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1. Derivation of the Equation

Finally, we have all the tools needed to work out Einstein’s field Equation, which explains

how the metric responds to energy and momentum. The basic idea is that existence of energy

(which is equal to mass, according to E = mc2) curves space time. In deriving this equation

we will use somewhat informal arguments, which are in fact close to the way Einstein himself

was thinking, as this is (to my opinion) the most straightforward way. For those interested,

Carroll provides a second derivation starting from the action and deriving the corresponding

Equation of motion.

We begin with the realization that we would like to find an equation which supersedes

the Poisson equation for the Newtonian potential:

∇2Φ = 4πGρ , (1)

where ∇2 = δij∂i∂j is the Laplacian in space and ρ is the mass density. (The explicit form

of Φ = −GM/r is one solution of Eq. 1, for the case of a point-like mass distribution.)

What characteristics should our sought-after equation possess? The logic goes as follows.

(I) On the left-hand side of Equation 1 we have a second-order differential operator acting on

the gravitational potential, and on the right-hand side a measure of the mass distribution.

(II) A relativistic generalization should take the form of an equation between tensors.

The tensor generalization of the mass density is the energy-momentum tensor Tµν . The

gravitational potential, meanwhile, should get replaced by the metric tensor. It is thus

reasonable to guess that the new equation will have Tµν set proportional to some tensor

which is second-order in derivatives of the metric. In fact, using the Newtonian limit for the

metric g00 = −(1+ 2Φ) and T00 = ρ, we see that in this limit we are looking for an equation

that predicts

∇2h00 = −8πGT00 , (2)
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with h00 ≡ 2Φ. We do though need to generalize it to a completely tensorial equation.

The left-hand side of Eq. 2 does not obviously generalize to a tensor. The first choice

might be to act the D’Alembertian ✷ = ∇µ∇µ on the metric gµν , but this is automatically

zero by metric compatibility (≡ gµν;λ = 0).

Fortunately, there is an obvious quantity which is not zero and is constructed from

second derivatives (and first derivatives) of the metric: the Riemann tensor Rρ
σµν . It doesn’t

have the right number of indices, but we can contract it to form the Ricci tensor Rµν , which

does; furthermore, it is symmetric. It is therefore reasonable to guess that the gravitational

field equations are

Rµν = κTµν , (3)

for some constant κ. In fact, Einstein did suggest this equation at one point.

Unfortunately, this suggestion too doesn’t work, as there is a problem with energy

conservation. According to the Principle of Equivalence, the statement of energy-momentum

conservation in curved spacetime should be

∇µTµν = 0 , (4)

which would then imply

∇µRµν = 0 . (5)

This is certainly not true in an arbitrary geometry; recall that when we discussed Bianchi

identity, we got

∇µRµν =
1

2
∇νR . (6)

But our proposed field equation implies that R = κgµνTµν = κT , so taking these together

we have

∇µT = 0 . (7)

The covariant derivative of a scalar is just the partial derivative, so Equation 7 is telling us

that T is constant throughout spacetime. This is highly implausible, since T = 0 in vacuum

while T > 0 in matter. We have to try harder.

(Actually we are cheating slightly, in taking the equation ∇µTµν = 0 so seriously. If as

we said, the equivalence principle is only an approximate guide, we could imagine that there

are nonzero terms on the right-hand side involving the curvature tensor. Later we will be

more precise and argue that they are strictly zero.)

By now we are quiet close. We already know of a symmetric (0, 2) tensor, constructed

from the Ricci tensor, which is automatically conserved: the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (8)
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which always obeys ∇µGµν = 0. We are therefore led to propose

Gµν = κTµν (9)

as a field equation for the metric. This equation satisfies all of the obvious requirements; the

right-hand side is a covariant expression of the energy and momentum density in the form of a

symmetric and conserved (0, 2) tensor, while the left-hand side is a symmetric and conserved

(0, 2) tensor constructed from the metric and its first and second derivatives. Equation 9

looks very promising; it only remains to see whether it actually reproduces gravity as we

know it.

To answer this, note that contracting both sides of Equation 9 yields (in four dimensions)

gµνGµν = gµν(Rµν −
1

2
Rgµν) = R−

1

2
Rgµνgµν = κT → R = −κT , (10)

and using this we can rewrite Equation 9 as

Rµν = κ(Tµν −
1

2
Tgµν) . (11)

This is identical to equation 9, just written slightly differently.

Let us show now that this equation predicts Newtonian gravity in the weak-field, time-

independent, slowly-moving-particles limit. In this limit the rest energy ρ = T00 will be

much larger than the other terms in Tµν , so we focus on the µ = 0, ν = 0 component of

Equation 11. Recall that in the weak-field limit we have gµν = ηµν + hµν , with |hµν | ≪ 1,

and gµν = ηµν − hµν . We can thus write

g00 = −1 + h00 ,

g00 = −1− h00 .
(12)

The trace of the energy-momentum tensor, to lowest nontrivial order, is

T = g00T00 = −T00 . (13)

Plugging this into Equation 11, we get

R00 =
1

2
κT00 . (14)

This is an equation relating derivatives of the metric to the energy density. To find the

explicit expression in terms of the metric (rather than its derivatives), we need to evaluate

R00 = Rλ
0λ0. In fact we only need Ri

0i0, since R0
000 = 0. We have

Ri
0j0 = ∂jΓ

i
00 − ∂0Γ

i
j0 + Γi

jλΓ
λ
00 − Γi

0λΓ
λ
j0 . (15)
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The second term here is a time derivative, which vanishes for static fields. The third and

fourth terms are of the form (Γ)2, and since Γ is first-order in the metric perturbation these

contribute only at second order, and can be neglected. Thus, to first order we are left with

only the first term, Ri
0j0 = ∂jΓ

i
00. From this we get

R00 = Ri
0i0

= ∂i
(

1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

)

= −1

2
ηij∂i∂jh00

= −1

2
∇2h00 .

(16)

Comparing to Equation 14, we see that in the Newtonian limit, the 00 component of Equation

9 becomes

∇2h00 = −κT00 . (17)

But this is identical to Equation 2, if we set κ = 8πG.

We have thus shown that in the Newtonian limit, Equation 9 indeed retrieves the familiar

Newtonian result gravitational potential. This guess thus seem to be a good one. With the

normalization fixed by comparison with the Newtonian limit, we can present Einstein’s

field equations for general relativity:

Rµν −
1

2
Rgµν = 8πGTµν . (18)

These tell us how the curvature of spacetime reacts to the presence of energy-momentum.

Einstein, you may have heard, thought that the left-hand side was nice and geometrical,

while the right-hand side was somewhat less compelling.

Einstein’s Equation is the most fundamental equation of general relativity. The way we

introduced it here is as a generalization of Poisson’s equation for the Newtonian gravitational

potential. Its importance is that it expresses how the presence of energy (mass)

source curves space time. Pretty much what we are going to do from now until the end

of the course is to explore its consequences, and look for solutions for this equation. The

description will be split into two parts: in the first part, we will explore vacuum solutions

(Tµν = 0): in this category falls most of what we discussed so far, such as astronauts (or other

objects) moving in space in the presence of external gravitation field. In fact, you already

know one solution to the equation - this is the flat Minkowski metric. However, clearly

there are other solutions, the second most important one (after the Minkowski metric) is the

Schwarzschield solution.

In the last part of the semester, we will write Einstein’s equation for the entire universe.

Clearly, the universe is not empty, and hence the right hand side of Equation 18 is non-zero.
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We will explore solutions in this case, the most important one results in the (Friedman)-

Robertson-Walker (FRW) metric that describes the evolution of the universe as a whole.

This branch of physics is known as Cosmology.

1.1. On the complexity of Einstein’s equation

Einstein’s equations may be thought of as second-order differential equations for the

metric tensor field gµν . There are ten independent equations (since both sides are symmetric

two-index tensors), which seems to be exactly right for the ten unknown functions of the

metric components. However, the Bianchi identity ∇µGµν = 0 represents four constraints on

the functions Rµν , so there are only six truly independent equations in Equation 18. In fact

this is appropriate, since if a metric is a solution to Einstein’s equation in one coordinate

system xµ it should also be a solution in any other coordinate system xµ′

. This means

that there are four unphysical degrees of freedom in gµν (represented by the four functions

xµ′

(xµ)), and we should expect that Einstein’s equations only constrain the six coordinate-

independent degrees of freedom.

As differential equations, these are extremely complicated; the Ricci scalar and ten-

sor are contractions of the Riemann tensor, which involves derivatives and products of the

Christoffel symbols, which in turn involve the inverse metric and derivatives of the metric.

Furthermore, the energy-momentum tensor Tµν will generally involve the metric as well. The

equations are also nonlinear, so that two known solutions cannot be superposed to find a

third. It is therefore very difficult to solve Einstein’s equations in any sort of generality, and

it is usually necessary to make some simplifying assumptions. Even in vacuum, where we

set the energy-momentum tensor to zero, the resulting equations (using Equation 11)

Rµν = 0 (19)

can be very difficult to solve. Thus, in order to actually solve Einstein’s equation, often

people use the simplifying assumption that the metric has a significant degree of symmetry.

This of course simplifies considerably the equation.

2. The cosmological constant

You may have noticed that there is another extra term that could be added to the left

hand side of Einstein’s field equation (Eq. 18), consistent with local conservation of Tµν .

This is a term of the form Λgµν , for some constant Λ. Adding it to the left hand side does
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not affect local conservation, because the covariant derivative of the metric is zero. The term

Λ is called the cosmological constant. The resulting field equation (in vacuum) is

Rµν −
1

2
Rgµν + Λgµν = 0 , (20)

Einstein’s original motivation for introducing Λ was that it became clear that there were no

solutions to his equations representing a static cosmology (a universe unchanging with time

on large scales) with a nonzero matter content. Indeed, it was believed in that times that

the universe is static. If the cosmological constant is tuned just right, it is possible to find a

static solution, but it is unstable to small perturbations.

This changed a few years later, when Hubble proved that the universe is in fact ex-

panding, hence it is not static (which Einstein’s equation would predict if the cosmological

constant was not added; to this Einstein referred to as the biggest mistake of his life). This

discovery led Einstein to reject his own suggestion.

The cosmological constant, though, made a great re-appearance. In modern day, the

Λgµν term is moved to the right hand side, and one can think of it as a kind of energy-

momentum tensor, with Tµν = −Λgµν (it is automatically conserved by metric compatibil-

ity). Then Λ can be interpreted as the “energy density of the vacuum,” a source of energy

and momentum that is present even in the absence of matter fields. This interpretation is

important because quantum field theory predicts that the vacuum should have some sort of

energy and momentum. In ordinary quantum mechanics, an harmonic oscillator with fre-

quency ω and minimum classical energy E0 = 0 upon quantization has a ground state with

energy E0 =
1

2
~ω. A quantized field can be thought of as a collection of an infinite number

of harmonic oscillators, and each mode contributes to the ground state energy. The result is

of course infinite, and must be appropriately regularized, for example by introducing a cutoff

at high frequencies. The final vacuum energy, which is the regularized sum of the energies

of the ground state oscillations of all the fields of the theory, has no good reason to be zero

and in fact would be expected to have a natural scale

Λ ∼ m4
P , (21)

where the Planck mass mP is approximately 1019 GeV, or 10−5 grams. Observations of the

universe on large scales allow us to constrain the actual value of Λ, which turns out to be

smaller than the prediction of Equation 21 by at least a factor of 10120(!). This is the largest

known discrepancy between theoretical estimate and observational constraint in physics,

and convinces many people that the “cosmological constant problem” is one of the most

important unsolved problems today. On the other hand the observations do not tell us that

Λ is strictly zero (on the contrary, it isn’t), and in fact allow values that can have important
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consequences for the evolution of the universe. This mistake of Einstein’s therefore continues

to bedevil both physicists and astronomers. (Further discussion is found in QFT course).

3. Symmetries and Killing vectors

In order to search for solutions to Einstein’s equation, our best bet is thus to try and use

metric which has symmetric properties. The main problem though can be phrased something

along: “we would like to use the symmetry of the metric space in order to get information

about the metric, but how can we do that before we know the metric which tells us the

symmetry ?”. Thus, what we really need is a way to describe a symmetry in a covariant

language, namely, independent on particular coordinate system. This is done by means of

Killing vectors.1

The idea goes as follows. Consider a vector field V µ(x) defined at the vicinity of the

point x on a manifold. We define the integral curves of the vector field to be those curves

xµ(t) which solve
dxµ

dt
= V µ . (22)

Note that this familiar-looking equation is now to be interpreted in the opposite sense from

our usual way — we are given the vectors, from which we define the curves. Solutions to

Equation 22 are guaranteed to exist as long as we don’t do anything silly like run into the edge

of our manifold; any standard differential geometry text will have the proof, which amounts

to finding a clever coordinate system in which the problem reduces to the fundamental

theorem of ordinary differential equations.

The vector V µ thus defines a curve on the manifold parameterized by t. We can now

change the coordinates along this curve from xµ to xµ+ t; while this can be thought of in the

usual way of coordinate change, what we mean is that we are defining a map φ : M → M

which “move the points on the manifold, and then evaluate the coordinates of the new points”

(this is a specific example of a diffeomorphism, which is an invertible, smooth function that

maps a manifold to another).

Consider now a tensor T defined over all space. We say that the tensor is form-

invariant, or simply invariant under coordinate transformation xµ′

= xµ + tV µ (|t| ≪ 1)

if T (xµ) = T (xµ′

). The transformation is called symmetry.

The tensor that we are interested in is the metric tensor. Recall that under general

1After the mathematician Wilhelm Killing, not because it is particularly difficult!.
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coordinate transformation, at any given point xµ the tensor metric transforms as

gµ′ν′(x
′) =

∂xα

∂xµ′

∂xβ

∂xν′
gαβ(x), (23)

or alternatively

gµν(x) =
∂xα′

∂xµ

∂xβ′

∂xν
gα′β′(x′). (24)

Note a very delicate point: x and x′ are the same physical point expressed in different

coordinate systems. However, in the different frames (unprimed and primed) it corresponds

to two different point. (think of a translation: e.g., x′ = x+3. The point x = 0 and x′ = 3 is

the same physical point, but in the different frames it is described by different coordinates).

We now use the assumption that gα′β′ is form invariant under the transformation xµ′

=

xµ + tV µ, namely gα′β′(x′) = gαβ(x
′) to write

gµν(x) =
∂xα′

∂xµ

∂xβ′

∂xν
gαβ(x+ tV ) (25)

A transformation that fulfills Equation 25 (namely, for which the metric tensor is form-

invariant) is called isometry. The vector field V µ(x) which fulfills this condition is called

Killing vector field.

The condition that V µ be a Killing vector field can be found by using the assumption

|t| ≪ 1 and writing Equation 25 to first order in t,

gµν =
(

δαµ + t∂V
α

∂xµ

)

(

δβν + t∂V
β

∂xν

)(

gαβ +
∂gαβ

∂xκ tV
κ
)

0 = ∂V α

∂xµ gαν +
∂V β

∂xν gµβ +
∂gµν
∂xκ V

κ.
(26)

Using Vσ = gµσV
µ and taking the differential of (V αgαν) etc., we can write Equation 26

as
0 = ∂Vν

∂xµ + ∂Vµ

∂xν + V κ
(

∂gµν
∂xκ − ∂gκν

∂xµ − ∂gµκ
∂xν

)

= ∂Vν

∂xµ + ∂Vµ

∂xν − 2VκΓ
κ
µν

(27)

or, in a compact form,

Vµ;ν + Vν;µ = 0. (28)

Any four-vector Vµ(x) that satisfies Equation 28 is said to be a Killing vector of the metric

gµν(x).

Killing vectors have a very simple geometric interpretation: If the metric is independent

of a coordinate, say, e.g., x1 namely the transformation x1 → x1 + C leaves the metric
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unchanged, then the associated Killing vector lies along the direction in which the

metric doesn’t change. In our example, V = ∂/∂x1.

By far the most useful fact about Killing vectors is that Killing vectors imply conserved

quantities associated with the motion of free particles. If xµ(λ) is a geodesic with tangent

vector Uµ = dxµ/dλ, and Kµ is a Killing vector, then

Uν∇ν(KµU
µ) = UνUµ∇νKµ +KµU

ν∇νU
µ

= 0 ,
(29)

where the first term vanishes from Killing’s equation and the second from the fact that

xµ(λ) is a geodesic. Thus, the quantity KµU
µ is conserved along the particle’s worldline.

This can be understood physically: by definition the metric is unchanging along the direction

of the Killing vector. Loosely speaking, therefore, a free particle will not feel any “forces” in

this direction, and the component of its momentum in that direction will consequently be

conserved.

REFERENCES

[1] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General

Theory of Relativity (John Wiley & Sons), chapters 7 and 13.

[2] S. Carroll, Lecture Notes on General Relativity, part 4. Gravitation

(http://preposterousuniverse.com/grnotes/).

[3] J. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Addison-Wesley),

chapter 22 and chapter 8.


