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Background: Traditional cognitive neuropsychological models are good at diagnosing
deficits but are limited when it comes to studying recovery and rehabilitation. Parallel
distributed processing (PDP) models have more potential in this regard as they are dynamic
and can actually learn. However, to date very little work has been done in using PDP models
to study recovery and rehabilitation.
Aims: This study seeks to demonstrate how a PDP model of acquired dyslexia can be
extended to provide a computational framework that is capable of making predictions about
the relative effectiveness of therapeutic interventions.
Methods & Procedures: A replication of Plaut, McClelland, Seidenberg, and Patterson's
(1996, simulation 2) model of word reading was trained and then damaged. This damaged
network was then retrained in a number of different ways designed to model both natural
(spontaneous) recovery and recovery that can be attributed to a specific therapeutic inter-
vention.
Outcomes & Results: Interventions that used regular words were more effective than
interventions based on inconsistent words. Early intervention (during the period of sponta-
neous recovery) was more effective than late intervention.
Conclusions: These results suggest that this technique has the potential to provide a useful
input to the therapeutic arena. The potential opportunities for further work are discussed.

Despite considerable early promise, cognitive neuropsychology has so far been somewhat

disappointing in its ability to contribute to our understanding of rehabilitation. At first

sight this seems rather surprising as cognitive neuropsychology is essentially concerned

with using data from brain-injured patients to construct models of normal cognitive

function. It should, therefore, be well placed to address issues of therapy design. In the

early years of the discipline there was considerable optimism that cognitive neu-

ropsychology would have a major part to play in the field of rehabilitation (see, for

example, Caramazza & Hillis, 1993; Seron & Deloche, 1989) and indeed there were a

few early success stories (Coltheart & Byng, 1989; De Partz, 1986). However, the early

optimism has largely given way to pessimism; when a recent special edition of Neuro-

psychological Rehabilitation was devoted to the role of cognitive neuropsychology in

language rehabilitation, the overall tone of the papers varied between muted pessimism

(Shallice, 2000) and outright scepticism (Basso & Marangolo, 2000).
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Traditionally, cognitive neuropsychology has operated by constructing models of

cognitive processes from information about the patterns of breakdown in brain-damaged

patients. These models are static in nature, consisting of a set of boxes connected by

arrows where the boxes tend to represent stored representations and the arrows represent

the processes that map from one representation to another. These models have been

successful in categorising neuropsychological deficits and, in a number of areas, have

challenged explanations in terms of broad syndromes. One good example of this is the

breakdown of the broad syndrome of acquired dyslexia into three central dyslexias

(surface, phonological, and deep) and four peripheral dyslexias (neglect dyslexia, visual

dyslexia, attentional dyslexia, and letter by letter reading). While this approach has been

successful in terms of description and diagnosis, its success in understanding rehabili-

tation has been limited. It is often suggested that the reason for this may be that these

types of models do not incorporate any mechanism for learning (Baddeley, 1993).

One possible alternative to traditional box-and-arrow models is connectionist or

parallel distributed processing (PDP) modelling. PDP models consist of interconnected

sets of neurone-like units. The connections between the units have adjustable weights in

the same way that human synaptic weights are variable. For both the models and humans

the knowledge of the system is encoded in this pattern of weights. If a significant number

of weights or units are damaged then the model's performance is impaired. Like human

performance after brain damage, this impairment is gradual and increases in tandem with

the severity of the damage.

PDP models learn to perform mappings between different domains; reading aloud is

encapsulated by the mapping between orthographic and phonological patterns. This type

of reading model learns through an exposure to an environment that consists of input

patterns (orthographical representations of words) and target patterns (phonological

representations of words). Over repeated exposure to this environment the weights, in the

model, are adjusted in such a way as to bring the output of the model gradually closer to

the target. The fact that these networks do actually learn means that they offer much

greater potential as models of rehabilitation than more traditional approaches. Indeed this

kind of modelling has the potential to encompass a complete cycle of development, acute

damage, spontaneous recovery, and rehabilitation.

There has been much debate as to the status of PDP modelling within cognitive

neuropsychology. Indeed, the role of connectionism was one of the key themes to emerge

in a recent issue of the journal Cognitive Neuropsychology (Vol. 21, Issue 1), devoted to

the future of the discipline. In the target article, Harley (2004) lamented the fact that PDP

techniques are too often ignored. He argued that PDP models are important because they

focus on the process of cognition in a realistic way using neural-like parallel processing.

Many of the contributing authors were also sympathetic to this viewpoint, although both

Coltheart (2004) and McCloskey (2004) argued against it. Rightly, in our view, Dell

(2004) noted that this technique has a number of benefits though one should never expect

computational models to be perfect in all respects. Lambon Ralph (2004) suggested that

one of the strengths of the PDP approach lies in its ability to specify both function and

architecture explicitly and that, often, this leads to a more parsimonious cognitive model

than the equivalent box-and-arrow approach.

Evidence for the significant potential of PDP modelling can be observed through a

number of very influential models capturing data from many different domains of human

performance. As well as models of reading, which we shall discuss in more detail later

(Harm & Seidenberg, 1999, 2004; Plaut et al., 1996; Seidenberg & McClelland, 1989),

there are models of past-tense generation (Joanisse & Seidenberg, 1999; Rumelhart &
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McClelland, 1986), memory (McClelland, McNaughton, & O'Reilly, 1995), face

recognition (Burton, Bruce, & Johnston, 1990), speech production (G. S. Dell, Schwartz,

Martin, Saffran, & Gagnon, 1997), semantics (Rogers et al., 2004), and no doubt many

more (the list is indicative rather than exhaustive). In all of these cases the models are

actually reproducing some aspect of human behaviour which can be directly compared

against that of the relevant human population. This means that these computational

models are open to much more rigorous testing than could ever be applied to box-and-

arrow models.

Although there are many successful computational models, very few of them address

the issues of recovery or rehabilitation; neither did these issues feature in the published

debate reported above. This omission is surprising in view of the obvious suitability of

PDP modelling for this kind of study (learning and relearning are intrinsic to such

models). We suspect that this reflects a combination of the traditional focus of cognitive

neuropsychology on disorders rather than on recovery, and the sheer computational

difficulty of running models of rehabilitation.

In this paper we describe a set of PDP simulations of a reading model that builds on

previous work by ourselves and others. In order to understand the context of this work

with respect to previous models of reading we present a brief history below.

Probably the first PDP reading model of any serious merit was Seidenberg and

McClelland's (1989) model of word reading, hereafter known as SM89. SM89 is a

restricted implementation of a larger triangle model. While the triangle model envisages

that information will be simultaneously processed by a phonological and a semantic

pathway, SM89 implemented only the phonological portion of this model (see Figure 1).

Despite this, SM89 was able to learn the pronunciations of 2820/2897 monosyllabic

words (97.3%). These included irregular words like ``pint'' and ``yacht'', which

according to the dual route model require processing by an exclusively lexical route.

What is more, the model displayed the same kind of frequency/consistency interaction

that is found in normal readersÐhigh-frequency words all had quite low error scores but

inconsistent low-frequency words had a much higher error rate than did low-frequency

consistent words. The model was also able to read some nonwords. However, in this

Figure 1. The triangle model from Seidenberg and McClelland (1989).
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respect it performed considerably worse than normal human performance; Besner,

Twilley, McCann & Seergobin (1990) reported that on a regular nonword list taken from

Glushko (1979) the model was only 59% correct whereas normal readers are 94% correct.

Although there was some match between the performance of the model under damage

and that found in surface dyslexia, it was not very compelling (Patterson, Seidenberg, &

McClelland, 1989; Plaut et al., 1996). The classic symptoms of surface dyslexia are poor

reading of low-frequency irregular words and a strong tendency for errors on these words

to be regularisations (e.g., reading PINT to rhyme with MINT). In this case, the model

did not display a sufficiently large consistency/regularity interaction when damaged (it

made errors on all classes of words not just the low-frequency irregular ones), neither did

it produce enough regularisation errors to make a convincing case that it was modelling

surface dyslexia. In summary, SM89 was inadequate on two major counts; the undam-

aged model did not read nonwords accurately enough and the damaged model did not

display a sufficiently large frequency/consistency interaction.

Plaut et al. (1996) returned to the issue of modelling reading and surface dyslexia.

They made a close analysis of the performance of SM89 and concluded that many of its

weaknesses stemmed from the kind of representations that it utilised. In a new version of

the reading model, they adopted representations that were better able to capture regu-

larities in the mapping between orthography and phonology. This model, hereafter

PMSP96, was trained on a set of 2972 monosyllabic words similar to those used in SM89.

Again, like SM89, it was able to learn the correct pronunciation of all the words in the

training corpus and it exhibited the standard frequency/consistency effects on reading

times. Unlike SM89, it also performed at human levels in nonword reading; it could

correctly read 97.7% of the consistent nonwords from Glushko (1979). When the model

was lesioned, however, it did not perform in a way that mimicked surface dyslexiaÐ

although it was considerably closer to it than SM89. In particular, those lesions that

produced the correct level of impairment on high-frequency irregular words did not

sufficiently impair low-frequency irregular words. Also, the level of regularisation errors,

while higher than that found in SM89, did not correspond to that found in dyslexic

patients. Plaut et al. considered that these results implied that surface dyslexia could not

be modelled within a purely phonological model and that some consideration of the role

of semantics was required. They went on to demonstrate that the pattern of deficits found

in surface dyslexics could be very effectively modelled by training the network in the

presence of a semantic input and then removing that semantic contributionÐan asso-

ciation that is found in patients with semantic dementia (Patterson & Hodges, 1992).

Despite the success of PDP models of reading there has been very little work to date

on recovery following damage. The few studies that have been conducted have con-

centrated solely on the translation of orthography to phonology via semantic repre-

sentations (the semantic route). Early work by Hinton and Sejnowski (1986)

demonstrated that retraining was faster than the original learning and provided some

evidence that retraining on a subset of items could generalise to the rest. More recently,

Plaut (1996) used a version of his deep dyslexia model (Plaut & Shallice, 1993) to

investigate retraining. Again, he found retraining to be faster than original learning. He

also demonstrated that recovered performance was dependent on the location of the

damage and on the typicality of the items used in retrainingÐatypical items provided

better generalisation than did typical ones. These models differ from the current simu-

lations in two critical respects. First, previous models adopt the premise that the damaged

state of the model should be analogous to the performance of brain-damaged patients

after the period of spontaneous recovery. Thus, previous work has focused on modelling
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rehabilitation and, in particular, the ability of models to generalise from retraining on a

reduced training corpus to the remaining items. By contrast, Welbourne and Lambon

Ralph (2005) suggested that the lesioned model might be analogous to a patient imme-

diately after brain damage and that retraining after damage (using the full training corpus)

would be the equivalent to spontaneous recovery. Their paper sought to illustrate the

importance of neural plasticity to understanding patterns of impaired cognitive

performance.

The theoretical position behind that paper is held in common with this study and

revolves around the proposition that recovery after brain damage may be, at least in part,

attributable to synaptic weight changes rather than purely physiological factors: If the

human brain's ability to perform accurately depends on the pattern of synaptic weights

then it seems reasonable to assume that the removal of a proportion of those weights will

not leave the remaining synapses optimally configured to perform the task. Further,

provided that there exists some optimisation process by which the synaptic weights can

change (learning) then it seems inevitable that some of the recovery that we observe in

patients after brain damage must be attributable to synaptic change. This kind of mature

synaptic plasticity has been studied mostly in the context of cortical sensory maps (for a

review see Buonomano & Merzenich, 1998) and it is clear that these maps are capable of

undergoing extensive modification, presumably as a result of some learning process

operating at the synaptic level.

Welbourne and Lambon Ralph (2005) explored this hypothesis by demonstrating that,

when a model of reading was damaged and allowed to relearn, its performance improved

considerably. Furthermore, it emerged that whilst the performance immediately post-

damage was relatively undifferentiated (regular and irregular words read with similar

accuracy) once the model had been allowed to relearn, its behaviour began to resemble

that of surface dyslexic patients. In the light of this finding, Welbourne and Lambon

Ralph suggested that this post-damage learning period might be equivalent to the period

of spontaneous recovery seen in patients, and that synaptic changes occurring during this

period might be critical in understanding the pattern of chronic performance in patients.

In this paper we take the model one stage further by using it to investigate the effect of

specialised rehabilitation therapy in conjunction with a period of spontaneous recovery.

We seek to answer some basic yet fundamental questions concerning the effectiveness of

therapeutic intervention:

(1) Does therapeutic intervention using a small number of words have the potential

to generalise to untrained items?

(2) Does the type of training stimuli affect subsequent performance?

(3) Is therapeutic intervention still effective over and above the effect of spontaneous

recovery?

(4) Is early or late intervention more effective?

To answer questions 3 and 4 (simulation 2) we need some kind of operational definition

of how rehabilitation therapy and spontaneous recovery differ in terms of what is hap-

pening to the network. We adopted a simple definition that should be applicable across a

range of domains. For spontaneous recovery we assumed that there will be some re-

exposure to the original learning environment. However, we anticipated that the salience

of this re-exposure would be lowÐin our society it is hard to avoid words; they appear all

around, often in contexts that give strong clues to meaning, but it is also easy to ignore

them. We modelled this by re-exposing the network to words randomly selected from the
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original corpus but only allowing a very small amount of learning to occur for each

exposure. By contrast rehabilitation was defined as training on a small set of words but

with a very high salienceÐpatients in rehabilitation are usually very motivated to suc-

ceed. This was modelled by selecting sets consisting of 34 therapy items and training the

network on each item in turn, with much more learning allowed during this type of

exposure to the learning environment.

METHODOLOGICAL DETAILS

Overview

Starting from a replication of Plaut et al.'s (1996) simulation 2 (also described in Wel-

bourne & Lambon Ralph, 2005) two main simulations were conducted. The purpose of

the first simulation was to investigate the overall potential of rehabilitation therapies,

based on a small subset of the original corpus, to generalise to the rest of the corpus. The

second simulation was designed to look in more detail at the interaction between

therapeutic intervention and spontaneous recovery. It also aimed to establish whether

there was any difference between early or late intervention. The same training stimuli and

measure of network performance were used in both simulations. Accuracy was measured

in terms of the percentage of words from the original corpus that were read successfully

excluding the items within the therapy sets. In all simulations the results were averaged

across 10 different random lesions of 10 networks trained with different random initial

weights. Thus each data point represents the average of 100 simulation runs.

Network architecture and learning algorithm

The architecture, training, and representations used in this simulation were chosen to be

as similar as possible to that used by Plaut et al. (simulation 2, 1996).1 Each of these key

features is summarised below. Figure 2 shows the architecture of the network that was

used throughout this set of simulations. There were three sets of units: 105 grapheme

units, 100 hidden units, and 61 phoneme units. Each layer of units was fully connected to

the next layer up. Thus every grapheme unit was connected to every hidden unit and

every hidden unit was connected to every phoneme unit. The activity level of each unit

was set to vary between 0 and 1 as a nonlinear (logistic) function of the unit's total input.

The initial weights on the connections were set to random values between 70.1 and

+0.1. The network was then trained using the standard backpropagation learning algo-

rithm with momentum enabled only if the gradient of the error slope was less than 1. Like

PMSP96, cross entropy was used as the error function. The learning rate for the network

was set to 0.05 and the momentum was 0.9.

It should be noted that this learning procedure differs slightly from that used in PMSP96

where each connection was allowed to modify its own learning rate in a procedure known

as delta bar delta learning. The procedure used here, however, is computationally simpler

and results in very slightly better performance than was found in PMSP96.

Orthographic and phonological representations

The network used the same representations as PMSP96. These representations divide

each word into three parts (onset, vowel, and coda) and then use specific units to code for

particular graphemes or phonemes occurring within each part. In addition, the phono-

1We are grateful to David Plaut for sharing his training patterns with us.
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logical onset and coda are further divided into groups of mutually exclusive phonemes so

that, when reading off the unit activations, only the most active member of each group is

a candidate for inclusion in the output phoneme string. Table 1 shows the representation

scheme used in this simulation (phonological subgroups are separated by extra spaces). In

general, words are coded from left to right so that if more than one unit is active in the

onset or coda then the output is read in the order that they appear in the table. The only

exception to this occurs for the phonemes pairs p±s, k±s, and t±s, which can occur either

way round in the phonological coda. To cater for this, special units ks, ps, and ts are used

to determine the order. If both s and p are active, then they are taken in the order sp unless

the ps unit is active, in which case the order is reversed.

INITIAL TRAINING PROCEDURE

The network was trained using full batches with the same corpus of 2998 monosyllabic

words used in PMSP96. The frequency (KucËera & Francis, 1967) of each word was used

to scale the error derivatives for the purposes of backpropagation. This has the same

effect as using real frequencies to determine the probability of a word being presented for

Figure 2. Network architecture.

TABLE 1
Orthographic and phonological representations

Orthographic units

Onset Y S P T K Q C B D G F V J Z L M N R W H CH GH GN PH PS RH SH TH TS WH

Vowel E I O U A Y AI AU AW AY EA EE EI EU EW EY IE OA OE OI OO OU OW OY UE UI

Coda H R L M N B D G C X F V J S Z P T K Q BB CH CK DD DG FF GG GH GN KS LL NG NN PH PP

PS RR SH SI SS TCH TH TS TT ZZ U E ES ED

Phonological units

Onset s S C z Z j f v T D p b t d k g m n h l r w y

Vowel a e i o u @ ^ A E I O U W Y
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training; however, it has the considerable advantage that every word can still be presented

once every epoch, thus considerably compressing the required training time (see Plaut et

al., 1996, for a fuller discussion of this issue). To eliminate the possibility that the results

might be a consequence of one particular set of initial weights, the network was trained

10 times; each time using a different random set of weights as the starting point. These 10

trained networks then formed the starting point for further investigations.

Testing procedure

The performance of the network on all of the words in the original training corpus was

tested periodically throughout the training and retraining period. The procedure for

determining the phonological output of the network was slightly complicated by the

implicit assumptions in the representations used. For the onset and coda, the phonological

output was taken to be composed of the most active phoneme in each phoneme group,

provided that its activation was greater than 0.5. However, for the vowels, the most active

vowel unit was taken as the output even if its activation was less than 0.5. The order of

the phonemes was taken from the order in which they appear in the representation. For

the pairs of phonemes ks, ps, and ts, this order was reversed (in the coda) if the special ks,

ps, or ts units were activated.

In addition to the performance on the training corpus, the percentage of regularisation

errors made by the network was also recorded. This was calculated by matching the

actual output of the network against a list of possible regularisations for a subset of

irregular words drawn from the training corpus. For most words this list consisted of just

one possible regularisation but some words (e.g., FLOOD or LOSE) can be regularised in

two different ways. The subset of irregular words as well as the list of pronunciations

treated as regularisations was taken from those used in PMSP96.

Rehabilitation training sets

Four sets of rehabilitation stimuli were selected from the overall training corpus, with a

fifth set consisting of 34 nonwords (not in the original corpus) selected from Glushko

(1979). The four sets of words were selected to be split by regularity and frequency. A

full listing of all the words and nonwords used in the rehabilitation sets can be found in

the Appendix.

Test stimuli

For the majority of testing, the stimuli consisted of the full original corpus minus those

words used in the rehabilitation training sets. On a few occasions it was found useful to

breakdown the results by frequency and regularity; in these cases stimuli sets consisting

of 24 words were used. These were identical to the sets of words used to test PMSP96.

None of the words in these testing sets overlapped with any of the words from the training

sets. In addition, the training set of nonwords was also used sometimes as a testing set.

Replication of PMSP96

By epoch 1000 the network was performing optimally for all of the stimuli sets. At this

point it correctly pronounced all of the words in the corpus with the exception of the

homographs and the word ``gent'', which was mispronounced with a hard g (as in

``gecko'') on just one of the ten trials. The errors occurring on the homographs are to be

expected since they will always occur in single-word reading if no context is provided.

796 WELBOURNE AND LAMBON RALPH



Ignoring the errors stemming from the homographs, the model was performing at 99.97%

accuracy, very slightly better than the performance achieved by PMSP96, which was

99.8% correct when trained with real word frequencies. For nonword reading the model

was correctly reading 97.0% of the regular nonwords. This is not quite as good as the

97.7% achieved by PMSP96, but it is well within the range of normal human perfor-

mance, which averages 93.8% (Glushko, 1979). In addition, the error scores showed the

expected frequency consistency interaction.

SIMULATION 1:
INVESTIGATING THE POTENTIAL OF REHABILITATION TO

GENERALISE TO UNTRAINED WORDS

This simulation was designed to investigate the capacity of a damaged network to recover

when retrained on only a small subset of the original corpus. A replication of PMSP96

was damaged by removing 60% of the hidden units. The network was then retrained

using one of the five rehabilitation-training sets. Training consisted of full batches not

weighted by frequency. The learning rate was 0.05 and momentum was 0.9.

Results

Figure 3 shows the results of this rehabilitation training in terms of its effect on the

network's overall reading accuracy for the untrained set of words. It is clear that reha-

bilitation training has considerable potential to generalise to the untrained set of words.

For all training sets there is a considerable improvement in reading accuracy over the first

60 epochs. Over this period, reading accuracy moves from about 5% to between 35% and

55 % correct. The high- and low-frequency regular words give the best overall perfor-

mance with almost identical accuracy rates of approximately 55%. The nonwords are the

next best with an accuracy rate of 50%. Both of the irregular training sets do markedly

worse. The low-frequency irregulars give an overall accuracy rate of 45%, while the

high-frequency irregulars give an accuracy rate of 38%. These irregular sets also have a

marked performance peak, which was not evident for the regular training sets. After 80

epochs of retraining, the network's accuracy starts to decline steadily with further

retraining, whereas for the regular training sets the network's performance remained

stable once the best performance level was reached.

The results for the irregular words are something of a puzzle, as it is not clear why

retraining on the low-frequency irregular words should be more beneficial than retraining

on the high-frequency ones. There is no frequency weighting involved in the retraining

and it is hard to imagine a mechanism whereby frequency weightings from the original

training would act to favour retraining on low-frequency words.

One possibility is that the low-frequency irregular word training set is actually slightly

more consistent than the high-frequency irregular training set, so that the advantage for

low-frequency irregulars is merely an artefact arising from different levels of consistency

in the two sets. Unfortunately, there is no method of quantifying degrees of consistency,

so it is very hard to control for this possibility. However, within the artificial environment

of a network model it is possible to determine experimentally whether the supposed

frequency effects can be attributed to differing levels of consistency. To do this a new

network was trained in exactly the same manner as before with the one exception that

there was no frequency weighting on the initial training. Thus in this case all words were

trained with equal weight in both the initial training and rehabilitation phases. The

performance of the network at epoch 80 was measured and compared to the performance

MODELLING REHABILITATION 797



of the network that had been trained with initial frequency weightings. Figures 4a and 4b

show the results of this comparison for the high- and low-frequency irregular training

sets.

While these figures are not quite identical, it is clear that all the differences in fre-

quency (both in terms of frequency of stimuli and frequency of training set) persist in

the same direction and the same magnitude even when the model is trained without

any frequency weightings. Thus the only significant factors affecting the performance

of the network in this simulation are consistency of training set and consistency of test

stimuli set. To explore the differences in performance that result from these variables,

the overall performance scores at epoch 80 were broken down on the basis of reg-

ularity of training set versus regularity of stimuli set. Figure 5 shows the results of this

analysis.

This shows a very clear interaction between regularity of training set and regularity of

stimuli. When training using a set of regular words, there is an enormous advantage for

the network's performance on regular stimuli (nearly 60% accurate) versus its perfor-

mance on irregular stimuli (less than 30% accurate). This advantage is almost completely

eliminated when training on irregular words. In this case the network's accuracy rate is

about 38% for irregular words and 40% for regular words. This interaction is highly

significant, F(1, 20796) = 2908, p < .001. Training based on regular words results in

superior overall generalisation to the original training corpus because the majority of

words in English have regular spelling to sound correspondences.

Figure 3. Recovery of reading accuracy after rehabilitation therapy.
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Figure 4a. Performance of the network on irregular training sets when initial training is frequency weighted.

Figure 4b. Performance of the network on irregular training sets when initial training is not frequency

weighted.
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Discussion

The key result from this simulation is that retraining on a small set of words has con-

siderable potential to generalise to the much larger set of untrained words. If the training

set consisted of regular words then an overall accuracy of about 60% was obtained. This

is a very high level of generalisation, much better than is usually found in rehabilitation

studies. This is probably due in great part to the regular nature of the mappings between

orthography and phonology (even for ``irregular'' words that contain many consistent

elements). Good post-therapy accuracy may be partly due to the absence of any spon-

taneous recovery period in this simulation. This means that there is more headroom for

recovery than there would be in a clinical rehabilitation study where the patient may have

reached a stable, chronic level of recovered performance before rehabilitation therapy

was initiated.

SIMULATION 2

This simulation was designed to explore the interaction between rehabilitation and

spontaneous recovery. For these purposes rehabilitation training was defined as training

using a small set of stimuli and a high learning rate (0.1), while spontaneous recovery was

defined as training using the entire corpus of words but with a much lower learning rate

(0.001). Online learning was used throughout the recovery and rehabilitation phase of

training. (In online learning, the network updates its weights in response to each individual

stimulus rather than after a whole batch of stimuliÐit is computationally more intensive

than batch learning but it allows for a more realistic simulation of therapeutic treatments.)

Figure 5. Network performance after 80 epochs of retraining showing the interaction between regularity of

training set and regularity of stimuli set.
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The simulation explored the effect of three variables: the spelling-to-sound con-

sistency and frequency of the rehabilitation training set, and stage of rehabilitation

therapy (early and late). In addition, a control simulation was run with no rehabilitation

training to give a baseline performance for ``natural recovery'' alone. A replication of

PMSP96 was trained and then damaged by removing a random 70% of the hidden units.

Natural recovery was modelled by retraining the network with 40,000 word presentations

selected with a frequency-weighted probability from the original training corpus.

Rehabilitation therapy was modelled by interspersing the natural recovery training with

presentations of the lists of therapeutic stimuli. During rehabilitation training the learning

rate was raised from 0.001 to 0.1. To explore the effect of early versus late intervention,

rehabilitation training was only used during one half of the period of natural recovery.

Rehabilitation therapy consisted of one presentation of each of the 34 training stimuli

interspersed between every 200 words from the original training corpus. Thus each

training set was administered a total of 100 times during the rehabilitation phase. The

rehabilitation training sets were the same as those used in simulation 1.

Results

Figure 6 shows the results of this simulation. In all cases rehabilitation resulted in a

greater recovery than was achieved by unaided spontaneous recovery. Rehabilitation that

occurred early in the recovery cycle was always more effective than late rehabilitation,

and rehabilitation using regular items was more effective than rehabilitation using irre-

gular items. There was also a consistent effect of frequency; items that occurred with a

high frequency in the training set were more effective as therapeutic stimuli than items

that occurred with a low frequency. One difference between this simulation and the

previous one was the effect of training on nonwords. In Simulation 1 training on any

regular training set (including nonwords) resulted in the best overall generalisation levels.

Figure 6. The effect of rehabilitation therapy as a function of therapy stimuli and timing.
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In this simulation the performance after training on the regular stimuli diverged. Training

on the high-frequency regular words still gave the best overall generalisation, but training

on nonwords gave the worst generalisation. Further investigation revealed that this was

attributable to very poor performance on irregular stimuli when training with the non-

word set as opposed to training with the high-frequency regulars. To explore the effects

of frequency and consistency, the improvements in scores from the no therapy condition

were submitted to a 2 6 2 6 2 ANOVA where the independent variables were fre-

quency, consistency, and timing of rehabilitation. This revealed a main effect of fre-

quency, F(1, 27) = 26.0, p < .001, consistency, F(1, 27) = 62.2, p < .001, and timing,

F(1, 27) = 74.4, p < .001. There were no significant interactions among the variables.

Thus, the most effective intervention was made early in the recovery process using high-

frequency regular words as therapy items.

GENERAL DISCUSSION

We have presented two simulations of reading aloud using a network architecture that

replicates that used by Plaut et al (1996). The first simulation suggested that there was

considerable potential for rehabilitation based on retraining using a small set of stimuli.

In the best case, retraining the network on 34 high-frequency regular words resulted in the

network moving from 4% to 57% accuracy on the remaining untrained corpus. The

second simulation explored a more realistic model in which spontaneous recovery as well

as rehabilitation training contributes to recovery. In this instance, rehabilitation training

still improved performance over and above the performance improvement attributable to

spontaneous recovery (69% vs 57% in the best case). In all cases, rehabilitation therapy

was more effective when administered in the first half of the recovery process.

Clinical implications

Taken together, these simulations support the view that rehabilitation intervention can be

useful in improving performance on both trained and untrained items. It is important to be

able to show this using a model of rehabilitation, as this is notoriously challenging to

demonstrate in a clinical study where it is very difficult to distinguish generalisation from

spontaneous recovery: in the model we have complete control of these factors and so can

address these questions more readily.

In addition to the support it gives to the view that rehabilitation can be effective, the

study generated two main clinical points of interest: (1) early rehabilitation was more

effective than late rehabilitation, and (2) the degree of generalisation was dependent on

the choice of stimuli. This latter finding may be somewhat surprising, in that it suggests

that best performance will be achieved by additional training on the items that the patient

is already best at (regular words). This happens in the network for two reasonsÐfirst,

because regular word reading utilises a common set of consistent spelling-to-sound

correspondences, learning on one word can support learning for another. Second, as

regular items greatly outnumber irregular ones in the training corpus (as they do in the

language as a whole) even a small improvement for regular words in general can out-

weigh a larger improvement on irregulars in terms of overall reading performance.

However, before settling on an interpretation of these results it is important to be

aware of the limitations of the model, which may affect our evaluation of the findings.

The model we have used is a simplification of the full triangle model using only the

orthographic and phonological portions (omitting semanticsÐword meaning). This

means that it will have a tendency to be over-reliant on regularities between orthographic
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and phonological representations, and it is possible that this may have exaggerated the

effect of regularity. Of course, had we incorporated a semantic portion then the most

obvious way of generating surface dyslexia would have been a selective lesion to this

component (Plaut et al., 1996, simulation 4). In this case we would be left with only the

O?P connections to support reading and our results should hold. However, if the

semantic portion is only partially removed, then our simple model is not really adequate

and we need to be more cautious in our interpretation. Under conditions of partial

semantic impairment, therapy-driven improvements on the irregular items might involve

adjustments to the damaged semantic system (or its connections to the rest of the reading

system) rather than the O?P connections per se. More generally, these findings do

suggest that stimulus regularity can have an effect on generalisation in domains where

there is significant degree of consistency across items.

The second important finding is that therapy is most effective when administered as

soon as possible after damage, irrespective of the type of stimuli used in rehabilitation.

Perhaps the most plausible explanation for this is that the recovering network is at its

most plastic immediately following damage so that intervention at this stage has the

greatest effect. As models learn, the degree of remaining plasticityÐability to learn new

informationÐreduces. In undamaged models this reduction in plasticity results in an age-

of-acquisition effect, while in this model it emerges as a time-of-therapy effect (see Ellis

& Lambon Ralph, 2000, for a fuller explanation). This result is not compromised by the

simplicity of our model. Indeed it may be that the omission of a semantic portion has

resulted in an understatement of the effect, as plasticity effects are generally much

smaller in domains with more regular mappings (Zevin & Seidenberg, 2002). Conse-

quently this ``time-of-therapy'' effect may be even larger in domains where the mappings

were less regular than in reading (e.g., the semantics ? phonology conversion under-

pinning speech production).

Theoretical implications

Perhaps the most important aspect of this work is that it pioneers a technique for creating

a computational framework that can account for a wide range of phenomena (develop-

ment, spontaneous recovery trajectories, and patterns of impaired performance) as well as

making predictions concerning the effectiveness of proposed rehabilitation therapies.

This technique is dependent on viewing the brain as a dynamic system that adapts both to

changes in the environment (therapy) and to gross changes in computational resource

(damage). Under this approach, the behaviour seen in chronic patients reflects a new

dynamic equilibrium between impoverished computational resources and the demands of

the environmental learning pressures (including any that arise from therapy). As we

indicated in the introduction, this view contrasts markedly with both box-and-arrow and

the vast majority of existing PDP models, which make the simplifying assumption that

brain systems are static, with behavioural performance in the chronic phase merely

reflecting the performance of the premorbid system minus those parts that have been

damaged (the subtractivity assumption: Saffran, 1982). Whilst models based on this

simplification have been reasonably successful in terms of diagnosis of deficits, we

would suggest that progress in understanding rehabilitation will inevitably require models

that adapt after damage.

The present application of this technique is relatively limited. However, we cannot see

any obvious reason why this approach should not bear fruit in any cognitive domain for

which an adequate computational model can be constructed (many successful models
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already exist, see Introduction). A more serious limitation of the present model is that

rehabilitation is limited to therapy on the same task on which we wish to improve

performance. Often in rehabilitation we may want to improve performance on one task by

training on another related activity. For instance in reading, one might want to con-

centrate on improving phonological performance by using repetition or rhyme generation

tasks. As yet our model is unable to speak to these questions but we anticipate that it will

be possible with a full triangle model that incorporates word meaning. This more com-

plete model is able to simulate reading along with a number of other language activities

including repetition, naming, etc. Consequently, it should be possible to investigate the

efficacy of different types of therapy and their impact on other (non-treated) tasks.

Manuscript received 19 January 2005
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APPENDIX A
Words used in the rehabilitation training

Reg HF Reg LF Irregular HF Irregular LF Nonword

AIR

BLACK

BOARD

BRIDGE

COST

FEEL

FOOD

FREE

GIRL

GREEN

HAD

HAND

HEAR

HEAT

LAND

LEAVE

MOUTH

MUCH

MUST

NINE

OFF

PER

ROLE

SAME

SAW

SENSE

SOUTH

STOCK

TOO

TRIAL

TWICE

WELL

WHILE

WHOLE

BREACH

BROACH

CARVE

CLIFF

COIL

COUCH

DITCH

DODGE

DOLE

GLAND

GLIDE

HOARSE

HOOP

HOOT

LEDGE

MINCE

MUG

MUNCH

PARE

PLEAT

PRAY

SAG

SCRIBE

SNATCH

SOUR

SPARSE

STACK

STARCH

SWERVE

SWOOP

TRANCE

VALE

WIPE

WISP

BEAR

BLOOD

BOUGHT

BREAD

BREATH

DOOR

FRONT

FULL

HEARD

HEART

LEARN

MEANT

MONTH

MOST

NONE

ONCE

POST

PROVE

PUSH

SOME

SOUL

SOURCE

SPREAD

THREAT

TOUR

TRUTH

TWO

WHERE

WHOM

WHOSE

WON

WOOD

WORLD

WOULD

BREAST

BROOCH

CASTE

CLIMB

COMB

COUGH

DOST

DOUGH

GAUGE

GHOUL

HEARTH

HOOK

LEAPT

MAUVE

MOULD

MOURN

MOW

PLAID

POLL

SCARCE

SEIZE

SHOVE

SIEVE

SOOT

SPONGE

STEAD

STEAK

SUAVE

SUEDE

TREAD

TROUGH

VASE

WOMB

YEARN

BEED

BELD

BINK

BORT

CATH

DOLD

DORE

DREED

FEAL

GODE

GROOL

HEAN

HEEF

HODE

HOIL

LAIL

LOLE

MOOP

MUNE

NUST

PILT

PLORE

PODE

PRAIN

SHEED

SOAD

STEET

SUFF

SUST

SWEAL

WEAT

WOSH

WOTE

WUFF
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