VLSI Test Technology and Reliability

Lecture 10(2)

Semiconductor Reliability

Seyeb Khan Said Hamdioui

Computer Engineering Lab Delft University of Technology 2009-2010

Learning aims

- > Realize the importance of reliability
- Describe reliability failure mechanisms
- ➤ How to measure reliability
- > Future reliability challenges

Contents

- Concepts and definitions
- Motivations
- Semiconductor reliability
- > Failure mechanisms
- > Reliability testing
- > Future challenges and summary

Concepts and definitions

Design, manufacturing, and test

Operational life

Wearout

Quality

- ➤ Guarantee that the IC performs its function at t=0 time-independent
- Driven by defect/fault during manufacturing

Reliability

- Guarantee that the IC performs its function for $0 \ge t \ge$ lifetime
- Meeting specification over time time-dependent
- Driven by changing material properties, application profile, environment.

Reliability moves farther than Quality

Motivations

- People Life
 - > Reliable products save people in
 - Highway travelling
 - > Air travel
 - ➤ Life critical medical procedures
- Customer Satisfaction
 - > Reliability effects future business
 - > Iphone satisfied 82% of users
 - > 16% of them bought Iphone in next 6 months
- Competitiveness Advantage
 - > Reliable companies get greater market share
 - ➤ Apple got 20% additional market in US than Asus
 - ➤ Apple scored reliability 365 as compared to Asus 305

Motivation.....

- Challenger (1986)
 - Exploded after 73 seconds of liftoff
 - Failing of O-ring seal in solid rocket booster
- > Concord 4590 (2001)
 - > Reliability checks were ignored

The entire crew and passengers died

Customer satisfaction.....

- > Honda vs. Yogu
- Yogu ignored reliability
 - The car is named Yugo, because it doesn't....
- ➤ Toyota downfall 2010
 - Ignored reliability of the break pedals
 - Lost 2 billion dollars

Business is lost

Competitiveness advantage...

- Intel's 820 Chipset Delayed
 - > Focused on design but avoided reliability analysis
 - ➤ Officials reported that delay is due to reliability issues in 820 chipset

First to enter market, first to leave

Semiconductor reliability

- > IC turns on trillion of times in harsh condition during lifetime
- > A manufacture bits the company on reliability physics

Semiconductor reliability...... Failures

- > Reliability failure results in
 - Functional failure
 - > Permanent
 - > Temporary
 - > Structural damage
- > Failure sources
 - Semiconductor doping
 - > Temperature
 - > Radiation
 - Electric field
 - **>**

Reliability failure mechanisms... Classification

Device failure mechanisms

- ➤ Gate oxide degrade with the passage of time due to breaking of bonds
- Broken Si-H bonds
 - > PMOS:
 - Negative Bias Temperature Instability (NBTI)
 - > NMOS:
 - ➤ Hot carrier degradation (HCI)
- Broken Si-O bonds
 - Time Dependent Dielectric Breakdown (TDDB)

Initially

After some time

Device failures

NBTI

➤ NBTI degrades PMOS

transistor at

- > Negative gate potential
- > Elevated temperature
- The gate potential breaks Si-H bonds and create positive charges at the interface
- The charges effect the threshold voltage, disrupting device characteristics
- > Self annealing
- > After-effects
 - > Threshold voltage increases
 - > Drain current decreases

High Electric field and Temperature enhances NBTI

Device failures HCI

- HCI affects NMOS transistor
- Channel carriers get energy by impact ionization
- Most of the carriers are collected at the drains, but some are directed toward gate or substrate
- Energetic carriers breaks bonds in
 - > Gate oxide
 - > Silicon substrate
- > After-effects
 - > Threshold voltage increases
 - > Saturation current decreases
 - > Leakage current increases

High carrier velocities and short channel enhances HCI

Device failures TDDB

- TDDB affects both PMOS and NMOS transistors
- Gate dielectric suffers from short circuit
- Percolation current
 - With the passage of time charges inside gate oxide align and result in a continuous path
- Direct tunnelling
 - Charges jumps directly across the oxide layer
- > After-effects
 - Loss of gate voltage control
 - > Increase in gate current

Percolation current

Direct tunneling

High temperature, thin oxides and high field enhances TDDB

Interconnect failures..... Electromigration (EM)

- > EM affects interconnects and bondings
- ➤ Interconnect atoms migrate with electrons due to
 - > Field force
 - Momentum exchange
- >After-effects
 - > Void formation
 - > High resistance
 - > Open circuits
 - Deposition
 - > Small resistance
 - > Short circuits

EM accelerates with shrinking interconnects and current density

Interconnect failures..... Whiskers

- Whiskers affects interconnect joints
- ➤ Needle like protrusion at joint that result from
 - Diffusion effect
 - > Re-crystallization
- >After-effects
 - > Electrical shorts
 - Antenna in high frequency applications

A thin whisker about 300nm long

Whisker growth will accelerate due to ban on using lead (Pb)

Environmental failures......ESD

- ESD is common phenomena observed by rubbing two object that creates charges
- > ESD damages gate oxide due to
 - > Static charges.
 - > Switching transient
 - > EM pulses
- Sources of charges
 - Human body
 - Manufacturing machines
 - > Charged devices
- > After-effects
 - > Transistor junctions burnout
 - ➤ Metallization burnout

Discharge Model with Human Body

ESD accelerates with scaling coz sources are constant

Latchup

- Latcup affects both PMOS and NMOS
- Latchup ignites parasitic BJT's in CMOS due to
 - Supply voltage over/undershoot
 - > External charges
- The cross coupled BJTs have positive feedback that shorts the internal CMOS junctions
- > After-effects
 - > Excessive drive currents
 - > Function failure
 - > Device burnout

Cross Section of CMOS Inverter and Parasitic Thyristor Equivalent Circuit

Terminal Breakdown

Soft error

- Non-destructive change in CMOS based storage devices
- ➤ Ionization impacts a single/multiple cell/register/FF, causing change of state
- The change is
 - > Random
 - ➤ Non recurring.
 - > Single and multi-bit
- Sources of the damage are
 - > Alpha particles
 - > Neutrons
 - > Radiations.

Becoming more sever with scaling, since sources do not scale

Reliability testing

- Reliability testing
 - ➤ In-house reliability testing
 - > In-field reliability testing
- ➤ In-house reliability testing
 - A series of laboratory tests carried out under known stress conditions to evaluate the life span of a device
- Well known reliability tests
 - > Burn-in
 - Early life burn in
 - ➤ High Temperature Operational Life (HTOL)
 - Highly Accelerated Stress Test (HAST)
 - > Temperature cycle

In-house reliability testing...... Burn in

- Early life burn-in eliminates units with marginal defects
- Conditions
 - Temperature 125°C
 - ➤ Time= 48-168 hours
- High Temperature Operational Life (HTOL)
- ➤ HTOL determine high temperature lifetime of device under test
- Conditions
 - ➤ Temperature 125°C
 - > Time= 500-1000 hours

In-house reliability testing...... HAST, TCT

- ► Highly Accelerated Stress Test (HAST)
- Accelerate metal corrosion
- Conditions
 - ➤ Temperature 130°C
 - ➤ Relative humidity 85%
 - > Time 96-100 hours
- > Temperature cycle test
- To test for resistance at very high and very low temperature
- To test for cyclic stresses
- Conditions
 - ➤ Minimum of 10 cycles
 - > -55°C to 85°C
 - > -55°C to 125°C

Reliability testing Concerns

Shifting Bath tub curves limits benefits of in-house testing

Reliability testing.....

On Field Reliability testing and recoveery

Future reliability challenges

- > Ideal scaling law
 - >30% decrease in oxide thickness
 - ≥30% decrease in supply voltage
- Voltage cannot follow the scaling law
- > The non-ideal scaling will accelerate reliability failures
- > Smaller feature size
 - Narrow operation margin
 - > Leakage current
 - Direct tunneling
- > Thermal dissipation
 - ➤ Higher power density accelerate device failures
- New materials and processes
 - ➤ High-K dielectric
 - Carbon Nano Tubes (CNT)
 - > 50 new processes per generation
- Device complexity

Conclusion

- ➤ Reliability is of main concern due to
 - People lives
 - Business survival
 - Larger profit margin
- > Semiconductor reliability is more critical due
 - > High complexity
 - Based on material physics
- Current reliability threats spans over
 - > Transistors
 - > Interconnects
 - **Environment**
- > Reliability testing
 - ➤ In house testing
 - On field testing
- > Reliability future is very challenging
 - ➤ High electric field
 - ➤ High complexity
 - ➤ New materials and processes