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Abstract:
In this paper we give a method, based on the characteristic function of a set, to
solve some difficult problems of set theory found in undergraduate studies.

Definition: Let’s consider Ac E# & (a universal set), then f,:E —>{0, 1},

I, if xeA iy .
where the function f,(X)= {0 £ © A is called the characteristic function of the set
, if xe

A.
Theorem 1: Let’s consider A, B E . In this case f, = f, ifand only if A= B.

Proof.

00— 1, if xe A=B Ct
A0, if xeA=B B

Reciprocally: For any x €A, f,(x)=1, but f, = f;, therefore f,(x)=1, namely
x € B from where A — B. The same way we prove that B— A, namely A= B.

Theorem2: f, =1-f,, A=C.A.

Prof.
1, if xe A 1, if xgA (1-0, if xgA 0, if xgA

foo={h TXEA [l T xeA [0 xeA | [0 xEA g G
0, if xe A 0, if xeA |[I-1, if xeA 1, if xeA

Theorem 3: f, , = f, * f5-



Proof.
if xeA, xeB

1,
1, if xe AnB B 1, if XEAandXEB_ 0, if XGA,ng_
0,if xg AnB |0, if xgA or xgB |0, if xgA xeB
0, if xgA x¢B

(1 if xeA lierB_f(X)f(X)
o if xeAl]oif xgB | AT BV

The theorem can be generalized by induction:

fAmB (X) = {

n

Theorem 4:; f, :I_If,Ak
DA %

Consequence. For any n eN", f; = f,, .
Proof. In the previous theorem we chose A, =A,=...=A =M.

Theorem5: f, ,=f,+f,—f,f;.
Proof.

fap=fro=f  =1—f _=1-ff =1—(1=f,)(1-fy)=f,+ f, — f,f,

AUB T TAUB ANB ANB A B

It can be generalized by induction:

Theorem 6: f"Ak =kZ;(—1)k’1 > (—l)k’lfAil fo o

,gl 1<i; <..<i <n

Theorem 7: f,_, = f, (1—f3)
Proof. f,o="f,5=".fz= fa(l-Tg)-

It can be generalized by induction:

Theorem8: f, , ., = Z(_l)kilfAil Ja S,
k=1

Theorem 9: f,., = f. + fo = 2f. [
Proof.

fAAB = fAUB—AﬂB = fAUB (1_ fAmB):(fA"' fB - fAfB)(l_ fAfB): fA+ fB _2fAfB '
It can be generalized by induction:

) N k-1
Theorem 10: Foa —;(—2) > fAilAizwAik '

I<ij<..<i <n

Theorem 11: f, (X, y)= f,(X)f5(y).



Proof. If (X,y)e AxB, then f, (X,y)=1 and x €A, namely f,(x)=1 and
y € B, namely f,(y)=1, therefore f,(x)f,(y)=1.1f (x,y)& AxB, then f, ;(X,y)=0
and x ¢ A, namely f,(x)=0 or y ¢B,namely f;(y)=0, therefore f,(x)f;(y)=0.
This theorem can be generalized by induction.

Theorem 12: tn&(m,xpnw&):l]f&(m).
« k=1

Theorem 13: (De Morgan) kLnJl A = ﬁg

Proof.
f=1-f, =1-» (D' f f, ..t =[la-fH=]]f. =f, .
U A U A ; ]<i1<..z.<ik<n AOATUA k=1 A < NA

We prove in the same way the following theorem:

n

Theorem 14: (De Morgan) () A, = U A, .
k=1 k=1

Theorem 15: (ku A(jﬂM ~U(ANM).
Proof.

f

n

] =f, fu=2 D" > f . f fy=2 DT X ff,
nm U A pa T At

1< <..<i <n k=1 1< <..<ig<n

i
K=]

(1) Z fAilﬂM f/-\izﬂM"'fAikﬂM =f,

=1 I<i; <..<ig<n

M=

=

In the same way we prove that:
Theorem 16: (ﬁ AJU M =N (AUM).
k=1 k=1

Theorem 17: (AL A )M =A[_ (A NM)

Application.
(A1LA)UM = A} (A, UM) if and only if M = ®.

Theorem 18: Mx[GAJ:CJMxAQ
k=1 k=1

Proof.



f
|

]@ﬂ=m@vﬂ

k

=260 X Sy (O Oy, (0, () =

n
U 4; 1<i) <.<ip <n

k=1

=YD Y Of, (0, (O ()=

1<i) <..<i <n

_ n _1 . n ’ , _
;( ) lsq;ikSani‘XM(x ) fAi‘XM(x Y) ‘fkliJl(MxAk)

In the same way we prove that:

n

Theorem 19: M x(krn]ﬁkj:ﬂ(M xA).

k=1

Theorem 20: M x (A, - A, —...—A,)=(M x A )-(M x A,)—..— (M x A,).

Theorem 21: (A - A,)U(A - A)U..U(A - A)U(A -A)=UA - A
Proof 1.
f(A—Az)UmU(An—Ai):é(_l)kil 2 fantyn =

I<i) <..<i <n

n

_n k-1 —
_;(—1) 2 (Fy =y = f )y = =1, T )=

I<ij <..<i<n
= ; —1 k-1 y f f 1_ ; f :fn l_fn :fn n
SRR “*( 1 %J gﬂ( ﬂ“] Oa-fia

), (where A ., =A,), then there exists k

such that xe(A,—A.,), namely xe(ANA,)cANAN..NA, namely

XeEA,ﬂAzﬂ...ﬂA],andxeLnJAk— | A,.
k=1

k=1

Proof 2. Let’s consider x € LnJ(Ai -A
i=1

Now we prove the inverse statement:

n n
Let’s consider xe U A — (1 A, we show that there exists k such that x €A, and
k=1 k=1

x ¢A,,, . On the contrary, it would result that for any k € {1,2,...,n}, xe A and x €A,,,

namely x € UA,, it results that there exists p such that x €A , but from the previous
k=1

reasoning it results that x €A, and using this we consequently obtain that x € A, for

+1°

k= p,n.But from x €A, we obtain that x €A, , therefore, it results that x €A, , k=1p,

from where x €A,, k=1,n, namely xe A ()...1A,, that is a contradiction. Thus there

exists r such that XeA and x¢A ) and therefore

xe U(A-A).

., nhamely x e(Ar -A,



In the same way we prove the following theorem:

DL

Theorem 22: (AAAZ)U(AZAAB)U...U(A]lAﬁ)zglﬂ -NA.
Theorem 23:

(A XA x AN (AL x A< x AN(A xAx..xA_)=(ANA, ﬂ...ﬂAq)k.
Proof. f(Aix...xAk)ﬁ...ﬁ(ijA,x...xAk,l)(Xl e Xy ) =

= Fan Koo X))o fa o n (X X)) =
= (£ () iy (6)) e £y (%) Fu (X)) =
= Fu ) (%) = Taryga (K X)) =
= f(m.nAﬂ)k (X)5ees X)) -
Theorem 24. (P(E ), U) 1S a commutative monoid.
Proof. For any A,B € P(E); AU B € P(E), namely the intern operation. Because
(A U B)U C=A U(B U C) is associative, AUB=BUA commutative, and because
AUJ = A then O is the neutral element.

Theorem 25: (P(E),N)is a commutative monoid.
Proof. For any A,BeP(E); A(IBeP(E) namely intern operation.
(ANB)NC =AN(BNC) associative, ANNB=BNA, commutative ANE = A, Eis the

neutral element.

Theorem 26: (P(E),A) is an abelian group.
Proof. For any A,BeP(E); AABe€P(E), namely the intern operation.
AAB = BAA commutative. The proof of associativity is in the XII"™ grade manual as a
problem. We’ll prove it using the characteristic function of the set.
f(AAB)AC =4f, ff.-2f, f,+ffo+f . f,+f,+f,+f. = fAA(BAC).
Because AAD=A, & is the neutral element and because AAA = ; the
symmetric element of Ais A itself.

Theorem 27: (P(E),A,N) is a commutative Boole ring with a divisor of zero.

Proof. Because the previous theorem satisfies the commutative ring axioms, the
first part of the theorem is proved. Now we prove that it has a divisor of zero. If A # &
and B+ are two disjoint sets, then A(\B =, thus it has divisor of zero. From
Theorem 17 we get that it is distributive for n=2. Because for any A € P(E);

AN A=A and AAA = it also satisfies the Boole-type axioms.



Theorem 28: Let’s consider H ={f | f:E —){0,1}}, then (H,@) is an abelian
group, where f, ® f, = f, + f; —2f.f, and (P(E),A)= (H,®).

Proof. Let’s consider F:P(E)— H, where f(A)= f,, then, from the previous
theorem we get that it is bijective and because F(AAB)=f,, =F(A)®F(B) it is

compatible.

Theorem 29: card(AAA,) < card(A,AA,) + card(A,AA;) + ...+ card(A,_AA)).
Proof. By induction. If n=2, then it is true, we show that for n =3 it is also

true. Because (A NA,)U(ANA)c AUANA);
card ((ANA,)U(ANA))<card (A U(ANA,)) but
card(M UN) =cardM +cardN —card (M (1N ), and thus
cardA, +card (A N A )-card(ANA,)—-card(A,NA)>0, can be

written as
cardA +cardA, —2card (A NA,) <
<(cardA +cardA, —2card (A N A,))+(cardA, +cardA, —2card(A, N A,)).

But because of
(MAN) = cardM +cardN —2card (M N)

then card (A,AA3)S card (AIAA2 )+ card (AZAAS). The proof of this step of the induction
relies on the above method.

Theorem 30: (PZ(E), card (AAB)) is a metric space.

Proof. Let d (A,B)=card (AAB): P(E)x P(E) > [

1. d(A,B)=0 < card(AAB) =0 < card((A— B)U(B - A))=0 but
because (A-B)N(B-A)=& we obtain (A—B)+card(B-A)=0 and because
(A-B)=0 and card(B-A)=0,then A—-B=0, B-A=J,and A=B.

2. d(A,B)=d(B,A) results from AAB= BAA.

3. As a consequence of the previous theorem d(A, C)S d(A,B)+d(B,C).

As a result of the above three properties it is a metric space.

PROBLEMS

Problem 1.
Let’s consider A=BUC and f:P(A)—> P(A)x P(A), where

fx)= (X UB, X UC). Prove that f is injective if and only if B(1C = .
Solution 1. If fis injective. Then
f(@)=(2UB,2UC)=(B,C)=((BNC)UB,(BNC)UC)=f(BNC)  from
which we obtain B(1C = . Now reciprocally: Let’s consider B(1C =, then
f(X)=f(Y);itresultsthat XUB=Y UB and XUC=Y UC or



X =XU@=XU(BNC)=(XUB)N(XUC)=(Y UB)N(YUC)=YUBNC)=YUD =Y
namely it is injective.

Solution 2. Let’s consider B(1C = passing over the set function f(X)= f(Y)
if and only if XUB=YUB and XUC=Y UC, namely f,,,=f,us and fiue = fruc
or fy+fe—fils=h+l—his and fx+fc_fxfc:fy+fc_fyfc from which we
obtain (fy = f; N/ = f)=0.

Because A=BUC and B[1C =, we have

I, ifueB
f.—f.)u=<{" £0
(fa=fe)W {—1, if ueC

therefore f, — f, =0, namely X =Y and thus it is injective.
Generalization. Let M = UA, and f : P(A) > P"(A), where
k=1

F(X)=(XUA,XUA,,...XUA).
Prove that f isinjective if and only if AN A N..NA =9.

Problem 2. Let E#J, AcP(E),and f:P(E)— P(E)x P(E), where
f(X)=(XNAXUA).

a. Prove that f is injective

b. Prove that { f(x),xe P(E)} ={(M,N)|M c AcNcE}=K.

c. Let g:P(E)— K, where g(X)= f(X). Prove that g is bijective and compute

its inverse.
Solution.

a. f(X)=f%), mnamely (XNAX UA)=(Y NAYUA) and then
XNA=YNA, XUA=Y UA, from where XAA=YAA or
(XAA)AA =(YAA)AA, XA(AAA)=YA(AANA), XAD=YAQD and thus X =Y,
namely f is injective.

b. {f(X),X e P(E)} = f(P(E)). We’ll show that f(P(E)) < K . For any

(M,N) e f(P(E)), 3X eP(E): f(X)=(M,N); (XNAXUA)=(M,N).

From here X(NA=M, XUA=N,namely M c A and Ac N
thus M < A < N, and, therefore (M,N)eX.

Now, we’ll show that K — f(P(E)), for any (M,N) €K, 3 X € P(E) such that
fX)=M,N). f(X)=(M,N), namely (XNAXUA=(M,N) from where
XNA=M and XUA=N, namely XAA=N-M, (XAA)AA=(N-M)AA,
XAD = (N - M)AA,

X=(N-M)M, X =(NNM)AA,

X =((NNM)=A)U(A=(NVD)=((NAMDN AU AN(N M) -
=(NNMNA))U(ANNNM))=(NNAU(ANN)UANM)) =



=(NNAU@UM)=(N-AUM.

From here we get the unique solution: X =(N-A)UM .

Wetest f(N-A)UM)=(((N-AUM)NA,((N-AUM)UA)
but

(N-AUM)NA=((NNAUMNA=((NTANAJUM NA) =

=((NNANA))UM =(NNZ)UM =ZUM =M
and
(N-AUM)UA=(N-AUMUA)=(N-AUA=(NNAUA=
=(NUANAUA=NNE=N, f((N-A)UM)=(M,N).
Thus f (P(E)) =K.
c. From point a. we have that g is injective, from point b. we have that g
surjective, thus g is bijective. The inverse function is:
g ' (M,N)=(N-A)UM .

Problem 3. Let E#J, A,BeP(E) and f:P(E)— P(E)x P(E), where
f(X)=(XNAXNB).
a. Give the necessary and sufficient condition such that f is injective.
b. Give the necessary and sufficient condition such that f is surjective.
c. Supposing that f is bijective, compute its inverse.
Solution.
a. Suppose that fis injective. Then:
f(AUB)=((AUB)NA, (AUB)NB)=(A,B)=(ENA, ENB)=f(E),
from where AUB=E.
Now we suppose that A U B = E , it results that:

X=XNE=XNAUB)=(XNAUXNB)=YNAUKYNB)=YN(AUB)=YNE=Y
namely from f(X)= f(Y) we obtain that X =Y , namely fis injective.

b. Suppose that fis surjective, for any M,N € P(A) x P(B), there exists

X eP(E), f(X)=(M, N), (XNA XNB)=(M, N), XNA=M, XNB=N.
In special cases (M, N)= (A, &), there exists X € P(E), from

X>oA J=XNB>ANB, ANB=J.

Now we suppose that A [1B=C and show that it is surjective.

Let (M,N)eP(A)xP(B), then M cA, NcB, MNBcANB=O, and

NNAcBNA=J,namely M(B=C, N(NA=¢ and

f(MUN)=((MUN)NA, (MUN)NB)=

=((MNAU(NNA), (MNB)U(NNB))=(MUD, @UN)=(M, N),



for any (M, N) there exists X =M UN such that f(X)=(M, N), namely f is
surjective.
c. We’ll show that f~'((M, N))=MUN.

Remark. In the previous two problems we can use the characteristic function of
the set as in the first problem. We leave this method for the readers.

Application. Let E#J, A, e P(E) (k=1,..,n) and f:P(E)— P"(E), where
f(X):(XﬂA,XﬂAZ,...,XﬂAh).

Prove that f is injective if and only if |JA, = E .

k=1

Application. Let E#J, A e P(E), (k=1,...,n) and f:P(E)— P"(E), where
FX)=(XNAXNA,...XNA).
Prove that f is surjective if and only if ﬂ Kk =0.

k=1
Problem 4. We name the set M convex if for any x,y e M tx+(1—1t)y e M , for

any t €[0,1].

n
Prove thatif A,, (k =1,...,n) are convex sets, then ﬂ A is also convex.
k=1

Problem 5. If A,, (k =1,...,n) are convex sets, then ﬂ A, is also convex.

k=1

Problem 6. Give the necessary and sufficient condition such that if A, B are
convex/concave sets, then A UB is also convex/concave. Generalization for the
N set.

Problem 7. Give the necessary and sufficient condition such that if A, B are
convex/concave sets then AAB is also convex/concave. Generalization for the N
set.

Problem 8. Let f,g:P(E)— P(E), where f(xX)=A-X,and
g(x)=AAX, Ae P(E).
Prove that f, g are bijective and compute their inverse functions.

Problem 9. Let AoB={(x,y)el x[] |I3zell :(x,z2)e Aand (z,y)eB}. In a
particular case let A:{(X, {X})|XED} and B:{({y}, y)| yell }
Represent the Ac A, Bo A, BoB cases.

Problem 10.
1. If AUBUC=D, AUBUD=C, AUCUD=B, BUCUD=A, then
A=B=C=D



and

11. Are there different A, B, C, D sets such that
AUBUC=AUBUD=AUCUD=BUCUD?

Problem 11. Prove that AAB=A UB if and only if A(N\B=3.

Problem 12. Prove the following identity.

A aun-Uf A4

i,j=li<]j i=1 \_j=1, j=i

Problem 13. Prove the following identities.

(AUB)~(BNC)=(A~(BNC))U(8~C)=(A-B)U(A-C)U(B~C)
A-[(ANC)~(ANB)]=(A-B)U(A-C).

Problem 14. Prove that AU(BNC)=(AUB)NC=(AUC)NB if and only if
AcBand AcC.

Problem 15. Prove the following identities:
(A-B)-Cc=(A-B)-(C-B),

(AUB)-(AUC)=B—(ANC),
(ANB)-(ANC)=(ANB)-C.

Problem 16. Solve the following system of equations:
AUXUY =(AUX)N(AUY)
{Aﬂ XNY =(ANX)U(ANY)
Problem 17. Solve the following system of equations:
AAXAB=A
{AAYAB =B

Problem 18. Let X, Y, Z < A . Prove that:
Z=(XNZ)U(YNZ)U(XNZNY) ifandonlyif X=Y =@.

Problem 19. Prove the following identity:
U4, U(B,-C)]= [UAJ U K UAJ - c} :
k=1 k=1 k=1
Problem 20. Prove that: AUB=(A-B)U(B-A)U(ANB).

Problem 21. Prove that:

10
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(AaB)AC =(ANBNC)U(ANBNC)U(ANBNC)U(ANBNC).
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