
Modeling and Statistical Analysis Prof. Dilip Asthagiri

Matlab for the Absolute Beginner

By Arvind Ravichandran

7/12/11

"Do not worry about your difficulties in Mathematics. I can assure you
mine are still greater."

- Albert Einstein

When first introduced to Matlab, with no previous programming

experience, I myself was a bit nervy about using the software to solve and
present solutions to complex projects. I have, however, attempted to allay

these initial jitters to some extent with a simple guide for the beginner. I

have collated these notes together from sources such as the help pages
from the MathWorks website, notes posted by Matlab geeks on websites,

and advice from my own experience. Also, I have appended some

exercise problems at the end, and also have the solutions to them. So
please try them!

Some of you may be entirely familiar with all that I talk about in the

following pages and may even prefer to skip entirely what is pretty much
a rudimentary instruction manual.

All I wish to convey is that Matlab is not an intimidating computer
gimmick. But an incredibly useful tool that you should learn to use to

solve engineering problems, quickly and efficiently. And I hope that I can

be of service to help you master this software.

Let us begin!

Modeling and Statistical Analysis Prof. Dilip Asthagiri

1. The Command Window

There are two windows that you can type stuff into in Matlab: The editor

and the command window. Knowing how to use these windows can make

coding and debugging your programs much less painstaking.

As the name suggests, the command window is where you enter

instructions for Matlab to perform. It is handy to know a few basic
commands so that you can instruct Matlab to perform basic functions.

Listed are some functions, which I find very handy to make moving

around the Command Window much easier. Make sure that you try these
functions out and are accustomed to them.1

 The help function is extremely useful when you are

unfamiliar with a Matlab function. Typing in “help” followed

by your query (and pressing enter of course) will give an

output describing the function and the syntax required to

use it. Try typing in “help plot”. I find this particular help
page very helpful for plotting, and you will see yourself using

most of the tips listed on this topic.

 clc - clears all input and output from the Command

Window display, giving you a clean screen.

 clear - clears all functions and variables from memory.

 lookfor – this can be quite an useful command. If all you

remembered was a fragment of command or topic, you can

use lookfor. For example, lookfor plot will list all

occurrences of the string „plot‟ within Matlab documentation.

 shg - brings the current figure window forward if you have

plotted a graph

 Up button – The up button in the command window returns

your previously entered statement.

 home – moves the cursor to the upper left corner of the

window.

 quit - quits Matlab, although you can always do it the

amateur way.

1 Note that the words that are to be typed into Matlab are in a different font than the explanatory

texts.

Modeling and Statistical Analysis Prof. Dilip Asthagiri

Note that you can also type in mathematical problems into

Matlab to solve it:

e.g.

The polynomial s3 + 6x2 - 72x - 27 represented in MATLAB

software reads

>> p = [1 -6 -72 -27];

The roots of this polynomial are returned in a column vector
when you enter:

>> r = roots(p)

as

r =

 12.1229

 -5.7345

 -0.3884

Another very useful function of the command window is copying code

from the editor window and watching variable values change. I shall

explore this later in section 12.

2. Variables

A Matlab variable is essentially a tag that you assign to a value while that
value remains in memory. The tag gives you a way to reference the value

in memory so that your programs can read it, operate on it with other

data, and save it back to memory. Variables will be the essential dynamic

medium, which your program will access, change and produce data. In
the following example, the >> sign shows what I have typed in the

command window.

For instance:

>> monkey = 8

monkey =

 8

Now that you have “taught” Matlab that monkey = 8, every time

you type in monkey, Matlab will understand that you are talking

about the number 8 (until you enter clear, which clears the

memory of all variables).

>> 2*monkey

ans =

Modeling and Statistical Analysis Prof. Dilip Asthagiri

 16

I find the use of an analogy very helpful to drive this concept home. Take
the above example. We first enter monkey = 8. Now imagine that the

variable on the left of the equal sign is a little box and that you are storing

the stuff on the right into the variable on the left. You can never swap this

order, unlike what you might be used to doing in math.

Anytime you call the variable thereafter, you call for the value stored

inside. However, you can change the contents of the “box” by reassigning
the variable (putting or taking out stuff from the box). For example,

monkey = monkey + 1. Here Matlab will understand that you are

assigning a new variable monkey (a value of 9) by using the old value of

monkey, which is 8. Reassigning variables like this will come very much in

handy when we deal with “for-loops.”

You can also assign a variable to be an array2. We will look at

manipulating arrays in another section.

Changing the name of variables is usually redundant but can be done if

you type it in the following format: new_name = monkey. Now new_name

will have a value of 8.

Note that Matlab will throw back the value of the variable unless you end

the line with a semi colon, “;”. Always remember to do this especially

when working on lengthy pieces of code.

Also remember that Matlab variable names must begin with a letter,

which may be followed by any combination of letters, digits, and
underscores. Matlab distinguishes between uppercase and lowercase

characters, so A and a are not the same variable.

When naming a variable, make sure you are not using a name that is
already used as a function name, either one of your own functions or one

of the functions in the Matlab language. If you define a variable with a

function name, you will not be able to call that function until you either
remove the variable from memory with the clear function. For example,

if you enter the following command, disp = 5, you will not be able to use

the Matlab disp function until you clear the variable with clear disp.

3. Editor window

The Editor window is very different from the command window because
here you can make all the mistakes you want and Matlab will never shout

at you. It is best to code in the editor window and run the program in the

command window. Avoid coding in the command window, as it will be a

huge pain to write programs like that.

2 A series of values or a matrix

Modeling and Statistical Analysis Prof. Dilip Asthagiri

The advantage of coding in the editor window is that Matlab tells you

when you make a mistake, indicating it by an orange or a red line. An
orange line means that you can run the program (but Matlab is unhappy

because of your bad coding practice) and the red line means that the

program cannot be run because of an error in that line. I will try and

explore common sources of error in Matlab in a later section.

You also necessarily have to make sure that you have saved your code in

the same directory as what Matlab is looking in when running the code in
the command window. I would recommend creating a Matlab folder in a

recognizable region of your hard drive and saving all .m (read as “dot M

files”) files there. When obtaining codes from other people, you could just
save it in this directory and run the file in the command window. We will

explore running .m files in the command window in a later example.

If you have a very clear code in your mind, you can actually type it all out
using notepad, in your email portal or even write it out on a piece of

paper. The only reason you actually need Matlab is to see how it all works

and to get your data.

4. How to write a program

To make our lives easy, we can write a program with user-defined

variables. This means you can use it like how you use excel. In excel, you

feed in a formula in a cell, and change the input in your “input cell” and

the program spits out an output.

You can do the same thing with Matlab, and this section will teach you

how.

To do this, we need to make use of the editor window.

Problem: Add 2 numbers, input 1 and input 2.

 Solution:

 %Type the following in the editor window

 function [solution] = exmp_4(inp1,inp2)

 solution = inp1 + inp2;

 end

For the program to work you have to make sure you save the program as

“exmp_4.m” in the directory that the command window is running in. You

can see where Matlab is looking for the .m files under the “current
directory” text field in Matlab.

Once you do that, you can go to the command window and type in
[solution] = exmp_4(1,2) or [solution] = exmp_4(124,268) to get

your answer. A new variable, “solution”, will now appear in your

Workspace window. This variable contains your answer.

Modeling and Statistical Analysis Prof. Dilip Asthagiri

When running programs in the command window you can change the

variable name and it will just replace “solution”. For instance, [A] =

exmp_4(inp1,inp2) will give you the same result, but your answer will

be saved under the variable A.

Alternatively, you can just type exmp_4(inp1,inp2) for Matlab to spit out

the answer, given that you add the following line in your .m file:
disp(solution). Now, displaying the solution has become a function of

your code, and you don‟t have to call for the answer. Try to accustom

yourself with these techniques, because you will be using them for every

code you write. See Exercise 1.

5. Presets

It is good coding practice, and also a good way to avoid orange lines, to

preset values for the variables you are planning to use. Matlab doesn‟t like

it (but at times will perform the program without complaining) when you
show it variables that it has never seen before. You have to say what the

initial value of the variable is. If it is an array, it is good practice to set up

an array of zeros of the required dimension.

6. Commenting

Commenting your code is a very important yet undervalued practice. You
can always type a % sign on your work in the Editor window (also possible

in the command window) and Matlab will ignore whatever that comes

after that. Note that you have to type in the % sign for every new line of

comment you insert. This is a great way to keep track of what you are
doing and it makes the lives of those who are looking at your code that

much easier (like your TAs).

7. Arrays

You will have to use arrays extensively in your projects and it would be

helpful if you were familiar with the different commands to manipulate
arrays. There is a comprehensive list of tricks in the following website:

http://blinkdagger.com/matlab/matlab-tips-and-tricks-on-

manipulating-1-d-arrays-vectors/

I would strongly advice you to play around with them before attempting

to work on the projects.

Just to make this article complete, I have included a few basic array

manipulation techniques here.3

In addition to doing operations on single numbers, Matlab allows us to
perform operations on arrays. There are several ways to create an array, I

have listed examples in the bullet points:

3 I have modified the following material from: http://physics.gac.edu/~huber/matlab/mtlabfun.htm

http://blinkdagger.com/matlab/matlab-tips-and-tricks-on-manipulating-1-d-arrays-vectors/
http://blinkdagger.com/matlab/matlab-tips-and-tricks-on-manipulating-1-d-arrays-vectors/

Modeling and Statistical Analysis Prof. Dilip Asthagiri

 Explicitly listing terms
o array = [1 4 9 16]

 Colon notation,
o array = 1:5, creates an array with elements from 1 to 5

using intervals of 1.

o array = 1:2:10, creates an array with elements from 1 to

20, using intervals of 2.

 Using the zeros and ones commands,
o array = zeros(1,3)

o array = ones(1,5);

We can do addition, subtraction, multiplication and division of an array
and a value using the (+, -, *, /) operators.

Try this: Create an array T, for example, T = [1 4 9 16]. And try out

the following functions in the command window:

 T*2

 T/5,

 T+20,

 T/10+5

To operate on each element of the array individually you have to put a

period in front of the operator.
 .*

 ./

 .^

To demonstrate this, try the following example in the command window:

x=1:3;

y=2:4;

Now observe the results for the following:

 x.*y

 x./y
 x.^y

And now try to perform any one of those functions without the period. It
doesn‟t work because without the period, Matlab tries to perform a matrix

operation. The dimensions of x and y are inappropriate for such a

function.

A row vector can be turned into a column vector using the transpose (')
operator. Using the definition of t above, note what happens for the

command t' and t''.

We can also extract and modify elements of a list:

Modeling and Statistical Analysis Prof. Dilip Asthagiri

 Selecting an element of a list, use x(3)

 We can set an element using x(3)=100;

 To select a range of an array, use x(3:5) or x(:3) or x(5:)

See Exercise 5.

8. for loops

“for loops” will repeat a series of statements a specific number of times.

They help us by making Matlab do all the repetitive work for you. Let‟s

solve a simple Matlab problem.

Problem: We want to find the sum of numbers 0 to 50. So

we want to find 0 + 1 + 2 + 3 + … + 49 + 50. We can use

the loop construct here.

Solution (an example of coding in the command window):

>> a = 0;

for i = 1:50

 a = a + i;

end

>> a

a =

 1275

Note that I have preset the variable “a” to be 0 before the loop begins.

This means that on the first iteration4, a = 0 5. So the new value of

variable “a” is given by “a = 0 + i”; where “i” refers to the iteration

number so our first iteration number is 1, because we have assigned the

“for loop” to run such that i increases by one for each iteration starting

from 1. So Matlab will add 0 + 1, put it in the variable a, and reach end.
The loop will make Matlab go back to the start of the loop and once again

perform a = a + i, just that this time, a (on the right) = 1 and i = 2

(for the second iteration). This goes on 50 times and you get your answer
of 1275. Note that if you put the preset inside the “for loop”:

>> for i = 1:50

a = 0;

a = a + i;

end

4 I will use the term “iteration” to refer to the loop number. First iteration will refer to the first

repetition.
5 Note carefully the position of the variable, and the position of the value assigned to that variable.

Modeling and Statistical Analysis Prof. Dilip Asthagiri

Then we have for every iteration a = i. And we will end up with a = 50

(as the last iteration number).

The easiest way to add these numbers would be of course:

>> sum (1:50)

ans =

 1275

9. if constructs

The “if” construct is a simple, yet very useful function in coding. Let‟s look
at another problem.

Problem: Identify if a number is below 25 or between 25 and 75 or
above 75.

Solution:

function exmp_7(inp)

if inp < 25

 disp('less than 25')

elseif 25 <= inp && inp <= 75

 disp('between 25 and 75')

else

 disp('above 75')

end

Although this could be an insultingly simple example, there are a few

important points to note. The “elseif” within the “if” construct will enable

you to add another condition, in case the first one isn‟t satisfied. The

“else” statement, gives the construct the option of performing the actions
that follow “else”, in the event that all the previous conditions weren‟t

satisfied.

Now, note that Matlab does not accept statements like “25<inp<75”. You

need to specifically mention that “inp” must fall between exactly these

two intervals using the “&&” symbols. You have to use the symbol twice

because you are specifying a condition. Note that you will also have to use

“==” if you want to say that something is equal to something in your

condition. You can only use “=” when you want to store the value on the

right hand side (RHS) into the variable on the left hand side (LHS).

In one of the exercises you are required to make an “if statement” work
inside a “for loop”. Think through your process carefully before proceeding

with the coding for that.

Modeling and Statistical Analysis Prof. Dilip Asthagiri

I would strongly recommend you to take a look at the help section for “if”

to make yourself accustomed to the various less than and greater signs
that you can use to obtain your desired if statements.

See Exercises 2 and 3.

10. Switch Case

With the following example, I will illustrate how the “switch case” method
can be used as an alternative to a series of “if elseif” statements. Let‟s say

we have a similar problem as before.

Problem: We are told that we will be given an input, which can

either be 1, 2, 3 or something else. We need to make a program

that will tell us which is which.

Solution:

function exmp_10(inp)

switch inp

 case 1

 disp('one')

 case 2

 disp('two')

 case 3

 disp('three')

 otherwise

 disp('others')

end

end

Notice, how you could have also tackled the problem using a series of “if
elseif” statements too, but the “switch case function” may prove to be

easier and cleaner. You might want to think of the switch function as a

train-track-directing switch. In the line “switch inp” you tell Matlab that

you are looking for the variable “inp”. In the following statements, you

give a list of cases detailing where the train should be directed if one of

the conditions are met. You may want to use this method to solve the

final exercise problem.

11. while loops

A “while loop” is a combination of a “for loop” and an “if” construct. In a
“while loop”, before another iteration begins, your code will ask if a certain

condition is satisfied before it continues with the loop. It can be articulated

as “Keep running the loop while this condition is satisfied.”

To give a very simple example, let‟s say, I ask you to count from 1 to a

varying number (randomly assigned by me), and record the counted
numbers in an array. You would probably write the following program:

 function exmp_8(num)

array = 0;

Modeling and Statistical Analysis Prof. Dilip Asthagiri

i = 1;

while array(1,i) < num

 i = i+1;

 array(1,i) = array(1,i-1)+1;

end

disp(array)

end

Although there is a much easier way to generate this array:

 function exmp_8-2(num)

array = [1:1:num]

end

I have used the first solution for a few reasons. It demonstrates that you

need an artificial iteration number in a while loop, unlike the “for loop”.

Since you have to make your own iteration number, you also have to

manually make the number go up by one each time the program goes
through the loop. Note that, this isn‟t always necessary in a “while loop”,

and that I had to make use of this little trick just to make a coherent

array.

Also, I chose this example because you can‟t always expect to have such

nice increments. You might face a problem with varying increments, like a
Fibonacci sequence. In fact that is an exercise included in this article.

Since this isn‟t a fantastic example, I also had to commit a subtle crime of

creating an array indefinitely increasing in size (which triggers the orange
line in the editor window). But, I get away with this because I know that

this isn‟t exactly indefinite, and that I know the loop will stop when I have

counted enough numbers.

See Exercise 4.

11. Strings

You can make Matlab recognize, store and recall text. This will come in
handy when you are analyzing long strings of text. For example, we could

count the number of times the word “the” is used in a storybook using

strings6. I think the following website does a great job of explaining how
to make use of strings.

http://en.wikibooks.org/wiki/MATLAB_Programming/Strings

You might be at one point required to make use of the Map data

structure. A Map is a type of fast key lookup data structure that offers a
flexible means of indexing its individual elements. Unlike most array data

structures in Matlab that only allow access to the elements by means of

integer indices, the indices for a Map can be nearly any scalar numeric

value or a character string (words).

6 Remember that strings is just a fancy way of saying, I have stored a word in Matlab.

http://en.wikibooks.org/wiki/MATLAB_Programming/Strings

Modeling and Statistical Analysis Prof. Dilip Asthagiri

Indices (or elements) of a Map are called keys. These keys, along with the

data values associated with them, are stored within the Map. Each entry

of a Map contains exactly one unique key and its corresponding value.7

At this point you might want to look up what containers.Map does. You
will be able to use this to make a dictionary to reference a certain string

to another string.

Don‟t worry too much about this section as I plan to make another set of

more detailed notes if and when you are faced with such a project.

12. Debugging

No matter how careful you are with your codes, you are at some point

bound to have made some mistakes in them. This can be either in the
form of an error, in which case Matlab will not perform the task, or in the

form of nonsensical results. There are a few ways you can solve the

problem.

 Running codes in your head

You can go back to the editor and scan for the mistake and try
running the program in your head a few times. This involves mentally

running through the loops.

 Using the command window for debugging

Another technique follows from what I mentioned in the first section.
You can run the entire code in the command window.

Copy everything after the “function” line until just before the last

“end” line, and paste it in the command window and press enter. But

before this, remember to define your input variables.

In reference to exmp_8-1, you will have to define num to equal

something before pressing enter.

This will enable you to see all the different variables, like array and i.

They will appear in the workspace window so that you know what

values are being used to generate the output that you are getting.

This will give you an idea of how Matlab is dealing with your data. This

can sometimes be quite tedious, but unfortunately it is the only way
to be sure that your code is good.

13. Common Sources of Error

You will, unfortunately, be seeing little red bars on your editor window on

the right. As mentioned before, this means the program cannot be run. I

7 From http://www.mathworks.com/help/techdoc/matlab_prog/brqqo5e-1.html

Modeling and Statistical Analysis Prof. Dilip Asthagiri

have tried to explore some common sources of Matlab errors that you

might want to check for first in the event that you are faced with this
problem once you have completed your coding.

Firstly, don‟t try to code up something that looks smart enough to work,
without completely understanding how it works. I have tried this before,

and trust me, that‟s not how you code, and you will have no idea if the

data you are producing is right or wrong.

 Omitting operators in expressions

Remember that MATLAB does not understand a statement like “b(3

+ a)” to mean “b times the quantity (3 + a)”. Rather, MATLAB

interprets it as “the (3+a)
th element of b”. This interpretation is not

likely to give you the result you are expecting. To produce the

desired result, be explicit about the multiplication operation: b*(3
+ a).

 Presetting

As you might have already noticed in my example on the previous

page, it is good practice to preset your variables. It isn‟t good to
scare Matlab by suddenly introducing new variables in the middle of

the code.

For example, let‟s say you suddenly realized that you want to

include a variable “X”, an array, who will change with each iteration

of a for loop. Typing in “X(1,i) = i*2” inside a for loop, for

example, will work. However, you need to tell matlab how big X is

first. I usually include presets immediately after the first line of my
code. In this case, if you are doing a hundred iterations of the for

loop, you should preset X to be, “X = zeros(1,100)”. This isn‟t

always a fatal error, but you will get orange lines in the editor page.

 Keeping track of iteration variables

At times, you will have to use a “for loop” within a “for loop” within
a “for loop”, and so on. It requires some mental gymnastics to keep

track of such things so I would suggest you reserve the letters: i, j,

k and l for this purpose. Also note exactly where you are using
these letters in your code.

It is best to mentally map out a few iterations to see how the for

loop goes before you run the program to get an overall feel for it.
Remember that you are using Matlab only for repetitive work and

for remembering things. The brain of the coding is still you! If you

don‟t understand it, Matlab won‟t work.

 Brackets

When, inserting complicated equations, Matlab might not be the

most helpful thing in the world. If you have had experience

Modeling and Statistical Analysis Prof. Dilip Asthagiri

inserting complex equations in wolfram alpha, you know what I am

talking about. Keep track of your brackets, because sometimes you
will have to open 6 or 7 pairs of them.

 Memory

Try to keep your programs as simple as possible. The more

complicated they are, the longer Matlab will take to process the

data. Get rid of redundant lines, and look for the simplest methods.
Matlab‟s command window will appear busy (on the bottom left)

when it is running the code. If a project that we assign you is going

to take a long time to run, we will let you know in advance.

Although Matlab is a very powerful tool, you need to remember that

it has a limited amount of memory. It is foolish to keep record of

redundant data. Always begin with the end in mind and remember
what final data you are interested in. Try to make Matlab “forget”

as much useless data as possible and only keep the essence of your

experiments. This will speed up processing time significantly and
help you write succinct codes.

Be on the lookout for lengthy periods of busyness. This usually
means that you have gone about the problem in a long-winded way

and Matlab isn‟t going to give you the solution anytime this week.

 The semi colon

This is usually a very annoying problem until you get used to

Matlab. You have to make sure that you type a colon at the end of
each line of “action lines” (unlike “conditioning lines”) so that

Matlab doesn‟t display all the values that it has changed. You will be

alerted that you are missing a semi colon with a yellow bar in the
editor window.

You have to be especially careful of these semi colons, when

dealing with large arrays. Or else, you will see a “ginormous” array,
containing, thousands, maybe even millions of elements, printed on

your command window screen.

14. Elegance

This isn‟t a programming course but a course on data analysis. You have

to remember that Matlab is only one amongst the many skills we teach

you here, and this course isn‟t about mastering Matlab.

So we don‟t care how you obtain your findings as long as you present it

in such a way that you demonstrate knowledge of the underlying
concepts. There are very many solutions to each problem you will be

assigned and there is no “one right answer”.

With that said, there are of course only a few elegant solutions. And I,

personally, am a big fan of elegant coding. I mention this here because

Modeling and Statistical Analysis Prof. Dilip Asthagiri

this is what has helped me really enjoy data analysis. Working on

solutions over and over again searching for a faster and better way to
process data, even after a solution has been obtained, will help you hone

your skills in programming. The more time you invest in each problem,

the quicker you will get when faced with brand new problems.

We will try as much as possible to reward elegant solutions, but don‟t

worry too much if you still prefer the brute force methods. This section is

just a note to encourage you to do that extra bit more to become a better
engineer.

And that is about all that I have for you in these introductory notes. You

won‟t need these notes past the first couple of weeks of using Matlab.
Once you have gotten accustomed to the coding platform, solutions to

your projects and the ease of solving will no longer be a matter of your

Matlab knowledge. Rather it will come down to you understanding the

problem, the concepts taught and a bit of coding ingenuity. It will not be
a matter of the amount of cool functions you know in Matlab.

Also, I have tried my best to get rid of mistakes in this article, but by no
means is it perfect. Please don‟t hesitate to let me know if you find any

mistakes or inconsistencies.

Feel free to contact me or the other TAs if you have any further questions

about the course. We will be happy to help you.

All the very best!

Modeling and Statistical Analysis Prof. Dilip Asthagiri

Exercises8:

1. Gas9

An equation of state for a non-ideal, which is commonly used, is the
van der Waals equation for 1 mole of gas:

P = (R*T)/(V-b) - a/(V^2)

where,

P = Pressure in Atmospheres

R = 0.0821 Atm*Liters/Mol*Kelvin
T = Temperature in Kelvin

V = Volume (in Liters)

The a and b values are10:
Ideal Gas: a = 0, b = 0 (so it reduces to ideal gas equation)

Nitrogen: a = 1.408 b = 0.0386

Oxygen: a = 1.378 b = 0.0318

· For T=300 K and V=10L, calculate the pressure for nitrogen and

oxygen and compare the results with ideal gas.

· Plot the pressure for oxygen & nitrogen for a range of volumes
from 0.1L to 10L (in steps of 0.05L) and compare to ideal gas

(To get you guys warmed up, below is the solution to the first
problem.)

Solution:

%Part 1

function [P] = ex_1_1(T,V)

a = [0 1.408 1.378]; %ideal gas, Nitrogen, Oxygen

b = [0 0.0386 0.0318];

P = (0.0821*T)./(V-b) - a/(V^2);

end

%Part 2

function ex_1_2(T)

i = 0;

a = [0 1.408 1.378];

b = [0 0.0386 0.0318];

array = zeros(3,199); %preset

for V = 0.1:0.05:10

 i = i+1; %artificial counter

8 These problems are somewhat in order of ascending difficulty.
9 http://physics.gac.edu/~huber/matlab/mtlabpr1.htm
10 http://en.wikipedia.org/wiki/Van_der_Waals_constants_%28data_page%29

Modeling and Statistical Analysis Prof. Dilip Asthagiri

 P = (0.0821*T)./(V-b) - a/(V^2);

 array(:,i) = P;

end

x = 1:199;

plot (x,array(1,:),'k',x,array(2,:),'y',x,array(3,:),'b')

%see help plot

end

2. Simple coin toss

Find the percentage of heads occurring in a fair coin thrown
50, 100, 1000 and a million number of times respectively.

3. For and if

Generate an array of 10 random numbers between 1 and 100.

Then find out how many of the elements are between 1 and 25,
how many between 25 and 75 and how many between 75 and 100.

4. The Fibonacci Finder

Create a program that will distinguish a Fibonacci number from a

non-Fibonacci number. Hint: This is a review of while loops and if

constructs.

5. Discover Pi

Imagine the first quadrant of a circle in a Cartesian vector space.

Pick a few random points within this space and calculate the ratio

of the points that lay within the circle to those that are outside the

circle. Using this, determine the area of the circle, and calculate pi.
Increase the number of points within the space and see how it

affects your value of pi. You should get a fairly accurate value after

picking about a billion points. (The method is known as the Monte
Carlo Simulation)

6. Fold Mountains

(a) Imagine two arrays, each given by: [1:1:100], overlap

each other (See figure below). The “overlap depth” is

random: a number, between 1 and 100.11 Overlapping
elements should be added together. Generate a plot of

the resulting array from such a collision. You will notice

something remarkable. This should be an exercise in
array gymnastics.

11 Overlap depth of 1 would mean, the two 100s at the ends overlap, and overlap depth of 100 would

mean the two arrays overlap entirely.

Modeling and Statistical Analysis Prof. Dilip Asthagiri

100 100 1 1

100

100 1

1

