the con-
nection’s associated resources. Gw2 similarly ter-
minates the sub-connection whose other end-point
was Gwl, on Segment 2 Since this is a multi-segment
connection, Gw2 also sends a message to C1 to ter-
minate the entire connection and to free the reserved
resources. Thus, all the real-time connections that
have Gwl on their path are terminated with the
associated state across the network cleaned up.

If, on the other hand, the failed node is not in-
volved in the real-time connection, then the con-
nection continues as before. For example, if Node
A3 in Figure 3 dies, the real-time connection from
Al to C1 remains operative after the token recov-
ery. The failure is detected and the token is recov-
ered locally in the segment to which the failed node
is connected. The effect on any real-time sessions
crossing this segment is that they would not be able
to send/receive data during the fault recovery pe-
riod.

3.3 Buffer Management

The token cycles on adjoining network segments are
not synchronized and this could lead to longer la-
tency because of temporal skews of the token arrival

Backbone
Network

times on connected segments. Since the token ro-
tation times (TRT) in both segments are the same,
the maximum skew between them could be one TRT
long. For example, in the worst case, the switch
receives data from the incoming segment but just
missed the token on the outgoing segment. Hence,
it may have to wait as much as one TRT before
forwarding the data onto the outgoing segment. In
the meantime, data would start arriving on the in-
coming segment for the next cycle, leading to buffer
overflow if there is only one buffer at the switch.
To avoid this situation, we use a double buffering
scheme in which there are two buffers for each real-
time stream going across the switch. While one
buffer is being filled by the input sub-connection on
one segment, the other is emptied out by the out-
put sub-connection when the token on the outgoing
segment arrives. At the end of each token cycle, the
roles of the two buffers switch.

The size of the buffer has a direct effect on the
end-to-end latency experienced by the applications.
This implies that the buffering delays at each hop
must be small and that the number of hops that a
real-time connection can cross, is bounded. In the-
ory, the token cycle times on all network segments
are supposed to be the same, and in each cycle the
switch receives exactly one frame of data from the
incoming segment and sends out exactly one frame
of data on the outgoing segment. Therefore, the
real-time connection suffers a maximum of one to-
ken cycle latency at each hop along the path, and
the worst-case end-to-end latency is Number of hops
* Token cycle time. The minimum latency would be
the time to transmit the data from the sender to the
receiver as though they were on the same segment
plus the time to copy the data into memory and
out at each intermediate switch. Unfortunately, in
practice, neither the network segments have identi-
cal token cycle times, nor does the switches forward
the data they receives immediately.

4 Implementation and Performance

Both single-segment and multi-segment RETHER
have been successfully implemented and tested on
a prototype test-bed. The initial implementation
was on FreeBSD 2.1, and has been ported to Linux
and DOS. The test-bed, shown in Figure 4, con-
sists of four Ethernet segments connected by three
switches. Two of the segments are 100 Mbps Eth-

Segment 1 Segment 2
(10 Mbps) (10 Mbps)

il

O Simulates Multiple Nodes

|:| Gateway

Segment 3
(100Mbps)

a

Segment 4 10
(100Mbps)

0

No RETHER ——
With RETHER -+---

Figure 4: The network setup for multi-segment
RETHER experiments. There are four segments,
two of them 100-Mbps and the other two 10-Mbps
Ethernets.

ernet while the other two are 10 Mbps Ethernet.
The switch that connects the two 10-Mbps seg-
ments, and the non-switch machines on the 10-
Mbps segment are 66MHz 486 machines, while
those on the 100-Mbps segments are 90MHz and
100MHz Pentiums. Although the wiring and the
NIC hardware at the hosts need not be changed,
RETHER has to be implemented in the interme-
diate switches to provide bandwidth/delay guaran-
tees. Because modifications to commercial Ethernet
switches were not possible for us, we implemented
the RETHER switch using a general-purpose ma-
chine that is equipped with multiple Ethernet in-
terfaces, much like a network-layer software router.
With the advent of faster microprocessors and sys-
tem architecture, we believe implementing LAN
switches based on general purpose machines is both
feasible and cost-effective. Our implementation ex-
perience shows that it is indeed possible to build a
RETHER switch completely in software. Since all
the experiments are conducted locally in our lab,
propagation delays are negligible in these measure-
ments. For all the following measurements, the to-
ken cycle time is set to be 33 msec.

Extensive tests on the prototype demonstrate that
bandwidth reservations made by RETHER con-
nections are indeed satisfied in all cases. Since
RETHER is implemented directly inside the device
driver, each packet arrival, be it token or data, en-
tails an interrupt processing overhead. When the
network is lightly loaded and there are few nodes
in the network, the token simply circulates around
the network and the CPU processing overhead for
token-circulation interrupts is significant. This is in-
dicated in Figure 5. The graph plots the time taken
by a user level process to execute the same com-
putation intensive program without RETHER and
with RETHER in the presence of minimal real-time
bandwidth reservation. The measurements were

Time to Complete a CPU-bound Job (seconds)

4 5 6 ‘7 é é 10
Number of Nodes
Figure 5: As the number of nodes on the network
increases, the per-node token-induced interrupt pro-

cessing overhead decreases, because the token visits
a node less frequently.

made on a 100-Mbps network in which the token
processing time is only 70usec per node. As can be
seen, the token-induced interrupt overhead becomes
acceptable only when the 100-Mbps network has five
or more nodes. On 10-Mbps networks, the relative
interrupt processing overhead was not as bad be-
cause the token processing time is around 450 psec.

No. of | No Pre-existing | With Pre-existing
Hops Connection Connection
0 0.647 1.098
1 1.050 2.052
2 2.646 5.592
3 4.463 9.119

Table 1: The time in msec to set up a real-time con-
nection across different numbers of switches, with
and without pre-existing real-time connections.

Table 1 indicates the time to setup connections
crossing 0 to 3 switches. Column 2 shows the con-
nection setup time when all the Ethernet segments
are in the CSMA mode. The main delay compo-
nent in this case is the time to switch each segment
from the CSMA to the RETHER mode. Column
3 indicates the time taken to setup a connection
when the corresponding network segments are al-
ready running RETHER . In this case, the main
component in the connection establishment time is
the time to forward the connection establishment
message in the non-real-time mode. The connec-
tion establishment time increases with the amount
of bandwidth already reserved for real-time connec-
tions because it would take longer for the connection

request message, which is transmitted as non-real-
time traffic, to reach its destination. The protocol
processing associated with connection setup itself
at each intermediate switch is relatively minor com-
pared to the above times. A significant component
of the connection setup delay is due to scheduling
and executing user processes at either end-point to
complete the connection establishment. However,
these are not under the control of RETHER and
thus are not included here. The times reported in
Table 1 include the time to set up the connection at
the receiver and sender ends in the kernel, but do
not include any user-level processing.

5 Related Work

Kopetz’s MARS system [4] prototype was also fo-
cused on process control applications, but used a
TDMA protocol to provide real-time guarantees
on Ethernet. described a multi-token-ring proto-
col that is designed The token ring in Totem [5]
provided ordered multicasting rather than real-time
performance guarantees. Hermant [2] presented a
variant of CSMA/CDR for real-time scheduling in
distributed multi-access broadcast communication
channels. This protocol was not meant for existing
Ethernet hardware.

More recently several commercial products avail-
able in the market attempt to provide real-time
performance guarantee over LANs. HP’s 100VG-
AnyLAN [1] uses advanced Demand Priority Access
to provide users with guaranteed bandwidth and
low latency, and is now the IEEE 802.12 standard
for 100-Mbps networking. National Semiconduc-
tor’s Isochronous Ethernet [8] includes a 10-Mbps P
channel for normal Ethernet traffic, 96 64-Kbps B
channels for real-time traffic, one 64-Kbps D chan-
nel for signaling, and one 96-Kbps M channel for
maintenance. The 96 B channels can provide band-
width guarantee to network applications because
they are completely isolated from the CSMA/CD
traffic. Isochronous Ethernet forms the IEEE 802.9
standard. 3COM’s Priority Access Control Enabled
(PACE) [3] technology enhances multimedia (data,
voice and video) applications by improving network
bandwidth utilization, reducing latency, controlling
jitter, and supporting multiple traffic priority levels.
PACE technology uses star-wired switching config-
urations and enhancements to Ethernet that ensure
efficient bandwidth utilization and bounded latency

and jitter. Because the real-time priority mecha-
nism is provided by the switch, there is no need to
change the network hardware on the desktop ma-
chines. More recently, there are 802.1p and 802.1q
efforts that support packet prioritization and vir-
tual LANs. Peterson [6] summarized the current
efforts in the Industrial Automation community to
use Ethernet as the control network technology.

The difference between RETHER and all the above
work is that RETHER provides bandwidth/delay
guarantees to network packets, rather than just sup-
ports packet prioritization. In addition, all of the
other schemes require changes to the existing in-
frastructure in the host network hardware and/or
the wiring, while RETHER does not. RETHER ’s
ability to use commodity Ethernet hardware is cru-
cial for industrial automation systems to ride with
the technology momentum of the PC networking in-
dustry. Finally, RETHER is the only system that
provides bandwidth guarantees for real-time con-
nections that run cross multiple hops, an critical
feature for system scalability.

6 Conclusion

This paper presents the design, implementation,
and evaluation of single-segment and multi-segment
RETHER protocols. The major contribution of this
work is a simple and efficient traffic control mech-
anism that turns commodity off-the-shelf Ethernet
hardware into a network capable of providing de-
lay /bandwidth guarantees, and thus makes it possi-
ble to deploy Ethernet to PLC networks used in in-
dustrial automation systems. Because RETHER is
a software-only solution, no hardware modification
is required. RETHER is also innovative because it
supports both real-time and non-real-time traffic in
a single framework, and because it is scalable to a
large number of PLC nodes with its built-in end-to-
end performance guarantee mechanism.

RETHER has also been extended to wireless LAN
with roaming support [7]. In addition, we have also
developed a new real-time Ethernet switch architec-
ture called EtheReal [9], which takes one step further
by providing bandwidth/delay guarantees without
requiring any changes to both software and hard-
ware on the host ends. We are currently develop-
ing a middleware based on the distributed shared
memory abstraction and RETHER , with the goal

to simplify the development of distributed real-
time embedded systems. More up-to-date informa-
tion about the RETHER project can be found in
http://www.ecsl.cs.sunysb.edu/rether.html.

Acknowledgments

This research is supported by an NSF Career
Award MIP-9502067, NSF MIP-9710622, NSF IRI-
9711635, NSF EIA-9818342, NSF ANIR-9814934,
a contract 95F138600000 from Community Man-
agement Staff’s Massive Digital Data System Pro-
gram, USENIX student research grants, as well as
fundings from Sandia National Laboratory, Reuters
Information Technology Inc., and Computer Asso-
ciates/Cheyenne Inc.

References

[1] A.R. Albrecht and P.A. Thaler. Introduction
to 100VG-AnyLAN and the IEEE 802.12 local
area network standard. Hewlett-Packard Jour-
nal, 46(4), Aug. 1995.

[2] J.-F. Hermant, G. Le Lann, and N. Riv-
ierre. A general approach to real-time message
scheduling over distributed broadcast channels.
roceedings 1995 INRIA/IEEE Symposium on
Emerging Technologies and Factory Automa-
tion. ETFA ‘95, pages 191-204, Oct. 1995.

[3] The 3COM Technical Journal. 3Com’s New
PACE Technol-

ogy. hitp://www.3com.com/files/mktg/pubs/
3tech/195pace.html, 1996.

[4] H. Kopetz, A. Damm, C. Koza, M. Mulazzani,
W. Schwabl, C. Senft, and R. Zainlinger. Dis-
tributed fault-tolerant real-time systems: the
mars approach. IEEE Micro, 9(1):25-40, Feb.
1989.

[5] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal,
R.K. Budhia, C.A. Lingley-Papadopoulos, and
T.P. Archambault. The totem system. Digest
of Papers, Twenty-Fifth International Sympo-
sium on Fault-Tolerant Computing, pages 61—
66, Jun. 1995.

[6] C. Peterson. Open networking fuels the next
major advancement in industrial automation.
EE Times, Sep. 14 1998.

[7] P. Pradhan and T. Chiueh. Real-time per-
formance guarantees over wired and wireless
lans. Proceedings of the 4th IEEE Real-Time

Technology and Applications Symposium, June
1998.

[8] Xiaonong Ran and W.R. Friedrich. Isochronous
LAN based full-motion video and image server-
client system with constant distortion adaptive
DCT coding. Proceedings of the SPIE - The
International Society for Optical, 2094:1030:41,
1993.

[9] S. Varadarajan and T. Chiueh. Ethereal: A
host-transparent real-time fast ethernet switch.
Proceeding of International Conference on Net-
work Protocols, October 1998.

[10] Chitra Venkatramani. The Design, Implemen-
tation and FEvaluation of RETHER: A Real-
Time Ethernet Protocol. PhD thesis, State Uni-
versity of New York at Stony Brook, December,
1996.

