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Abstract—Detecting community structures in graphs is a well
studied problem in graph data analytics. Unprecedented growth
in graph structured data due to the development of the world
wide web and social networks in the past decade emphasizes the
need for fast graph data analytics techniques. In this paper we
present a simple yet efficient approach to detect communities in
large scale graphs by modifying the sequential Louvain algorithm
for community detection. The proposed distributed memory
parallel algorithm targets the costly first iteration of the initial
method by parallelizing it. Experimental results on a MPI setup
with 128 parallel processes shows that up to ~5x performance
improvement is achieved as compared to the sequential version
while not compromising the correctness of the final result.

I. INTRODUCTION

Large graphs exhibit patterns that can be viewed as fairly
independent compartments with distinct roles, i.e., commu-
nities that can be identified based on the graph structure or
data clustering [1]. The advent of social networking and online
marketing poses new challenges for community detection due
to the large data size which can reach up to millions and even
billions of vertices and edges. In addition to the graph size, the
advent of cloud computing brought the reality of distributed
big data to the picture. To cope with this scenario parallel
and distributed community discovery algorithms need to be
designed. This requires the graph to be initially partitioned
across processors so that communication between them during
graph processing is minimized. The dynamic evolving nature
of these graphs represents another main challenge that empha-
sizes the need for fast graph analytics. Performing analytics on
periodic graph snapshots is one of the proposed approaches to
address this issue [2], [3]. However, due to the high velocities
of data (e.g., Twitter reports more than 5,700 tweets per second
on average [4]), performing analytics even on the snapshots
needs to be completed fast for the results to be useful.

Graph partitioning and community detection can be seen
as two sides of the same coin which try to achieve highly
correlated goals. A major difference between the two is that for
the former the number of partitions or partition size is known
in advance. Most graph partitioning techniques were designed
for parallel computing so that partitions are balanced among
processors and communication between them is minimized [5].
Graph partitioning techniques are used in distributed graph
analytics where they proved to give good performance for
several classes of distributed graph algorithms [6][7]. For large
graphs, partitioning is traditionally considered to be part of the
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data loading process to partition and load the graphs into the
distributed storage. Graph algorithms and analytics are later
performed on those partitions. Generally, partitioning to load
balance and minimize edge cuts has been decoupled from the
community detection with many algorithms using a random or
hash based assignment of graph vertices to processors [8].

One of the main contributions of this work is to take
advantage of the initial graph partitioning when performing
parallel community detection in order to speed-up the process
by minimizing the communication between processors. The
design of several graph partitioning algorithms [9] work in
favor of this idea as they try to minimize the cross partition
edges between partitions. This reduces the chance for commu-
nities based on graph structural information to be spread across
multiple partitions. While many community detection methods
have been proposed [1] we focus in this paper on the recent
Louvain community detection algorithm [10] which performs
community detection by using a greedy modularity maximiza-
tion approach [11]. The aim is to improve the performance of
the algorithms’s first iteration which takes on average 79% of
the total algorithm time (cf. Section III).

We validate our approach by using an MPI implementation
on a HPC cluster. To our knowledge this work is not only the
first one to propose a distributed memory parallel extension to
Louvain algorithm but also the first to take advantage of the
graph partitioning to speed-up the community detection. The
main contributions of this paper are the following:

1 We propose a distributed memory parallel algorithm
extending the Louvain method by making its costly
first iteration embarrassingly parallel without any no-
ticeable loss in final modularity.

2 We show that by using different techniques for select-
ing the vertex traversal order of the Louvain method,
we can further improve the performance.

3 We prove the efficiency of our algorithms by using a
random community graphs ranging from 250K up to
16M vertices.

The rest of the paper is structured as follows: Section II
presents some of the main results related to parallel algorithms
for graph partitioning and Louvain community detection; Sec-
tion III gives a brief overview on the Louvain method; Section
IV outlines our proposed approach; Section V describes the



experimental setup and discusses the obtained results; and
Section VI outlines the main achievements of this work.

II. RELATED WORK

Graph partitioning is a technique which aims to split the
graph k-ways such that the edge cuts are minimized while
trying to balance the number of vertices in each partition.
Most variants of the problem are NP-hard [1]. Kernighan et
al. [12] proposed one of the earliest partitioning algorithms.
The algorithm tries to optimize a benefit function defined as
the difference between the number of edges inside partitions
and the ones between them. Existing techniques used in graph
processing tools such as Apache Giraph [8] rely on simple
hashing or vertex ordering based partitioning. A wide array of
multi-level partitioners are implemented in the METIS library
[9]. A multi-level parallel partitioning algorithm has been
presented in [13].

Recently Kirmani et al. [14] proposed a parallel graph
partitioning algorithm based on a geometric scheme that offers
good edge cuts. The algorithm is shown to scale better than
parallel METIS.

Efficient parallel partitioning algorithms for large social
networks have been proposed as well [15]. The algorithm relies
on label propagation and on a parallel evolutionary algorithm
to obtain quality partitions and is shown to produce better
results then parallel METIS.

In this work we utilized parallel METIS partitioner
(PMETIS) to perform the initial graph partitioning due to its
wide availability and ease of use.

Community detection has been widely studied with For-
tunato [1] providing a thorough overview of the main ap-
proaches. Most of the work however focused on sequential
algorithms. Among the first algorithms to exhibit near linear
complexity was presented [16]. The proposed algorithm is
based on a label propagation approach. We focus next on
existing work that addressed parallel algorithms for community
detection with emphasis on parallel Louvain algorithm.

Parallelizing the community detection based on the mod-
ularity metric has received an increasingly attention in the
past few years. Riedy et al. [17] proposed the first shared
memory algorithm for dedicated architectures (Cray XMT
and OpenMP). More recently other papers parallelizing the
Louvain community method based on OpenMP have been
proposed [18], [19]. While all these papers show good perfor-
mance and modularity results they all take the same approach
of using a shared memory architecture. We argue that in order
to enable large scale distributed community detection we need
to break free of this constraint.

III. LOUVIAN METHOD FOR COMMUNITY DETECTION

The Louvain method for community detection is a greedy
modularity maximization approach [10]. Modularity is a
widely-used metric for determining the strength of detected
communities [11] and is defined as:
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| # Vertices | % Time for 1st Iteration

250,000 90.48
500,000 88.61
1,000,000 87.45
2,000,000 71.08
4,000,000 76.67
8,000,000 72.67
16,000,000 | 69.75

TABLE I: % Run time spent on first iteration of the Louvain
algorithm for different graph sizes.

where C' represents the set of all communities, M represent
total number of edges in the graph, m, represent total number
of edges inside community ¢ and d,. represent total degree of
vertices in c¢. The modularity metric mainly tries to quantify
how many internal edges are in the communities than the
expected. For the normalized modularity value for a graph
Q@ € [—-1,1] a value of 1 represents the ideal scenario.

Louvain method is an iterative algorithm. Each iteration
consists of two major steps. It starts by initializing each vertex
with its own community. In the first step, it chooses a vertex
traversal order to scan through the vertices, which in a random
order in the the original sequential implementation !. Then for
each vertex in the graph it considers its neighbors communities
and checks whether or not removing the current vertex from its
current community and inserting it to neighboring communities
results in any modularity gain. The vertex is added to the com-
munity which gives the maximum positive gain in modularity.
Community remains unchanged if no positive modularity gain
can be achieved. The process is repeated multiple times until
a local maximum modularity is reached. In the second step a
new graph is created by collapsing the detected communities
into vertices. Intra-community edges are collapsed into a single
self loop edge and the weight of this edge is calculated by
summing up the edge weights of all intra community edges in
the community. Multiple edges between each two communities
are collapsed into a single edge by summing up the edge
weight. The process continues by repeating steps one and two
until no improvement in modularity between two consecutive
iterations is observed.

Blondel et al. [10] suggested the Louvain methods runtime
scales linear with the graph size and the first iteration of the
algorithm is the most costly iteration in terms of computation
time. We instrumented the sequential version of the algorithm
to log the time spent in each iteration and observed that
on average 79.53% of the time is spent there for most the
community graphs. Table I shows the percentage of the time
spent in the first iteration compared to the overall execution
time. This result provided us with a clue on what part of the
algorithm needs to be optimized. A synthetic community graph
generator was used to generate the depicted graphs. More
details on the generated graphs will be given in Section V.

IV. PROPOSED APPROACH

We modify the Louvain method and parallelize the first
iteration in order to significantly reduce execution time (cf.
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Fig. 1: Workflow of the proposed parallel Louvain algorithm.

Fig 1). For this we partition the graph using PMETIS. The
parallel implementation was implemented a using GNU C++
message passing interface implementation where each MPI
process picks up its partition based on the process id and runs
the first iteration of the Louvain method within the process
locally ignoring cross partition edges. Next, the graphs need
to be merged together at the master node. As all individual
partitions had local vertex numbering we need to renumber
all vertices across partitions continuously. Thus one more
step is required before sending the data to the master node.
Through an all gather operation the total number of vertices
in each process is sent to all other processes. Each process
p; will receive the total number of vertices in each partition
{No, .y N;—1,N;41,..Np_1} where P is the total number of
processes. It then renumbers its vertices such that the vertex
numbers associated to its partition start from a value nszqrt,
computed based on the values of all processes p; with j <4
as follows:

i—1

Nstart; = § Nj

0

After renumbering, each process sends its renumbered
intermediate graphs to a master process which aggregates
them into a single graph considering cross partition edges and
computes the modularity value. The generated graph represents
the first level in the hierarchical community. We must note
that at this stage the size of the graph is reduced significantly.
The algorithm then proceeds with the rest of the iterations by
applying the sequential Louvain on this graph. The pseudocode
for this process is shown in Algorithm 1.

As explained in Section III the original Louvain method
uses a random vertex ordering at the start of each iteration
to traverse the vertices. Because communities are created by
a recursive exploration of the neighboring vertices we argue
that a method in which the initial vertices are selected based
on the edge degree may allow a faster convergence. To prove
this we investigated three different vertex ordering strategies:

1 Ordering based on ascending order of edge degree.
2 Ordering based on descending order of edge degree.

High degree vertex neighbor order.

Algorithm 1 Pseudocode of the Parallel Extension for the
Louvain Method Executed On Each MPI Process.

1: procedure PARALLEL LOUVAIN
2: LOAD-PARTITION(process id)
3 improvement <— LOUVAIN-ONE-LEVEL > Louvain iteration
4: if — improvement then
5: ExIT
6: end if
7 OUTPUT-COMMUNITIES > Output communities
8 CREATE-NEW-GRAPH > Collapse communities into vertices
9 RENUMBER-VERTICES > Renumber the vertices using all gather
operation
10: if process id = O then > If current process is the master process
11: MERGE-GRAPHS
12: improvement gets true
13: while improvement do
14: improvement <— LOUVAIN-ONE-LEVEL
15: OUTPUT-COMMUNITIES
16: CREATE-NEW-GRAPH
17: end while
18: else > If current process is a worker process
SEND-CURRENT-GRAPH > Send graph partition to master
19: end if

20: end procedure

While the first two strategies are self explanatory the
ordering of vertices for the third case is determined as follows:

1) Scan through vertices in the descending order of the
edge degree.

2)  For each vertex add all not visited neighbors to a
queue and mark them as visited (neighbors of a given
vertex are visited according to the ascending order of
the vertex ids).

3) The vertex order of the queue is considered as the
traversal order.

V. EXPERIMENTAL RESULTS
A. Environment

The performance of our approach versus the sequential im-
plementation of Louvain algorithm was evaluated by running
a series of experiments on the University of Southern Califor-
nia’s High Performance Computing Center (HPCC) cluster?.
The HPCC cluster consists of heterogeneous computing nodes.
All benchmarks were executed as single batch jobs of 16
compute nodes with 8 cores per node to address this issue.
Experiments were conducted multiple times and the presented
results are consistent with the results of all other rounds
of experiments. Each node consists of two Quad-core AMD
Opteron 2376 2.3 GHz processors.

B. Data Sets

Synthetic graph datasets were used in the experiments.
The reason for choosing synthetic graphs is to have con-
trol over graph sizes to conduct scalability experiments over
varying graph sizes. We used Fortunato’s benchmarking suite
for community detection [20] and generated 7 graphs (cf.
Table II). This benchmarking package contains elaborate graph
generation algorithms for undirected and unweighted graphs
with community structures. In addition, the graph genera-
tion process allows fine control over many properties of the

Zhttp://hpee.usc.edu/
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Fig. 2: Execution time when scaling up number of processors
for different graph sizes.

produced synthetic graphs, including average and maximum
degree distribution, and community overlap. But production
of the largest graph in our dataset, e.g., 16M nodes, required
a compute node with 64GB of memory at HPCC. That
constrained us from generating larger graphs. A brief summery
of data set properties are shown in Table II.

| # Vertices | #Edges |

250,000 936,948
500,000 1,874,686
1,000,000 3,751,912
2,000,000 7,503,410
4,000,000 15,009,838
8,000,000 30,024,411
16,000,000 | 60,067,971

TABLE II: Data sets statistics summary.

C. Results

We compared our parallel algorithm with the original
Louvain algorithm implementation and also tried to compare
our results with the shared memory implementation presented
in [18]. However we found that the version used by authors of
shared memory implementation does not scale beyond graphs
larger than 10,000 vertices.

The main focus of this experiments was to analyze the scal-
ability of our approach. We conducted series of experiments
scaling the problem in two dimensions, namely with increasing
number of processors and increasing graph sizes.

Figure 2 shows the change in total execution time when
scaling up the number of processors for parallel implementa-
tion. We can see our approach outperforms the sequential ver-
sion for all configurations. We also observed that the number of
iterations of our algorithm remained the same as the sequential
Louvain method. This is an indication that the partitioning of
the graph for the first iteration did not split the communities
in the first level(or had a very minimal impact). We notice
however that the performance improvement decreases when
scaling up number of processors for all graph sizes. The same
behavior can be observed in Figure 3 where speedups start to
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Fig. 3: Speedups compared to the sequential implementation
when scaling up number of processors for different graph sizes.
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Fig. 4: The execution time when scaling up graph sizes with
different number of processors.

0.025

-2 —e4 8

0.02

0.015

Error %

0.01

0.005

250K 500K 1M 2M aMm 8M 16M
Graph Size

Fig. 5: Change in the percentage error of final modularity with
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flatten for most of graphs after scaling up to 16 - 32 processors.
The reason behind this is due to the upper bound enforced from
the Amdahl’s law [21] and implementation overheads.

As shown in Figure 4 we can see the gap between
the runtime of both sequential and parallel implementations
increases with graph size. This is an indication of good
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descending order of edge degree compared to random vertex
order. Graph size: 1m vertices

scalability of our approach for larger graphs. But we can
observe the improvement in runtime reduces when scaling up
the processors up to 16-32 due to the same reasons explained

before.

The correctness of the community detection algorithms is
of a main concern when trying to gain parallel speedups. As an
example if we ignore cross partition edges in community de-
tection algorithms it might cost us in terms of final modularity
due to incompleteness in detecting communities that span over
multiple graph partitions. This poses the need for a fine balance
between performance of algorithm and correctness of results.
Figure 5 shows the behavior of the percentage error calculated
using the difference in modularity between the sequential and
parallel algorithms. Error E is calculated based on Relation 2:

E = abs(22 %) )

s

Where ¢, and g, represents the final modularity obtained from
sequential algorithm and our approach respectively. Results
show that our approach finds communities with almost same
quality as the sequential Louvain method (less than 0.025%
error). One notable observation is that the percentage er-
ror reduces with the graph size. This is expected since the
probability of partitioning communities into multiple graph
partitions reduces for larger graphs since PMETIS tries to
reduce the number cross partition edges between partitions.
But for smaller graphs since PMETIS is constrained by number
of partitions it will have to partition the graph into given
number of partitions irrespective of increase in number of cross
partition edges. This increases the chance of communities to
be split across partitions during the partitioning process. Since
our method ignore the cross partition edges in the first iteration
the final community quality will be significantly effected for
very small graphs.

As explained in Section IV our approach parallelize the
first iteration of the Louvain method. Amdahl’s law bounds our
speedups based on the percentage execution time of this first
iteration compared with the total execution time. To model the
expected speedups for our approach timing results were col-
lected for each iteration of the sequential implementation for
different graph sizes. Figure 6 shows the predicted speedups
for the parallel implementation and Figure 7 plots the change
in difference between expected and actual speedups. Expected
speedups were calculated in an optimistic manner ignoring
the communication times and assuming linear run times with
the graph size [10]. We can see that for all graph sizes the
difference becomes larger with the graph size. This is expected
due to the increase in overheads, but interestingly we see
super linear speedups for almost all the graphs with initial
small number of MPI processors. This is mainly due to the
partitioning process where after partitioning the convergence
rate (number of iterations required in the first step of Louvain
to reach the local maximum modularity) of Louvain method
iteration within the partition becomes higher than the expected.
This is mainly due to the reduction in search space of the first
step of Louvain method since we ignore cross partition edges
in the first iteration.

We also evaluated the initial three vertex ordering strategies
on the same graph data sets (cf. Section IV). Strategy 1 and 3
affected the overall run time in a negative way. Convergence
rate of the algorithm reduced dramatically when first strategy
was used. The computation complexity of the 3rd strategy



outperformed the improvement in convergence rage. As shown
in Figure 8 we were able to get some marginal performance
improvement when using the second strategy. But the im-
provement in convergence rate reduced when we increase the
number of graph partitions.

We also conducted some preliminary experiments on a real
world social network 3 with =~ 16 million vertices and 30
million edges. Initial results indicated the same behavior with
our approach, i.e., =~ 2.6 speed up with 2 processors while
final modularity of serial and parallel versions being 0.7162
and 0.7051 respectively.

VI. CONCLUSIONS AND FUTURE WORK

Community detection in large graphs is receiving increas-
ingly traction due to the unprecedented growth in internet and
online social networks. Our work combines an existing graph
partitioning technique which minimizes the cross partition
edges, with the Louvain community detection method. We
specifically target the costly first iteration of the sequential
algorithm. Results showed our approach scales for large graphs
giving significant performance improvements. We show that
processing graph partitions independently in the first iteration
ignoring cross partition edges does not impact to the quality
of the final result.

Our evaluation on different vertex ordering strategies sug-
gested that ordering the vertices in the descending order of
edge degree can further improve the convergence rate of the
Louvain method while giving the same final modularity.

We plan to further evaluate our approach along few di-
rections. First, the final modularity of our method is highly
dependent on the used graph partitioner. We plan to evaluate
our method on few different graph partitioners and draw some
conclusions that can help users decide on the best partitioning
method they should use for Louvain. Second, we will explore
strategies to improve the modularity in case there are commu-
nities that span across graph partitions by performing some
communication between graph partitions.

In this work we did not perform extensive experiments on
real world graphs. Even though preliminary results on real
world graphs shows our approach holds, we would like to
evaluate this approach on different classes of real world graphs
with known ground truth communities [22].
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