

Comparison of Simulation Results

Rafayel Paremuzyan

University of New Hampshire

HPS collaboration meeting Nov 16-18 2016 Jefferson Lab

Generators and event selection

3 Generators for tridents

MadGraph4: Tridends and WABs

MadGraph5: Tridents

Luca's: based on Beranek, Merkel and Vanderhaegen arXiv:1303.2540

WABs are generated through Mad4 only

An attempt to compare to each other and data

Event selection

Track-cluster matching, if more than 1, pick the track that has best chi2

Esum dependent top/bottom coincidence

Events wit 1e+ and >=2 e-

Wide Angle Bremsstrahlung (WAB)

Two step process: WAB then photon conversion

Photon conversions from the target, 1st and 2nd SVT layers can mimic trident signal

Both, WAB and photon conversion have large cross sections, so we have revised WAB contribution in the MC and data

The EGS5 program, that we are using for beam transport in the target, treats WABs incorrectly, resulting in the scattered electron escaping detection

Evidence of fake (WAB) tridents in the data

 e^-e^+ pairs from WAB photon conversion have ~ 0 opening angle

- consequently ~ 0 invariant mass,
- and should be in the same detector half

Peaks in the invariant mass spectrum correspond to the photon conversion in the target, 1st and 2nd SVT layer

Non scaled distributions

All together

Mad4 and Mad5 are fit from Esum > 0.55 GeV

Interestingly all of them fit data data including WABs

"a" and "b" factors are quite different in different fits

Fits with WABs to match data

d₀ for 5 hit tracks

Converted pairs originated in the 1^{st} and 2^{nd} layers of SVT shold have a positive d_0

Events at $d_0 > 2 \ mm$ are all (almost) WAB events

This fact can be utilized to check how "Good" is WAB normalization

d0 and other distributions

Parameters "a" and "b" are taken from Psum fit

Fitting d0

Fit d0 and look other distributions

"b" in Red takes into accoun the factor 7./6. in the WAB cross section

As it was expected "b" has no much freedom

WAB scaling close to the one obtained with Ecal only Data/MC ratio ((6./7.)*0.49mb/1.25mb = 0.456) Talk tomorrow

Next: having simulations to start Esum > 0.3 GeV can put stronger constrain on the parameter "a"

Psum and other distributions

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M(e e+) [GeV]

Summary

There are currently three Trident generators, giving not same results

With scaling Wabs and Tridents, all are able to fit the Esum, distribution, but Mad4 and Vegas fail to describe d_0

Mad5 is able to fit Esum, d0 and other parameters simultaneously, however scaling factors "a" and "b" are not the same

The 85% lifetime and close to 100% trigger efficiency, suggests that this discrepancy is not in the hardware side.

Takashi's Fast Monte Carlo also shows similar discrepancies between generators, this suggests that the priority will be to get an agreement between these generators.