
Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript

Daniel Gruss, Clémentine Maurice†, and Stefan Mangard

Graz University of Technology, Austria

Abstract. A fundamental assumption in software security is that a
memory location can only be modified by processes that may write to
this memory location. However, a recent study has shown that parasitic
effects in DRAM can change the content of a memory cell without ac-
cessing it, but by accessing other memory locations in a high frequency.
This so-called Rowhammer bug occurs in most of today’s memory mod-
ules and has fatal consequences for the security of all affected systems,
e.g., privilege escalation attacks.
All studies and attacks related to Rowhammer so far rely on the avail-
ability of a cache flush instruction in order to cause accesses to DRAM
modules at a sufficiently high frequency. We overcome this limitation by
defeating complex cache replacement policies. We show that caches can
be forced into fast cache eviction to trigger the Rowhammer bug with
only regular memory accesses. This allows to trigger the Rowhammer
bug in highly restricted and even scripting environments.
We demonstrate a fully automated attack that requires nothing but a
website with JavaScript to trigger faults on remote hardware. Thereby
we can gain unrestricted access to systems of website visitors. We show
that the attack works on off-the-shelf systems. Existing countermeasures
fail to protect against this new Rowhammer attack.

1 Introduction

Hardware-fault attacks have been a security threat since the first attacks in 1997
by Boneh et al. [10] and Biham et al. [9]. Fault attacks typically require phys-
ical access to the device to expose it to physical conditions which are outside
the specification. This includes high or low temperature, radiation, as well as
laser on dismantled microchips. However, software-induced hardware faults are
also possible, if the device can be brought to the border or out of the specified
operation conditions using software. Kim et al. [20] showed that frequently ac-
cessing specific memory locations can cause random bit flips in DRAM chips.
85% of the DDR3 modules they examined are vulnerable. The number of bit flips

This paper has been accepted at DIMVA 2016 (dimva2016.mondragon.edu/en). The
final publication is available at link.springer.com (http://link.springer.com/).
† Part of the work was done while author was affiliated to Technicolor and Eurecom.

2 Daniel Gruss, Clémentine Maurice, Stefan Mangard

varies from one module to another, i.e., some modules can be more vulnerable
than others. More recently, DDR4 modules have been found to be vulnerable as
well [32]. Bit flips can be triggered by software by flushing a memory location
from the cache and reloading it. Seaborn [36] demonstrated that an attacker can
exploit such bit flips for privilege escalation. These exploits are written in native
code and use special instructions to flush data from the cache.

We show that it is possible to trigger hardware faults by performing fast cache
eviction on all architectures, if the DRAM modules are vulnerable. Compared
to previous work, we do not use any specific instruction, but only regular mem-
ory accesses to evict data from the cache. The attack technique is thus generic
and can be applied to any architecture, programming language and runtime en-
vironment that allows producing a fast stream of memory accesses. Therefore,
proposed countermeasures such as removing the clflush instruction cannot pre-
vent attacks. Even more severe, we show that on vulnerable modules, we can
also perform remote JavaScript-based Rowhammer attacks.

Since an attack through a website can be performed on millions of victim
machines simultaneously and stealthily, it poses an enormous security threat.
Rowhammer.js is independent of the instruction set of the CPU. It is the first
remote software-induced hardware-fault attack. As a proof of concept, we im-
plemented a JavaScript version that as of today runs in all recent versions of
Firefox and Google Chrome.

For a Rowhammer attack in JavaScript we perform the following steps:

1. Find 2 addresses in different rows
2. Evict and reload the 2 addresses in a high frequency
3. Search for an exploitable bit flip
4. Exploit the bit flip (e.g., manipulate page tables, remote code execution)

Steps 3 and 4 have already been solved in previous work [36], but step 1 and 2
remain open challenges.

The challenge in step 1 is to retrieve information on the physical addresses
from JavaScript. It is strictly sandboxed and provides no possibility to retrieve
virtual or physical addresses. To tackle this challenge, we determine parts of the
physical addresses using large arrays that are allocated by operating systems on
large pages. We thus do not exploit any weaknesses in JavaScript or the browser,
but only OS-level optimizations.

The challenge in step 2 is to find fast cache eviction strategies to replace
the clflush instruction. On older CPUs, simply accessing n + 1 addresses is
sufficient to evict lines for an n-way cache [23, 27]. On Intel CPUs produced in
the last 4 years, i.e., post Sandy Bridge, the replacement policy has changed and
is undocumented. Consequently, known eviction strategies have a low eviction
rate or a high execution time, which is not suitable for Rowhammer attacks. To
tackle this challenge, we present a novel generic method for finding cache eviction
strategies that achieve the best performance in both timing and eviction rate
by comprehensively exploring the parameter space. We present the best eviction
strategies so far, outperforming previous ones on all recent Intel architectures.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 3

Platform CPU Architecture RAM

Lenovo T420 i5-2540M Sandy Bridge Corsair DDR3-1333 8 GB
and Samsung DDR3-1600 4 GB (2×)

Lenovo x230 i5-3320M Ivy Bridge Samsung DDR3-1600 4 GB (2×)
Asus H97-Pro i7-4790 Haswell Kingston DDR3-1600 8 GB
ASRock Z170 ITX i7-6700K Skylake G.Skill DDR4-3200 8 GB (2×)

and Crucial DDR4-2133 8 GB (2×)

Table 1: Experimental setups.

Based on this method, we build a two-phase online attack for remote systems
with unknown hardware configuration.

We compare the different implementations of the Rowhammer attacks on
a fixed set of configurations (see Table 1), some vulnerable in default settings,
others at decreased refresh rates.

As of today, software countermeasures against Rowhammer native code at-
tacks only target specific exploits, and, as we show, do not protect sufficiently
against attacks from JavaScript. Hardware countermeasures are harder to de-
ploy, since they do not affect legacy hardware including recent vulnerable DDR4
modules. BIOS updates can be used to solve the problem on commodity systems,
however it is only a practical solution for very advanced users.

Summarizing, our key contributions are:

– We provide the first comprehensive exploration of the cache eviction param-
eter space on all recent Intel CPUs. This also benefits broader domains, e.g.,
cache attacks, cache-oblivious algorithms, cache replacement policies.

– We build a native code implementation of the Rowhammer attack that only
uses memory accesses. The attack is successful on Sandy Bridge, Ivy Bridge,
Haswell and Skylake, in various DDR3 and DDR4 configurations.

– We build a pure JavaScript Rowhammer implementation, showing that an
attacker can trigger Rowhammer bit flips remotely, through a web browser.

The remainder of this paper is organized as follows. In Section 2, we provide
background information on DRAM, the Rowhammer bug, CPU caches, and
cache attacks. In Section 3, we describe a two-phase automated attack to trigger
bit flips on unknown systems. In Section 4, we demonstrate the Rowhammer
bug without clflush in native code and in JavaScript. In Section 5, we provide
a discussion of our proof-of-concept exploit, limitations, and countermeasures.
Finally, we discuss future work in Section 6 and provide conclusions in Section 7.

2 Background

2.1 DRAM

Modern memory systems have multiple channels of DRAM memory connected
to the memory controller. A channel consists of multiple Dual Inline Memory

4 Daniel Gruss, Clémentine Maurice, Stefan Mangard

Modules (DIMMs), that are the physical modules on the motherboard. Each
DIMM has one or two ranks, that are the sides of the physical module. Each
rank is a collection of chips, that are further composed of banks. Accesses to
different banks can be served concurrently. Each bank is an array of capacitor
cells that are either in a charged or discharged state, representing a binary data
value. The bank is represented as a collection of rows, typically 214 to 217.

The charge from the cells is read into a row buffer on request and written
back to the cells as soon as another row is requested. Thus, access to the DRAM
is done in three steps: 1. opening a row, 2. accessing the data in the row buffer,
3. closing the row before opening a new row, writing data back to the cells.

DRAM is volatile memory and discharges over time. The refresh interval
defines when the cell charge is read and restored to sustain the value. DDR3 and
DDR4 specifications require refreshing all rows at least once within 64ms [1,20].

The selection of channel, rank, bank and row is based on physical address
bits. The mapping for Intel CPUs has recently been reverse engineered [32,35].

2.2 The Rowhammer Bug

The increase of DRAM density has led to physically smaller cells, thus capable
of storing smaller charges. As a result, cells have a lower noise margin, and cells
can interact electrically with each other although they should be isolated. The
so called Rowhammer bug consists in the corruption of data, not in rows that
are directly accessed, but rather in rows nearby the accessed one.

DRAM and CPU manufacturers have known the Rowhammer bug since at
least 2012 [5,6]. Hammering DRAM chips is a quality assurance tests applied to
modules [3]. As refreshing DRAM cells consumes time, DRAM manufacturers
optimize the refresh rate to the lowest rate that still works reliably.

The Rowhammer bug has recently been studied [16,20,29] and the majority
of off-the-shelf DRAM modules has been found vulnerable to bit flips using
the clflush instruction. The clflush instruction flushes data from the cache,
forcing the CPU to serve the next memory access from DRAM. Their proof-of-
concept implementation frequently accesses and flushes two memory locations
in a loop, causing bit flips in a third memory location.

Seaborn implemented Rowhammer exploits [36] in native code with the
clflush instruction: a privilege escalation on a Linux system caused by a bit flip
in a page table and an escape from the Google Native Client sandbox caused by a
bit flip in indirect jumps. As a countermeasure, the clflush instruction was re-
moved from the set of allowed instructions in Google Chrome Native Client [36].

2.3 CPU Caches

A CPU cache is a small and fast memory inside the CPU hiding the latency
of main memory by keeping copies of frequently used data. Modern Intel CPUs
have three levels of cache, where L1 is the smallest and fastest cache and L3 the
slowest and largest cache. The L3 cache is an inclusive cache, i.e., all data in L1

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 5

Address Bit
3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Table 2: Complex addressing function from [24].

and L2 cache is also present in the L3 cache. It is divided into one slice per CPU
core, but shared, i.e., cores can access all slices. The undocumented complex
addressing function that maps physical addresses to slices was recently reverse
engineered [18,24,40]. We used the results published by Maurice et al. [24], shown
in Table 2. The table shows how address bits 6 to 32 are xor’d into one or two
output bits o0 and o1. In case of a dual-core CPU, output bit o0 determines to
which of the two cache slices the physical address maps. In case of a quad-core
CPU, output bits o1 and o0 determine the slice.

Caches are organized in sets of multiple lines. The mapping from physical
addresses to sets is fixed. Addresses that map to the same set and slice are
called congruent. To load a new line from memory, the replacement policy de-
cides which line to evict. Intel has not disclosed the cache replacement policy of
their CPUs. However, the replacement policies for some architectures have been
reverse-engineered: Sandy Bridge has a pseudo-LRU replacement policy and Ivy
Bridge a modification of the pseudo-LRU replacement policy [38]. Moreover, Ivy
Bridge, Haswell and Skylake use adaptive cache replacement policies which only
behave as pseudo-LRU in some situations [33]. These CPUs can switch the cache
replacement policy frequently.

2.4 Cache Attacks and Cache Eviction

Cache side-channel attacks exploit timing differences between cache hits and
cache misses. Practical attacks on cryptographic algorithms have been explored
thoroughly [8,31]. There are two main types of cache attacks called Prime+Probe
and Flush+Reload. The Prime+Probe attack has been introduced by Perci-
val [31] and Osvik et al. [28]. It determines activities of a victim process by
repeatedly measuring the duration to access once every address in a set of
congruent addresses, i.e., a so-called eviction set. Prime+Probe on the last-
level cache enables cross-core cache attacks such as cross-VM attacks without
shared memory [19,23], covert channels [25] and attacks from within sandboxed
JavaScript [27]. Oren et al. [27] and Liu et al. [23] compute the eviction set by
adding addresses to the eviction set until eviction works. Flush+Reload has been
introduced by Gullasch et al. [14] and Yarom and Falkner [39]. It exploits shared
memory between attacker and victim and is very fine-grained. Cache lines are
flushed with the clflush instruction or using cache eviction [13].

Evicting data from the cache is just as crucial to cache attacks as it is for
the Rowhammer attack. Previous work either uses the clflush instruction or
hand-crafted eviction loops. Hund et al. [17] showed that data can be evicted by

6 Daniel Gruss, Clémentine Maurice, Stefan Mangard

filling a large memory buffer the size of the cache. However, this is very slow and
thus not applicable to fine-grained cache attacks or Rowhammer attacks. Using
the reverse-engineered complex addressing function solves the problem of finding
addresses that are congruent in the cache, but it leaves the non-trivial problem
of finding access sequences to achieve high eviction rates while maintaining a
low execution time.

3 Cache Eviction Strategies

In this section, we describe how to find cache eviction strategies in a fully au-
tomated way for microarchitectures post Sandy Bridge. An eviction strategy
accesses addresses from an eviction set in a specific access pattern and can ide-
ally be used as a replacement for clflush. Eviction set is commonly defined as
a set of congruent addresses. The access pattern defines in which order addresses
from the eviction set are accessed, including multiple accesses per address.

An efficient eviction strategy can replace the clflush instruction in any
cache attack and significantly improves cache attacks based on Prime+Probe,
like JavaScript-based attacks [27] or cross-VM cache attacks [23]. It also allows
to replace the clflush instruction in a Rowhammer attack (see Section 4).

The replacement policy of the CPU influences the size of the eviction set and
the access pattern necessary to build an efficient eviction strategy. For a pseudo-
LRU replacement policy, accessing as many congruent locations as the number
of ways of the L3 cache (for instance 12 or 16) once, evicts the targeted address
with a high probability. For adaptive cache replacement policies, an eviction
strategy that is effective for one policy is likely to be ineffective for the other.
Thus it is necessary to craft an eviction strategy that causes eviction for both
policies and ideally does not introduce a significant timing overhead.

We distinguish between the following ways to generate an eviction strategy:
1. Static eviction set and static access pattern: uses information on cache slice

function and physical addresses, and generates a pre-defined pattern in neg-
ligible time. Sections 3.2 and 3.3 describe new efficient eviction strategies
computed this way.

2. Dynamic eviction set and static access pattern: computes the eviction set in
an automated way, without any knowledge of the system, e.g., the number
of cores. A good access pattern that matches the replacement policy of the
targeted system is necessary for a successful attack. Section 3.3 describes
this approach.

3. Dynamic eviction set and dynamic access pattern: automatically computes
the eviction set and the access pattern based on randomness. This comes
at the cost of performing a huge number of eviction tests, but it has the
advantage to require almost no information on the system, and allows to
implement fully automated online attacks for unknown systems. Section 3.3
describes this approach.

4. Static eviction set and dynamic access pattern: uses a pre-defined eviction
set, but a random pattern that is computed in an automated way. This is

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 7

possible in theory, but it has no advantage over automatically testing static
access patterns. We thus do not further investigate this approach.
We first describe a model to represent access patterns, given several parame-

ters. To find a good eviction strategy for a given system, we define an offline and
an online phase. In the offline phase, the attacker explores the parameter space
to find the best eviction strategies for a set of controlled systems. The goal is
to find a eviction strategy that matches the undocumented replacement policy
the closest, including the possibility of policy switches. In the online phase, the
attacker targets an unknown system, with no privileges.

3.1 Cache Eviction Strategy Model

The success of a cache eviction strategy is measured by testing whether the
targeted memory address is not cached anymore over many experiments, i.e.,
average success rate. For such cases, we made the following three observations.

First, only cache hits and cache misses to addresses in the same cache set
have a non-negligible influence on the cache, apart from cache maintenance and
prefetching operations to the same cache set. We verified this by taking an evic-
tion algorithm and randomly adding memory accesses that are not congruent.
The eviction rate is the average success rate of the eviction function. It does not
change by adding non-congruent accesses to an eviction strategy as long as the
timing does not deviate. Thus, the eviction set only contains congruent addresses
and the effectiveness of the eviction strategy depends on the eviction set size.

Second, addresses are indistinguishable with respect to the cache. Thus, we
represent access patterns as sequences of address labels ai, e.g., a1a2a3 Each
address label is set to a different address and thus for each time frame the
sequence defines which address to access. A pattern a1a2a3 is equivalent to any
pattern akalam where k 6= l 6= m. If run in a loop, the number of different
memory addresses has an influence on the effectiveness on the eviction strategy.

Third, repeated accesses to the same address are necessary to keep it in the
cache, as replacement policies can prefer to evict recently added cache lines over
older ones. Changing the eviction sequence from a1a2 . . . a17 to a1a1a2a2 . . . a17a17
reduces the execution time by more than 33% on Haswell, and increases the evic-
tion rate significantly if executed repeatedly, as the cache remains filled with our
eviction set. However, we observed a diminishing marginal utility for the number
of accesses to the same address. For all addresses we observed that after a certain
number of accesses, further accesses do not increase and can even decrease the
eviction rate. Thus, we describe eviction strategies as a loop over an eviction set
of size S, where only a subset of D addresses is accessed per round. A parameter
L allows to make accesses overlap for repeated accesses.

While testing all possible sequences even for very small sequence lengths is
not possible in practical time (c.f., Stirling numbers of second kind as a good es-
timate), a systematic exploration of influential parameters is possible. In theory,
better eviction strategies may lie outside of this reduced search space. However
using this method, we found eviction strategies that allowed us to successfully
trigger bit flips using eviction-based Rowhammer (see Section 4). To discuss and

8 Daniel Gruss, Clémentine Maurice, Stefan Mangard

1 for (s = 0; s <= S-D; s += L)
2 for (c = 0; c <= C; c += 1)
3 for (d = 0; d <= D; d += 1)
4 *a[s+d];

Listing 1: Eviction loop for pattern testing.

compare eviction strategies systematically, we use the following naming scheme
in this paper to describe parametrized eviction strategies as depicted in List-
ing 1. The eviction strategy name has the form P-C-D-L-S, with C, the number
of accesses to each memory address per loop round, D, the number of differ-
ent memory addresses accessed per loop round, L, the step size/increment of
the loop (for overlapping accesses), and S, the eviction set size. For instance,
LRU-eviction is P-1-1-1-S with an access sequence of a1a2a3 . . . aS .

3.2 Offline Phase

In the offline phase, the attacker has at his disposal a set of machines and tries
to learn the eviction strategy that matches the replacement policy the closest for
each machine. While it is not strictly a reverse engineering of the replacement
policy, by knowing the best eviction strategy, the attacker gains knowledge on
the systems. In this phase, the attacker has no time constraints.

We discuss the evaluation in detail for the Haswell platform with a single
DIMM in single channel mode. We explored the parameter space up to degree
6 in the dimensions of C, D and L and 23 different eviction set sizes each, in
order to find eviction strategies that are fast and effective enough to perform
Rowhammer attacks. Including the equivalent eviction strategies we evaluated
a total of 18293 eviction strategies on 3 of our test platforms. We tested each
eviction strategy in 20 double-sided Rowhammer tests with 2 million hammering
rounds (i.e., 80 million evictions per eviction strategy) and evaluated them using
different evaluation criteria including eviction rate, runtime, number of cache hits
and misses. The runtime was more than 6 days. The hammering was performed
on a fixed set of physical addresses congruent to one specific cache set to allow
for a fair comparison of the eviction strategies. Half of the evictions, i.e., 40
millions, were used to measure eviction rate, cache hits and cache misses. The
other half was used to measure the average execution time per eviction. We
verified that the sample size is high enough to get reproducible measurements.

The number of bit flips is not suitable for the evaluation of a single eviction
strategy, but only to determine whether and how cache hits, cache misses, the
execution time and the eviction rate influence the probability of a bit flip. Bit
flips are reproducible in terms of the memory location, but the time and the
number of memory accesses until a bit flip occurs again varies widely. In order
to measure the average number of bit flips for a eviction strategy, we would have
to test every eviction strategy for several hours instead of minutes. This would
increase the test time per machine to several weeks, and even then, it would
not yield reproducible results, as it has been observed that the DRAM cells get
permanently damaged if hammered for a long time [20].

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 9

0 2,000 4,000 6,000
0
5

10
15
20

Execution time in ns

#
B

it
fl
ip

s

(a) Low execution time is better.

98.0% 98.5% 99.0% 99.5% 100%
0
5

10
15
20

Eviction rate

#
B

it
fl
ip

s

(b) High eviction rate is better. Average
over all eviction strategies is 73.96%.

100 200 300
0
5

10
15
20

Cache hits

#
B

it
fl
ip

s

(c) Number of cache hits is not a good
criteria for bit flips.

0 100 200 300
0
5

10
15
20

Cache misses

#
B

it
fl
ip

s

(d) Number of cache misses is not a
good criteria for bit flips.

Fig. 1: Relation between the number of bit flips and average execution time, cache
hits and cache misses per eviction and the eviction rate of the corresponding eviction
strategy measured in 40 million samples. One point per eviction strategy that caused
a bit flip, others are omitted. The darker the more points overlay. Average over all
eviction strategies shown as dashed line. Good eviction strategies have high eviction
rates and low execution times.

High execution times are too slow to trigger bit flips and low execution times
are useless without a good eviction rate. The execution time of the eviction
strategy is directly related to the number of memory accesses to the two victim
addresses. Hence, it influences the probability of a bit flip directly. On our default
configured Ivy Bridge notebook we observed bit flips even with execution times
of 1.5 microseconds per hammering round, that is approximately 21,500 accesses
per address within the specified total refresh interval of 64ms. This maps to the
average periodic refresh interval tREFI by dividing 64ms by 8192 [26]. Double-
sided rowhammering using clflush takes only 60 nanoseconds on our Haswell
test system, that is approximately 0.6 million accesses per address in 64ms.
Figure 1a shows how bit flips are correlated with the eviction execution time.

The eviction rate has to be very high to trigger bit flips. Figure 1b shows
how many bit flips occurred at which eviction rate. We observe that 81% of the
bit flips occurred at an eviction rate of 99.75% or higher and thus use this as a
threshold for good eviction strategies on our Haswell system. Even though a bit
flip may occur at lower eviction rates, the probability is significantly lower.

The eviction loop contributes to a high number of cache hits and cache misses,
apart from the two addresses we want to hammer. We measure the number of
cache hits and cache misses that occur during our test run using hardware per-
formance counters through the Linux syscall interface perf_event_open. Cache
hits have a negligible influence on the execution time and no effect on the DRAM.
Cache misses increase the execution time and, if performed on a different row

10 Daniel Gruss, Clémentine Maurice, Stefan Mangard

C D L S Accesses Hits Misses Time (ns) Eviction

- - - - - 2 2 60 99.9999%
5 2 2 18 90 34 4 179 99.9624%
2 2 1 17 68 35 5 180 99.9820%
2 1 1 17 34 47 5 191 99.8595%
6 2 2 18 108 34 5 216 99.9365%
1 1 1 17 17 96 13 307 74.4593%
4 2 2 20 80 41 23 329 99.7800%
1 1 1 20 20 187 78 934 99.8200%

Table 3: The fastest 5 eviction strategies with an eviction rate above 99.75% compared
to clflush and LRU eviction on the Haswell test system.

300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400

0.8

0.9

1

Round execution time in ns

E
v
ic

ti
o
n

ra
te

Fig. 2: Average execution time and eviction rate per eviction strategy on Ivy Bridge
measured in 40 million samples per eviction strategy. One point per eviction strategy
that caused a bit flip, others are omitted. The darker the more points overlay. Average
over all eviction strategies shown as dashed line.

but in the same channel, rank and bank, additional DRAM accesses. However,
Figures 1c and 1d show that both cache hits and cache misses do not impact
the number of bit flips significantly, as the average for all eviction strategies is
in the range of the eviction strategies that triggered a bit flip.

Thus, we thus use the eviction rate as a criteria for good eviction strategies,
and among those eviction strategies, we prefer those with a lower average exe-
cution time. This method requires no access to any system interfaces and can be
implemented in any language and execution environment that allows to measure
time and perform arbitrary memory accesses, such as JavaScript.

Table 3 shows a comparison of the fastest 5 of these eviction strategies with
an eviction rate above 99.75% (see Figure 1b) and clflush based rowhammering
as well as the fastest LRU (P-1-1-1-20) eviction strategy that achieves the same
eviction rate. The best two eviction strategies are P-5-2-2-18 and P-2-2-1-17,
both with an execution time around 180 nanoseconds.

Accessing each address in the eviction set only once (LRU eviction) is far from
optimal for cache attacks and impractical for Rowhammer. Although counterin-
tuitive, adding more accesses to the eviction loop will lower the overall execu-
tion time. We can observe this for instance by comparing the eviction strategies
P-1-1-1-20 and P-4-2-2-20. While both access the same set of 20 addresses, the
latter one performs 4 times as many memory accesses, yet its execution time is
only one third. Comparing the best eviction strategy we found to LRU eviction
as described in previous work, performs only as good if the set size is at least
S = 25, increasing the average execution time 9 times higher than the one of

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 11

C D L S Acc. Hits Misses Time (ns) Eviction

- - - - - 2 2 40 100.000%
4 5 5 20 80 43 35 327 99.514%
1 1 1 13 13 52 33 333 72.145%
3 1 1 17 51 46 41 341 99.081%
4 5 5 17 68 45 37 345 99.604%
3 1 1 19 57 50 47 369 99.267%
3 2 2 18 54 48 43 376 99.412%
1 1 1 15 15 97 84 632 99.085%

C D L S Acc. Hits Misses Time (ns) Eviction

- - - - - 2 2 47 100.000%
3 1 1 22 66 48 45 218 99.937%
2 2 1 22 88 47 45 222 99.932%
3 3 3 24 72 50 45 222 99.938%
3 3 3 21 63 51 45 223 99.937%
4 3 3 24 96 49 45 225 99.905%
1 1 1 17 17 240 36 240 82.959%
1 1 1 21 21 145 87 495 99.970%

Table 4: clflush and LRU eviction compared to the fastest 5 eviction strategies above
99% eviction rate on the Ivy Bridge test system (left) and compared to the fastest 5
eviction strategies above 99.9% eviction rate on the Skylake DDR4 test system (right).

the best eviction strategy we found. On the other hand, the eviction set size in
previous work is typically specified as S = 17. For P-1-1-1-17 we measured an
eviction rate of 74.5% and even then a 1.7 times higher execution time than with
the best eviction strategy we found. This shows that the eviction strategies we
found are a significant improvement over previously published eviction methods.

We performed the same evaluation for the other architectures. The distri-
bution of bit flips on our Ivy Bridge test system relative to eviction rate and
execution time is shown in Figure 2. Most bit flips occurred at eviction rates
above 99%. The fastest 5 of these eviction strategies are shown in Table 4 in
comparison with clflush and the fastest LRU (P-1-1-1-15) eviction strategy.

According to our measurements the complex addressing function on Skylake
is not the same as in Haswell, but it can be trivially derived from the reverse
engineered 8-core function. We again found that LRU eviction performs much
worse than the best eviction strategy we found as shown in Table 4.

3.3 Online Phase

In the online phase, the attacker targets an unknown system. In particular, mi-
croarchitecture and number of CPU cores are unknown to the attacker. The
attacker has the knowledge gained from the offline phase at his disposal. How-
ever, he has no privilege on the victim’s machine and no time to run the ex-
tensive search from the offline phase. The online phase consists in two attacks:
an assumption-based attack, and a fall-back attack in case the first one does
not work. In both cases the attack is based on a series of timing attacks and no
access to specific system interfaces is necessary.

Assumption-based Attack The attacker first tests whether the targeted sys-
tem resembles a system tested in the offline phase, by performing timing attacks.
No access to syscalls or system interfaces is required for this step. The attacker
defines a threshold eviction rate based on the results from the offline phase (for
instance 99.75%) and searches for eviction strategies above this threshold on
the system under attack. By testing a set of eviction strategies from the offline
phase, the attacker learns whether the architecture of the system under attack

12 Daniel Gruss, Clémentine Maurice, Stefan Mangard

0123 0123 0123 0123 1032 1032 1032 1032 2301 2301 2301 2301 3210 3210 3210 3210
1032 1032 1032 1032 0123 0123 0123 0123 3210 3210 3210 3210 2301 2301 2301 2301
2301 2301 2301 2301 3210 3210 3210 3210 0123 0123 0123 0123 1032 1032 1032 1032
3210 3210 3210 3210 2301 2301 2301 2301 1032 1032 1032 1032 0123 0123 0123 0123

Fig. 3: Slice patterns for 64-byte offsets on 4KB pages on a 4-core system. An attacker
can derive which addresses map to the same cache slice. Substituting 2 by 0 and 3 by
1 gives the slice pattern for 2-core systems.

resembles an architecture from the offline phase. In this case the best eviction
strategy for the system under attack is within the set of eviction strategies pre-
viously tested. The number of eviction strategies to test is as low as the number
of targeted CPU architectures and thus it only takes a few seconds to compute.

The eviction set can be computed in a static or dynamic way. Without
any further assumptions we can run modified versions of the algorithms by
Oren et al. [27] or Liu et al. [23]. Instead of the P-1-1-1 access pattern they
implement, we use one of the suspected eviction strategies to build a dynamic
assumption-based algorithm. This improves the success rate of their algorithms
on recent architectures. However, we make additional assumptions to reduce the
execution time to a minimum and build a static assumption-based algorithm.
One assumption is that large arrays are allocated on large pages, as has been
observed before [11]. Based on this assumption we can use the complex address-
ing function from Table 2 to determine the slice patterns for 4KB and 2MB
pages as shown in Figure 3. These distinct patterns in the mapping from physi-
cal addresses to cache slices depend only on the number of cache slices and are
the same for Intel CPUs since the Sandy Bridge architecture. The algorithm by
Oren et al. [27] or Liu et al. [23] finds only addresses in the same cache slice and
cache set. We use it to build an eviction set of 2MB-aligned congruent addresses
in the same slice. Subsequent eviction set computations are performed statically
based on the complex addressing function and the identified 2MB offsets.

Fall-back Attack If the assumption-based phase does not work on a system
under attack, e.g., because the unknown system is none of the systems tested in
the offline phase, the attacker runs a fall-back phase to find an eviction strategy
that is sufficient to trigger a bit flip with Rowhammer.

Oren et al. [27] and Liu et al. [23] compute a dynamic eviction set with a
static access pattern P-1-1-1. We extend their algorithms to compute eviction
strategies with dynamic eviction sets and dynamic access patterns. In the first
step, we continuously add addresses to the eviction strategy multiple times to
create eviction strategies with multiple accesses to the same address. We know
that the eviction strategy is large enough as soon as we can clearly measure the
eviction of the target physical address. In a second step, when the eviction rate
is above the attacker chosen threshold, eviction addresses that do not lower the
eviction rate are removed by replacing them with other addresses that are still
in the eviction set. Thus, the number of memory accesses does not decrease,
but the eviction set is minimized. This decreases the number of cache misses
and thus the execution time. Finally, we randomly remove accesses that do not

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 13

100 500 1000 5000 10000 50000

75.0%

95.0%

99.0%
99.7%

Number of eviction tests

E
v
ic

ti
o
n

ra
te

Eviction rate

Execution time

30 s

300 s

3000 s

E
x
ec

u
ti

o
n

ti
m

e

Fig. 4: The eviction rate and execution time of the dynamic eviction strategy when
implementing the cached(p) function with n eviction tests.

decrease the eviction rate and do not increase the execution time. This again
decreases the number of unnecessary cache hits and thus the execution time.

The resulting eviction strategy can neither access less addresses nor can any
duplicate accesses be removed without lowering the eviction rate. They thus
perform similarly to statically computed eviction strategies. The result of the
algorithm is a series of accesses that fulfill the eviction rate threshold chosen by
the attacker and that has a low execution time on the system under attack. If
the threshold was set high enough so that bit flips are likely to occur in practice,
the eviction strategy found by the fall-back algorithm can be used for an attack.

The algorithm uses a function cached(p) that tries to evict a target address
p using the current eviction strategy and set and decides whether p is cached or
not based on the access time. The quality of the solution depends on the number
of tests that are performed in this function. The function only returns true, if an
eviction rate below the attacker defined threshold is measured. A higher number
of tests increases the execution time and the accuracy of this binary decision.
Figure 4 shows how the number of tests influences the eviction rate and the exe-
cution time of the resulting eviction strategy. If a high eviction rate is necessary,
the execution time of the algorithm is can exceed 40 minutes. Thus, our algo-
rithm can precompute a working eviction strategy once and subsequent eviction
set computations are done with the fixed eviction strategy within seconds.

4 Implementation of eviction-based Rowhammer

We now perform Rowhammer attacks using the eviction strategies from Section 3
instead of clflush in different scenarios. First, we demonstrate that it is possible
to trigger bit flips in the same conditions as in the existing attacks where an
attacker is able to execute native code on the system under attack. We then show
that given knowledge about the physical addresses, it is possible to trigger bit
flips even from a remote website using JavaScript. In a third step, we show that
the full Rowhammer attack is possible from a remote website using JavaScript
without any additional information on the system.

4.1 Rowhammer in Native Code

We extended the double_sided_rowhammer program by Dullien [36] by using
the best eviction strategy we have found. The two clflush instructions were

14 Daniel Gruss, Clémentine Maurice, Stefan Mangard

first replaced by the eviction code described in Section 3.1, with parameters for
a P-2-2-1 eviction strategy. The eviction sets are either precomputed statically
using the physical address mapping and the complex addressing function in
Table 2, or using a dynamic eviction strategy computation algorithm.

This way, we were able to reproducibly flip bits on our Sandy Bridge and
Ivy Bridge test machine using different eviction strategies when running with
the Samsung DDR3 RAM and our Skylake test machine when running with the
Crucial DDR4 RAM. The machines were operated in default configuration.

On our Haswell test machine we were not able to reproducibly flip bits with
the default settings, not even with the clflush instruction. However, the BIOS
configuration allows setting a custom refresh rate by setting the average periodic
refresh interval tREFI. We had to increase the tREFI value from 6,549 to over
19,000 just to be able to trigger bit flips with the clflush instruction. The
refresh interval is a typical parameter used by computer gaming enthusiasts and
the overclocking community to increase system performance. However, while
this might also be an interesting target group, we rather want to analyze the
influence of the refresh interval on the applicability of the Rowhammer attack
using cache eviction and the Rowhammer attack in JavaScript. Kim et al. [20]
observed that the refresh interval directly influences the number of bit flips that
occur and that below a module dependent tREFI value no bit flips occur. We
will show that their observation also applies to Rowhammer with cache eviction
and Rowhammer in JavaScript.

Lowering the refresh interval is not part of an actual attack. Existing work
has already examined the prevalence of the Rowhammer and found that 85% of
the DDR3 modules examined are susceptible to Rowhammer bit flips [20]. Also
in our case only the modules of the Haswell test system and the G.Skill DIMMs in
the Skylake test system were not susceptible to Rowhammer bit flips at default
settings, whereas it was possible to induce Rowhammer bit flips in the other
three DIMMs at default settings. Thus, our results do not contradict previous
estimates and we must assume that millions of systems are still vulnerable.

Rowhammer with eviction in native code revives the Google Native Client
exploit [36] that allows privilege escalation in Google Chrome. The clflush

instruction has been blacklisted to solve this vulnerability, however, this is inef-
fective and a sandbox escape is still possible, as we can trigger bit flips in Google
Native Client based on eviction.

4.2 Rowhammer in JavaScript

Triggering the Rowhammer bug from JavaScript is more difficult as JavaScript
has no concept of virtual addresses or pointers and no access to physical address
mappings. We observed that large typed arrays in JavaScript in all recent Fire-
fox and Google Chrome versions on Linux are allocated 1MB aligned and use
anonymous 2MB pages when possible. The reason for this lies in the memory
allocation mechanism implemented by the operating system. Any memory allo-
cation in a comparable scripting language and environment will also result in
the allocation of anonymous 2MB pages for large arrays.

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 15

0 512 1,024 1,536 2,048 2,560 3,072
0

200

400

Page index

L
a
te

n
cy

in
µ
s

Fig. 5: Access latency of 4KB aligned addresses in a large array in JavaScript. Page-
faults cause the latency peaks at the start of the 2MB pages.

By performing a timing attack similar to the one performed by Gruss et al.
[11], we can determine the 2MB page frames in the browser. In this attack we
iterate over an array and measure the access latency. The latency peaks during
memory initialization are caused by the pagefaults that occur with the start of
each new 2MB page, as shown in Figure 5. This also works in recent browser
versions with a reduced timer resolution as suggested by Oren et al. [27] and
added to the HTML5 standard by the W3C [37]. Thus, we know the lowest 21
bits of the virtual and physical address by knowing the offset in the array.

As a first proof-of-concept we reproduced bit flips in JavaScript in Firefox
by hammering the exact physical addresses as in native code. In order to do
this we built a tool to translate physical to virtual addresses for another pro-
cess. To compute the eviction sets we use the assumption-based algorithm from
Section 3.2. We observed that simple memory accesses as in our native code
implementation are not optimized out by the just-in-time-compiler.

The final JavaScript-based attack does not require any outside computation
and thus, runs entirely without user interaction in the browser. It exploits the
fact that large typed arrays are allocated on 2MB pages. Thus, we know that each
2MB region of our array is divided into 16 row offsets of size 128KB (depends
on the lowest row index bit). We can now perform double-sided hammering in
these 2MB regions to trigger a bit flip within the 2MB region or amplified single-
sided hammering on the outer two rows of every 2MB pages to induce a bit flip
in another physical 2MB region. The result is the first hardware-fault attack
implemented in JavaScript on a remote website.

4.3 Attack Evaluation

As described by Kim et al. [20] not all addresses in a DRAM are equally sus-
ceptible to bit flips. Therefore, to provide a fair comparison of the different
techniques, we measured the number of bit flips for a fixed address pair already
known to be susceptible. Figure 6 shows how different refresh rates influence
the number of bit flips for a fixed time interval in different setups. The system
was under slight usage during the tests (browsing, typing in an editor, etc.). We
see that the clflush instruction yields the highest number of bit flips. If the
refresh interval was set to a value where bit flips can be triggered using clflush,
they can be triggered using native code eviction as well. To trigger bit flips in

16 Daniel Gruss, Clémentine Maurice, Stefan Mangard

20 30 40 50 60 70
102

103

104

105

Refresh interval in ns

B
it

fl
ip

s
Flush (native)

Evict (native)

Evict (JavaScript)

Fig. 6: Number of bit flips within 15 minutes on a fixed address pair for different values
for the average periodic refresh interval tREFI on Haswell in three different setups.

JavaScript, a slightly higher refresh interval was necessary. Again, it depends on
the particular DIMM whether the refresh interval is chosen correctly so that no
bit flips occur.

The probability for bit flips in JavaScript is slightly lower than in native code,
as native code is slightly faster. However, if a machine is vulnerable to our native
code implementation it is likely vulnerable using our JavaScript implementation
as well. While these plots were obtained on the Haswell machine, we were also
able to trigger bit flips on our Ivy Bridge laptop with default settings from
JavaScript. However, as the Laptop BIOSes did not allow to set the refresh
interval tREFI directly, we could not obtain a comparable plot.

While DDR4 was assumed to have countermeasures against rowhammering,
countermeasures are not part of the final DDR4 standard [1]. Using the Crucial
DDR4 DIMMs we even were able to induce bit flips at default system settings
and with the most recent BIOS version, after applying the functions reverse
engineered by Pessl et al. [32]. On the G.Skill DDR4 DIMMs we could only induce
bit flips at an increased refresh interval. Thus, even on these very recent and up-
to-date systems Rowhammer countermeasures have not been implemented in
hardware and those implemented in software are ineffective. Whether a system
is vulnerable to Rowhammer-based attacks still crucially depends on the refresh
interval chosen by DIMM.

5 Discussion and Related Work

5.1 Building an Exploit With Rowhammer.js

Existing exploits assume that a page table is mapped in a row between two
rows occupied by the attacker. However, we observed that this situation rarely
occurs in practice. The operating system prefers to use large pages to reduce
the pressure on the TLB. To make the organization and changes to physical
address mappings easier the operating system will also group small pages into
the same organizational physical frames. Page tables are only allocated between
two user pages in a near-out-of-memory situation. Thus, the exploits allocate
almost all system memory to enforce such a situation [36]. However, swapping
is enabled by default in all major operating systems and thus the system will
be severely unresponsive due to swapping. In our proof-of-concept exploit, we

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 17

perform “amplified single-sided hammering”. By hammering two adjacent rows
we increase the probability for a bit flip in a surrounding row significantly com-
pared to single-sided hammering. This allows to induce bit flips even across the
borders of physically coherent 2MB regions with a high probability. As we al-
ready have been able to trigger bit flips in JavaScript we will only focus on how
to manipulate a page table similar to previous exploits [36]. The attacker can
repeat any step of the attack as long as necessary to be successful.

In the first step, the exploit locates an exploitable bit flip as described in
Section 4.2, i.e., a bit flip in the 1

3 of the page table bits that are used for
physical addresses. An exploitable bit flip changes an address bit in a page table
that is in an adjacent 2MB region. We have found such bit flips on our all our
test machines. In the second step, the exploit script releases all pages but the two
that have previously been hammered and the ones that are required for cache
eviction. Thus, also the page that contained the bit flip is released. Allocating
arrays requires the browser to reserve virtual memory regions and to map them
to physical memory upon the first access. The attacker determines the largest
array size that still triggers the allocation of a page table in a timing attack
(see 4.2). The array size was 1MB on all our test systems. We only access and
thus allocate one 4KB page per 1MB array and thus 2 user pages per page table.
The probability to place a group of page tables in the targeted 2MB region is
≈ 1

3 . In the third step, the exploit script triggers the bit flip again and may
find that its own memory mappings changed. With a chance of ≈ 1

3 the memory
mapped is now one of the attackers page tables. The attacker can now change
mapped addresses in that page table and if successful, has gained full access to
the physical memory of the system. Our proof-of-concept works on recent Linux
systems with all recent versions of Firefox and it does not require a near-out-
of-memory situation. It does not work in Google Chrome due to the immediate
allocation of all physical memory for an allocated 1MB array after a single access.

5.2 Limitations

In JavaScript we use 2MB pages to find congruent addresses and adjacent rows
efficiently. If the operating system does not provide 2MB pages, we cannot per-
form double-sided or amplified single-sided hammering. However, the probabil-
ity of a bit flip with single-sided hammering is significantly lower. Exploiting
double-sided hammering with 2MB pages is not possible because we can then
only induce bit flips in our own memory. Thus, an attack is only possible with
amplified single-sided hammering to induce a bit flip in an adjacent row in an
adjacent 2MB page. There is only a limited number of such rows in a system.
Still the search for an exploitable bit flip can easily take several hours, especially
as the probability of a bit flip in JavaScript is lower than in native code. Further-
more, if we cannot guess the best eviction strategy for the system, it will take
up to an hour of precomputations to find a good eviction strategy. The victim
has to stay on the website for the duration of the attack. While this was the case
in our proof-of-concept attack it is less realistic for a real-world attack.

18 Daniel Gruss, Clémentine Maurice, Stefan Mangard

5.3 Countermeasures

The operating system allocates memory in large physical memory frames (often
2MB) for reasons of optimization. Page tables, kernel pages and user pages are
not allocated in the same memory frame, unless the system is close to out-of-
memory (i.e., allocating the last few kilobytes of physical memory). Thus, the
most efficient Rowhammer attack (double-sided hammering) would not possi-
ble if the operating system memory allocator was less aggressive in near-out-
of-memory situations. Preventing (amplified) single-sided hammering is more
difficult, as hammering across the boundaries of a 2MB region is possible.

To fully close the attack vector for double-sided hammering, we also have to
deal with read-only shared code and data, i.e., shared libraries. If the attacker
hammers on a shared library, a fault can be induced in this library. Therefore,
shared libraries should not be shared over processes that run at different privilege
levels or under different users. As a consequence, the attacker would be unable
to escape from a sandbox or gain access to a higher privilege level using clflush

or eviction-based Rowhammer.
Kim et al. [20] proposed several countermeasures which should be imple-

mented for new DRAM modules, including increasing the refresh rate. However,
this would cause significant performance impacts. BIOS updates supplied so far
only double the refresh rate, which is insufficient to prevent attacks on all DRAM
modules. Moreover, many users to not update the BIOS unless it is unavoidable.

Pseudo Target Row Refresh (pTRR) and Target Row Refresh (TRR) are
features that refresh neighboring rows when the number of accesses to one row
exceeds a threshold. They have less overhead compared to double the refresh
rate. Although TRR has been announced as implemented in all DDR4 modules
it has been removed from the final DDR4 standard. Manufacturers can still
choose to implement it in their devices, but if the memory controller does not
support it, it has no effect.

Error-correcting code (ECC) memory is often mentioned as a countermeasure
against Rowhammer attacks. However, recent work shows that it cannot reliably
protect against Rowhammer attacks.cases [2, 21].

At the software level, one proposed countermeasure is the detection using
hardware performance counters [4, 12, 15, 30]. The excessive number of cache
references and cache hits allows to detect on-going attacks. However, this coun-
termeasure can suffer from false positives, so it needs further evaluation before
it can be brought to practice.

5.4 Related Work

The initial work by Kim et al. [20] and Seaborn’s [36] root exploit made the
scientific community aware of the security implications of a Rowhammer attack.
However, to date, there have been very few other publications, focusing on dif-
ferent aspects than our work. Barbara Aichinger [1] analyzed Rowhammer faults
in server systems where the problem exists in spite of ECC memory. She remarks
that it will be difficult to fix the problem in the millions or even billions of DDR3

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 19

DRAMs in server systems. Rahmati et al. [34] have shown that bit flips can be
used to identify a system based on the unique and repeatable error pattern that
occurs at a significantly increased refresh interval. Our paper is the first to ex-
amine how to perform Rowhammer attacks based on cache eviction.1 Our cache
eviction techniques facilitated cache side-channel attacks on ARM CPUs [22].
Concurrent and independent work by Aweke et al. [4] has also demonstrated bit
flips without clflush on a Sandy Bridge laptop. They focus on countermeasures,
whereas we focus on attacking a wider range of architectures and environments.

6 Future Work

While we only investigated the possibility of a JavaScript Rowhammer attack in
Firefox and Google Chrome on Linux, the attack exploits fundamental concepts
that are inbuilt in the way hardware and operating system work. Whenever the
operating system uses 4KB pages, page tables are required and at latest allocated
when one of the 4KB pages belonging to this page table is accessed. Thus, the
operating system cannot prevent that 1

3 of memory is allocated for page tables.
The same attack approach could be applied to hypervisors that allocate 4KB
pages to virtual machines, even if they applies similar allocation mechanisms
as the Linux kernel. While it might seem unreasonable and not realistic that
hypervisors allocate 4KB pages, it in fact makes cross-VM page deduplication
easier. According to Barresi et al. [7], page deduplication is in fact still widely
used in public clouds. Our work opens the possibility for further investigation
on whether page deduplication in fact is not only a problem for security and
privacy of virtual machines, but a security problem for the hypervisor itself.

7 Conclusion

In this paper, we presented Rowhammer.js, an implementation of the Rowham-
mer attack using fast cache eviction to trigger the Rowhammer bug with only
regular memory accesses. It is the first work to investigate eviction strategies to
defeat complex cache replacement policies. This does not only enable to trigger
Rowhammer in JavaScript, it also benefits research on cache attacks as it allows
to perform attacks on recent and unknown CPUs fast and reliably. Our fully
automated attack runs in JavaScript through a remote website and can gain
unrestricted access to systems. The attack technique is independent of CPU
microarchitecture, programming language and execution environment.

The majority of DDR3 modules are vulnerable and DDR4 modules can be
vulnerable too. Thus, it is important to discover all Rowhammer attack vectors.
Automated attacks through websites pose an enormous threat as they can be
performed on millions of victim machines simultaneously.

1 A draft of this paper was published online since July 24, 2015.

20 Daniel Gruss, Clémentine Maurice, Stefan Mangard

8 Acknowledgments

We would like to thank our shepherd Stelios Sidiroglou-Douskos and our anony-
mous reviewers for their valuable comments and suggestions. We would also like
to thank Mark Seaborn, Thomas Dullien, Yossi Oren, Yuval Yarom, Barbara
Aichinger, Peter Pessl and Raphael Spreitzer for feedback and advice.

Supported by the EU Horizon 2020 programme under GA No.
644052 (HECTOR), the EU FP7 programme under GA No. 610436
(MATTHEW), the Austrian Research Promotion Agency (FFG)

and Styrian Business Promotion Agency (SFG) under GA No. 836628 (SeCoS),
and Cryptacus COST Action IC1403.

References

1. Aichinger, B.: DDR memory errors caused by Row Hammer. In: HPEC’15 (2015)
2. Aichinger, B.: Row Hammer Failures in DDR Memory. In: memcon’15 (2015)
3. Al-Ars, Z.: DRAM fault analysis and test generation. TU Delft (2005)
4. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin,

T.: ANVIL: Software-Based Protection Against Next-Generation Rowhammer At-
tacks. In: ASLPOS’16 (2016)

5. Bains, K., Halbert, J.: Row hammer monitoring based on stored row hammer
threshold value (Jun 5 2014), US Patent App. 13/690,523

6. Bains, K., Halbert, J., Mozak, C., Schoenborn, T., Greenfield, Z.: Row hammer
refresh command (Jan 2 2014), US Patent App. 13/539,415

7. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: WOOT’15 (2015)

8. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., Department of Mathe-
matics, Statistics, and Computer Science, University of Illinois at Chicago (2005)

9. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
CRYPTO ’97. LNCS, vol. 1294 (1997)

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Crypto-
graphic Protocols for Faults. In: EUROCRYPT’97. LNCS, vol. 1233 (1997)

11. Gruss, D., Bidner, D., Mangard, S.: Practical memory deduplication attacks in
sandboxed javascript. In: ESORICS’15 (2015)

12. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: A Fast and
Stealthy Cache Attack. In: DIMVA’16 (2016)

13. Gruss, D., Spreitzer, R., Mangard, S.: Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches. In: USENIX Security’15 (2015)

14. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games – Bringing Access-Based
Cache Attacks on AES to Practice. In: S&P’11 (2011)

15. Herath, N., Fogh, A.: These are Not Your Grand Daddys CPU Performance Coun-
ters - CPU Hardware Performance Counters for Security. Black Hat (2015)

16. Huang, R.F., Yang, H.Y., Chao, M.C.T., Lin, S.C.: Alternate hammering test for
application-specific DRAMs and an industrial case study. In: DAC’12 (2012)

17. Hund, R., Willems, C., Holz, T.: Practical Timing Side Channel Attacks against
Kernel Space ASLR. In: S&P’13 (2013)

18. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. Cryptology ePrint
Archive, Report 2015/898 pp. 1–15 (2015)

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 21

19. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: A Shared Cache Attack that Works
Across Cores and Defies VM Sandboxing – and its Application to AES. In: S&P’15
(2015)

20. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: An experimental study
of DRAM disturbance errors. In: ISCA’14 (2014)

21. Lanteigne, M.: How Rowhammer Could Be Used to Exploit Weakness Weaknesses
in Computer Hardware (March) (2016), http://www.thirdio.com/rowhammer.pdf

22. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S.: Armageddon: Last-level cache
attacks on mobile devices. CoRR abs/1511.04897 (2015)

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-Level Cache Side-Channel
Attacks are Practical. In: S&P’15 (2015)

24. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
Engineering Intel Last-Level Cache Complex Addressing Using Performance Coun-
ters. In: RAID’15 (2015)

25. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: Cross-Cores Cache Covert
Channel. In: DIMVA’15 (2015)

26. Micron: Designing for 1Gb DDR SDRAM. https://www.micron.com/~/media/

documents/products/technical-note/dram/tn4609.pdf (2003)
27. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the

Sandbox: Practical Cache Attacks in JavaScript and their Implications. In: CCS’15
(2015)

28. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Topics in Cryptology – CT-RSA. LNCS, vol. 3860 (2006)

29. Park, K., Baeg, S., Wen, S., Wong, R.: Active-Precharge Hammering on a Row
Induced Failure in DDR3 SDRAMs under 3x nm Technology. In: IIRW’14 (2014)

30. Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: ESSoS’16 (2016)
31. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
32. Pessl, P., Gruss, D., Maurice, C., Mangard, S.: Reverse engineering intel DRAM

addressing and exploitation. CoRR abs/1511.08756 (2015)
33. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion

policies for high performance caching. ACM SIGARCH Computer Architecture
News 35(2), 381 (2007)

34. Rahmati, A., Hicks, M., Holcomb, D.E., Fu, K.: Probable cause: the deanonymizing
effects of approximate DRAM. In: ISCA’15 (2015)

35. Seaborn, M.: How physical addresses map to rows and banks in DRAM.
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-

map-to-rows-and-banks.html (May 2015), retrieved on July 20, 2015
36. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel

privileges. In: Black Hat (2015)
37. W3C: High Resolution Time Level 2 - W3C Working Draft 21 July 2015. http:

//www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security (Jul 2015)
38. Wong, H.: Intel Ivy Bridge Cache Replacement Policy. http://blog.stuffedcow.

net/2013/01/ivb-cache-replacement/, retrieved on July 16, 2015
39. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3

Cache Side-Channel Attack. In: USENIX Security’14 (2014)
40. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel Last-Level

Cache. Cryptology ePrint Archive, Report 2015/905 pp. 1–12 (2015)

