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Today’s Agenda

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Introduction

General scheme

– Set a goal.

– Define a parametric model.

– Choose a suitable loss function.

– Choose suitable capacity control methods.

– Optimize average loss over the training set.

Optimization

– Sometimes analytic (e.g. linear model with squared loss.)

– Usually numerical (e.g. everything else.)
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Summary

1. Convex vs. Nonconvex

2. Differentiable vs. Nondifferentiable

3. Constrained vs. Unconstrained

4. Line search

5. Gradient descent

6. Hessian matrix, etc.

7. Stochastic optimization
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Convex

Definition

∀ x, y, ∀ 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Property

Any local minimum is a global minimum.

Conclusion

Optimization algorithms are easy to use.

They always return the same solution.

Example: Linear model with convex loss function.

– Curve fitting with mean squared error.

– Linear classification with log-loss or hinge loss.
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Nonconvex

Landscape

– local minima, saddle points.

– plateaux, ravines, etc.

Optimization algorithms

– Usually find local minima.

– Good and bad local minima.

– Result depend on subtle details.

Examples

– Multilayer networks.

– Clustering algorithms.

– Learning features.

– Semi-supervised learning.

– Mixture models.

– Hidden Markov Models.

– Selecting features (some).

– Transfer learning.
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Differentiable vs. Nondifferentiable

�����������	�
������	
�
�	��
����	�������
	��	

�
�	�������	�����	
��
����

����
�	�����������	��
	
����	�
	��������	��	�
�	
�������
	��	�
�	�������	�����	
��
�����

No such local cues without derivatives
– Derivatives may not exist.
– Derivatives may be too costly to compute.

Examples
– Log loss versus Hinge loss.

Léon Bottou 7/30 COS 424 – 3/2/2010



Constrained vs. Unconstrained

Compare

minw f(w) subject to w2 < C

minw f(w) + λw2

Constraints

– Adding constraints lead to very different algorithms.

Keywords

– Lagrange coefficients.

– Karush-Kuhn-Tucker theorem.

– Primal optimization, dual optimization.
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Line search - Bracketing a minimum

�

Three points a < b < c such that f (b) < f (a) and f (b) < f (c).
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Line search - Refining the bracket

�

Split the largest half and compute f (x).
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Line search - Refining the bracket

�

– Redefine a < b < c. Here a← x.

– Split the largest half and compute f (x).
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Line search - Refining the bracket

�

– Redefine a < b < c. Here a← b, b← x.

– Split the largest half and compute f (x).
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Line search - Refining the bracket

�

– Redefine a < b < c. Here c← x.

– Split the largest half and compute f (x).
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Line search - Golden Section Algorithm
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– Optimal improvement by splitting at the golden ratio.
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Line search - Parabolic Interpolation

�

– Fitting a parabola can give much better guess.
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Line search - Parabolic Interpolation

�

– Fitting a parabola sometimes gives much better guess.
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Line search - Brent Algorithm

Brent Algorithm for line search

– Alternate golden section and parabolic interpolation.

– No more than twice slower than golden section.

– No more than twice slower than parabolic section.

– In practice, almost as good as the best of the two.

Variants with derivatives

– Improvements if we can compute f (x) and f ′(x) together.

– Improvements if we can compute f (x), f ′(x), f ′′(x) together.
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Coordinate Descent
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Perform successive line searches along the axes.

– Tends to zig-zag.
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Gradient

The gradient ∂f
∂w =

(
∂f
∂w1

, . . . , ∂f∂wd

)
gives the steepest descent direction.
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Steepest Descent
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Perform successive line searches along the gradient direction.

– Beneficial if computing the gradients is cheap enough.

– Line searches can be expensive
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Gradient Descent

Repeat w ← w − γ ∂f∂w(w)
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– Merge gradient and line search.

– Large gain increase zig-zag tendencies, possibly divergent.

– High curvature direction limits gain size.

– Low curvature direction limits speed of approach.
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Hessian matrix

Hessian matrix

H(w) =


∂2f

∂w1 ∂w1
· · · ∂2f

∂w1 ∂wd... ...
∂2f

∂wd ∂w1
· · · ∂2f

∂wd ∂wd



Curvature information

– Taylor expansion near the optimum w∗:

f (w) ≈ f (w∗) +
1

2
(w − w∗)>H(w∗) (w − w∗)

– This paraboloid has ellipsoidal level curves.

– Principal axes are the eigenvectors of the Hessian.

– Ratio of curvatures = ratio of eigenvalues of the Hessian.
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Newton method

Idea

Since Taylor says
∂f

∂w
(w) ≈ H(w) (w − w∗) then w∗ ≈ w −H(w)−1∂f

∂w
(w).

Newton algorithm

w ← w −H(w)−1∂f

∂w
(w)

– Succession of paraboloidal approximations.

– Exact when f (w) is a paraboloid, e.g. linear model + squared loss.

– Very few iterations needed when H(w) is definite positive!

– Beware when H(w) is not definite positive.

– Computing and storing H(w)−1 can be too costly.

Quasi-Newton methods

– Methods that avoid the drawbacks of Newton

– But behave like Newton during the final convergence.
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Conjugate Gradient algorithm

Conjugate directions

– u, v conjugate ⇐⇒ u>H v = 0. Non interacting directions.

Conjugate Gradient algorithm

– Compute gt = ∂f
∂w(wt).

– Determine a line search direction dt = gt − λdt−1

– Choose λ such that dt H dt−1 = 0.

– Since gt − gt−1 ≈ H (wt − wt−1) ∝ H dt−1, this means λ =
gt(gt−gt−1)
dt(gt−gt−1)

.

– Perform a line search in direction dt.

– Loop.

This is a fast and robust quasi-Newton algorithm.

A solution for all our learning problems?
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Optimization vs. learning

Empirical cost

– Usually f(w) = 1
n

∑n
i=1L(xi, yi, w)

– The number n of training examples can be large (billions?)

Redundant examples

– Examples are redundant (otherwise there is nothing to learn.)

– Doubling the number of examples brings a little more information.

– Do we need it during the first optimization iterations?

Examples on-the-fly

– All examples may not be available simultaneously.

– Sometimes they come on the fly (e.g. web click stream.)

– In quantities that are too large to store or retrieve (e.g. click stream.)
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Offline vs. Online

Minimize C(w) =
λ

2
‖w‖2 +

1

n

n∑
i=1

L(xi, yi, w).

Offline: process all examples together

– Example: minimization by gradient descent

Repeat: w ← w − γ

(
λw +

1

n

n∑
i=1

∂L

∂w
(xi, yi, w)

)

Offline: process examples one by one

– Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example xt, yt

(b) w ← w − γt
(
λw +

∂L

∂w
(xt, yt, w)

)
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Stochastic Gradient Descent
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– Very noisy estimates of the gradient.

– Gain γt controls the size of the cloud.

– Decreasing gains γt = γ0(1 + λγ0t)
−1.

– Why is it attractive?
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Stochastic Gradient Descent

Redundant examples

– Increase the computing cost of offline learning.

– Do not change the computing cost of online learning.

Imagine the dataset contains 10 copies of the same 100 examples.

• Offline Gradient Descent

Computation is 10 times larger than necessary.

• Stochastic Gradient Descent

No difference regardless of the number of copies.
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Practical example

Document classification
– Similar to homework#2 but bigger.
– 781,264 training examples.
– 47,152 dimensions.

Linear classifier with Hinge Loss
– Offline dual coordinate descent (svmlight): 6 hours.
– Offline primal bundle optimizer (svmperf): 66 seconds.
– Stochastic Gradient Descent: 1.4 seconds.

Linear classifier with Log Loss
– Offline truncated newton (tron): 44 seconds.
– Offline conjugate gradient descent: 40 seconds.
– Stochastic Gradient Descent: 2.3 seconds.

These are times to reach the same test set error.
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The wall

50

100

0.2

0.3

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

Testing cost

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 

SGD

TRON
(LibLinear)
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