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Preface

Identification is a powerful technique for building accurate models of complex systems from
noisy data. It consists of three basic steps, which are interrelated: (1) the design of an experi-
ment; (2) the construction of a model, black box or from physical laws; and (3) the estimation
of the model parameters from the measurements. The art of modeling lies in proper use of the
skills and specialized knowledge of experts in the field of study, who decide what approxima-
tions can be made, suggest how to manipuiate the system, reveal the important aspects, and
so on. Consequently, modeling should preferably be executed by these experts themselves.
Naturally, they require relevant tools for extracting information of interest. However, most
experts will not be familiar with identification theory and will struggle in each new situation
with the same difficulties while developing their own identification techniques, losing time
over problems already solved in the literature of identification.

This book presents a thorough description of methods to model linear dynamic time-
invariant systems by their transfer function. The relations between the transfer function and
the physical parameters of the system are very dependent upon the specific problem. Because
transfer function models are generally valid, we have restricted the scope of the book to
these alone, so as to develop and study general purpose identification techniques. This
should not be unnecessarily restricting for readers who are more interested in the physical
parameters of a system: the transfer function still contains all the information that is available
in the measurements, and it can be considered to be an intermediate model between the
measurements and the physical parameters. Also, the transfer function model is very
suitable for those readers looking for a black box description of the input-output relations
of a system. And, of course, the model is directly applicable to predict the output of the
system.

In this book, we use mainly frequency domain representations of the data. In combina-
tion with periodic excitations, this opens many possibilities to identify continuous-time
(Laplace-domain) or discrete-time (z-domain) models, if necessary extended with an arbi-
trary and unknown delay. Although we strongly advocate using periodic excitations, we also
extend the methods and models to deal with arbitrary excitations. The “classical” time-
domain identification methods that are specifically directed toward these signals are briefly
covered and encapsulated in the identification framework that we offer to the reader.

iii
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Preface

This book provides answers to questions at different levels, such as: What is identifica-
tion and why do I need it? How to measure the frequency response function of a linear dy-
namic system? How to identify a dynamic system? All these are very basic questions, directly
focused on the interests of the practitioner. Especially for these readers, we have added guide-
lines to many chapters for the user, giving explicit and clear advice on what are good choices
in order to attain a sound solution. Another important part of the material is intended for read-
ers who want to study identification techniques at a more profound level. Questions on how
to analyze and prove the properties of an identification scheme are addressed in this part. This
study is not restricted to the identification of linear dynamic systems; it is valid for a very
wide class of weighted, nonlinear least squares estimators. As such, this book provides a
great deal of information for readers who want to set up their own identification scheme to
solve their specific problem.

The structure of the book can be split into four parts: (1) collection of raw data or non-
parametric identification; (2) parametric identification; (3) comparison with existing frame-
works, guidelines, and illustrations; (4) profound development of theoretical tools.

In the first part, after the introductory chapter on identification, we discuss the collec-
tion of the raw data: How to measure a frequency response function of a system. What is the
impact of nonlinear distortions? How to recognize, qualify, and quantify nonlinear distor-
tions. How to select the excitation signals in order to get the best measurements. This non-
parametric approach to identification is discussed in detail in Chapters 2, 3, and 4.

In the second part, we focus on the identification of parametric models. Signal and
system models are presented, using a frequency and a time domain representation. The
equivalence and impact of leakage effects and initial conditions are shown. Nonparametric
and parametric noise models are introduced. The estimation of the parameters in these mod-
els is studied in detail. Weighted (nonlinear) least squares methods, maximum likelihood, and
subspace methods are discussed and analyzed. First, we assume that the disturbing noise
model is known; next, the methods are extended to the more realistic situation of unknown
noise models that have to be extracted from the data, together with the system model. Special
attention is paid to the numerical conditioning of the sets of equations to be solved. Taking
some precautions, very high order systems, with 100 poles and zeros or even more, can be
identified. Finally, validation tools to verify the quality of the models are explained. The
presence of unmodeled dynamics or nonlinear distortions is detected, and simple rules to
guide even the inexperienced user to a good solution are given. This material is presented in
Chapters 5t0 9.

The third part begins with an extensive comparison of what is classically called time
and frequency domain identification. It is shown that, basically, both approaches are equivalent,
but some questions are more naturally answered in one domain instead of the other. The most
important question is periodic excitations versus nonperiodic or arbitrary excitations. Next,
we provide the practitioner with detailed guidelines to help avoid pitfalls from the very begin-
ning of the process (collecting the raw data), over the selection of appropriate identification
methods until the model validation. Finally, we illustrate many of the developed ideas in a
wide variety of examples from different fields. This part covers Chapters 10, 11, and 12.

The last part of the book is intended for readers who want to acquire a thorough under-
standing of the material or those who want to develop their own identification scheme. Not
only do we give an introduction to the stochastic concepts we use, but we also show, in a
structured approach, how to prove the properties of an estimator. This avoids the need for
each freshman in this field to find out, time and again, the basic steps to solve such a problem.
Starting from this background, a general but detailed framework is set up to analyze the prop-
erties of nonlinear least squares estimators with deterministic and stochastic weighting.



Preface XXV

For the special and quite important class of semilinear models, it is possible to make this
analysis in much more detail. This material is covered in Chapters 13 to 18.

It is possible to extract a number of undergraduate courses from this book. In most of
the chapters that can be used in these courses, we added exercises that introduce the students
to the typical problems that appear when applying the methods to solve practical problems.

A first, quite general undergraduate course subject is the measurement of frequency re-
sponse functions of dynamic systems, as discussed in Chapters 2 to 4.

A second possibility is a first introduction to the identification of linear dynamic sys-
tems. Such an undergraduate course should include Chapter 1 and some selected parts of
Chapters 5, 6, 7, 8, and 9.

A last course, at the graduate level, is an advanced course on identification based on the
methods that are explained in Chapters 15, 16, 17, and 18. This gives an excellent introduc-
tion for students who want to develop their own algorithms.

A complete MATLAB® toolbox, which includes the techniques developed in this book,
is available. It can be used with a graphical user interface, avoiding most problems and nasty
questions for the inexperienced user. At the basic level, this toolbox produces almost autono-
mously a good model. At the intermediate or advanced level, the user obtains access to some
of the parameters in order to optimize the operation of the toolbox to solve dedicated model-
ing problem. Finally, for those who want to use it as a research tool, there is also a command
level that gives full access to all the parameters that can be set to optimize and influence the
behavior of the algorithms. More information on this package can be obtained by sending an
E-mail to one of the authors: rik.pintelon@vub.ac.be or johan.schoukens@vub.ac.be

Rik Pintelon
Department of Electrical Engineering

Vrije Universiteit Brussel
BELGIUM

Johan Schoukens

Department of Electrical Engineering
Vrije Universiteit Brussel

BELGIUM
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