

This page intentionally left blank

Applied Numerical Methods
with MATLAB® for Engineers and Scientists

Third Edition

Steven C. Chapra
Berger Chair in Computing and Engineering

Tufts University

TM

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page i

APPLIED NUMERICAL METHODS WITH MATLAB FOR ENGINEERS AND SCIENTISTS, THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Previous editions
© 2008 and 2005. No part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3 2 1

ISBN 978-0-07-340110-2
MHID 0-07-340110-2

TM

Vice President & Editor-in-Chief: Marty Lange
Vice President EDP/Central Publishing Services:

Kimberly Meriwether David
Publisher: Raghothaman Srinivasan
Sponsoring Editor: Peter E. Massar
Marketing Manager: Curt Reynolds
Development Editor: Lorraine Buczek
Project Manager: Melissa M. Leick

Design Coordinator: Brenda A. Rolwes
Cover Design: Studio Montage, St. Louis, Missouri
Cover Credit: © Brand X/Jupiter Images RF
Buyer: Kara Kudronowicz
Media Project Manager: Balaji Sundararaman
Compositor: MPS Limited, a Macmillan Company
Typeface: 10/12 Times
Printer: R.R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of
additional trademarks. The MathWorks Publisher Logo identifies books that contain “MATLAB®” content. Used with permission.
The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion “MATLAB®”
software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular use of the
“MATLAB®” software or related products.

For MATLAB® and Simulink product information, or information on other related products, please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Library of Congress Cataloging-in-Publication Data

Chapra, Steven C.
Applied numerical methods with MATLAB for engineers and scientists / Steven C. Chapra. — 3rd ed.

p. cm.
ISBN 978-0-07-340110-2 (alk. paper)
1. Numerical analysis—Data processing—Textbooks. 2. MATLAB—Textbooks. I. Title.

QA297.C4185 2012
518–dc22 2010044481

www.mhhe.com

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page ii

www.mathworks.com/trademarks
www.mathworks.com
www.mhhe.com

To

My brothers,

John and Bob Chapra

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page iii

ABOUT THE AUTHOR

Steve Chapra teaches in the Civil and Environmental Engineering Department at Tufts
University, where he holds the Louis Berger Chair in Computing and Engineering. His other
books include Numerical Methods for Engineers and Surface Water-Quality Modeling.

Steve received engineering degrees from Manhattan College and the University of
Michigan. Before joining the faculty at Tufts, he worked for the Environmental Protection
Agency and the National Oceanic and Atmospheric Administration, and taught at Texas
A&M University and the University of Colorado. His general research interests focus on
surface water-quality modeling and advanced computer applications in environmental
engineering.

He has received a number of awards for his scholarly contributions, including the
Rudolph Hering Medal, the Meriam/Wiley Distinguished Author Award, and the Chandler-
Misener Award. He has also been recognized as the outstanding teacher among the engi-
neering faculties at both Texas A&M University (1986 Tenneco Award) and the University
of Colorado (1992 Hutchinson Award).

Steve was originally drawn to environmental engineering and science because of his
love of the outdoors. He is an avid fly fisherman and hiker. An unapologetic nerd, his love
affair with computing began when he was first introduced to Fortran programming as an
undergraduate in 1966. Today, he feels truly blessed to be able to meld his love of mathe-
matics, science, and computing with his passion for the natural environment. In addition,
he gets the bonus of sharing it with others through his teaching and writing!

Beyond his professional interests, he enjoys art, music (especially classical music,
jazz, and bluegrass), and reading history. Despite unfounded rumors to the contrary, he
never has, and never will, voluntarily bungee jump or sky dive.

If you would like to contact Steve, or learn more about him, visit his home page at
http://engineering.tufts.edu/cee/people/chapra/ or e-mail him at steven.chapra@tufts.edu.

iv

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page iv

http://engineering.tufts.edu/cee/people/chapra/

v

CONTENTS

About the Author iv

Preface xiii

PART ONE Modeling, Computers, and Error Analysis 1

1.1 Motivation 1
1.2 Part Organization 2

CHAPTER 1

Mathematical Modeling, Numerical Methods,
and Problem Solving 4

1.1 A Simple Mathematical Model 5
1.2 Conservation Laws in Engineering and Science 12
1.3 Numerical Methods Covered in This Book 13
1.4 Case Study: It’s a Real Drag 17
Problems 20

CHAPTER 2

MATLAB Fundamentals 24

2.1 The MATLAB Environment 25
2.2 Assignment 26
2.3 Mathematical Operations 32
2.4 Use of Built-In Functions 35
2.5 Graphics 38
2.6 Other Resources 40
2.7 Case Study: Exploratory Data Analysis 42
Problems 44

CHAPTER 3

Programming with MATLAB 48

3.1 M-Files 49
3.2 Input-Output 53

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page v

3.3 Structured Programming 57
3.4 Nesting and Indentation 71
3.5 Passing Functions to M-Files 74
3.6 Case Study: Bungee Jumper Velocity 79
Problems 83

CHAPTER 4

Roundoff and Truncation Errors 88

4.1 Errors 89
4.2 Roundoff Errors 95
4.3 Truncation Errors 103
4.4 Total Numerical Error 114
4.5 Blunders, Model Errors, and Data Uncertainty 119
Problems 120

PART TWO Roots and Optimization 123

2.1 Overview 123
2.2 Part Organization 124

CHAPTER 5

Roots: Bracketing Methods 126

5.1 Roots in Engineering and Science 127
5.2 Graphical Methods 128
5.3 Bracketing Methods and Initial Guesses 129
5.4 Bisection 134
5.5 False Position 140
5.6 Case Study: Greenhouse Gases and Rainwater 144
Problems 147

CHAPTER 6

Roots: Open Methods 151

6.1 Simple Fixed-Point Iteration 152
6.2 Newton-Raphson 156
6.3 Secant Methods 161
6.4 Brent’s Method 163
6.5 MATLAB Function: fzero 168
6.6 Polynomials 170
6.7 Case Study: Pipe Friction 173
Problems 178

vi CONTENTS

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page vi

CHAPTER 7

Optimization 182

7.1 Introduction and Background 183
7.2 One-Dimensional Optimization 186
7.3 Multidimensional Optimization 195
7.4 Case Study: Equilibrium and Minimum Potential Energy 197
Problems 199

PART THREE Linear Systems 205

3.1 Overview 205
3.2 Part Organization 207

CHAPTER 8

Linear Algebraic Equations and Matrices 209

8.1 Matrix Algebra Overview 211
8.2 Solving Linear Algebraic Equations with MATLAB 220
8.3 Case Study: Currents and Voltages in Circuits 222
Problems 226

CHAPTER 9

Gauss Elimination 229

9.1 Solving Small Numbers of Equations 230
9.2 Naive Gauss Elimination 235
9.3 Pivoting 242
9.4 Tridiagonal Systems 245
9.5 Case Study: Model of a Heated Rod 247
Problems 251

CHAPTER 10

LU Factorization 254

10.1 Overview of LU Factorization 255
10.2 Gauss Elimination as LU Factorization 256
10.3 Cholesky Factorization 263
10.4 MATLAB Left Division 266
Problems 267

CONTENTS vii

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page vii

CHAPTER 11

Matrix Inverse and Condition 268

11.1 The Matrix Inverse 268
11.2 Error Analysis and System Condition 272
11.3 Case Study: Indoor Air Pollution 277
Problems 280

CHAPTER 12

Iterative Methods 284

12.1 Linear Systems: Gauss-Seidel 284
12.2 Nonlinear Systems 291
12.3 Case Study: Chemical Reactions 298
Problems 300

CHAPTER 13

Eigenvalues 303

13.1 Mathematical Background 305
13.2 Physical Background 308
13.3 The Power Method 310
13.4 MATLAB Function: eig 313
13.5 Case Study: Eigenvalues and Earthquakes 314
Problems 317

PART FOUR Curve Fitting 321

4.1 Overview 321
4.2 Part Organization 323

CHAPTER 14

Linear Regression 324

14.1 Statistics Review 326
14.2 Random Numbers and Simulation 331
14.3 Linear Least-Squares Regression 336
14.4 Linearization of Nonlinear Relationships 344
14.5 Computer Applications 348
14.6 Case Study: Enzyme Kinetics 351
Problems 356

viii CONTENTS

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page viii

CHAPTER 15

General Linear Least-Squares and Nonlinear Regression 361

15.1 Polynomial Regression 361
15.2 Multiple Linear Regression 365
15.3 General Linear Least Squares 367
15.4 QR Factorization and the Backslash Operator 370
15.5 Nonlinear Regression 371
15.6 Case Study: Fitting Experimental Data 373
Problems 375

CHAPTER 16

Fourier Analysis 380

16.1 Curve Fitting with Sinusoidal Functions 381
16.2 Continuous Fourier Series 387
16.3 Frequency and Time Domains 390
16.4 Fourier Integral and Transform 391
16.5 Discrete Fourier Transform (DFT) 394
16.6 The Power Spectrum 399
16.7 Case Study: Sunspots 401
Problems 402

CHAPTER 17

Polynomial Interpolation 405

17.1 Introduction to Interpolation 406
17.2 Newton Interpolating Polynomial 409
17.3 Lagrange Interpolating Polynomial 417
17.4 Inverse Interpolation 420
17.5 Extrapolation and Oscillations 421
Problems 425

CHAPTER 18

Splines and Piecewise Interpolation 429

18.1 Introduction to Splines 429
18.2 Linear Splines 431
18.3 Quadratic Splines 435
18.4 Cubic Splines 438
18.5 Piecewise Interpolation in MATLAB 444
18.6 Multidimensional Interpolation 449
18.7 Case Study: Heat Transfer 452
Problems 456

CONTENTS ix

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page ix

PART FIVE Integration and Differentiation 459

5.1 Overview 459
5.2 Part Organization 460

CHAPTER 19

Numerical Integration Formulas 462

19.1 Introduction and Background 463
19.2 Newton-Cotes Formulas 466
19.3 The Trapezoidal Rule 468
19.4 Simpson’s Rules 475
19.5 Higher-Order Newton-Cotes Formulas 481
19.6 Integration with Unequal Segments 482
19.7 Open Methods 486
19.8 Multiple Integrals 486
19.9 Case Study: Computing Work with Numerical Integration 489
Problems 492

CHAPTER 20

Numerical Integration of Functions 497

20.1 Introduction 497
20.2 Romberg Integration 498
20.3 Gauss Quadrature 503
20.4 Adaptive Quadrature 510
20.5 Case Study: Root-Mean-Square Current 514
Problems 517

CHAPTER 21

Numerical Differentiation 521

21.1 Introduction and Background 522
21.2 High-Accuracy Differentiation Formulas 525
21.3 Richardson Extrapolation 528
21.4 Derivatives of Unequally Spaced Data 530
21.5 Derivatives and Integrals for Data with Errors 531
21.6 Partial Derivatives 532
21.7 Numerical Differentiation with MATLAB 533
21.8 Case Study: Visualizing Fields 538
Problems 540

x CONTENTS

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page x

PART SIX Ordinary Differential Equations 547

6.1 Overview 547
6.2 Part Organization 551

CHAPTER 22

Initial-Value Problems 553

22.1 Overview 555
22.2 Euler’s Method 555
22.3 Improvements of Euler’s Method 561
22.4 Runge-Kutta Methods 567
22.5 Systems of Equations 572
22.6 Case Study: Predator-Prey Models and Chaos 578
Problems 583

CHAPTER 23

Adaptive Methods and Stiff Systems 588

23.1 Adaptive Runge-Kutta Methods 588
23.2 Multistep Methods 597
23.3 Stiffness 601
23.4 MATLAB Application: Bungee Jumper with Cord 607
23.5 Case Study: Pliny’s Intermittent Fountain 608
Problems 613

CHAPTER 24

Boundary-Value Problems 616

24.1 Introduction and Background 617
24.2 The Shooting Method 621
24.3 Finite-Difference Methods 628
Problems 635

APPENDIX A: MATLAB BUILT-IN FUNCTIONS 641

APPENDIX B: MATLAB M-FILE FUNCTIONS 643

BIBLIOGRAPHY 644

INDEX 646

CONTENTS xi

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page xi

McGraw-Hill Digital Offerings Include:

McGraw-Hill Create™
Craft your teaching resources to match the way you teach! With McGraw-Hill Create™,
www.mcgrawhillcreate.com, you can easily rearrange chapters, combine material from
other content sources, and quickly upload content you have written like your course
syllabus or teaching notes. Find the content you need in Create by searching through thou-
sands of leading McGraw-Hill textbooks. Arrange your book to fit your teaching style.
Create even allows you to personalize your book’s appearance by selecting the cover and
adding your name, school, and course information. Order a Create book and you’ll receive
a complimentary print review copy in 3–5 business days or a complimentary electronic
review copy (eComp) via email in minutes. Go to www.mcgrawhillcreate.com today and
register to experience how McGraw-Hill Create™ empowers you to teach your students
your way.

McGraw-Hill Higher Education and Blackboard Have Teamed Up

Blackboard, the Web-based course-management system, has partnered with McGraw-Hill
to better allow students and faculty to use online materials and activities to complement
face-to-face teaching. Blackboard features exciting social learning and teaching tools that
foster more logical, visually impactful and active learning opportunities for students.
You’ll transform your closed-door classrooms into communities where students remain
connected to their educational experience 24 hours a day.

This partnership allows you and your students access to McGraw-Hill’s Create™ right
from within your Blackboard course—all with one single sign-on. McGraw-Hill and
Blackboard can now offer you easy access to industry leading technology and content,
whether your campus hosts it, or we do. Be sure to ask your local McGraw-Hill represen-
tative for details.

Electronic Textbook Options
This text is offered through CourseSmart for both instructors and students. CourseSmart is
an online resource where students can purchase the complete text online at almost half the
cost of a traditional text. Purchasing the eTextbook allows students to take advantage of
CourseSmart’s web tools for learning, which include full text search, notes and highlight-
ing, and email tools for sharing notes between classmates. To learn more about CourseSmart
options, contact your sales representative or visit www.CourseSmart.com.

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page xii

www.mcgrawhillcreate.com
www.mcgrawhillcreate.com
www.CourseSmart.com

PREFACE

This book is designed to support a one-semester course in numerical methods. It has been
written for students who want to learn and apply numerical methods in order to solve prob-
lems in engineering and science. As such, the methods are motivated by problems rather
than by mathematics. That said, sufficient theory is provided so that students come away
with insight into the techniques and their shortcomings.

MATLAB® provides a great environment for such a course. Although other environ-
ments (e.g., Excel/VBA, Mathcad) or languages (e.g., Fortran 90, C++) could have
been chosen, MATLAB presently offers a nice combination of handy programming fea-
tures with powerful built-in numerical capabilities. On the one hand, its M-file program-
ming environment allows students to implement moderately complicated algorithms in a
structured and coherent fashion. On the other hand, its built-in, numerical capabilities
empower students to solve more difficult problems without trying to “reinvent the
wheel.”

The basic content, organization, and pedagogy of the second edition are essentially
preserved in the third edition. In particular, the conversational writing style is intentionally
maintained in order to make the book easier to read. This book tries to speak directly to the
reader and is designed in part to be a tool for self-teaching.

That said, this edition differs from the past edition in three major ways: (1) two new
chapters, (2) several new sections, and (3) revised homework problems.

1. New Chapters. As shown in Fig. P.1, I have developed two new chapters for this edi-
tion. Their inclusion was primarily motivated by my classroom experience. That is,
they are included because they work well in the undergraduate numerical methods
course I teach at Tufts. The students in that class typically represent all areas of engi-
neering and range from sophomores to seniors with the majority at the junior level. In
addition, we typically draw a few math and science majors. The two new chapters are:
• Eigenvalues. When I first developed this book, I considered that eigenvalues might

be deemed an “advanced” topic. I therefore presented the material on this topic at
the end of the semester and covered it in the book as an appendix. This sequencing
had the ancillary advantage that the subject could be partly motivated by the role of
eigenvalues in the solution of linear systems of ODEs. In recent years, I have begun

xiii

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page xiii

FIGURE P.1
An outline of this edition. The shaded areas represent new material. In addition, several of the original chapters have been supplemented with
new topics.

x
iv

PART ONE PART TWO PART THREE PART FOUR PART FIVE PART SIX
Modeling, Computers, Roots and Linear Systems Curve Fitting Integration and Ordinary Differential
and Error Analysis Optimization Differentiation Equations

CHAPTER 1 CHAPTER 5 CHAPTER 8 CHAPTER 14 CHAPTER 19 CHAPTER 22
Mathematical Roots: Bracketing Linear Algebraic Linear Regression Numerical Integration Initial-Value
Modeling, Numerical Methods Equations Formulas Problems
Methods, and Problem and Matrices
Solving

CHAPTER 2 CHAPTER 6 CHAPTER 9 CHAPTER 15 CHAPTER 20 CHAPTER 23
MATLAB Roots: Open Gauss Elimination General Linear Numerical lntegration Adaptive Methods
Fundamentals Methods Least-Squares and of Functions and Stiff Systems

Nonlinear Regression

CHAPTER 3 CHAPTER 7 CHAPTER 10 CHAPTER 16 CHAPTER 21 CHAPTER 24
Programming Optimization LU Factorization Fourier Analysis Numerical Boundary-Value
with MATLAB Differentiation Problems

CHAPTER 4 CHAPTER 11 CHAPTER 17
Roundoff and Matrix Inverse Polynomial
Truncation Errors and Condition Interpolation

CHAPTER 12 CHAPTER 18
Iterative Methods Splines and Piecewise

Interpolation

CHAPTER 13
Eigenvalues

c
h
a
0
1
1
0
2
_
f
m
_
i
-
x
v
i
i
i
.
q
x
d

1
2
/
1
7
/
1
0

8
:
5
8

A
M

P
a
g
e

x
i
v

PREFACE xv

to move this material up to what I consider to be its more natural mathematical po-
sition at the end of the section on linear algebraic equations. By stressing applica-
tions (in particular, the use of eigenvalues to study vibrations), I have found that
students respond very positively to the subject in this position. In addition, it allows
me to return to the topic in subsequent chapters which serves to enhance the
students’ appreciation of the topic.

• Fourier Analysis. In past years, if time permitted, I also usually presented a lecture
at the end of the semester on Fourier analysis. Over the past two years, I have begun
presenting this material at its more natural position just after the topic of linear least
squares. I motivate the subject matter by using the linear least-squares approach to
fit sinusoids to data. Then, by stressing applications (again vibrations), I have found
that the students readily absorb the topic and appreciate its value in engineering and
science.

It should be noted that both chapters are written in a modular fashion and could
be skipped without detriment to the course’s pedagogical arc. Therefore, if you
choose, you can either omit them from your course or perhaps move them to the
end of the semester. In any event, I would not have included them in the current
edition if they did not represent an enhancement within my current experience in
the classroom. In particular, based on my teaching evaluations, I find that the
stronger, more motivated students actually see these topics as highlights. This is
particularly true because MATLAB greatly facilitates their application and inter-
pretation.

2. New Content. Beyond the new chapters, I have included new and enhanced sections on a
number of topics. The primary additions include sections on animation (Chap. 3), Brent’s
method for root location (Chap. 6), LU factorization with pivoting (Chap. 8), ran-
dom numbers and Monte Carlo simulation (Chap. 14), adaptive quadrature (Chap. 20),
and event termination of ODEs (Chap. 23).

3. New Homework Problems. Most of the end-of-chapter problems have been modi-
fied, and a variety of new problems have been added. In particular, an effort has been
made to include several new problems for each chapter that are more challenging and
difficult than the problems in the previous edition.

Aside from the new material and problems, the third edition is very similar to the second.
In particular, I have endeavored to maintain most of the features contributing to its pedagog-
ical effectiveness including extensive use of worked examples and engineering and scien-
tific applications. As with the previous edition, I have made a concerted effort to make this
book as “student-friendly” as possible. Thus, I’ve tried to keep my explanations straightfor-
ward and practical.

Although my primary intent is to empower students by providing them with a sound
introduction to numerical problem solving, I have the ancillary objective of making this
introduction exciting and pleasurable. I believe that motivated students who enjoy engi-
neering and science, problem solving, mathematics—and yes—programming, will ulti-
mately make better professionals. If my book fosters enthusiasm and appreciation for these
subjects, I will consider the effort a success.

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page xv

Acknowledgments. Several members of the McGraw-Hill team have contributed to
this project. Special thanks are due to Lorraine Buczek, and Bill Stenquist, and Melissa
Leick for their encouragement, support, and direction. Ruma Khurana of MPS Limited, a
Macmillan Company also did an outstanding job in the book’s final production phase. Last,
but not least, Beatrice Sussman once again demonstrated why she is the best copyeditor in
the business.

During the course of this project, the folks at The MathWorks, Inc., have truly demon-
strated their overall excellence as well as their strong commitment to engineering and
science education. In particular, Courtney Esposito and Naomi Fernandes of The Math-
Works, Inc., Book Program have been especially helpful.

The generosity of the Berger family, and in particular Fred Berger, has provided me
with the opportunity to work on creative projects such as this book dealing with computing
and engineering. In addition, my colleagues in the School of Engineering at Tufts, notably
Masoud Sanayei, Lew Edgers, Vince Manno, Luis Dorfmann, Rob White, Linda Abriola,
and Laurie Baise, have been very supportive and helpful.

Significant suggestions were also given by a number of colleagues. In particular, Dave
Clough (University of Colorado–Boulder), and Mike Gustafson (Duke University) pro-
vided valuable ideas and suggestions. In addition, a number of reviewers provided useful
feedback and advice including Karen Dow Ambtman (University of Alberta), Jalal Behzadi
(Shahid Chamran University), Eric Cochran (Iowa State University), Frederic Gibou (Uni-
versity of California at Santa Barbara), Jane Grande-Allen (Rice University), Raphael
Haftka (University of Florida), Scott Hendricks (Virginia Tech University), Ming Huang
(University of San Diego), Oleg Igoshin (Rice University), David Jack (Baylor Univer-
sity), Clare McCabe (Vanderbilt University), Eckart Meiburg (University of California at
Santa Barbara), Luis Ricardez (University of Waterloo), James Rottman (University of
California, San Diego), Bingjing Su (University of Cincinnati), Chin-An Tan (Wayne State
University), Joseph Tipton (The University of Evansville), Marion W. Vance (Arizona
State University), Jonathan Vande Geest (University of Arizona), and Leah J. Walker
(Arkansas State University).

It should be stressed that although I received useful advice from the aforementioned
individuals, I am responsible for any inaccuracies or mistakes you may find in this book.
Please contact me via e-mail if you should detect any errors.

Finally, I want to thank my family, and in particular my wife, Cynthia, for the love,
patience, and support they have provided through the time I’ve spent on this project.

Steven C. Chapra
Tufts University

Medford, Massachusetts
steven.chapra@tufts.edu

xvi PREFACE

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page xvi

PEDAGOGICAL TOOLS

Theory Presented as It Informs Key Concepts. The text is intended for Numerical Meth-
ods users, not developers. Therefore, theory is not included for “theory’s sake,” for example no
proofs. Theory is included as it informs key concepts such as the Taylor series, convergence,
condition, etc. Hence, the student is shown how the theory connects with practical issues in
problem solving.

Introductory MATLAB Material. The text includes two introductory chapters on how to
use MATLAB. Chapter 2 shows students how to perform computations and create graphs
in MATLAB’s standard command mode. Chapter 3 provides a primer on developing
numerical programs via MATLAB M-file functions. Thus, the text provides students with
the means to develop their own numerical algorithms as well as to tap into MATLAB’s
powerful built-in routines.

Algorithms Presented Using MATLAB M-files. Instead of using pseudocode, this book
presents algorithms as well-structured MATLAB M-files. Aside from being useful com-
puter programs, these provide students with models for their own M-files that they will
develop as homework exercises.

Worked Examples and Case Studies. Extensive worked examples are laid out in detail
so that students can clearly follow the steps in each numerical computation. The case stud-
ies consist of engineering and science applications which are more complex and richer than
the worked examples. They are placed at the ends of selected chapters with the intention of
(1) illustrating the nuances of the methods, and (2) showing more realistically how the
methods along with MATLAB are applied for problem solving.

Problem Sets. The text includes a wide variety of problems. Many are drawn from engi-
neering and scientific disciplines. Others are used to illustrate numerical techniques and
theoretical concepts. Problems include those that can be solved with a pocket calculator as
well as others that require computer solution with MATLAB.

Useful Appendices and Indexes. Appendix A contains MATLAB commands, and
Appendix B contains M-file functions.

Textbook Website. A text-specific website is available at www.mhhe.com/chapra. Re-
sources include the text images in PowerPoint, M-files, and additional MATLAB resources.

PREFACE xvii

cha01102_fm_i-xviii.qxd 12/17/10 8:58 AM Page xvii

www.mhhe.com/chapra

This page intentionally left blank

11

PART ONE

Modeling, Computers,
and Error Analysis

1.1 MOTIVATION

What are numerical methods and why should you study them?
Numerical methods are techniques by which mathematical problems are formulated so

that they can be solved with arithmetic and logical operations. Because digital computers
excel at performing such operations, numerical methods are sometimes referred to as com-
puter mathematics.

In the pre–computer era, the time and drudgery of implementing such calculations
seriously limited their practical use. However, with the advent of fast, inexpensive digital
computers, the role of numerical methods in engineering and scientific problem solving
has exploded. Because they figure so prominently in much of our work, I believe that nu-
merical methods should be a part of every engineer’s and scientist’s basic education. Just
as we all must have solid foundations in the other areas of mathematics and science, we
should also have a fundamental understanding of numerical methods. In particular, we should

have a solid appreciation of both their
capabilities and their limitations.

Beyond contributing to your overall
education, there are several additional
reasons why you should study numerical
methods:

1. Numerical methods greatly expand the
types of problems you can address. They
are capable of handling large systems of
equations, nonlinearities, and compli-
cated geometries that are not uncommon
in engineering and science and that are
often impossible to solve analytically
with standard calculus. As such, they
greatly enhance your problem-solving
skills.

2. Numerical methods allow you to use
“canned” software with insight. During

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 1

your career, you will invariably have occasion to use commercially available prepack-
aged computer programs that involve numerical methods. The intelligent use of these
programs is greatly enhanced by an understanding of the basic theory underlying the
methods. In the absence of such understanding, you will be left to treat such packages
as “black boxes” with little critical insight into their inner workings or the validity of
the results they produce.

3. Many problems cannot be approached using canned programs. If you are conversant
with numerical methods, and are adept at computer programming, you can design
your own programs to solve problems without having to buy or commission expensive
software.

4. Numerical methods are an efficient vehicle for learning to use computers. Because nu-
merical methods are expressly designed for computer implementation, they are ideal for
illustrating the computer’s powers and limitations. When you successfully implement
numerical methods on a computer, and then apply them to solve otherwise intractable
problems, you will be provided with a dramatic demonstration of how computers can
serve your professional development. At the same time, you will also learn to acknowl-
edge and control the errors of approximation that are part and parcel of large-scale
numerical calculations.

5. Numerical methods provide a vehicle for you to reinforce your understanding of math-
ematics. Because one function of numerical methods is to reduce higher mathematics
to basic arithmetic operations, they get at the “nuts and bolts” of some otherwise
obscure topics. Enhanced understanding and insight can result from this alternative
perspective.

With these reasons as motivation, we can now set out to understand how numerical
methods and digital computers work in tandem to generate reliable solutions to mathemat-
ical problems. The remainder of this book is devoted to this task.

1.2 PART ORGANIZATION

This book is divided into six parts. The latter five parts focus on the major areas of numer-
ical methods. Although it might be tempting to jump right into this material, Part One con-
sists of four chapters dealing with essential background material.

Chapter 1 provides a concrete example of how a numerical method can be employed
to solve a real problem. To do this, we develop a mathematical model of a free-falling
bungee jumper. The model, which is based on Newton’s second law, results in an ordinary
differential equation. After first using calculus to develop a closed-form solution, we then
show how a comparable solution can be generated with a simple numerical method. We
end the chapter with an overview of the major areas of numerical methods that we cover in
Parts Two through Six.

Chapters 2 and 3 provide an introduction to the MATLAB® software environment.
Chapter 2 deals with the standard way of operating MATLAB by entering commands one
at a time in the so-called calculator, or command, mode. This interactive mode provides a
straightforward means to orient you to the environment and illustrates how it is used for
common operations such as performing calculations and creating plots.

2 PART 1 MODELING, COMPUTERS, AND ERROR ANALYSIS

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 2

Chapter 3 shows how MATLAB’s programming mode provides a vehicle for assem-
bling individual commands into algorithms. Thus, our intent is to illustrate how MATLAB
serves as a convenient programming environment to develop your own software.

Chapter 4 deals with the important topic of error analysis, which must be understood
for the effective use of numerical methods. The first part of the chapter focuses on the
roundoff errors that result because digital computers cannot represent some quantities
exactly. The latter part addresses truncation errors that arise from using an approximation
in place of an exact mathematical procedure.

1.2 PART ORGANIZATION 3

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 3

1
Mathematical Modeling,
Numerical Methods,
and Problem Solving

CHAPTER OBJECTIVES
The primary objective of this chapter is to provide you with a concrete idea of what
numerical methods are and how they relate to engineering and scientific problem
solving. Specific objectives and topics covered are

• Learning how mathematical models can be formulated on the basis of scientific
principles to simulate the behavior of a simple physical system.

• Understanding how numerical methods afford a means to generate solutions in a
manner that can be implemented on a digital computer.

• Understanding the different types of conservation laws that lie beneath the models
used in the various engineering disciplines and appreciating the difference
between steady-state and dynamic solutions of these models.

• Learning about the different types of numerical methods we will cover in this
book.

4

YOU’VE GOT A PROBLEM

S uppose that a bungee-jumping company hires you. You’re given the task of predict-
ing the velocity of a jumper (Fig. 1.1) as a function of time during the free-fall part
of the jump. This information will be used as part of a larger analysis to determine the

length and required strength of the bungee cord for jumpers of different mass.
You know from your studies of physics that the acceleration should be equal to the ratio

of the force to the mass (Newton’s second law). Based on this insight and your knowledge

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 4

of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time,

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4).

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).

1.1 A SIMPLE MATHEMATICAL MODEL 5

Upward force
due to air
resistance

Downward
force due
to gravity

FIGURE 1.1
Forces acting on a
free-falling bungee
jumper.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 5

The second law can be recast in the format of Eq. (1.1) by merely dividing both sides
by m to give

a = F

m
(1.3)

where a is the dependent variable reflecting the system’s behavior, F is the forcing func-
tion, and m is a parameter. Note that for this simple case there is no independent variable
because we are not yet predicting how acceleration varies in time or space.

Equation (1.3) has a number of characteristics that are typical of mathematical models
of the physical world.

• It describes a natural process or system in mathematical terms.
• It represents an idealization and simplification of reality. That is, the model ignores neg-

ligible details of the natural process and focuses on its essential manifestations. Thus,
the second law does not include the effects of relativity that are of minimal importance
when applied to objects and forces that interact on or about the earth’s surface at veloc-
ities and on scales visible to humans.

• Finally, it yields reproducible results and, consequently, can be used for predictive pur-
poses. For example, if the force on an object and its mass are known, Eq. (1.3) can be
used to compute acceleration.

Because of its simple algebraic form, the solution of Eq. (1.2) was obtained easily.
However, other mathematical models of physical phenomena may be much more complex,
and either cannot be solved exactly or require more sophisticated mathematical techniques
than simple algebra for their solution. To illustrate a more complex model of this kind,
Newton’s second law can be used to determine the terminal velocity of a free-falling body
near the earth’s surface. Our falling body will be a bungee jumper (Fig. 1.1). For this case,
a model can be derived by expressing the acceleration as the time rate of change of the
velocity (dv/dt) and substituting it into Eq. (1.3) to yield

dv

dt
= F

m
(1.4)

where v is velocity (in meters per second). Thus, the rate of change of the velocity is equal
to the net force acting on the body normalized to its mass. If the net force is positive, the
object will accelerate. If it is negative, the object will decelerate. If the net force is zero, the
object’s velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters.
For a body falling within the vicinity of the earth, the net force is composed of two oppos-
ing forces: the downward pull of gravity FD and the upward force of air resistance FU

(Fig. 1.1):

F = FD + FU (1.5)

If force in the downward direction is assigned a positive sign, the second law can be
used to formulate the force due to gravity as

FD = mg (1.6)

where g is the acceleration due to gravity (9.81 m/s2).

6 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 6

Air resistance can be formulated in a variety of ways. Knowledge from the science of
fluid mechanics suggests that a good first approximation would be to assume that it is pro-
portional to the square of the velocity,

FU = −cdv
2 (1.7)

where cd is a proportionality constant called the lumped drag coefficient (kg/m). Thus, the
greater the fall velocity, the greater the upward force due to air resistance. The parameter
cd accounts for properties of the falling object, such as shape or surface roughness, that af-
fect air resistance. For the present case, cd might be a function of the type of clothing or the
orientation used by the jumper during free fall.

The net force is the difference between the downward and upward force. Therefore,
Eqs. (1.4) through (1.7) can be combined to yield

dv

dt
= g − cd

m
v2 (1.8)

Equation (1.8) is a model that relates the acceleration of a falling object to the forces
acting on it. It is a differential equation because it is written in terms of the differential rate
of change (dv/dt) of the variable that we are interested in predicting. However, in contrast
to the solution of Newton’s second law in Eq. (1.3), the exact solution of Eq. (1.8) for the
velocity of the jumper cannot be obtained using simple algebraic manipulation. Rather,
more advanced techniques such as those of calculus must be applied to obtain an exact or
analytical solution. For example, if the jumper is initially at rest (v = 0 at t = 0), calculus
can be used to solve Eq. (1.8) for

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)
(1.9)

where tanh is the hyperbolic tangent that can be either computed directly1 or via the more
elementary exponential function as in

tanh x = ex − e−x

ex + e−x
(1.10)

Note that Eq. (1.9) is cast in the general form of Eq. (1.1) where v(t) is the dependent
variable, t is the independent variable, cd and m are parameters, and g is the forcing function.

EXAMPLE 1.1 Analytical Solution to the Bungee Jumper Problem

Problem Statement. A bungee jumper with a mass of 68.1 kg leaps from a stationary hot
air balloon. Use Eq. (1.9) to compute velocity for the first 12 s of free fall. Also determine
the terminal velocity that will be attained for an infinitely long cord (or alternatively, the
jumpmaster is having a particularly bad day!). Use a drag coefficient of 0.25 kg/m.

1.1 A SIMPLE MATHEMATICAL MODEL 7

1 MATLAB allows direct calculation of the hyperbolic tangent via the built-in function tanh(x).

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 7

Solution. Inserting the parameters into Eq. (1.9) yields

v(t) =
√

9.81(68.1)

0.25
tanh

(√
9.81(0.25)

68.1
t

)
= 51.6938 tanh(0.18977t)

which can be used to compute

t, s v, m/s

0 0
2 18.7292
4 33.1118
6 42.0762
8 46.9575

10 49.4214
12 50.6175
∞ 51.6938

According to the model, the jumper accelerates rapidly (Fig. 1.2). A velocity of
49.4214 m/s (about 110 mi/hr) is attained after 10 s. Note also that after a sufficiently long

8 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

0

20

40

60

0 4 8 12
t, s

Terminal velocity

u,
 m

/s

FIGURE 1.2
The analytical solution for the bungee jumper problem as computed in Example 1.1. Velocity
increases with time and asymptotically approaches a terminal velocity.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 8

time, a constant velocity, called the terminal velocity, of 51.6983 m/s (115.6 mi/hr) is
reached. This velocity is constant because, eventually, the force of gravity will be in bal-
ance with the air resistance. Thus, the net force is zero and acceleration has ceased.

Equation (1.9) is called an analytical or closed-form solution because it exactly satis-
fies the original differential equation. Unfortunately, there are many mathematical models
that cannot be solved exactly. In many of these cases, the only alternative is to develop a
numerical solution that approximates the exact solution.

Numerical methods are those in which the mathematical problem is reformulated so it
can be solved by arithmetic operations. This can be illustrated for Eq. (1.8) by realizing that
the time rate of change of velocity can be approximated by (Fig. 1.3):

dv

dt
∼= �v

�t
= v(ti+1) − v(ti)

ti+1 − ti
(1.11)

where �v and �t are differences in velocity and time computed over finite intervals, v(ti)
is velocity at an initial time ti , and v(ti+1) is velocity at some later time ti+1. Note that
dv/dt ∼= �v/�t is approximate because �t is finite. Remember from calculus that

dv

dt
= lim

�t→0

�v

�t

Equation (1.11) represents the reverse process.

1.1 A SIMPLE MATHEMATICAL MODEL 9

v(ti�1)

ti�1 t

�t

v(ti)

�v

ti

True slope
dv/dt

Approximate slope
�v v(ti�1) � v(ti)

ti�1 � ti�t �

FIGURE 1.3
The use of a finite difference to approximate the first derivative of v with respect to t.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 9

Equation (1.11) is called a finite-difference approximation of the derivative at time ti .
It can be substituted into Eq. (1.8) to give

v(ti+1) − v(ti)

ti+1 − ti
= g − cd

m
v(ti)

2

This equation can then be rearranged to yield

v(ti+1) = v(ti) +
[

g − cd

m
v(ti)

2

]
(ti+1 − ti) (1.12)

Notice that the term in brackets is the right-hand side of the differential equation itself
[Eq. (1.8)]. That is, it provides a means to compute the rate of change or slope of v. Thus,
the equation can be rewritten more concisely as

vi+1 = vi + dvi

dt
�t (1.13)

where the nomenclature vi designates velocity at time ti and �t = ti+1 − ti .
We can now see that the differential equation has been transformed into an equation that

can be used to determine the velocity algebraically at ti+1 using the slope and previous val-
ues of v and t. If you are given an initial value for velocity at some time ti , you can easily com-
pute velocity at a later time ti+1. This new value of velocity at ti+1 can in turn be employed to
extend the computation to velocity at ti+2 and so on. Thus at any time along the way,

New value = old value + slope × step size

This approach is formally called Euler’s method. We’ll discuss it in more detail when we
turn to differential equations later in this book.

EXAMPLE 1.2 Numerical Solution to the Bungee Jumper Problem

Problem Statement. Perform the same computation as in Example 1.1 but use Eq. (1.12)
to compute velocity with Euler’s method. Employ a step size of 2 s for the calculation.

Solution. At the start of the computation (t0 = 0), the velocity of the jumper is zero.
Using this information and the parameter values from Example 1.1, Eq. (1.12) can be used
to compute velocity at t1 = 2 s:

v = 0 +
[

9.81 − 0.25

68.1
(0)2

]
× 2 = 19.62 m/s

For the next interval (from t = 2 to 4 s), the computation is repeated, with the result

v = 19.62 +
[

9.81 − 0.25

68.1
(19.62)2

]
× 2 = 36.4137 m/s

10 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 10

The calculation is continued in a similar fashion to obtain additional values:

t, s v, m/s

0 0
2 19.6200
4 36.4137
6 46.2983
8 50.1802

10 51.3123
12 51.6008
∞ 51.6938

The results are plotted in Fig. 1.4 along with the exact solution. We can see that the nu-
merical method captures the essential features of the exact solution. However, because we
have employed straight-line segments to approximate a continuously curving function,
there is some discrepancy between the two results. One way to minimize such discrepan-
cies is to use a smaller step size. For example, applying Eq. (1.12) at 1-s intervals results in
a smaller error, as the straight-line segments track closer to the true solution. Using hand
calculations, the effort associated with using smaller and smaller step sizes would make
such numerical solutions impractical. However, with the aid of the computer, large num-
bers of calculations can be performed easily. Thus, you can accurately model the velocity
of the jumper without having to solve the differential equation exactly.

1.1 A SIMPLE MATHEMATICAL MODEL 11

0

20

40

60

0 4 8 12
t, s

Terminal velocity

v
, m

/s
Approximate,

numerical solution

Exact, analytical
solution

FIGURE 1.4
Comparison of the numerical and analytical solutions for the bungee jumper problem.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 11

As in Example 1.2, a computational price must be paid for a more accurate numerical
result. Each halving of the step size to attain more accuracy leads to a doubling of the num-
ber of computations. Thus, we see that there is a trade-off between accuracy and computa-
tional effort. Such trade-offs figure prominently in numerical methods and constitute an
important theme of this book.

1.2 CONSERVATION LAWS IN ENGINEERING AND SCIENCE

Aside from Newton’s second law, there are other major organizing principles in science
and engineering. Among the most important of these are the conservation laws. Although
they form the basis for a variety of complicated and powerful mathematical models, the
great conservation laws of science and engineering are conceptually easy to understand.
They all boil down to

Change = increases − decreases (1.14)

This is precisely the format that we employed when using Newton’s law to develop a force
balance for the bungee jumper [Eq. (1.8)].

Although simple, Eq. (1.14) embodies one of the most fundamental ways in which
conservation laws are used in engineering and science—that is, to predict changes
with respect to time. We will give it a special name—the time-variable (or transient)
computation.

Aside from predicting changes, another way in which conservation laws are applied is
for cases where change is nonexistent. If change is zero, Eq. (1.14) becomes

Change = 0 = increases − decreases
or

Increases = decreases (1.15)

Thus, if no change occurs, the increases and decreases must be in balance. This case, which
is also given a special name—the steady-state calculation—has many applications in engi-
neering and science. For example, for steady-state incompressible fluid flow in pipes, the
flow into a junction must be balanced by flow going out, as in

Flow in = o w out

For the junction in Fig. 1.5, the balance can be used to compute that the flow out of the
fourth pipe must be 60.

For the bungee jumper, the steady-state condition would correspond to the case where
the net force was zero or [Eq. (1.8) with dv/dt = 0]

mg = cdv
2 (1.16)

Thus, at steady state, the downward and upward forces are in balance and Eq. (1.16) can be
solved for the terminal velocity

v =
√

gm

cd

Although Eqs. (1.14) and (1.15) might appear trivially simple, they embody the two funda-
mental ways that conservation laws are employed in engineering and science. As such, they
will form an important part of our efforts in subsequent chapters to illustrate the connection
between numerical methods and engineering and science.

12 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 12

Table 1.1 summarizes some models and associated conservation laws that figure promi-
nently in engineering. Many chemical engineering problems involve mass balances for
reactors. The mass balance is derived from the conservation of mass. It specifies that the
change of mass of a chemical in the reactor depends on the amount of mass flowing in
minus the mass flowing out.

Civil and mechanical engineers often focus on models developed from the conserva-
tion of momentum. For civil engineering, force balances are utilized to analyze structures
such as the simple truss in Table 1.1. The same principles are employed for the mechanical
engineering case studies to analyze the transient up-and-down motion or vibrations of an
automobile.

Finally, electrical engineering studies employ both current and energy balances to model
electric circuits. The current balance, which results from the conservation of charge, is simi-
lar in spirit to the flow balance depicted in Fig. 1.5. Just as flow must balance at the junction
of pipes, electric current must balance at the junction of electric wires. The energy balance
specifies that the changes of voltage around any loop of the circuit must add up to zero.

It should be noted that there are many other branches of engineering beyond chemical,
civil, electrical, and mechanical. Many of these are related to the Big Four. For example, chem-
ical engineeringskills areusedextensively inareas suchasenvironmental, petroleum,andbio-
medical engineering. Similarly, aerospace engineering has much in common with mechanical
engineering. I will endeavor to include examples from these areas in the coming pages.

1.3 NUMERICAL METHODS COVERED IN THIS BOOK

Euler’s method was chosen for this introductory chapter because it is typical of many other
classes of numerical methods. In essence, most consist of recasting mathematical opera-
tions into the simple kind of algebraic and logical operations compatible with digital com-
puters. Figure 1.6 summarizes the major areas covered in this text.

1.3 NUMERICAL METHODS COVERED IN THIS BOOK 13

Pipe 2
Flow in � 80

Pipe 3
Flow out � 120

Pipe 4
Flow out � ?

Pipe 1
Flow in � 100

FIGURE 1.5
A flow balance for steady incompressible fluid flow at the junction of pipes.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 13

14 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

TABLE 1.1 Devices and types of balances that are commonly used in the four major areas of engineering. For
each case, the conservation law on which the balance is based is specified.

Field Organizing Principle Mathematical ExpressionDevice

Force balance:Mechanical
engineering

Conservation
of momentum

Upward force

Downward force

x � 0

� downward force � upward forcem d2x
dt2

Machine

Current balance:

Voltage balance:

Around each loop
 � emf’s � � voltage drops for resistors
 � 0
 � � � � iR � 0

For each node
 � current (i) � 0

Electrical
engineering

Conservation
of energy

Conservation
of charge

�i2

�i3�i1

i1R1

i3R3

i2R2 �

�

�

Circuit

Chemical
engineering

Conservation
of mass

Over a unit of time period
 �mass � inputs � outputs

Mass balance:

Reactors

Force balance:

At each node
 � horizontal forces (FH) � 0
 � vertical forces (FV) � 0

Civil
engineering

Conservation
of momentum

Structure

�FV

�FV

�FH�FH

Input Output

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 14

1.3 NUMERICAL METHODS COVERED IN THIS BOOK 15

�t

Slope � f(ti, yi)

y(e) Part 6 : Differential equations

 Given

solve for y as a function of t

dy
dt

�y
�

�t� f (t, y)

(c) Part 4 : Curve fitting

(d) Part 5 : Integration and differentiation

 Integration: Find the area under the curve

 Differentiation: Find the slope of the curve

Regression

Interpolation

(a) Part 2 : Roots and optimization

 Roots: Solve for x so that f(x) � 0

 Optimization: Solve for x so that f ' (x) � 0

(b) Part 3 : Linear algebraic equations

 Given the a’s and the b’s, solve for the x’s

 a11x1 � a12x2 � b1

 a21x1 � a22x2 � b2

Solution

Roots

Optima

x

x1

xx

x

t

f(x)

x2

f(x)f(x)

y
dy/dx

I

yi�1 � yi � f (ti, yi)�t

FIGURE 1.6
Summary of the numerical methods covered in this book.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 15

Part Two deals with two related topics: root finding and optimization. As depicted in
Fig. 1.6a, root location involves searching for the zeros of a function. In contrast, optimiza-
tion involves determining a value or values of an independent variable that correspond to a
“best” or optimal value of a function. Thus, as in Fig. 1.6a, optimization involves identify-
ing maxima and minima. Although somewhat different approaches are used, root location
and optimization both typically arise in design contexts.

Part Three is devoted to solving systems of simultaneous linear algebraic equations
(Fig. 1.6b). Such systems are similar in spirit to roots of equations in the sense that they are
concerned with values that satisfy equations. However, in contrast to satisfying a single
equation, a set of values is sought that simultaneously satisfies a set of linear algebraic
equations. Such equations arise in a variety of problem contexts and in all disciplines of en-
gineering and science. In particular, they originate in the mathematical modeling of large
systems of interconnected elements such as structures, electric circuits, and fluid networks.
However, they are also encountered in other areas of numerical methods such as curve fit-
ting and differential equations.

As an engineer or scientist, you will often have occasion to fit curves to data points.
The techniques developed for this purpose can be divided into two general categories:
regression and interpolation. As described in Part Four (Fig. 1.6c), regression is
employed where there is a significant degree of error associated with the data. Experi-
mental results are often of this kind. For these situations, the strategy is to derive a sin-
gle curve that represents the general trend of the data without necessarily matching any
individual points.

In contrast, interpolation is used where the objective is to determine intermediate val-
ues between relatively error-free data points. Such is usually the case for tabulated infor-
mation. The strategy in such cases is to fit a curve directly through the data points and use
the curve to predict the intermediate values.

As depicted in Fig. 1.6d, Part Five is devoted to integration and differentiation. A
physical interpretation of numerical integration is the determination of the area under a
curve. Integration has many applications in engineering and science, ranging from the
determination of the centroids of oddly shaped objects to the calculation of total quan-
tities based on sets of discrete measurements. In addition, numerical integration formu-
las play an important role in the solution of differential equations. Part Five also covers
methods for numerical differentiation. As you know from your study of calculus, this
involves the determination of a function’s slope or its rate of change.

Finally, Part Six focuses on the solution of ordinary differential equations (Fig. 1.6e).
Such equations are of great significance in all areas of engineering and science. This is
because many physical laws are couched in terms of the rate of change of a quantity rather
than the magnitude of the quantity itself. Examples range from population-forecasting
models (rate of change of population) to the acceleration of a falling body (rate of change
of velocity). Two types of problems are addressed: initial-value and boundary-value
problems.

16 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 16

1.4 CASE STUDY IT’S A REAL DRAG

1.4 CASE STUDY 17

Background. In our model of the free-falling bungee jumper, we assumed that drag
depends on the square of velocity (Eq. 1.7). A more detailed representation, which was
originally formulated by Lord Rayleigh, can be written as

Fd = −1

2
ρv2 ACd �v (1.17)

where Fd � the drag force (N), � � fluid density (kg/m3), A � the frontal area of the object
on a plane perpendicular to the direction of motion (m2), Cd � a dimensionless drag coef-
ficient, and �v � a unit vector indicating the direction of velocity.

This relationship, which assumes turbulent conditions (i.e., a high Reynolds number),
allows us to express the lumped drag coefficient from Eq. (1.7) in more fundamental terms
as

Cd = 1

2
ρ ACd (1.18)

Thus, the lumped drag coefficient depends on the object’s area, the fluid’s density, and a
dimensionless drag coefficient. The latter accounts for all the other factors that contribute
to air resistance such as the object’s “roughness”. For example, a jumper wearing a baggy
outfit will have a higher Cd than one wearing a sleek jumpsuit.

Note that for cases where velocity is very low, the flow regime around the object will
be laminar and the relationship between the drag force and velocity becomes linear. This is
referred to as Stokes drag.

In developing our bungee jumper model, we assumed that the downward direction was
positive. Thus, Eq. (1.7) is an accurate representation of Eq. (1.17), because �v � �1 and
the drag force is negative. Hence, drag reduces velocity.

But what happens if the jumper has an upward (i.e., negative) velocity? In this case,
�v�–1 and Eq. (1.17) yields a positive drag force. Again, this is physically correct as the pos-
itive drag force acts downward against the upward negative velocity.

Unfortunately, for this case, Eq. (1.7) yields a negative drag force because it does not
include the unit directional vector. In other words, by squaring the velocity, its sign and
hence its direction is lost. Consequently, the model yields the physically unrealistic result
that air resistance acts to accelerate an upward velocity!

In this case study, we will modify our model so that it works properly for both downward
and upward velocities. We will test the modified model for the same case as Example 1.2, but
with an initial value of v(0) ��40 m/s. In addition, we will also illustrate how we can extend
the numerical analysis to determine the jumper’s position.

Solution. The following simple modification allows the sign to be incorporated into
the drag force:

Fd = −1

2
ρv|v|ACd (1.19)

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 17

18 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

1.4 CASE STUDY continued

or in terms of the lumped drag:

Fd = −cdv|v| (1.20)

Thus, the differential equation to be solved is

dv

dt
= g − cd

m
v|v| (1.21)

In order to determine the jumper’s position, we recognize that distance travelled,
x (m), is related to velocity by

dx

dt
= −v (1.22)

In contrast to velocity, this formulation assumes that upward distance is positive. In the
same fashion as Eq. (1.12), this equation can be integrated numerically with Euler’s
method:

xi+1 = xi − v(ti)�t (1.23)

Assuming that the jumper’s initial position is defined as x(0) � 0, and using the parame-
ter values from Examples 1.1 and 1.2, the velocity and distance at t � 2 s can be computed as

v(2) = −40 +
[

9.81 − 0.25

68.1
(−40)(40)

]
2 = −8.6326 m/s

x(2) = 0 − (−40)2 = 80 m

Note that if we had used the incorrect drag formulation, the results would be �32.1274 m/s
and 80 m.

The computation can be repeated for the next interval (t � 2 to 4 s):

v(4) = −8.6326 +
[

9.81 − 0.25

68.1
(−8.6326)(8.6326)

]
2 = 11.5346 m/s

x(4) = 80 − (−8.6326)2 = 97.2651 m

The incorrect drag formulation gives –20.0858 m/s and 144.2549 m.
The calculation is continued and the results shown in Fig. 1.7 along with those

obtained with the incorrect drag model. Notice that the correct formulation decelerates
more rapidly because drag always diminishes the velocity.

With time, both velocity solutions converge on the same terminal velocity because
eventually both are directed downward in which case, Eq. (1.7) is correct. However, the
impact on the height prediction is quite dramatic with the incorrect drag case resulting in a
much higher trajectory.

This case study demonstrates how important it is to have the correct physical model.
In some cases, the solution will yield results that are clearly unrealistic. The current exam-
ple is more insidious as there is no visual evidence that the incorrect solution is wrong. That
is, the incorrect solution “looks” reasonable.

cha01102_ch01_001-023.qxd 12/18/10 1:56 PM Page 18

1.4 CASE STUDY 19

1.4 CASE STUDY continued

FIGURE 1.7
Plots of (a) velocity and (b) height for the free-falling bungee jumper with an upward (negative)
initial velocity generated with Euler’s method. Results for both the correct (Eq. 1 20) and incorrect
(Eq. 1.7) drag formulations are displayed.

v
, m

/s

0

20

40

–40

–20

60

4 8 12
t, s

Correct drag

Incorrect drag

(a) Velocity, m/s

(b) Height, m

0

100

200

–200

–100

4 8 12
t, s

x,
 m

Incorrect drag

Correct drag

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 19

20 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

PROBLEMS

1.1 Use calculus to verify that Eq. (1.9) is a solution of
Eq. (1.8) for the initial condition v(0) � 0.
1.2 Use calculus to solve Eq. (1.21) for the case where the ini-
tial velocity is (a) positive and (b) negative. (c) Based on your
results for (a) and (b), perform the same computation as in Ex-
ample 1.1 but with an initial velocity of �40 m/s. Compute
values of the velocity from t � 0 to 12 s at intervals of 2 s. Note
that for this case, the zero velocity occurs at t � 3.470239 s.
1.3 The following information is available for a bank account:

Date Deposits Withdrawals Balance

5/1 1512.33
220.13 327.26

6/1
216.80 378.61

7/1
450.25 106.80

8/1
127.31 350.61

9/1

Note that the money earns interest which is computed as

Interest = i Bi

where i � the interest rate expressed as a fraction per month,
and Bi the initial balance at the beginning of the month.
(a) Use the conservation of cash to compute the balance on

6/1, 7/1, 8/1, and 9/1 if the interest rate is 1% per month
(i � 0.01/month). Show each step in the computation.

(b) Write a differential equation for the cash balance in the
form

d B

dt
= f [D(t), W (t), i]

where t � time (months), D(t) � deposits as a function
of time ($/month), W(t) � withdrawals as a function of
time ($/month). For this case, assume that interest is
compounded continuously; that is, interest � iB.

(c) Use Euler’s method with a time step of 0.5 month to
simulate the balance. Assume that the deposits and with-
drawals are applied uniformly over the month.

(d) Develop a plot of balance versus time for (a) and (c).
1.4 Repeat Example 1.2. Compute the velocity to t = 12 s,
with a step size of (a) 1 and (b) 0.5 s. Can you make any
statement regarding the errors of the calculation based on the
results?

1.5 Rather than the nonlinear relationship of Eq. (1.7), you
might choose to model the upward force on the bungee
jumper as a linear relationship:

FU = −c′v
where c′ = a first-order drag coefficient (kg/s).
(a) Using calculus, obtain the closed-form solution for the

case where the jumper is initially at rest (v = 0 at t = 0).
(b) Repeat the numerical calculation in Example 1.2 with

the same initial condition and parameter values. Use a
value of 11.5 kg/s for c′.

1.6 For the free-falling bungee jumper with linear drag
(Prob. 1.5), assume a first jumper is 70 kg and has a drag co-
efficient of 12 kg/s. If a second jumper has a drag coefficient
of 15 kg/s and a mass of 80 kg, how long will it take her to
reach the same velocity jumper 1 reached in 9 s?
1.7 For the second-order drag model (Eq. 1.8), compute the
velocity of a free-falling parachutist using Euler’s method
for the case where m = 80 kg and cd = 0.25 kg/m. Perform
the calculation from t = 0 to 20 s with a step size of 1 s. Use
an initial condition that the parachutist has an upward veloc-
ity of 20 m/s at t = 0. At t = 10 s, assume that the chute is
instantaneously deployed so that the drag coefficient jumps
to 1.5 kg/m.
1.8 The amount of a uniformly distributed radioactive con-
taminant contained in a closed reactor is measured by its
concentration c (becquerel/liter or Bq/L). The contaminant
decreases at a decay rate proportional to its concentration;
that is

Decay rate = −kc

where k is a constant with units of day−1. Therefore, accord-
ing to Eq. (1.14), a mass balance for the reactor can be
written as

dc

dt
= −kc(

change
in mass

)
=

(
decrease
by decay

)

(a) Use Euler’s method to solve this equation from t = 0 to
1 d with k = 0.175 d–1. Employ a step size of �t = 0.1 d.
The concentration at t = 0 is 100 Bq/L.

(b) Plot the solution on a semilog graph (i.e., ln c versus t)
and determine the slope. Interpret your results.

1.9 A storage tank (Fig. P1.9) contains a liquid at depth y
where y = 0 when the tank is half full. Liquid is withdrawn
at a constant flow rate Q to meet demands. The contents are

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 20

PROBLEMS 21

0

y

FIGURE P1.9

0

y

ytop

yout

rtop

Qin

s

1

Qout

FIGURE P1.11

resupplied at a sinusoidal rate 3Q sin2(t). Equation (1.14)
can be written for this system as

d(Ay)

dt
= 3Q sin2(t) − Q(

change in
volume

)
= (in o w) − (out o w)

or, since the surface area A is constant

dy

dt
= 3

Q

A
sin2(t) − Q

A

Use Euler’s method to solve for the depth y from t = 0 to
10 d with a step size of 0.5 d. The parameter values are A =
1250 m2 and Q = 450 m3/d. Assume that the initial condition
is y = 0.
1.10 For the same storage tank described in Prob. 1.9, sup-
pose that the outflow is not constant but rather depends on
the depth. For this case, the differential equation for depth
can be written as

dy

dt
= 3

Q

A
sin2(t) − α(1 + y)1.5

A

Use Euler’s method to solve for the depth y from t = 0 to
10 d with a step size of 0.5 d. The parameter values are A =
1250 m2, Q = 450 m3/d, and α = 150. Assume that the ini-
tial condition is y = 0.
1.11 Apply the conservation of volume (see Prob. 1.9) to sim-
ulate the level of liquid in a conical storage tank (Fig. P1.11).

The liquid flows in at a sinusoidal rate of Qin = 3 sin2(t) and
flows out according to

Qout = 3(y − yout)
1.5 y > yout

Qout = 0 y ≤ yout

where flow has units of m3/d and y = the elevation of the
water surface above the bottom of the tank (m). Use Euler’s
method to solve for the depth y from t = 0 to 10 d with a step
size of 0.5 d. The parameter values are rtop � 2.5 m, ytop � 4 m,
and yout � 1 m. Assume that the level is initially below the
outlet pipe with y(0) � 0.8 m.
1.12 A group of 35 students attend a class in an insulated
room which measures 11 m by 8 m by 3 m. Each student
takes up about 0.075 m3 and gives out about 80 W of heat
(1 W = 1 J/s). Calculate the air temperature rise during the first
20 minutes of the class if the room is completely sealed and in-
sulated. Assume the heat capacity Cv for air is 0.718 kJ/(kg K).
Assume air is an ideal gas at 20°C and 101.325 kPa. Note
that the heat absorbed by the air Q is related to the mass of
the air m the heat capacity, and the change in temperature by
the following relationship:

Q = m
∫ T2

T1

CvdT = mCv(T2 − T1)

The mass of air can be obtained from the ideal gas law:

PV = m

Mwt
RT

where P is the gas pressure, V is the volume of the gas, Mwt
is the molecular weight of the gas (for air, 28.97 kg/kmol),
and R is the ideal gas constant [8.314 kPa m3/(kmol K)].

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 21

22 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

FIGURE P1.16

Q1

Q10

Q2

Q3

Q9

Q4

Q5

Q8

Q6 Q7

1.13 Figure P1.13 depicts the various ways in which an aver-
age man gains and loses water in one day. One liter is ingested
as food, and the body metabolically produces 0.3 liters. In
breathing air, the exchange is 0.05 liters while inhaling, and
0.4 liters while exhaling over a one-day period. The body will
also lose 0.3, 1.4, 0.2, and 0.35 liters through sweat, urine,
feces, and through the skin, respectively. To maintain steady
state, how much water must be drunk per day?
1.14 In our example of the free-falling bungee jumper, we
assumed that the acceleration due to gravity was a constant
value of 9.81 m/s2. Although this is a decent approximation
when we are examining falling objects near the surface of
the earth, the gravitational force decreases as we move
above sea level. A more general representation based on
Newton’s inverse square law of gravitational attraction can
be written as

g(x) = g(0)
R2

(R + x)2

where g(x) = gravitational acceleration at altitude x (in m)
measured upward from the earth’s surface (m/s2), g(0) =
gravitational acceleration at the earth’s surface (∼= 9.81 m/s2),
and R = the earth’s radius (∼= 6.37 × 106 m).
(a) In a fashion similar to the derivation of Eq. (1.8), use a

force balance to derive a differential equation for veloc-
ity as a function of time that utilizes this more complete
representation of gravitation. However, for this deriva-
tion, assume that upward velocity is positive.

(b) For the case where drag is negligible, use the chain rule
to express the differential equation as a function of alti-
tude rather than time. Recall that the chain rule is

dv

dt
= dv

dx

dx

dt

(c) Use calculus to obtain the closed form solution where
v = v0 at x = 0.

(d) Use Euler’s method to obtain a numerical solution from
x = 0 to 100,000 m using a step of 10,000 m where the
initial velocity is 1500 m/s upward. Compare your result
with the analytical solution.

1.15 Suppose that a spherical droplet of liquid evaporates at
a rate that is proportional to its surface area.

dV

dt
= −k A

where V = volume (mm3), t = time (min), k = the evapora-
tion rate (mm/min), and A = surface area (mm2). Use
Euler’s method to compute the volume of the droplet from
t = 0 to 10 min using a step size of 0.25 min. Assume that
k = 0.08 mm/min and that the droplet initially has a radius of
2.5 mm. Assess the validity of your results by determining
the radius of your final computed volume and verifying that
it is consistent with the evaporation rate.
1.16 A fluid is pumped into the network shown in Fig. P1.16.
If Q2 = 0.7, Q3 = 0.5, Q7 = 0.1, and Q8 = 0.3 m3/s, determine
the other flows.
1.17 Newton’s law of cooling says that the temperature of a
body changes at a rate proportional to the difference between
its temperature and that of the surrounding medium (the am-
bient temperature),

dT

dt
= −k(T − Ta)

where T = the temperature of the body (°C), t = time (min),
k = the proportionality constant (per minute), and Ta = the
ambient temperature (°C). Suppose that a cup of coffee orig-
inally has a temperature of 70 °C. Use Euler’s method to
compute the temperature from t = 0 to 20 min using a step
size of 2 min if Ta = 20 °C and k = 0.019/min.

Urine Feces

Skin

Food

Drink

Air

Sweat

Metabolism

BODY

FIGURE P1.13

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 22

PROBLEMS 23

1.18 You are working as a crime scene investigator and
must predict the temperature of a homicide victim over a
5-hour period. You know that the room where the victim was
found was at 10 °C when the body was discovered.
(a) Use Newton’s law of cooling (Prob. 1.17) and Euler’s

method to compute the victim’s body temperature for
the 5-hr period using values of k � 0.12/hr and �t �
0.5 hr. Assume that the victim’s body temperature at
the time of death was 37 °C, and that the room tempera-
ture was at a constant value of 10 °C over the 5-hr
period.

(b) Further investigation reveals that the room temperature
had actually dropped linearly from 20 to 10 °C over the
5-hr period. Repeat the same calculation as in (a) but in-
corporate this new information.

(c) Compare the results from (a) and (b) by plotting them
on the same graph.

1.19 The velocity is equal to the rate of change of distance,
x (m):

dx

dt
= v(t) (P1.19)

Use Euler’s method to numerically integrate Eq. (P1.19) and
(1.8) in order to determine both the velocity and distance
fallen as a function of time for the first 10 seconds of freefall

using the same parameters and conditions as in Example 1.2.
Develop a plot of your results.
1.20 In addition to the downward force of gravity (weight)
and drag, an object falling through a fluid is also subject to a
buoyancy force which is proportional to the displaced vol-
ume. For example, for a sphere with diameter d (m), the
sphere’s volume is V � π d3/6, and its projected area is
A � πd2/4. The buoyancy force can then be computed as
Fb ���Vg. We neglected buoyancy in our derivation of
Eq. (1.8) because it is relatively small for an object like a
bungee jumper moving through air. However, for a more
dense fluid like water, it becomes more prominent.
(a) Derive a differential equation in the same fashion as

Eq. (1.8), but include the buoyancy force and represent
the drag force as described in Sec. 1.4.

(b) Rewrite the differential equation from (a) for the special
case of a sphere.

(c) Use the equation developed in (b) to compute the terminal
velocity (i.e., for the steady-state case). Use the following
parameter values for a sphere falling through water:
sphere diameter � 1 cm, sphere density � 2,700 kg/m3,
water density � 1,000 kg/m3, and Cd � 0.47.

(d) Use Euler’s method with a step size of �t � 0.03125 s to
numerically solve for the velocity from t � 0 to 0.25 s
with an initial velocity of zero.

cha01102_ch01_001-023.qxd 12/17/10 7:58 AM Page 23

2
MATLAB Fundamentals

24

CHAPTER OBJECTIVES
The primary objective of this chapter is to provide an introduction and overview of
how MATLAB’s calculator mode is used to implement interactive computations.
Specific objectives and topics covered are

• Learning how real and complex numbers are assigned to variables
• Learning how vectors and matrices are assigned values using simple assignment,

the colon operator, and the linspace and logspace functions.
• Understanding the priority rules for constructing mathematical expressions.
• Gaining a general understanding of built-in functions and how you can learn more

about them with MATLAB’s Help facilities.
• Learning how to use vectors to create a simple line plot based on an equation.

YOU’VE GOT A PROBLEM

I n Chap. 1, we used a force balance to determine the terminal velocity of a free-falling
object like a bungee jumper.

vt =
√

gm

cd

where vt = terminal velocity (m/s), g = gravitational acceleration (m/s2), m = mass (kg),
and cd = a drag coefficient (kg/m). Aside from predicting the terminal velocity, this equa-
tion can also be rearranged to compute the drag coefficient

cd = mg

v2
t

(2.1)

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 24

2.1 THE MATLAB ENVIRONMENT 25

Thus, if we measure the terminal velocity of a number of jumpers of known mass, this
equation provides a means to estimate the drag coefficient. The data in Table 2.1 were col-
lected for this purpose.

In this chapter, we will learn how MATLAB can be used to analyze such data. Beyond
showing how MATLAB can be employed to compute quantities like drag coefficients, we
will also illustrate how its graphical capabilities provide additional insight into such analyses.

2.1 THE MATLAB ENVIRONMENT

MATLAB is a computer program that provides the user with a convenient environment for
performing many types of calculations. In particular, it provides a very nice tool to imple-
ment numerical methods.

The most common way to operate MATLAB is by entering commands one at a time in
the command window. In this chapter, we use this interactive or calculator mode to intro-
duce you to common operations such as performing calculations and creating plots. In
Chap. 3, we show how such commands can be used to create MATLAB programs.

One further note. This chapter has been written as a hands-on exercise. That is, you
should read it while sitting in front of your computer. The most efficient way to become
proficient is to actually implement the commands on MATLAB as you proceed through the
following material.

MATLAB uses three primary windows:

• Command window. Used to enter commands and data.
• Graphics window. Used to display plots and graphs.
• Edit window. Used to create and edit M-files.

In this chapter, we will make use of the command and graphics windows. In Chap. 3 we
will use the edit window to create M-files.

After starting MATLAB, the command window will open with the command prompt
being displayed

>>

The calculator mode of MATLAB operates in a sequential fashion as you type in com-
mands line by line. For each command, you get a result. Thus, you can think of it as oper-
ating like a very fancy calculator. For example, if you type in

>> 55 - 16

MATLAB will display the result1

ans =
39

TABLE 2.1 Data for the mass and associated terminal velocities of a number of jumpers.

m, kg 83.6 60.2 72.1 91.1 92.9 65.3 80.9
vt, m/s 53.4 48.5 50.9 55.7 54 47.7 51.1

1 MATLAB skips a line between the label (ans =) and the number (39). Here, we omit such blank lines for
conciseness. You can control whether blank lines are included with the format compact and format loose
commands.

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 25

Notice that MATLAB has automatically assigned the answer to a variable, ans. Thus, you
could now use ans in a subsequent calculation:

>> ans + 11

with the result

ans =
50

MATLAB assigns the result to ans whenever you do not explicitly assign the calculation
to a variable of your own choosing.

2.2 ASSIGNMENT

Assignment refers to assigning values to variable names. This results in the storage of the
values in the memory location corresponding to the variable name.

2.2.1 Scalars

The assignment of values to scalar variables is similar to other computer languages.
Try typing

>> a = 4

Note how the assignment echo prints to confirm what you have done:

a =
4

Echo printing is a characteristic of MATLAB. It can be suppressed by terminating the com-
mand line with the semicolon (;) character. Try typing

>> A = 6;

You can type several commands on the same line by separating them with commas or
semicolons. If you separate them with commas, they will be displayed, and if you use the
semicolon, they will not. For example,

>> a = 4,A = 6;x = 1;

a =
4

MATLAB treats names in a case-sensitive manner—that is, the variable a is not the
same as A. To illustrate this, enter

>> a

and then enter

>> A

See how their values are distinct. They are distinct names.

26 MATLAB FUNDAMENTALS

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 26

2.2 ASSIGNMENT 27

We can assign complex values to variables, since MATLAB handles complex arith-
metic automatically. The unit imaginary number

√−1 is preassigned to the variable i.
Consequently, a complex value can be assigned simply as in

>> x = 2+i*4

x =
2.0000 + 4.0000i

It should be noted that MATLAB allows the symbol j to be used to represent the unit imag-
inary number for input. However, it always uses an i for display. For example,

>> x = 2+j*4

x =
2.0000 + 4.0000i

There are several predefined variables, for example, pi.

>> pi

ans =
3.1416

Notice how MATLAB displays four decimal places. If you desire additional precision,
enter the following:

>> format long

Now when pi is entered the result is displayed to 15 significant figures:

>> pi

ans =
3.14159265358979

To return to the four decimal version, type

>> format short

The following is a summary of the format commands you will employ routinely in engi-
neering and scientific calculations. They all have the syntax: format type.

type Result Example

short Scaled fixed-point format with 5 digits 3.1416
long Scaled fixed-point format with 15 digits for double and 7 digits for single 3.14159265358979
short e Floating-point format with 5 digits 3.1416e+000
long e Floating-point format with 15 digits for double and 7 digits for single 3.141592653589793e+000
short g Best of fixed- or floating-point format with 5 digits 3.1416
long g Best of fixed- or floating-point format with 15 digits for double 3.14159265358979

and 7 digits for single
short eng Engineering format with at least 5 digits and a power that is a multiple of 3 3.1416e+000
long eng Engineering format with exactly 16 significant digits and a power 3.14159265358979e+000

that is a multiple of 3
bank Fixed dollars and cents 3.14

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 27

2.2.2 Arrays, Vectors and Matrices

An array is a collection of values that are represented by a single variable name. One-
dimensional arrays are called vectors and two-dimensional arrays are called matrices. The
scalars used in Section 2.2.1 are actually matrices with one row and one column.

Brackets are used to enter arrays in the command mode. For example, a row vector can
be assigned as follows:

>> a = [1 2 3 4 5]

a =
1 2 3 4 5

Note that this assignment overrides the previous assignment of a = 4.
In practice, row vectors are rarely used to solve mathematical problems. When we

speak of vectors, we usually refer to column vectors, which are more commonly used. A
column vector can be entered in several ways. Try them.

>> b = [2;4;6;8;10]

or

>> b = [2
4
6
8
10]

or, by transposing a row vector with the ' operator,

>> b = [2 4 6 8 10]'

The result in all three cases will be

b =
2
4
6
8
10

A matrix of values can be assigned as follows:

>> A = [1 2 3; 4 5 6; 7 8 9]

A =
1 2 3
4 5 6
7 8 9

In addition, the Enter key (carriage return) can be used to separate the rows. For example,
in the following case, the Enter key would be struck after the 3, the 6 and the] to assign the
matrix:

>> A = [1 2 3
4 5 6
7 8 9]

28 MATLAB FUNDAMENTALS

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 28

2.2 ASSIGNMENT 29

Finally, we could construct the same matrix by concatenating (i.e., joining) the vectors
representing each column:

>> A = [[1 4 7]' [2 5 8]' [3 6 9]']

At any point in a session, a list of all current variables can be obtained by entering the
who command:

>> who

Your variables are:
A a ans b x

or, with more detail, enter the whos command:

>> whos

Name Size Bytes Class

A 3x3 72 double array
a 1x5 40 double array
ans 1x1 8 double array
b 5x1 40 double array
x 1x1 16 double array (complex)

Grand total is 21 elements using 176 bytes

Note that subscript notation can be used to access an individual element of an array.
For example, the fourth element of the column vector b can be displayed as

>> b(4)

ans =
8

For an array, A(m,n) selects the element in mth row and the nth column. For example,

>> A(2,3)

ans =
6

There are several built-in functions that can be used to create matrices. For example,
the ones and zeros functions create vectors or matrices filled with ones and zeros,
respectively. Both have two arguments, the first for the number of rows and the second for
the number of columns. For example, to create a 2 × 3 matrix of zeros:

>> E = zeros(2,3)

E =
0 0 0
0 0 0

Similarly, the ones function can be used to create a row vector of ones:

>> u = ones(1,3)

u =
1 1 1

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 29

2.2.3 The Colon Operator

The colon operator is a powerful tool for creating and manipulating arrays. If a colon is
used to separate two numbers, MATLAB generates the numbers between them using an
increment of one:

>> t = 1:5

t =
1 2 3 4 5

If colons are used to separate three numbers, MATLAB generates the numbers between the
first and third numbers using an increment equal to the second number:

>> t = 1:0.5:3

t =
1.0000 1.5000 2.0000 2.5000 3.0000

Note that negative increments can also be used

>> t = 10:-1:5

t =
10 9 8 7 6 5

Aside from creating series of numbers, the colon can also be used as a wildcard to se-
lect the individual rows and columns of a matrix. When a colon is used in place of a spe-
cific subscript, the colon represents the entire row or column. For example, the second row
of the matrix A can be selected as in

>> A(2,:)

ans =
4 5 6

We can also use the colon notation to selectively extract a series of elements from
within an array. For example, based on the previous definition of the vector t:

>> t(2:4)

ans =
9 8 7

Thus, the second through the fourth elements are returned.

2.2.4 The linspace and logspace Functions

The linspace and logspace functions provide other handy tools to generate vectors of
spaced points. The linspace function generates a row vector of equally spaced points. It
has the form

linspace(x1, x2, n)

30 MATLAB FUNDAMENTALS

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 30

2.2 ASSIGNMENT 31

which generates n points between x1 and x2. For example

>> linspace(0,1,6)

ans =
0 0.2000 0.4000 0.6000 0.8000 1.0000

If the n is omitted, the function automatically generates 100 points.
The logspace function generates a row vector that is logarithmically equally spaced.

It has the form

logspace(x1, x2, n)

which generates n logarithmically equally spaced points between decades 10x1 and 10x2.
For example,

>> logspace(-1,2,4)

ans =
0.1000 1.0000 10.0000 100.0000

If n is omitted, it automatically generates 50 points.

2.2.5 Character Strings

Aside from numbers, alphanumeric information or character strings can be represented by
enclosing the strings within single quotation marks. For example,

>> f = 'Miles ';
>> s = 'Davis';

Each character in a string is one element in an array. Thus, we can concatenate (i.e., paste
together) strings as in

>> x = [f s]

x =
Miles Davis

Note that very long lines can be continued by placing an ellipsis (three consecutive
periods) at the end of the line to be continued. For example, a row vector could be entered as

>> a = [1 2 3 4 5 ...
6 7 8]

a =
1 2 3 4 5 6 7 8

However, you cannot use an ellipsis within single quotes to continue a string. To enter a
string that extends beyond a single line, piece together shorter strings as in

>> quote = ['Any fool can make a rule,' ...
' and any fool will mind it']

quote =
Any fool can make a rule, and any fool will mind it

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 31

These operators will work in calculator fashion. Try

>> 2*pi

ans =
6.2832

Also, scalar real variables can be included:

>> y = pi/4;
>> y ^ 2.45

ans =
0.5533

Results of calculations can be assigned to a variable, as in the next-to-last example, or sim-
ply displayed, as in the last example.

As with other computer calculation, the priority order can be overridden with paren-
theses. For example, because exponentiation has higher priority then negation, the follow-
ing result would be obtained:

>> y = -4 ^ 2

y =
-16

Thus, 4 is first squared and then negated. Parentheses can be used to override the priorities
as in

>> y = (-4) ^ 2

y =
16

32 MATLAB FUNDAMENTALS

2.3 MATHEMATICAL OPERATIONS

Operations with scalar quantities are handled in a straightforward manner, similar to other
computer languages. The common operators, in order of priority, are

^ Exponentiation
– Negation
* / Multiplication and division
\ Left division2

+ – Addition and subtraction

2 Left division applies to matrix algebra. It will be discussed in detail later in this book.

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 32

2.3 MATHEMATICAL OPERATIONS 33

Calculations can also involve complex quantities. Here are some examples that use the
values of x (2 + 4i) and y (16) defined previously:

>> 3 * x

ans =
6.0000 + 12.0000i

>> 1 / x

ans =
0.1000 - 0.2000i

>> x ^ 2

ans =
-12.0000 + 16.0000i

>> x + y

ans =
18.0000 + 4.0000i

The real power of MATLAB is illustrated in its ability to carry out vector-matrix
calculations. Although we will describe such calculations in detail in Chap. 8, it is worth
introducing some examples here.

The inner product of two vectors (dot product) can be calculated using the * operator,

>> a * b

ans =
110

and likewise, the outer product

>> b * a

ans =
2 4 6 8 10
4 8 12 16 20
6 12 18 24 30
8 16 24 32 40

10 20 30 40 50

To further illustrate vector-matrix multiplication, first redefine a and b:

>> a = [1 2 3];

and

>> b = [4 5 6]';

Now, try

>> a * A

ans =
30 36 42

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 33

or

>> A * b

ans =
32
77
122

Matrices cannot be multiplied if the inner dimensions are unequal. Here is what happens
when the dimensions are not those required by the operations. Try

>> A * a

MATLAB automatically displays the error message:

??? Error using ==> mtimes
Inner matrix dimensions must agree.

Matrix-matrix multiplication is carried out in likewise fashion:

>> A * A

ans =
30 36 42
66 81 96
102 126 150

Mixed operations with scalars are also possible:

>> A/pi

ans =
0.3183 0.6366 0.9549
1.2732 1.5915 1.9099
2.2282 2.5465 2.8648

We must always remember that MATLAB will apply the simple arithmetic operators
in vector-matrix fashion if possible. At times, you will want to carry out calculations item
by item in a matrix or vector. MATLAB provides for that too. For example,

>> A^2

ans =
30 36 42
66 81 96
102 126 150

results in matrix multiplication of A with itself.
What if you want to square each element of A? That can be done with

>> A.^2

ans =
1 4 9
16 25 36
49 64 81

The . preceding the ^ operator signifies that the operation is to be carried out element by
element. The MATLAB manual calls these array operations. They are also often referred
to as element-by-element operations.

34 MATLAB FUNDAMENTALS

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 34

2.4 USE OF BUILT-IN FUNCTIONS 35

MATLAB contains a helpful shortcut for performing calculations that you’ve already
done. Press the up-arrow key. You should get back the last line you typed in.

>> A.^2

Pressing Enter will perform the calculation again. But you can also edit this line. For
example, change it to the line below and then press Enter.

>> A.^3

ans =
1 8 27
64 125 216
343 512 729

Using the up-arrow key, you can go back to any command that you entered. Press the up-
arrow until you get back the line

>> b * a

Alternatively, you can type b and press the up-arrow once and it will automatically bring
up the last command beginning with the letter b. The up-arrow shortcut is a quick way to
fix errors without having to retype the entire line.

2.4 USE OF BUILT-IN FUNCTIONS

MATLAB and its Toolboxes have a rich collection of built-in functions. You can use online
help to find out more about them. For example, if you want to learn about the log function,
type in

>> help log

LOG Natural logarithm.
LOG(X) is the natural logarithm of the elements of X.
Complex results are produced if X is not positive.

See also LOG2, LOG10, EXP, LOGM.

For a list of all the elementary functions, type

>> help elfun

One of their important properties of MATLAB’s built-in functions is that they will op-
erate directly on vector and matrix quantities. For example, try

>> log(A)

ans =
0 0.6931 1.0986

1.3863 1.6094 1.7918
1.9459 2.0794 2.1972

and you will see that the natural logarithm function is applied in array style, element by
element, to the matrix A. Most functions, such as sqrt, abs, sin, acos, tanh, and exp, op-
erate in array fashion. Certain functions, such as exponential and square root, have matrix

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 35

definitions also. MATLAB will evaluate the matrix version when the letter m is appended to
the function name. Try

>> sqrtm(A)

ans =
0.4498 + 0.7623i 0.5526 + 0.2068i 0.6555 - 0.3487i
1.0185 + 0.0842i 1.2515 + 0.0228i 1.4844 - 0.0385i
1.5873 - 0.5940i 1.9503 - 0.1611i 2.3134 + 0.2717i

There are several functions for rounding. For example, suppose that we enter a vector:

>> E = [-1.6 -1.5 -1.4 1.4 1.5 1.6];

The round function rounds the elements of E to the nearest integers:

>> round(E)

ans =
-2 -2 -1 1 2 2

The ceil (short for ceiling) function rounds to the nearest integers toward infinity:

>> ceil(E)

ans =
-1 -1 -1 2 2 2

The floor function rounds down to the nearest integers toward minus infinity:

>> floor(E)

ans =
-2 -2 -2 1 1 1

There are also functions that perform special actions on the elements of matrices and
arrays. For example, the sum function returns the sum of the elements:

>> F = [3 5 4 6 1];
>> sum(F)

ans =
19

In a similar way, it should be pretty obvious what’s happening with the following commands:

>> min(F),max(F),mean(F),prod(F),sort(F)

ans =
1

ans =
6

ans =
3.8000

ans =
360

ans =
1 3 4 5 6

36 MATLAB FUNDAMENTALS

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 36

2.4 USE OF BUILT-IN FUNCTIONS 37

A common use of functions is to evaluate a formula for a series of arguments. Recall
that the velocity of a free-falling bungee jumper can be computed with [Eq. (1.9)]:

v =
√

gm

cd
tanh

(√
gcd

m
t

)

where v is velocity (m/s), g is the acceleration due to gravity (9.81 m/s2), m is mass (kg),
cd is the drag coefficient (kg/m), and t is time (s).

Create a column vector t that contains values from 0 to 20 in steps of 2:

>> t = [0:2:20]'

t =
0
2
4
6
8
10
12
14
16
18
20

Check the number of items in the t array with the length function:

>> length(t)

ans =
11

Assign values to the parameters:

>> g = 9.81; m = 68.1; cd = 0.25;

MATLAB allows you to evaluate a formula such as v = f (t), where the formula is
computed for each value of the t array, and the result is assigned to a corresponding posi-
tion in the v array. For our case,

>> v = sqrt(g*m/cd)*tanh(sqrt(g*cd/m)*t)

v =
0

18.7292
33.1118
42.0762
46.9575
49.4214
50.6175
51.1871
51.4560
51.5823
51.6416

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 37

38 MATLAB FUNDAMENTALS

2.5 GRAPHICS

MATLAB allows graphs to be created quickly and conveniently. For example, to create a
graph of the t and v arrays from the data above, enter

>> plot(t, v)

The graph appears in the graphics window and can be printed or transferred via the clip-
board to other programs.

60

50

40

30

20

10

0
0 2 4 6 8 10 12 16 1814 20

You can customize the graph a bit with commands such as the following:

>> title('Plot of v versus t')
>> xlabel('Values of t')
>> ylabel('Values of v')
>> grid

60

50

40

30

20

10

0
0 2 4 6 8 10

Values of t

Plot of v versus t

V
al

u
es

 o
f
v

16 181412 20

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 38

The plot command displays a solid thin blue line by default. If you want to plot each
point with a symbol, you can include a specifier enclosed in single quotes in the plot func-
tion. Table 2.2 lists the available specifiers. For example, if you want to use open circles enter

>> plot(t, v, 'o')

You can also combine several specifiers. For example, if you want to use square green
markers connected by green dashed lines, you could enter

>> plot(t, v, 's--g')

You can also control the line width as well as the marker’s size and its edge and face (i.e.,
interior) colors. For example, the following command uses a heavier (2-point), dashed,
cyan line to connect larger (10-point) diamond-shaped markers with black edges and
magenta faces:

>> plot(x,y,'--dc','LineWidth',2,...
'MarkerSize',10,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','m')

Note that the default line width is 1 point. For the markers, the default size is 6 point with
blue edge color and no face color.

MATLAB allows you to display more than one data set on the same plot. For example,
an alternative way to connect each data marker with a straight line would be to type

>> plot(t, v, t, v, 'o')

It should be mentioned that, by default, previous plots are erased every time the plot
command is implemented. The hold on command holds the current plot and all axis prop-
erties so that additional graphing commands can be added to the existing plot. The hold
off command returns to the default mode. For example, if we had typed the following
commands, the final plot would only display symbols:

>> plot(t, v)
>> plot(t, v, 'o')

2.5 GRAPHICS 39

TABLE 2.2 Specifiers for colors, symbols, and line types.

Colors Symbols Line Types

Blue b Point . Solid –
Green g Circle o Dotted :
Red r X-mark x Dashdot -.
Cyan c Plus + Dashed --
Magenta m Star *
Yellow y Square s
Black k Diamond d
White w Triangle(down)

Triangle(up) ^
Triangle(left) <
Triangle(right) >
Pentagram p
Hexagram h

^

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 39

40 MATLAB FUNDAMENTALS

In contrast, the following commands would result in both lines and symbols being displayed:

>> plot(t, v)
>> hold on
>> plot(t, v, 'o')
>> hold off

In addition to hold, another handy function is subplot, which allows you to split the
graph window into subwindows or panes. It has the syntax

subplot(m, n, p)

This command breaks the graph window into an m-by-n matrix of small axes, and selects
the p-th axes for the current plot.

We can demonstrate subplot by examining MATLAB’s capability to generate three-
dimensional plots. The simplest manifestation of this capability is the plot3 command
which has the syntax

plot3(x, y, z)

wherex,y, andz are three vectors of the same length. The result is a line in three-dimensional
space through the points whose coordinates are the elements of x, y, and z.

Plotting a helix provides a nice example to illustrate its utility. First, let’s graph a circle
with the two-dimensional plot function using the parametric representation: x = sin(t)
and y = cos(t). We employ the subplot command so we can subsequently add the three-
dimensional plot.

>> t = 0:pi/50:10*pi;
>> subplot(1,2,1);plot(sin(t),cos(t))
>> axis square
>> title('(a)')

As in Fig. 2.1a, the result is a circle. Note that the circle would have been distorted if we
had not used the axis square command.

Now, let’s add the helix to the graph’s right pane. To do this, we again employ a para-
metric representation: x = sin(t), y = cos(t), and z = t

>> subplot(1,2,2);plot3(sin(t),cos(t),t);
>> title('(b)')

The result is shown in Fig. 2.1b. Can you visualize what’s going on? As time evolves,
the x and y coordinates sketch out the circumference of the circle in the x–y plane in the
same fashion as the two-dimensional plot. However, simultaneously, the curve rises verti-
cally as the z coordinate increases linearly with time. The net result is the characteristic
spring or spiral staircase shape of the helix.

There are other features of graphics that are useful—for example, plotting objects
instead of lines, families of curves plots, plotting on the complex plane, log-log or semilog
plots, three-dimensional mesh plots, and contour plots. As described next, a variety of re-
sources are available to learn about these as well as other MATLAB capabilities.

2.6 OTHER RESOURCES

The foregoing was designed to focus on those features of MATLAB that we will be using
in the remainder of this book. As such, it is obviously not a comprehensive overview of all
of MATLAB’s capabilities. If you are interested in learning more, you should consult one

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 40

2.6 OTHER RESOURCES 41

of the excellent books devoted to MATLAB (e.g., Attaway, 2009; Palm, 2007; Hanselman
and Littlefield, 2005; and Moore, 2008).

Further, the package itself includes an extensive Help facility that can be accessed by
clicking on the Help menu in the command window. This will provide you with a number
of different options for exploring and searching through MATLAB’s Help material. In ad-
dition, it provides access to a number of instructive demos.

As described in this chapter, help is also available in interactive mode by typing the
help command followed by the name of a command or function.

If you do not know the name, you can use the lookfor command to search the
MATLAB Help files for occurrences of text. For example, suppose that you want to find all
the commands and functions that relate to logarithms, you could enter

>> lookfor logarithm

and MATLAB will display all references that include the word logarithm.
Finally, you can obtain help from The MathWorks, Inc., website at www.mathworks

.com. There you will find links to product information, newsgroups, books, and technical
support as well as a variety of other useful resources.

40

30

20

10

0
1

0

–1

0

1

(a)

(b)

1

0.5

0

–0.5

–1
–1 –0.5 0 0.5 1

FIGURE 2.1
A two-pane plot of (a) a two-dimensional circle and (b) a three-dimensional helix.

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 41

www.mathworks.com
www.mathworks.com

42 MATLAB FUNDAMENTALS

2.7 CASE STUDY EXPLORATORY DATA ANALYSIS

Background. Your textbooks are filled with formulas developed in the past by
renowned scientists and engineers.Although these are of great utility, engineers and scientists
often must supplement these relationships by collecting and analyzing their own data. Some-
times this leads to a new formula. However, prior to arriving at a final predictive equation, we
usually “play” with the data by performing calculations and developing plots. In most cases,
our intent is to gain insight into the patterns and mechanisms hidden in the data.

In this case study, we will illustrate how MATLAB facilitates such exploratory data
analysis. We will do this by estimating the drag coefficient of a free-falling human based on
Eq. (2.1) and the data from Table 2.1. However, beyond merely computing the drag
coefficient, we will use MATLAB’s graphical capabilities to discern patterns in the data.

Solution. The data from Table 2.1 along with gravitational acceleration can be entered as

>> m=[83.6 60.2 72.1 91.1 92.9 65.3 80.9];
>> vt=[53.4 48.5 50.9 55.7 54 47.7 51.1];
>> g=9.81;

The drag coefficients can then be computed with Eq. (2.1). Because we are performing
element-by-element operations on vectors, we must include periods prior to the operators:

>> cd=g*m./vt.^2

cd =
0.2876 0.2511 0.2730 0.2881 0.3125 0.2815 0.3039

We can now use some of MATLAB’s built-in functions to generate some statistics for the
results:

>> cdavg=mean(cd),cdmin=min(cd),cdmax=max(cd)
cdavg =

0.2854
cdmin =

0.2511
cdmax =

0.3125

Thus, the average value is 0.2854 with a range from 0.2511 to 0.3125 kg/m.
Now, let’s start to play with these data by using Eq. (2.1) to make a prediction of the

terminal velocity based on the average drag:

>> vpred=sqrt(g*m/cdavg)

vpred =
53.6065 45.4897 49.7831 55.9595 56.5096 47.3774

52.7338

Notice that we do not have to use periods prior to the operators in this formula? Do you
understand why?

We can plot these values versus the actual measured terminal velocities. We will also
superimpose a line indicating exact predictions (the 1:1 line) to help assess the results.

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 42

2.7 CASE STUDY 43

2.7 CASE STUDY continued

Because we are going to eventually generate a second plot, we employ the subplot
command:

>> subplot(2,1,1);plot(vt,vpred,'o',vt,vt)
>> xlabel('measured')
>> ylabel('predicted')
>> title('Plot of predicted versus measured velocities')

As in the top plot of Fig. 2.2, because the predictions generally follow the 1:1 line, you
might initially conclude that the average drag coefficient yields decent results. However,
notice how the model tends to underpredict the low velocities and overpredict the high.
This suggests that rather than being constant, there might be a trend in the drag coefficients.
This can be seen by plotting the estimated drag coefficients versus mass:

>> subplot(2,1,2);plot(m,cd,'o')
>> xlabel('mass (kg)')
>> ylabel('estimated drag coefficient (kg/m)')
>> title('Plot of drag coefficient versus mass')

The resulting plot, which is the bottom graph in Fig. 2.2, suggests that rather than
being constant, the drag coefficient seems to be increasing as the mass of the jumper

FIGURE 2.2
Two plots created with MATLAB.

60
Plot of predicted versus measured velocities

Measured

P
re

d
ic

te
d 55

50

45
47 48 49 50 51 52 53 54 55 56

0.35
Plot of drag coefficient versus mass

Mass (kg)

E
st

im
at

ed
 d

ra
g

co
ef

fi
ci

en
t

(k
g

/m
)

0.3

0.25

0.2
60 65 70 75 80 85 90 95

cha01102_ch02_024-047.qxd 12/18/10 1:51 PM Page 43

44 MATLAB FUNDAMENTALS

2.7 CASE STUDY continued

increases. Based on this result, you might conclude that your model needs to be improved.
At the least, it might motivate you to conduct further experiments with a larger number of
jumpers to confirm your preliminary finding.

In addition, the result might also stimulate you to go to the fluid mechanics literature and
learn more about the science of drag. As described previously in Sec. 1.4, you would dis-
cover that the parameter cd is actually a lumped drag coefficient that along with the true
drag includes other factors such as the jumper’s frontal area and air density:

cd = CDρ A

2
(2.2)

where CD = a dimensionless drag coefficient, ρ = air density (kg/m3), and A = frontal
area (m2), which is the area projected on a plane normal to the direction of the velocity.

Assuming that the densities were relatively constant during data collection (a pretty
good assumption if the jumpers all took off from the same height on the same day), Eq. (2.2)
suggests that heavier jumpers might have larger areas. This hypothesis could be substanti-
ated by measuring the frontal areas of individuals of varying masses.

2.1 Use the linspace function to create vectors identical to
the following created with colon notation:
(a) t = 4:6:35

(b) x = -4:2

2.2 Use colon notation to create vectors identical to the
following created with the linspace function:
(a) v = linspace(-2,1.5,8)

(b) r = linspace(8,4.5,8)

2.3 The command linspace(a, b, n) generates a row
vector of n equally spaced points between a and b. Use
colon notation to write an alternative one-line command to
generate the same vector. Test your formulation for a = −3,
b = 5, n = 6.
2.4 The following matrix is entered in MATLAB:

>> A=[3 2 1;0:0.5:1;linspace(6, 8, 3)]

(a) Write out the resulting matrix.
(b) Use colon notation to write a single-line MATLAB com-

mand to multiply the second row by the third column
and assign the result to the variable C.

2.5 The following equation can be used to compute values
of y as a function of x:

y = be−ax sin(bx)(0.012x4 − 0.15x3 + 0.075x2 + 2.5x)

where a and b are parameters. Write the equation for imple-
mentation with MATLAB, where a = 2, b = 5, and x is a
vector holding values from 0 to π/2 in increments of
�x = π/40. Employ the minimum number of periods (i.e.,
dot notation) so that your formulation yields a vector for y.
In addition, compute the vector z = y2 where each element
holds the square of each element of y. Combine x, y, and z
into a matrix w, where each column holds one of the vari-
ables, and display w using the short g format. In addition,
generate a labeled plot of y and z versus x. Include a legend
on the plot (use help to understand how to do this). For y,
use a 1.5-point, dashdotted red line with 14-point, red-
edged, white-faced pentagram-shaped markers. For z, use a
standard-sized (i.e., default) solid blue line with standard-
sized, blue-edged, green-faced square markers.
2.6 A simple electric circuit consisting of a resistor, a ca-
pacitor, and an inductor is depicted in Fig. P2.6. The charge
on the capacitor q(t) as a function of time can be computed
as

q(t) = q0e−Rt/(2L) cos

⎡
⎣

√
1

LC
−

(
R

2L

)2

t

⎤
⎦

PROBLEMS

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 44

PROBLEMS 45

where t = time, q0 = the initial charge, R = the resistance,
L = inductance, and C = capacitance. Use MATLAB to
generate a plot of this function from t = 0 to 0.8, given that
q0 = 10, R = 60, L = 9, and C = 0.00005.
2.7 The standard normal probability density function is a
bell-shaped curve that can be represented as

f (z) = 1√
2π

e−z2/2

Use MATLAB to generate a plot of this function from
z = −5 to 5. Label the ordinate as frequency and the ab-
scissa as z.
2.8 If a force F (N) is applied to compress a spring, its dis-
placement x (m) can often be modeled by Hooke’s law:

F = kx

where k = the spring constant (N/m). The potential energy
stored in the spring U (J) can then be computed as

U = 1

2
kx2

Five springs are tested and the following data compiled:

F, N 14 18 8 9 13
x, m 0.013 0.020 0.009 0.010 0.012

Use MATLAB to store F and x as vectors and then compute
vectors of the spring constants and the potential energies.
Use the max function to determine the maximum potential
energy.
2.9 The density of freshwater can be computed as a function
of temperature with the following cubic equation:

ρ = 5.5289 × 10−8T 3
C − 8.5016 × 10−6T 2

C

+ 6.5622 × 10−5TC + 0.99987

where ρ = density (g/cm3) and TC = temperature (°C). Use
MATLAB to generate a vector of temperatures ranging from
32 °F to 93.2 °F using increments of 3.6 °F. Convert this vec-
tor to degrees Celsius and then compute a vector of densities
based on the cubic formula. Create a plot of ρ versus TC .
Recall that TC = 5/9(TF − 32).
2.10 Manning’s equation can be used to compute the veloc-
ity of water in a rectangular open channel:

U =
√

S

n

(
B H

B + 2H

)2/3

where U = velocity (m/s), S = channel slope, n = roughness
coefficient, B = width (m), and H = depth (m). The follow-
ing data are available for five channels:

n S B H

0.035 0.0001 10 2
0.020 0.0002 8 1
0.015 0.0010 20 1.5
0.030 0.0007 24 3
0.022 0.0003 15 2.5

Store these values in a matrix where each row represents one
of the channels and each column represents one of the param-
eters. Write a single-line MATLAB statement to compute a
column vector containing the velocities based on the values
in the parameter matrix.
2.11 It is general practice in engineering and science that
equations be plotted as lines and discrete data as symbols.
Here are some data for concentration (c) versus time (t) for
the photodegradation of aqueous bromine:

t, min 10 20 30 40 50 60
c, ppm 3.4 2.6 1.6 1.3 1.0 0.5

These data can be described by the following function:

c = 4.84e−0.034t

Use MATLAB to create a plot displaying both the data
(using diamond-shaped, filled-red symbols) and the function
(using a green, dashed line). Plot the function for t = 0 to
70 min.
2.12 The semilogy function operates in an identical fashion
to the plot function except that a logarithmic (base-10) scale
is used for the y axis. Use this function to plot the data and
function as described in Prob. 2.11. Explain the results.

Switch

Resistor

Capacitor
�

�
V0

i
�

�
Battery Inductor

FIGURE P2.6

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 45

46 MATLAB FUNDAMENTALS

2.13 Here are some wind tunnel data for force (F) versus
velocity (v):

v, m/s 10 20 30 40 50 60 70 80
F, N 25 70 380 550 610 1220 830 1450

These data can be described by the following function:

F = 0.2741v1.9842

Use MATLAB to create a plot displaying both the data (using
circular magenta symbols) and the function (using a black
dash-dotted line). Plot the function for v = 0 to 100 m/s and
label the plot’s axes.
2.14 The loglog function operates in an identical fashion
to the plot function except that logarithmic scales are used
for both the x and y axes. Use this function to plot the data
and function as described in Prob. 2.13. Explain the results.
2.15 The Maclaurin series expansion for the cosine is

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− · · ·

Use MATLAB to create a plot of the sine (solid line) along
with a plot of the series expansion (black dashed line) up
to and including the term x8/8!. Use the built-in function
factorial in computing the series expansion. Make the
range of the abscissa from x = 0 to 3π/2.

2.16 You contact the jumpers used to generate the data in
Table 2.1 and measure their frontal areas. The resulting
values, which are ordered in the same sequence as the
corresponding values in Table 2.1, are

A, m2 0.455 0.402 0.452 0.486 0.531 0.475 0.487

(a) If the air density is ρ = 1.223 kg/m3, use MATLAB to
compute values of the dimensionless drag coefficient CD.

(b) Determine the average, minimum and maximum of the
resulting values.

(c) Develop a stacked plot of A versus m (upper) and CD

versus m (lower). Include descriptive axis labels and
titles on the plots.

2.17 The following parametric equations generate a conical
helix.

x = t cos(6t)
y = t sin(6t)
z = t

Compute values of x, y, and z for t = 0 to 6π with
�t = π/64. Use subplot to generate a two-dimensional
line plot (red solid line) of (x, y) in the top pane and a three-
dimensional line plot (cyan solid line) of (x, y, z) in the
bottom pane. Label the axes for both plots.
2.18 Exactly what will be displayed after the following
MATLAB commands are typed?
(a) >> x = 5;

>> x ^ 3;

>> y = 8 – x

(b) >> q = 4:2:12;

>> r = [7 8 4; 3 6 –5];

>> sum(q) * r(2, 3)

2.19 The trajectory of an object can be modeled as

y = (tan θ0)x − g

2v2
0cos2θ0

x2 + y0

where y = height (m), θ0 = initial angle (radians), x =
horizontal distance (m), g = gravitational acceleration
(= 9.81 m/s2), v0 = initial velocity (m/s), and y0 = initial
height. Use MATLAB to find the trajectories for y0 = 0 and
v0 = 28 m/s for initial angles ranging from 15 to 75° in in-
crements of 15°. Employ a range of horizontal distances
from x = 0 to 80 m in increments of 5 m. The results should
be assembled in an array where the first dimension (rows)
corresponds to the distances, and the second dimension
(columns) corresponds to the different initial angles. Use
this matrix to generate a single plot of the heights versus
horizontal distances for each of the initial angles. Employ a
legend to distinguish among the different cases, and scale
the plot so that the minimum height is zero using the axis
command.
2.20 The temperature dependence of chemical reactions can
be computed with the Arrhenius equation:

k = Ae−E/(RTa)

where k = reaction rate (s−1), A = the preexponential (or fre-
quency) factor, E = activation energy (J/mol), R = gas con-
stant [8.314 J/(mole · K)], and Ta = absolute temperature
(K). A compound has E = 1 × 105 J/mol and A = 7 × 1016.
Use MATLAB to generate values of reaction rates for
temperatures ranging from 253 to 325 K. Use subplot to
generate a side-by-side graph of (a) k versus Ta (green line)
and (b) log10 k (red line) versus 1/Ta. Employ the semilogy
function to create (b). Include axis labels and titles for both
subplots. Interpret your results.

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 46

(c) moment [M(x) = EId2 y/dx2],
(d) shear [V (x) = EId3 y/dx3], and
(e) loading [w(x) = −EId4 y/dx4].
Use the following parameters for your computation:
L = 600 cm, E = 50,000 kN/cm2, I = 30,000 cm4,
w0 = 2.5 kN/cm, and �x = 10 cm. Employ the subplot
function to display all the plots vertically on the same page
in the order (a) to (e). Include labels and use consistent MKS
units when developing the plots.
2.22 The butterfly curve is given by the following paramet-
ric equations:

x = sin(t)

(
ecos t − 2 cos 4t − sin5 t

12

)

y = cos(t)
(

ecos t − 2 cos 4t − sin5 t

12

)

Generate values of x and y for values of t from 0 to 100 with
�t = 1/16. Construct plots of (a) x and y versus t and (b) y
versus x. Use subplot to stack these plots vertically and
make the plot in (b) square. Include titles and axis labels on
both plots and a legend for (a). For (a), employ a dotted line
for y in order to distinguish it from x.
2.23 The butterfly curve from Prob. 2.22 can also be repre-
sented in polar coordinates as

r = esin θ − 2 cos(4θ) − sin5
(

2θ − π

24

)

Generate values of r for values of θ from 0 to 8π with
�θ = π/32. Use the MATLAB function polar to generate
the polar plot of the butterfly curve with a dashed red line.
Employ the MATLAB Help to understand how to generate
the plot.

2.21 Figure P2.21a shows a uniform beam subject to a lin-
early increasing distributed load. As depicted in Fig. P2.21b,
deflection y (m) can be computed with

y = w0

120EIL
(−x5 + 2L2x3 − L4x)

where E = the modulus of elasticity and I = the moment of
inertia (m4). Employ this equation and calculus to generate
MATLAB plots of the following quantities versus distance
along the beam:
(a) displacement (y),
(b) slope [θ(x) = dy/dx],

PROBLEMS 47

w0

L

(a)

(x = 0, y = 0)
(x = L, y = 0)

x

(b)

FIGURE P2.21

cha01102_ch02_024-047.qxd 12/17/10 7:55 AM Page 47

3
Programming with MATLAB

48

CHAPTER OBJECTIVES
The primary objective of this chapter is to learn how to write M-file programs to
implement numerical methods. Specific objectives and topics covered are

• Learning how to create well-documented M-files in the edit window and invoke
them from the command window.

• Understanding how script and function files differ.
• Understanding how to incorporate help comments in functions.
• Knowing how to set up M-files so that they interactively prompt users for

information and display results in the command window.
• Understanding the role of subfunctions and how they are accessed.
• Knowing how to create and retrieve data files.
• Learning how to write clear and well-documented M-files by employing

structured programming constructs to implement logic and repetition.
• Recognizing the difference between if...elseif and switch constructs.
• Recognizing the difference between for...end and while structures.
• Knowing how to animate MATLAB plots.
• Understanding what is meant by vectorization and why it is beneficial.
• Understanding how anonymous functions can be employed to pass functions to

function function M-files.

YOU’VE GOT A PROBLEM

I n Chap. 1, we used a force balance to develop a mathematical model to predict the
fall velocity of a bungee jumper. This model took the form of the following differential
equation:

dv

dt
= g − cd

m
v|v|

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 48

We also learned that a numerical solution of this equation could be obtained with Euler’s
method:

vi+1 = vi + dvi

dt
�t

This equation can be implemented repeatedly to compute velocity as a function of
time. However, to obtain good accuracy, many small steps must be taken. This would be
extremely laborious and time consuming to implement by hand. However, with the aid of
MATLAB, such calculations can be performed easily.

So our problem now is to figure out how to do this. This chapter will introduce you to
how MATLAB M-files can be used to obtain such solutions.

3.1 M-FILES

The most common way to operate MATLAB is by entering commands one at a time in the
command window. M-files provide an alternative way of performing operations that
greatly expand MATLAB’s problem-solving capabilities. An M-file consists of a series of
statements that can be run all at once. Note that the nomenclature “M-file” comes from the
fact that such files are stored with a .m extension. M-files come in two flavors: script files
and function files.

3.1.1 Script Files

A script file is merely a series of MATLAB commands that are saved on a file. They are
useful for retaining a series of commands that you want to execute on more than one occa-
sion. The script can be executed by typing the file name in the command window or by
invoking the menu selections in the edit window: Debug, Run.

EXAMPLE 3.1 Script File

Problem Statement. Develop a script file to compute the velocity of the free-falling
bungee jumper for the case where the initial velocity is zero.

Solution. Open the editor with the menu selection: File, New, M-file. Type in the follow-
ing statements to compute the velocity of the free-falling bungee jumper at a specific time
[recall Eq. (1.9)]:

g = 9.81; m = 68.1; t = 12; cd = 0.25;
v = sqrt(g * m / cd) * tanh(sqrt(g * cd / m) * t)

Save the file as scriptdemo.m. Return to the command window and type

>>scriptdemo

The result will be displayed as

v =
50.6175

Thus, the script executes just as if you had typed each of its lines in the command window.

3.1 M-FILES 49

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 49

As a final step, determine the value of g by typing

>> g

g =
9.8100

So you can see that even though g was defined within the script, it retains its value back in
the command workspace. As we will see in the following section, this is an important dis-
tinction between scripts and functions.

3.1.2 Function Files

Function files are M-files that start with the word function. In contrast to script files, they
can accept input arguments and return outputs. Hence they are analogous to user-defined
functions in programming languages such as Fortran, Visual Basic or C.

The syntax for the function file can be represented generally as

function outvar = funcname(arglist)
% helpcomments
statements
outvar = value;

where outvar = the name of the output variable, funcname = the function’s name,
arglist = the function’s argument list (i.e., comma-delimited values that are passed into
the function), helpcomments = text that provides the user with information regarding the
function (these can be invoked by typing Help funcname in the command window), and
statements = MATLAB statements that compute the value that is assigned to outvar.

Beyond its role in describing the function, the first line of the helpcomments, called
the H1 line, is the line that is searched by the lookfor command (recall Sec. 2.6). Thus,
you should include key descriptive words related to the file on this line.

The M-file should be saved as funcname.m. The function can then be run by typing
funcname in the command window as illustrated in the following example. Note that even
though MATLAB is case-sensitive, your computer’s operating system may not be.
Whereas MATLAB would treat function names like freefall and FreeFall as two dif-
ferent variables, your operating system might not.

EXAMPLE 3.2 Function File

Problem Statement. As in Example 3.1, compute the velocity of the free-falling bungee
jumper but now use a function file for the task.

Solution. Type the following statements in the file editor:

function v = freefall(t, m, cd)
% freefall: bungee velocity with second-order drag
% v=freefall(t,m,cd) computes the free-fall velocity
% of an object with second-order drag
% input:

50 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 50

% t = time (s)
% m = mass (kg)
% cd = second-order drag coefficient (kg/m)
% output:
% v = downward velocity (m/s)

g = 9.81; % acceleration of gravity
v = sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t);

Save the file as freefall.m. To invoke the function, return to the command window and
type in

>> freefall(12,68.1,0.25)

The result will be displayed as

ans =
50.6175

One advantage of a function M-file is that it can be invoked repeatedly for different
argument values. Suppose that you wanted to compute the velocity of a 100-kg jumper
after 8 s:

>> freefall(8,100,0.25)

ans =
53.1878

To invoke the help comments type

>> help freefall

which results in the comments being displayed

freefall: bungee velocity with second-order drag
v=freefall(t,m,cd) computes the free-fall velocity

of an object with second-order drag
input:

t = time (s)
m = mass (kg)
cd = second-order drag coefficient (kg/m)

output:
v = downward velocity (m/s)

If at a later date, you forgot the name of this function, but remembered that it involved
bungee jumping, you could enter

>> lookfor bungee

and the following information would be displayed

freefall.m - bungee velocity with second-order drag

Note that, at the end of the previous example, if we had typed

>> g

3.1 M-FILES 51

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 51

the following message would have been displayed

??? Undefined function or variable 'g'.

So even though g had a value of 9.81 within the M-file, it would not have a value in the
command workspace. As noted previously at the end of Example 3.1, this is an important
distinction between functions and scripts. The variables within a function are said to be
local and are erased after the function is executed. In contrast, the variables in a script
retain their existence after the script is executed.

Function M-files can return more than one result. In such cases, the variables contain-
ing the results are comma-delimited and enclosed in brackets. For example, the following
function, stats.m, computes the mean and the standard deviation of a vector:

function [mean, stdev] = stats(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/(n-1)));

Here is an example of how it can be applied:

>> y = [8 5 10 12 6 7.5 4];
>> [m,s] = stats(y)

m =
7.5000

s =
2.8137

Although we will also make use of script M-files, function M-files will be our primary
programming tool for the remainder of this book. Hence, we will often refer to function
M-files as simply M-files.

3.1.3 Subfunctions

Functions can call other functions. Although such functions can exist as separate M-files,
they may also be contained in a single M-file. For example, the M-file in Example 3.2
(without comments) could have been split into two functions and saved as a single
M-file1:

function v = freefallsubfunc(t, m, cd)
v = vel(t, m, cd);
end

function v = vel(t, m, cd)
g = 9.81;
v = sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t);
end

52 PROGRAMMING WITH MATLAB

1 Note that although end statements are not used to terminate single-function M-files, they are included when
subfunctions are involved to demarcate the boundaries between the main function and the subfunctions.

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 52

This M-file would be saved as freefallsubfunc.m. In such cases, the first function is
called the main or primary function. It is the only function that is accessible to the com-
mand window and other functions and scripts. All the other functions (in this case, vel) are
referred to as subfunctions.

A subfunction is only accessible to the main function and other subfunctions within
the M-file in which it resides. If we run freefallsubfunc from the command window,
the result is identical to Example 3.2:

>> freefallsubfunc(12,68.1,0.25)

ans =
50.6175

However, if we attempt to run the subfunction vel, an error message occurs:

>> vel(12,68.1,.25)
??? Undefined function or method 'vel' for input arguments
of type 'double'.

3.2 INPUT-OUTPUT

As in Section 3.1, information is passed into the function via the argument list and is out-
put via the function’s name. Two other functions provide ways to enter and display infor-
mation directly using the command window.

The input Function. This function allows you to prompt the user for values directly
from the command window. Its syntax is

n = input('promptstring')

The function displays the promptstring, waits for keyboard input, and then returns the
value from the keyboard. For example,

m = input('Mass (kg): ')

When this line is executed, the user is prompted with the message

Mass (kg):

If the user enters a value, it would then be assigned to the variable m.
The input function can also return user input as a string. To do this, an 's' is ap-

pended to the function’s argument list. For example,

name = input('Enter your name: ','s')

The disp Function. This function provides a handy way to display a value. Its syntax is

disp(value)

where value = the value you would like to display. It can be a numeric constant or vari-
able, or a string message enclosed in hyphens. Its application is illustrated in the following
example.

3.2 INPUT-OUTPUT 53

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 53

EXAMPLE 3.3 An Interactive M-File Function

Problem Statement. As in Example 3.2, compute the velocity of the free-falling bungee
jumper, but now use the input and disp functions for input/output.

Solution. Type the following statements in the file editor:

function freefalli
% freefalli: interactive bungee velocity
% freefalli interactive computation of the
% free-fall velocity of an object
% with second-order drag.
g = 9.81; % acceleration of gravity
m = input('Mass (kg): ');
cd = input('Drag coefficient (kg/m): ');
t = input('Time (s): ');
disp(' ')
disp('Velocity (m/s):')
disp(sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t))

Save the file as freefalli.m. To invoke the function, return to the command window and
type

>> freefalli

Mass (kg): 68.1
Drag coefficient (kg/m): 0.25
Time (s): 12

Velocity (m/s):
50.6175

The fprintf Function. This function provides additional control over the display of
information. A simple representation of its syntax is

fprintf('format', x, ...)

where format is a string specifying how you want the value of the variable x to be dis-
played. The operation of this function is best illustrated by examples.

A simple example would be to display a value along with a message. For instance, sup-
pose that the variable velocity has a value of 50.6175. To display the value using eight
digits with four digits to the right of the decimal point along with a message, the statement
along with the resulting output would be

>> fprintf('The velocity is %8.4f m/s\n', velocity)

The velocity is 50.6175 m/s

This example should make it clear how the format string works. MATLAB starts at
the left end of the string and displays the labels until it detects one of the symbols: % or \.
In our example, it first encounters a % and recognizes that the following text is a format
code. As in Table 3.1, the format codes allow you to specify whether numeric values are

54 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 54

displayed in integer, decimal, or scientific format. After displaying the value of velocity,
MATLAB continues displaying the character information (in our case the units: m/s) until
it detects the symbol \. This tells MATLAB that the following text is a control code. As in
Table 3.1, the control codes provide a means to perform actions such as skipping to the
next line. If we had omitted the code \n in the previous example, the command prompt
would appear at the end of the label m/s rather than on the next line as would typically be
desired.

The fprintf function can also be used to display several values per line with differ-
ent formats. For example,

>> fprintf('%5d %10.3f %8.5e\n',100,2*pi,pi);

100 6.283 3.14159e+000

It can also be used to display vectors and matrices. Here is an M-file that enters two
sets of values as vectors. These vectors are then combined into a matrix, which is then dis-
played as a table with headings:

function fprintfdemo
x = [1 2 3 4 5];
y = [20.4 12.6 17.8 88.7 120.4];
z = [x;y];
fprintf(' x y\n');
fprintf('%5d %10.3f\n',z);

The result of running this M-file is

>> fprintfdemo

x y
1 20.400
2 12.600
3 17.800
4 88.700
5 120.400

3.2 INPUT-OUTPUT 55

TABLE 3.1 Commonly used format and control codes employed
with the fprintf function.

Format Code Description

%d Integer format
%e Scientific format with lowercase e
%E Scientific format with uppercase E
%f Decimal format
%g The more compact of %e or %f

Control Code Description

\n Start new line
\t Tab

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 55

3.2.1 Creating and Accessing Files

MATLAB has the capability to both read and write data files. The simplest approach in-
volves a special type of binary file, called a MAT-file, which is expressly designed for
implementation within MATLAB. Such files are created and accessed with the save and
load commands.

The save command can be used to generate a MAT-file holding either the entire work-
space or a few selected variables. A simple representation of its syntax is

save filename var1 var2 ... varn

This command creates a MAT-file named filename.mat that holds the variables var1
through varn. If the variables are omitted, all the workspace variables are saved. The load
command can subsequently be used to retrieve the file:

load filename var1 var2 ... varn

which retrieves the variables var1 through varn from filename.mat. As was the case
with save, if the variables are omitted, all the variables are retrieved.

For example, suppose that you use Eq. (1.9) to generate velocities for a set of drag
coefficients:

>> g=9.81;m=80;t=5;
>> cd=[.25 .267 .245 .28 .273]';
>> v=sqrt(g*m ./cd).*tanh(sqrt(g*cd/m)*t);

You can then create a file holding the values of the drag coefficients and the velocities with

>> save veldrag v cd

To illustrate how the values can be retrieved at a later time, remove all variables from
the workspace with the clear command,

>> clear

At this point, if you tried to display the velocities you would get the result:

>> v
??? Undefined function or variable 'v'.

However, you can recover them by entering

>> load veldrag

Now, the velocities are available as can be verified by typing

>> who

Your variables are:
cd v

Although MAT-files are quite useful when working exclusively within the MATLAB
environment, a somewhat different approach is required when interfacing MATLAB with
other programs. In such cases, a simple approach is to create text files written in ASCII
format.

56 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 56

ASCII files can be generated in MATLAB by appending –ascii to the save com-
mand. In contrast to MAT-files where you might want to save the entire workspace, you
would typically save a single rectangular matrix of values. For example,

>> A=[5 7 9 2;3 6 3 9];
>> save simpmatrix.txt –ascii

In this case, the save command stores the values in A in 8-digit ASCII form. If you want
to store the numbers in double precision, just append –ascii –double. In either case, the
file can be accessed by other programs such as spreadsheets or word processors. For
example, if you open this file with a text editor, you will see

5.0000000e+000 7.0000000e+000 9.0000000e+000 2.0000000e+000
3.0000000e+000 6.0000000e+000 3.0000000e+000 9.0000000e+000

Alternatively, you can read the values back into MATLAB with the load command,

>> load simpmatrix.txt

Because simpmatrix.txt is not a MAT-file, MATLAB creates a double precision array
named after the filename:

>> simpmatrix

simpmatrix =
5 7 9 2
3 6 3 9

Alternatively, you could use the load command as a function and assign its values to a
variable as in

>> A = load('simpmatrix.txt')

The foregoing material covers but a small portion of MATLAB’s file management ca-
pabilities. For example, a handy import wizard can be invoked with the menu selections:
File, Import Data. As an exercise, you can demonstrate the import wizards convenience by
using it to open simpmatrix.txt. In addition, you can always consult help to learn more
about this and other features.

3.3 STRUCTURED PROGRAMMING

The simplest of all M-files perform instructions sequentially. That is, the program state-
ments are executed line by line starting at the top of the function and moving down to the
end. Because a strict sequence is highly limiting, all computer languages include state-
ments allowing programs to take nonsequential paths. These can be classified as

• Decisions (or Selection). The branching of flow based on a decision.
• Loops (or Repetition). The looping of flow to allow statements to be repeated.

3.3.1 Decisions

The if Structure. This structure allows you to execute a set of statements if a logical
condition is true. Its general syntax is

if condition
statements

end

3.3 STRUCTURED PROGRAMMING 57

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 57

where condition is a logical expression that is either true or false. For example, here is a
simple M-file to evaluate whether a grade is passing:

function grader(grade)
% grader(grade):
% determines whether grade is passing
% input:
% grade = numerical value of grade (0-100)
% output:
% displayed message
if grade >= 60

disp('passing grade')
end

The following illustrates the result

>> grader(95.6)

passing grade

For cases where only one statement is executed, it is often convenient to implement
the if structure as a single line,

if grade > 60, disp('passing grade'), end

This structure is called a single-line if. For cases where more than one statement is
implemented, the multiline if structure is usually preferable because it is easier to
read.

Error Function. A nice example of the utility of a single-line if is to employ it for rudi-
mentary error trapping. This involves using the error function which has the syntax,

error(msg)

When this function is encountered, it displays the text message msg, indicates where
the error occurred, and causes the M-file to terminate and return to the command
window.

An example of its use would be where we might want to terminate an M-file to avoid
a division by zero. The following M-file illustrates how this could be done:

function f = errortest(x)
if x == 0, error('zero value encountered'), end
f = 1/x;

If a nonzero argument is used, the division would be implemented successfully as in

>> errortest(10)

ans =
0.1000

However, for a zero argument, the function would terminate prior to the division and the
error message would be displayed in red typeface:

>> errortest(0)

??? Error using ==> errortest at 2
zero value encountered

58 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 58

Logical Conditions. The simplest form of the condition is a single relational expres-
sion that compares two values as in

value1 relation value2

where the values can be constants, variables, or expressions and the relation is one of
the relational operators listed in Table 3.2.

MATLAB also allows testing of more than one logical condition by employing logical
operators. We will emphasize the following:

• ~ (Not). Used to perform logical negation on an expression.

~expression

If the expression is true, the result is false. Conversely, if the expression is false,
the result is true.

• & (And). Used to perform a logical conjunction on two expressions.

expression1 & expression2

If both expressions evaluate to true, the result is true. If either or both expres-
sions evaluates to false, the result is false.

• | (Or). Used to perform a logical disjunction on two expressions.

expression1 | expression2

If either or both expressions evaluate to true, the result is true.

Table 3.3 summarizes all possible outcomes for each of these operators. Just as for
arithmetic operations, there is a priority order for evaluating logical operations. These

3.3 STRUCTURED PROGRAMMING 59

TABLE 3.2 Summary of relational operators in MATLAB.

Example Operator Relationship

x == 0 == Equal
unit ~= 'm' ~= Not equal
a < 0 < Less than
s > t > Greater than
3.9 <= a/3 <= Less than or equal to
r >= 0 >= Greater than or equal to

TABLE 3.3 A truth table summarizing the possible outcomes for logical operators
employed in MATLAB. The order of priority of the operators is shown at
the top of the table.

Highest Lowest
x y ~x x & y x | y

T T F T T
T F F F T
F T T F T
F F T F F

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 59

are from highest to lowest: ~, & and |. In choosing between operators of equal priority,
MATLAB evaluates them from left to right. Finally, as with arithmetic operators, paren-
theses can be used to override the priority order.

Let’s investigate how the computer employs the priorities to evaluate a logical expres-
sion. If a = -1, b = 2, x = 1, and y = 'b', evaluate whether the following is true or false:

a * b > 0 & b == 2 & x > 7 | ~(y > 'd')

To make it easier to evaluate, substitute the values for the variables:

-1 * 2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

The first thing that MATLAB does is to evaluate any mathematical expressions. In this
example, there is only one: -1 * 2,

-2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

Next, evaluate all the relational expressions

-2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')
F & T & F | ~ F

At this point, the logical operators are evaluated in priority order. Since the ~ has highest
priority, the last expression (~F) is evaluated first to give

F & T & F | T

The & operator is evaluated next. Since there are two, the left-to-right rule is applied and
the first expression (F & T) is evaluated:

F & F | T

The & again has highest priority

F | T

Finally, the | is evaluated as true. The entire process is depicted in Fig. 3.1.

The if...else Structure. This structure allows you to execute a set of statements if
a logical condition is true and to execute a second set if the condition is false. Its general
syntax is

if condition
statements1

else
statements2

end

The if...elseif Structure. It often happens that the false option of an if...else
structure is another decision. This type of structure often occurs when we have more than
two options for a particular problem setting. For such cases, a special form of decision
structure, the if...elseif has been developed. It has the general syntax

if condition1

statements1

elseif condition2

statements2

60 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 60

elseif condition3

statements3

.

.

.
else

statementselse

end

EXAMPLE 3.4 if Structures

Problem Statement. For a scalar, the built-in MATLAB sign function returns the sign
of its argument (−1, 0, 1). Here’s a MATLAB session that illustrates how it works:

>> sign(25.6)

ans =
1

>> sign(-0.776)

ans =
-1

>> sign(0)

ans =
0

Develop an M-file to perform the same function.

3.3 STRUCTURED PROGRAMMING 61

a * b > 0 & b == 2 & x > 7 | ~(y > 'd')

T

T

F

-1 * 2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

F & T & F | ~F

 F & F |

Substitute constants

Evaluate mathematical
expressions

Evaluate relational
expressions

Evaluate compound
expressions

T|

-2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

FIGURE 3.1
A step-by-step evaluation of a complex decision.

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 61

Solution. First, an if structure can be used to return 1 if the argument is positive:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
if x > 0

sgn = 1;
end

This function can be run as

>> mysign(25.6)

ans =
1

Although the function handles positive numbers correctly, if it is run with a negative
or zero argument, nothing is displayed. To partially remedy this shortcoming, an
if...else structure can be used to display –1 if the condition is false:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
% -1 if x is less than or equal to zero.
if x > 0

sgn = 1;
else

sgn = -1;
end

This function can be run as

>> mysign(-0.776)

ans =
-1

Although the positive and negative cases are now handled properly, -1 is erroneously
returned if a zero argument is used. An if...elseif structure can be used to incorporate
this final case:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
% -1 if x is less than zero.
% 0 if x is equal to zero.
if x > 0

sgn = 1;
elseif x < 0

sgn = -1;
else

sgn = 0;
end

The function now handles all possible cases. For example,

>> mysign(0)

ans =
0

62 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 62

The switch Structure. The switch structure is similar in spirit to the if...elseif
structure. However, rather than testing individual conditions, the branching is based on the
value of a single test expression. Depending on its value, different blocks of code are im-
plemented. In addition, an optional block is implemented if the expression takes on none of
the prescribed values. It has the general syntax

switch testexpression
case value1

statements1

case value2

statements2

.

.

.
otherwise

statementsotherwise

end

As an example, here is function that displays a message depending on the value of the
string variable, grade.

grade = 'B';
switch grade

case 'A'
disp('Excellent')

case 'B'
disp('Good')

case 'C'
disp('Mediocre')

case 'D'
disp('Whoops')

case 'F'
disp('Would like fries with your order?')

otherwise
disp('Huh!')

end

When this code was executed, the message “Good” would be displayed.

Variable Argument List. MATLAB allows a variable number of arguments to be passed
to a function. This feature can come in handy for incorporating default values into your
functions. A default value is a number that is automatically assigned in the event that the
user does not pass it to a function.

As an example, recall that earlier in this chapter, we developed a function freefall,
which had three arguments:

v = freefall(t,m,cd)

Although a user would obviously need to specify the time and mass, they might not have a
good idea of an appropriate drag coefficient. Therefore, it would be nice to have the pro-
gram supply a value if they omitted it from the argument list.

MATLAB has a function called nargin that provides the number of input arguments
supplied to a function by a user. It can be used in conjunction with decision structures like

3.3 STRUCTURED PROGRAMMING 63

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 63

the if or switch constructs to incorporate default values as well as error messages into
your functions. The following code illustrates how this can be done for freefall:

64 PROGRAMMING WITH MATLAB

function v = freefall2(t, m, cd)
% freefall2: bungee velocity with second-order drag
% v=freefall2(t,m,cd) computes the free-fall velocity
% of an object with second-order drag.
% input:
% t = time (s)
% m = mass (kg)
% cd = drag coefficient (default = 0.27 kg/m)
% output:
% v = downward velocity (m/s)
switch nargin

case 0
error('Must enter time and mass')

case 1
error('Must enter mass')

case 2
cd = 0.27;

end
g = 9.81; % acceleration of gravity
v = sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t);

Notice how we have used a switch structure to either display error messages or set the
default, depending on the number of arguments passed by the user. Here is a command
window session showing the results:

>> freefall2(12,68.1,0.25)

ans =
50.6175

>> freefall2(12,68.1)

ans =
48.8747

>> freefall2(12)

??? Error using ==> freefall2 at 15
Must enter mass

>> freefall2()

??? Error using ==> freefall2 at 13
Must enter time and mass

Note that nargin behaves a little differently when it is invoked in the command
window. In the command window, it must include a string argument specifying the func-
tion and it returns the number of arguments in the function. For example,

>> nargin('freefall2')

ans =
3

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 64

3.3.2 Loops

As the name implies, loops perform operations repetitively. There are two types of loops,
depending on how the repetitions are terminated. A for loop ends after a specified number
of repetitions. A while loop ends on the basis of a logical condition.

The for...end Structure. Afor loop repeats statements a specific number of times. Its
general syntax is

for index = start:step:finish
statements

end

The for loop operates as follows. The index is a variable that is set at an initial value,
start. The program then compares the index with a desired final value, finish. If the
index is less than or equal to the finish, the program executes the statements. When
it reaches the end line that marks the end of the loop, the index variable is increased by
the step and the program loops back up to the for statement. The process continues until
the index becomes greater than the finish value. At this point, the loop terminates as the
program skips down to the line immediately following the end statement.

Note that if an increment of 1 is desired (as is often the case), the step can be dropped.
For example,

for i = 1:5
disp(i)

end

When this executes, MATLAB would display in succession, 1, 2, 3, 4, 5. In other
words, the default step is 1.

The size of the step can be changed from the default of 1 to any other numeric value.
It does not have to be an integer, nor does it have to be positive. For example, step sizes of
0.2, –1, or –5, are all acceptable.

If a negative step is used, the loop will “countdown” in reverse. For such cases, the
loop’s logic is reversed. Thus, the finish is less than the start and the loop terminates
when the index is less than the finish. For example,

for j = 10:-1:1
disp(j)

end

When this executes, MATLAB would display the classic “countdown” sequence: 10, 9,
8, 7, 6, 5, 4, 3, 2, 1.

EXAMPLE 3.5 Using a for Loop to Compute the Factorial

Problem Statement. Develop an M-file to compute the factorial.2

0! = 1
1! = 1
2! = 1 × 2 = 2

3.3 STRUCTURED PROGRAMMING 65

2 Note that MATLAB has a built-in function factorial that performs this computation.

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 65

3! = 1 × 2 × 3 = 6
4! = 1 × 2 × 3 × 4 = 24
5! = 1 × 2 × 3 × 4 × 5 = 120

...

Solution. A simple function to implement this calculation can be developed as

function fout = factor(n)
% factor(n):
% Computes the product of all the integers from 1 to n.
x = 1;
for i = 1:n

x = x * i;
end
fout = x;
end

which can be run as

>> factor(5)

ans =
120

This loop will execute 5 times (from 1 to 5). At the end of the process, x will hold a value
of 5! (meaning 5 factorial or 1 × 2 × 3 × 4 × 5 = 120).

Notice what happens if n = 0. For this case, the for loop would not execute, and we
would get the desired result, 0! = 1.

Vectorization. The for loop is easy to implement and understand. However, for
MATLAB, it is not necessarily the most efficient means to repeat statements a specific
number of times. Because of MATLAB’s ability to operate directly on arrays, vectorization
provides a much more efficient option. For example, the following for loop structure:

i = 0;
for t = 0:0.02:50

i = i + 1;
y(i) = cos(t);

end

can be represented in vectorized form as

t = 0:0.02:50;
y = cos(t);

It should be noted that for more complex code, it may not be obvious how to vectorize the
code. That said, wherever possible, vectorization is recommended.

Preallocation of Memory. MATLAB automatically increases the size of arrays every
time you add a new element. This can become time consuming when you perform actions
such as adding new values one at a time within a loop. For example, here is some code that

66 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 66

sets value of elements of y depending on whether or not values of t are greater than one:

t = 0:.01:5;
for i = 1:length(t)

if t(i)>1
y(i) = 1/t(i);

else
y(i) = 1;

end
end

For this case, MATLAB must resize y every time a new value is determined. The follow-
ing code preallocates the proper amount of memory by using a vectorized statement to
assign ones to y prior to entering the loop.

t = 0:.01:5;
y = ones(size(t));
for i = 1:length(t)

if t(i)>1
y(i) = 1/t(i);

end
end

Thus, the array is only sized once. In addition, preallocation helps reduce memory frag-
mentation, which also enhances efficiency.

The while Structure. A while loop repeats as long as a logical condition is true. Its
general syntax is

while condition
statements

end

The statements between the while and the end are repeated as long as the condition is
true. A simple example is

x = 8
while x > 0

x = x - 3;
disp(x)

end

When this code is run, the result is

x =
8
5
2
-1

The while...break Structure. Although the while structure is extremely useful, the
fact that it always exits at the beginning of the structure on a false result is somewhat
constraining. For this reason, languages such as Fortran 90 and Visual Basic have special
structures that allow loop termination on a true condition anywhere in the loop. Although
such structures are currently not available in MATLAB, their functionality can be mimicked

3.3 STRUCTURED PROGRAMMING 67

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 67

by a special version of the while loop. The syntax of this version, called a while...
break structure, can be written as

while (1)
statements
if condition, break, end
statements

end

where break terminates execution of the loop. Thus, a single line if is used to exit the
loop if the condition tests true. Note that as shown, the break can be placed in the middle
of the loop (i.e., with statements before and after it). Such a structure is called a midtest
loop.

If the problem required it, we could place the break at the very beginning to create a
pretest loop. An example is

while (1)
If x < 0, break, end
x = x - 5;

end

Notice how 5 is subtracted from x on each iteration. This represents a mechanism so that
the loop eventually terminates. Every decision loop must have such a mechanism. Other-
wise it would become a so-called infinite loop that would never stop.

Alternatively, we could also place the if...break statement at the very end and cre-
ate a posttest loop,

while (1)
x = x - 5;
if x < 0, break, end

end

It should be clear that, in fact, all three structures are really the same. That is, depend-
ing on where we put the exit (beginning, middle, or end) dictates whether we have a pre-,
mid- or posttest. It is this simplicity that led the computer scientists who developed
Fortran 90 and Visual Basic to favor this structure over other forms of the decision loop
such as the conventional while structure.

The pause Command. There are often times when you might want a program to tem-
porarily halt. The command pause causes a procedure to stop and wait until any key is hit.
A nice example involves creating a sequence of plots that a user might want to leisurely
peruse before moving on to the next. The following code employs a for loop to create a
sequence of interesting plots that can be viewed in this manner:

for n = 3:10
mesh(magic(n))
pause

end

The pause can also be formulated as pause(n), in which case the procedure will halt
for n seconds. This feature can be demonstrated by implementing it in conjunction with
several other useful MATLAB functions. The beep command causes the computer to emit

68 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 68

a beep sound. Two other functions, tic and toc, work together to measure elapsed time.
The tic command saves the current time that toc later employs to display the elapsed
time. The following code then confirms that pause(n)works as advertised complete with
sound effects:

tic
beep
pause(5)
beep
toc

When this code is run, the computer will beep. Five seconds later it will beep again and dis-
play the following message:

Elapsed time is 5.006306 seconds.

By the way, if you ever have the urge to use the command pause(inf), MATLAB will go
into an infinite loop. In such cases, you can return to the command prompt by typing
Ctrl+c or Ctrl+Break.

Although the foregoing examples might seem a tad frivolous, the commands can be
quite useful. For instance, tic and toc can be employed to identify the parts of an algo-
rithm that consume the most execution time. Further, the Ctrl+c or Ctrl+Break key com-
binations come in real handy in the event that you inadvertently create an infinite loop in
one of your M-files.

3.3.3 Animation

There are two simple ways to animate a plot in MATLAB. First, if the computations are
sufficiently quick, the standard plot function can be employed in a way that the animation
can appear smooth. Here is a code fragment that indicates how a for loop and standard
plotting functions can be employed to animate a plot,

% create animation with standard plot functions
for j=1:n

plot commands
end

Thus, because we do not include hold on, the plot will refresh on each loop iteration.
Through judicious use of axis commands, this can result in a smoothly changing image.

Second, there are special functions, getframe and movie, that allow you to capture a
sequence of plots and then play them back. As the name implies, the getframe function
captures a snapshot (pixmap) of the current axes or figure. It is usually used in a for loop
to assemble an array of movie frames for later playback with the movie function, which
has the following syntax:

movie(m,n,fps)

where m � the vector or matrix holding the sequence of frames constituting the movie,
n � an optional variable specifying how many times the movie is to be repeated (if it is
omitted, the movie plays once), and fps � an optional variable that specifies the
movie’s frame rate (if it is omitted, the default is 12 frames per second). Here is a code

3.3 STRUCTURED PROGRAMMING 69

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 69

fragment that indicates how a for loop along with the two functions can be employed
to create a movie,

% create animation with standard plot functions
for j=1:n

plot commands
M(j) = getframe;

end
movie(M)

Each time the loop executes, the plot commands create an updated version of a plot,
which is then stored in the vector M. After the loop terminates, the n images are then played
back by movie.

EXAMPLE 3.6 Animation of Projectile Motion

Problem Statement. In the absence of air resistance, the Cartesian coordinates of a pro-
jectile launched with an initial velocity (v0) and angle (θ 0) can be computed with

x = v0 cos(θ 0)t
y = v0 sin(θ 0)t � 0.5gt2

where g = 9.81 m/s2. Develop a script to generate an animated plot of the projectile’s
trajectory given that v0 = 5 m/s and θ 0 = 45�.

Solution. A script to generate the animation can be written as

clc,clf,clear
g=9.81; theta0=45*pi/180; v0=5;
t(1)=0;x=0;y=0;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([0 3 0 0.8])
M(1)=getframe;
dt=1/128;
for j = 2:1000

t(j)=t(j-1)+dt;
x=v0*cos(theta0)*t(j);
y=v0*sin(theta0)*t(j)-0.5*g*t(j)^2;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([0 3 0 0.8])
M(j)=getframe;
if y<=0, break, end

end
pause
movie(M,1)

Several features of this script bear mention. First, notice that we have fixed the ranges for
the x and y axes. If this is not done, the axes will rescale and cause the animation to jump
around. Second, we terminate the for loop when the projectile’s height y falls below zero.

When the script is executed, two animations will be displayed (we’ve placed a pause
between them). The first corresponds to the sequential generation of the frames within the
loop, and the second corresponds to the actual movie. Although we cannot show the results
here, the trajectory for both cases will look like Fig. 3.2. You should enter and run the fore-
going script in MATLAB to see the actual animation.

70 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 70

3.4 NESTING AND INDENTATION 71

FIGURE 3.2
Plot of a projectile’s trajectory.

3.4 NESTING AND INDENTATION

We need to understand that structures can be “nested” within each other. Nesting refers to
placing structures within other structures. The following example illustrates the concept.

EXAMPLE 3.7 Nesting Structures

Problem Statement. The roots of a quadratic equation

f (x) = ax2 + bx + c

can be determined with the quadratic formula

x = −b ± √
b2 − 4ac

2a

Develop a function to implement this formula given values of the coeffcients.

Solution. Top-down design provides a nice approach for designing an algorithm to com-
pute the roots. This involves developing the general structure without details and then
refining the algorithm. To start, we first recognize that depending on whether the parameter
a is zero, we will either have “special” cases (e.g., single roots or trivial values) or conven-
tional cases using the quadratic formula. This “big-picture” version can be programmed as

function quadroots(a, b, c)
% quadroots: roots of quadratic equation
% quadroots(a,b,c): real and complex roots
% of quadratic equation
% input:
% a = second-order coefficient

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 71

72 PROGRAMMING WITH MATLAB

% b = first-order coefficient
% c = zero-order coefficient
% output:
% r1 = real part of first root
% i1 = imaginary part of first root
% r2 = real part of second root
% i2 = imaginary part of second root
if a == 0

%special cases
else

%quadratic formula
end

Next, we develop refined code to handle the “special” cases:

%special cases
if b ~= 0

%single root
r1 = -c / b

else
%trivial solution
disp('Trivial solution. Try again')

end

And we can develop refined code to handle the quadratic formula cases:

%quadratic formula
d = b ^ 2 - 4 * a * c;
if d >= 0

%real roots
r1 = (-b + sqrt(d)) / (2 * a)
r2 = (-b - sqrt(d)) / (2 * a)

else
%complex roots
r1 = -b / (2 * a)
i1 = sqrt(abs(d)) / (2 * a)
r2 = r1
i2 = -i1

end

We can then merely substitute these blocks back into the simple “big-picture” frame-
work to give the final result:

function quadroots(a, b, c)
% quadroots: roots of quadratic equation
% quadroots(a,b,c): real and complex roots
% of quadratic equation
% input:
% a = second-order coefficient
% b = first-order coefficient
% c = zero-order coefficient
% output:
% r1 = real part of first root
% i1 = imaginary part of first root

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 72

3.4 NESTING AND INDENTATION 73

% r2 = real part of second root
% i2 = imaginary part of second root
if a == 0

%special cases
if b ~= 0

%single root
r1 = -c / b

else
%trivial solution
disp('Trivial solution. Try again')

end

else

%quadratic formula
d = b ^ 2 - 4 * a * c; %discriminant
if d >= 0

%real roots
r1 = (-b + sqrt(d)) / (2 * a)
r2 = (-b - sqrt(d)) / (2 * a)

else
%complex roots
r1 = -b / (2 * a)
i1 = sqrt(abs(d)) / (2 * a)
r2 = r1
i2 = -i1

end

end

As highlighted by the shading, notice how indentation helps to make the underlying
logical structure clear. Also notice how “modular” the structures are. Here is a command
window session illustrating how the function performs:

>> quadroots(1,1,1)

r1 =
-0.5000

i1 =
0.8660

r2 =
-0.5000

i2 =
-0.8660

>> quadroots(1,5,1)

r1 =
-0.2087

r2 =
-4.7913

>> quadroots(0,5,1)

r1 =
-0.2000

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 73

74 PROGRAMMING WITH MATLAB

>> quadroots(0,0,0)

Trivial solution. Try again

3.5 PASSING FUNCTIONS TO M-FILES

Much of the remainder of the book involves developing functions to numerically evaluate
other functions. Although a customized function could be developed for every new equa-
tion we analyzed, a better alternative is to design a generic function and pass the particular
equation we wish to analyze as an argument. In the parlance of MATLAB, these functions
are given a special name: function functions. Before describing how they work, we will
first introduce anonymous functions, which provide a handy means to define simple user-
defined functions without developing a full-blown M-file.

3.5.1 Anonymous Functions

Anonymous functions allow you to create a simple function without creating an M-file.
They can be defined within the command window with the following syntax:

fhandle = @(arglist) expression

where fhandle = the function handle you can use to invoke the function, arglist = a
comma separated list of input arguments to be passed to the function, and expression =

any single valid MATLAB expression. For example,

>> f1=@(x,y) x^2 + y^2;

Once these functions are defined in the command window, they can be used just as other
functions:

>> f1(3,4)

ans =
25

Aside from the variables in its argument list, an anonymous function can include vari-
ables that exist in the workspace where it is created. For example, we could create an
anonymous function f (x) = 4x2 as

>> a = 4;
>> b = 2;
>> f2=@(x) a*x^b;
>> f2(3)

ans = 36

Note that if subsequently we enter new values for a and b, the anonymous function
does not change:

>> a = 3;
>> f2(3)

ans = 36

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 74

3.5 PASSING FUNCTIONS TO M-FILES 75

Thus, the function handle holds a snapshot of the function at the time it was created. If we
want the variables to take on values, we must recreate the function. For example, having
changed a to 3,

>> f2=@(x) a*x^b;

with the result

>> f2(3)

ans =
27

It should be noted that prior to MATLAB 7, inline functions performed the same
role as anonymous functions. For example, the anonymous function developed above, f1,
could be written as

>> f1=inline('x^2 + y^2','x','y');

Although they are being phased out in favor of anonymous function, some readers might be
using earlier versions, and so we thought it would be helpful to mention them. MATLAB
help can be consulted to learn more about their use and limitations.

3.5.2 Function Functions

Function functions are functions that operate on other functions which are passed to it as
input arguments. The function that is passed to the function function is referred to as the
passed function. A simple example is the built-in function fplot, which plots the graphs
of functions. A simple representation of its syntax is

fplot(func,lims)

where func is the function being plotted between the x-axis limits specified by lims =

[xmin xmax]. For this case, func is the passed function. This function is “smart” in that it
automatically analyzes the function and decides how many values to use so that the plot
will exhibit all the function’s features.

Here is an example of how fplot can be used to plot the velocity of the free-falling
bungee jumper. The function can be created with an anonymous function:

>> vel=@(t) ...
sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);

We can then generate a plot from t = 0 to 12 as

>> fplot(vel,[0 12])

The result is displayed in Fig. 3.3.
Note that in the remainder of this book, we will have many occasions to use MATLAB’s

built-in function functions. As in the following example, we will also be developing
our own.

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 75

76 PROGRAMMING WITH MATLAB

EXAMPLE 3.8 Building and Implementing a Function Function

Problem Statement. Develop an M-file function function to determine the average value
of a function over a range. Illustrate its use for the bungee jumper velocity over the range
from t = 0 to 12 s:

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)

where g = 9.81, m = 68.1, and cd = 0.25.

Solution. The average value of the function can be computed with standard MATLAB
commands as

>> t=linspace(0,12);
>> v=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);
>> mean(v)

ans =
36.0870

Inspection of a plot of the function (Fig. 3.3) shows that this result is a reasonable estimate
of the curve’s average height.

FIGURE 3.3
A plot of velocity versus time generated with the fplot function.

60

50

40

30

20

10

0
0 2 4 6 8 10 12

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 76

3.5 PASSING FUNCTIONS TO M-FILES 77

We can write an M-file to perform the same computation:

function favg = funcavg(a,b,n)
% funcavg: average function height
% favg=funcavg(a,b,n): computes average value
% of function over a range
% input:
% a = lower bound of range
% b = upper bound of range
% n = number of intervals
% output:
% favg = average value of function
x = linspace(a,b,n);
y = func(x);
favg = mean(y);
end

function f = func(t)
f=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);
end

The main function first uses linspace to generate equally spaced x values across
the range. These values are then passed to a subfunction func in order to generate the cor-
responding y values. Finally, the average value is computed. The function can be run from
the command window as

>> funcavg (0,12,60)

ans =
36.0127

Now let’s rewrite the M-file so that rather than being specific to func, it evaluates a
nonspecific function name f that is passed in as an argument:

function favg = funcavg (f,a,b,n)
% funcavg: average function height
% favg=funcavg(f,a,b,n): computes average value
% of function over a range
% input:
% f = function to be evaluated
% a = lower bound of range
% b = upper bound of range
% n = number of intervals
% output:
% favg = average value of function
x = linspace(a,b,n);
y = f(x);
favg = mean(y);

Because we have removed the subfunction func, this version is truly generic. It can be run
from the command window as

>> vel=@(t) ...
sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);
>> funcavg(vel,0,12,60)

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 77

ans =
36.0127

To demonstrate its generic nature, funcavg can easily be applied to another case by
merely passing it a different function. For example, it could be used to determine the aver-
age value of the built-in sin function between 0 and 2π as

>> funcavg(@sin,0,2*pi,180)

ans =
-6.3001e-017

Does this result make sense?
We can see that funcavg is now designed to evaluate any valid MATLAB expression.

We will do this on numerous occasions throughout the remainder of this text in a
number of contexts ranging from nonlinear equation solving to the solution of differential
equations.

3.5.3 Passing Parameters

Recall from Chap. 1 that the terms in mathematical models can be divided into dependent
and independent variables, parameters, and forcing functions. For the bungee jumper
model, the velocity (v) is the dependent variable, time (t) is the independent variable, the
mass (m) and drag coefficient (cd) are parameters, and the gravitational constant (g) is the
forcing function. It is commonplace to investigate the behavior of such models by per-
forming a sensitivity analysis. This involves observing how the dependent variable changes
as the parameters and forcing functions are varied.

In Example 3.8, we developed a function function, funcavg, and used it to determine
the average value of the bungee jumper velocity for the case where the parameters were set
at m = 68.1 and cd = 0.25. Suppose that we wanted to analyze the same function, but with
different parameters. Of course, we could retype the function with new values for each
case, but it would be preferable to just change the parameters.

As we learned in Sec. 3.5.1, it is possible to incorporate parameters into anonymous
functions. For example, rather than “wiring” the numeric values, we could have done the
following:

>> m=68.1;cd=0.25;
>> vel=@(t) sqrt(9.81*m/cd)*tanh(sqrt(9.81*cd/m)*t);
>> funcavg(vel,0,12,60)

ans =
36.0127

However, if we want the parameters to take on new values, we must recreate the anony-
mous function.

MATLAB offers a better alternative by adding the term varargin as the function
function’s last input argument. In addition, every time the passed function is invoked
within the function function, the term varargin{:} should be added to the end of its

78 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 78

argument list (note the curly brackets). Here is how both modifications can be implemented
for funcavg (omitting comments for conciseness):

function favg = funcavg(f,a,b,n,varargin)
x = linspace(a,b,n);
y = f(x,varargin{:});
favg = mean(y);

When the passed function is defined, the actual parameters should be added at the end
of the argument list. If we used an anonymous function, this can be done as in

>> vel=@(t,m,cd) sqrt(9.81*m/cd)*tanh(sqrt(9.81*cd/m)*t);

When all these changes have been made, analyzing different parameters becomes easy. To
implement the case where m = 68.1 and cd = 0.25, we could enter

>> funcavg(vel,0,12,60,68.1,0.25)

ans =
36.0127

An alternative case, say m = 100 and cd = 0.28, could be rapidly generated by merely
changing the arguments:

>> funcavg(vel,0,12,60,100,0.28)

ans =
38.9345

3.6 CASE STUDY 79

3.6 CASE STUDY BUNGEE JUMPER VELOCITY

Background. In this section, we will use MATLAB to solve the free-falling bungee
jumper problem we posed at the beginning of this chapter. This involves obtaining a solu-
tion of

dv

dt
= g − cd

m
v|v|

Recall that, given an initial condition for time and velocity, the problem involved iter-
atively solving the formula,

vi+1 = vi + dvi

dt
�t

Now also remember that to attain good accuracy, we would employ small steps. Therefore,
we would probably want to apply the formula repeatedly to step out from our initial time
to attain the value at the final time. Consequently, an algorithm to solve the problem would
be based on a loop.

Solution. Suppose that we started the computation at t = 0 and wanted to predict
velocity at t = 12 s using a time step of �t = 0.5 s. We would therefore need to apply the
iterative equation 24 times—that is,

n = 12

0.5
= 24

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 79

80 PROGRAMMING WITH MATLAB

where n = the number of iterations of the loop. Because this result is exact (i.e., the ratio is
an integer), we can use a for loop as the basis for the algorithm. Here’s an M-file to do this
including a subfunction defining the differential equation:

function vend = velocity1(dt, ti, tf, vi)
% velocity1: Euler solution for bungee velocity
% vend = velocity1(dt, ti, tf, vi)
% Euler method solution of bungee
% jumper velocity
% input:
% dt = time step (s)
% ti = initial time (s)
% tf = final time (s)
% vi = initial value of dependent variable (m/s)
% output:
% vend = velocity at tf (m/s)
t = ti;
v = vi;
n = (tf - ti) / dt;
for i = 1:n

dvdt = deriv(v);
v = v + dvdt * dt;
t = t + dt;

end
vend = v;
end

function dv = deriv(v)
dv = 9.81 - (0.25 / 68.1) * v*abs(v);
end

This function can be invoked from the command window with the result:

>> velocity1(0.5,0,12,0)

ans =
50.9259

Note that the true value obtained from the analytical solution is 50.6175 (Exam-
ple 3.1). We can then try a much smaller value of dt to obtain a more accurate numeri-
cal result:

>> velocity1(0.001,0,12,0)

ans =
50.6181

Although this function is certainly simple to program, it is not foolproof. In partic-
ular, it will not work if the computation interval is not evenly divisible by the time step.
To cover such cases, a while . . . break loop can be substituted in place of the
shaded area (note that we have omitted the comments for conciseness):

3.6 CASE STUDY continued

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 80

3.6 CASE STUDY 81

3.6 CASE STUDY continued

function vend = velocity2(dt, ti, tf, vi)
t = ti;
v = vi;
h = dt;
while(1)

if t + dt > tf, h = tf - t; end
dvdt = deriv(v);
v = v + dvdt * h;
t = t + h;
if t >= tf, break, end

end
vend = v;
end

function dv = deriv(v)
dv = 9.81 - (0.25 / 68.1) * v*abs(v);
end

As soon as we enter the while loop, we use a single line if structure to test whether
adding t + dt will take us beyond the end of the interval. If not (which would usually be
the case at first), we do nothing. If so, we would shorten up the interval—that is, we set the
variable step h to the interval remaining: tf - t. By doing this, we guarantee that the last
step falls exactly on tf. After we implement this final step, the loop will terminate because
the condition t >= tf will test true.

Notice that before entering the loop, we assign the value of the time step dt to another
variable h. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code were inte-
grated within a larger program.

If we run this new version, the result will be the same as for the version based on the
for loop structure:

>> velocity2(0.5,0,12,0)

ans =
50.9259

Further, we can use a dt that is not evenly divisible into tf – ti:

>> velocity2(0.35,0,12,0)

ans =
50.8348

We should note that the algorithm is still not foolproof. For example, the user could
have mistakenly entered a step size greater than the calculation interval (e.g., tf - ti = 5
and dt = 20). Thus, you might want to include error traps in your code to catch such errors
and then allow the user to correct the mistake.

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 81

82 PROGRAMMING WITH MATLAB

As a final note, we should recognize that the foregoing code is not generic. That is, we
have designed it to solve the specific problem of the velocity of the bungee jumper. A more
generic version can be developed as

function yend = odesimp(dydt, dt, ti, tf, yi)
t = ti; y = yi; h = dt;
while (1)

if t + dt > tf, h = tf - t; end
y = y + dydt(y) * h;
t = t + h;
if t >= tf, break, end

end
yend = y;

Notice how we have stripped out the parts of the algorithm that were specific to
the bungee example (including the subfunction defining the differential equation)
while keeping the essential features of the solution technique. We can then use this
routine to solve the bungee jumper example, by specifying the differential equation
with an anonymous function and passing its function handle to odesimp to generate
the solution

>> dvdt=@(v) 9.81-(0.25/68.1)*v*abs(v);
>> odesimp(dvdt,0.5,0,12,0)

ans =
50.9259

We could then analyze a different function without having to go in and modify the
M-file. For example, if y = 10 at t = 0, the differential equation dy/dt = −0.1y has the ana-
lytical solution y = 10e−0.1t. Therefore, the solution at t = 5 would be y(5) = 10e−0.1(5) =
6.0653. We can use odesimp to obtain the same result numerically as in

>> odesimp(@(y) -0.1*y,0.005,0,5,10)

ans =
6.0645

3.6 CASE STUDY continued

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 82

PROBLEMS 83

3.1 Figure P3.1 shows a cylindrical tank with a conical
base. If the liquid level is quite low, in the conical part, the
volume is simply the conical volume of liquid. If the liquid
level is midrange in the cylindrical part, the total volume of
liquid includes the filled conical part and the partially filled
cylindrical part.

Use decisional structures to write an M-file to compute
the tank’s volume as a function of given values of R and d.
Design the function so that it returns the volume for all cases

interest rate of i. The formula to compute the annual pay-
ment A is

A = P
i(1 + i)n

(1 + i)n − 1

Write an M-file to compute A. Test it with P = $100,000 and
an interest rate of 3.3% (i = 0.033). Compute results for n =
1, 2, 3, 4, and 5 and display the results as a table with head-
ings and columns for n and A.
3.4 The average daily temperature for an area can be ap-
proximated by the following function:

T = Tmean + (Tpeak − Tmean) cos(ω(t − tpeak))

where Tmean = the average annual temperature, Tpeak = the
peak temperature, ω = the frequency of the annual variation
(= 2π/365), and tpeak = day of the peak temperature
(∼=205 d). Parameters for some U.S. towns are listed here:

City Tmean (°C) Tpeak (°C)

Miami, FL 22.1 28.3
Yuma, AZ 23.1 33.6
Bismarck, ND 5.2 22.1
Seattle, WA 10.6 17.6
Boston, MA 10.7 22.9

Develop an M-file that computes the average temperature
between two days of the year for a particular city. Test it
for (a) January–February in Yuma, AZ (t = 0 to 59) and
(b) July–August temperature in Seattle, WA (t = 180 to 242).
3.5 The sine function can be evaluated by the following
infinite series:

sin x = x − x3

3!
+ x5

5!
− · · ·

Create an M-file to implement this formula so that it com-
putes and displays the values of sin x as each term in the
series is added. In other words, compute and display in
sequence the values for

sin x = x

sin x = x − x3

3!

sin x = x − x3

3!
+ x5

5!
...

PROBLEMS

2R

R

d

FIGURE P3.1

where the depth is less than 3R. Return an error message
(“Overtop”) if you overtop the tank—that is, d > 3R. Test it
with the following data:

R 0.9 1.5 1.3 1.3
d 1 1.25 3.8 4.0

Note that the tank’s radius is R.
3.2 An amount of money P is invested in an account where
interest is compounded at the end of the period. The future
worth F yielded at an interest rate i after n periods may be
determined from the following formula:

F = P(1 + i)n

Write an M-file that will calculate the future worth of an in-
vestment for each year from 1 through n. The input to the
function should include the initial investment P, the interest
rate i (as a decimal), and the number of years n for which the
future worth is to be calculated. The output should consist of
a table with headings and columns for n and F. Run the pro-
gram for P = $100,000, i = 0.05, and n = 10 years.
3.3 Economic formulas are available to compute annual
payments for loans. Suppose that you borrow an amount of
money P and agree to repay it in n annual payments at an

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 83

up to the order term of your choosing. For each of the pre-
ceding, compute and display the percent relative error as

%error = true − series approximation

true
× 100%

As a test case, employ the program to compute sin(0.9) for
up to and including eight terms—that is, up to the term
x15/15!.
3.6 Two distances are required to specify the location of a
point relative to an origin in two-dimensional space
(Fig. P3.6):

• The horizontal and vertical distances (x, y) in Cartesian
coordinates.

• The radius and angle (r, θ) in polar coordinates.

It is relatively straightforward to compute Cartesian coordi-
nates (x, y) on the basis of polar coordinates (r, θ). The
reverse process is not so simple. The radius can be computed
by the following formula:

r =
√

x2 + y2

If the coordinates lie within the first and fourth coordi-
nates (i.e., x > 0), then a simple formula can be used to
compute θ :

θ = tan−1
(y

x

)

84 PROGRAMMING WITH MATLAB

The difficulty arises for the other cases. The following table
summarizes the possibilities:

x y θ

<0 >0 tan−1(y/x) + π
<0 <0 tan−1(y/x) − π
<0 =0 π
=0 >0 π/2
=0 <0 −π/2
=0 =0 0

Write a well-structured M-file using if...elseif struc-
tures to calculate r and θ as a function of x and y. Express the
final results for θ in degrees. Test your program by evaluat-
ing the following cases:

x y r θ

2 0
2 1
0 3

−3 1
−2 0
−1 −2

0 0
0 −2
2 2

3.7 Develop an M-file to determine polar coordinates as
described in Prob. 3.6. However, rather than designing the
function to evaluate a single case, pass vectors of x and y.
Have the function display the results as a table with columns
for x, y, r, and θ . Test the program for the cases outlined in
Prob. 3.6.
3.8 Develop an M-file function that is passed a numeric
grade from 0 to 100 and returns a letter grade according to
the scheme:

Letter Criteria

A 90 ≤ numeric grade ≤ 100
B 80 ≤ numeric grade < 90
C 70 ≤ numeric grade < 80
D 60 ≤ numeric grade < 70
F numeric grade < 60

The first line of the function should be

function grade = lettergrade(score)
FIGURE P3.6

y

x
�

III

III IV

r

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 84

Design the function so that it displays an error message and
terminates in the event that the user enters a value of score
that is less than zero or greater than 100. Test your function
with 89.9999, 90, 45 and 120.
3.9 Manning’s equation can be used to compute the velocity
of water in a rectangular open channel:

U =
√

S

n

(
B H

B + 2H

)2/3

where U = velocity (m/s), S = channel slope, n = roughness
coefficient, B = width (m), and H = depth (m). The follow-
ing data are available for five channels:

n S B H

0.036 0.0001 10 2
0.020 0.0002 8 1
0.015 0.0012 20 1.5
0.030 0.0007 25 3
0.022 0.0003 15 2.6

Write an M-file that computes the velocity for each of these
channels. Enter these values into a matrix where each col-
umn represents a parameter and each row represents a chan-
nel. Have the M-file display the input data along with
the computed velocity in tabular form where velocity is the
fifth column. Include headings on the table to label the
columns.
3.10 A simply supported beam is loaded as shown in
Fig. P3.10. Using singularity functions, the displacement
along the beam can be expressed by the equation:

uy(x) = −5

6
[〈x − 0〉4 − 〈x − 5〉4] + 15

6
〈x − 8〉3

+ 75〈x − 7〉2 + 57

6
x3 − 238.25x

PROBLEMS 85

By definition, the singularity function can be expressed as
follows:

〈x − a〉n =
{

(x − a)n when x > a
0 when x ≤ a

}

Develop an M-file that creates a plot of displacement
(dashed line) versus distance along the beam, x. Note that
x = 0 at the left end of the beam.
3.11 The volume V of liquid in a hollow horizontal cylinder of
radius r and length L is related to the depth of the liquid h by

V =
[

r2 cos−1
(

r − h

r

)
− (r − h)

√
2rh − h2

]
L

Develop an M-file to create a plot of volume versus depth.
Here are the first few lines:

function cylinder(r, L, plot_title)
% volume of horizontal cylinder
% inputs:
% r = radius
% L = length
% plot_title = string holding plot title

Test your program with

>> cylinder(3,5,...
'Volume versus depth for horizontal...
cylindrical tank')

3.12 Develop a vectorized version of the following code:

tstart=0; tend=20; ni=8;
t(1)=tstart;
y(1)=12 + 6*cos(2*pi*t(1)/(tend-tstart));
for i=2:ni+1

t(i)=t(i-1)+(tend-tstart)/ni;
y(i)=10 + 5*cos(2*pi*t(i)/ ...

(tend-tstart));
end

20 kips/ft

150 kip-ft 15 kips

5’ 2’ 1’ 2’

FIGURE P3.10

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 85

3.13 The “divide and average” method, an old-time method
for approximating the square root of any positive number a,
can be formulated as

x = x + a/x

2

Write a well-structured M-file function based on the
while...break loop structure to implement this algo-
rithm. Use proper indentation so that the structure is clear. At
each step estimate the error in your approximation as

ε =
∣∣∣∣ xnew − xold

xnew

∣∣∣∣
Repeat the loop until ε is less than or equal to a specified
value. Design your program so that it returns both the result
and the error. Make sure that it can evaluate the square root
of numbers that are equal to and less than zero. For the latter
case, display the result as an imaginary number. For exam-
ple, the square root of −4 would return 2i. Test your program
by evaluating a = 0, 2, 10 and −4 for ε = 1 × 10−4.
3.14 Piecewise functions are sometimes useful when the re-
lationship between a dependent and an independent variable
cannot be adequately represented by a single equation. For
example, the velocity of a rocket might be described by

v(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10t2 − 5t 0 ≤ t ≤ 8
624 − 5t 8 ≤ t ≤ 16

36t + 12(t − 16)2 16 ≤ t ≤ 26
2136e−0.1(t−26) t > 26

0 otherwise

Develop an M-file function to compute v as a function of t.
Then, develop a script that uses this function to generate a
plot of v versus t for t = −5 to 50.
3.15 Develop an M-file function called rounder to round a
number x to a specified number of decimal digits, n. The first
line of the function should be set up as

function xr = rounder(x, n)

Test the program by rounding each of the following to 2 dec-
imal digits: x = 477.9587, −477.9587, 0.125, 0.135, −0.125,
and −0.135.
3.16 Develop an M-file function to determine the elapsed
days in a year. The first line of the function should be set
up as

function nd = days(mo, da, leap)

where mo = the month (1–12), da = the day (1–31), and
leap = (0 for non–leap year and 1 for leap year). Test it for
January 1, 1997, February 29, 2004, March 1, 2001, June 21,

86 PROGRAMMING WITH MATLAB

2004, and December 31, 2008. Hint: A nice way to do this
combines the for and the switch structures.
3.17 Develop an M-file function to determine the elapsed
days in a year. The first line of the function should be set
up as

function nd = days(mo, da, year)

where mo = the month (1–12), da = the day (1–31), and
year = the year. Test it for January 1, 1997, February 29,
2004, March 1, 2001, June 21, 2004, and December 31, 2008.
3.18 Develop a function function M-file that returns the dif-
ference between the passed function’s maximum and mini-
mum value given a range of the independent variable. In
addition, have the function generate a plot of the function for
the range. Test it for the following cases:
(a) f (t) = 8e−0.25tsin(t − 2) from t = 0 to 6π.
(b) f (x) = e4xsin(1/x) from x = 0.01 to 0.2.
(c) The built-in humps function from x = 0 to 2.
3.19 Modify the function function odesimp developed at
the end of Sec. 3.6 so that it can be passed the arguments of
the passed function. Test it for the following case:

>> dvdt=@(v,m,cd) 9.81-(cd/m)*v^2;
>> odesimp(dvdt,0.5,0,12,-10,70,0.23)

3.20 A Cartesian vector can be thought of as representing
magnitudes along the x-, y-, and z-axes multiplied by a unit
vector (i, j, k). For such cases, the dot product of two of these
vectors {a} and {b} corresponds to the product of their mag-
nitudes and the cosine of the angle between their tails as in

{a}�{b} = ab cos�

The cross product yields another vector, {c} � {a} � {b},
which is perpendicular to the plane defined by {a} and {b}
such that its direction is specified by the right-hand rule.
Develop an M-file function that is passed two such vectors
and returns �, {c} and the magnitude of {c}, and generates a
three-dimensional plot of the three vectors {a}, {b}, and {c)
with their origins at zero. Use dashed lines for {a} and {b}
and a solid line for {c}. Test your function for the following
cases:

(a) a = [6 4 2]; b = [2 6 4];

(b) a = [3 2 -6]; b = [4 -3 1];

(c) a = [2 -2 1]; b = [4 2 -4];

(d) a = [-1 0 0]; b = [0 -1 0];

3.21 Based on Example 3.6, develop a script to produce an
animation of a bouncing ball where v0 � 5 m/s and �0 � 50�.
To do this, you must be able to predict exactly when the ball
hits the ground. At this point, the direction changes (the new
angle will equal the negative of the angle at impact), and the

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 86

velocity will decrease in magnitude to reflect energy loss
due to the collision of the ball with the ground. The change
in velocity can be quantified by the coefficient of restitution
CR which is equal to the ratio of the velocity after to the ve-
locity before impact. For the present case, use a value of
CR � 0.8.
3.22 Develop a function to produce an animation of a parti-
cle moving in a circle in Cartesian coordinates based on ra-
dial coordinates. Assume a constant radius, r, and allow the
angle, �, to increase from zero to 2π in equal increments.
The function’s first lines should be

PROBLEMS 87

function phasor(r, nt, nm)
% function to show the orbit of a phasor
% r = radius
% nt = number of increments for theta
% nm = number of movies

Test your function with

phasor(1, 256, 10)

3.23 Develop a script to produce a movie for the butterfly
plot from Prob. 2.22. Use a particle located at the x-y coordi-
nates to visualize how the plot evolves in time.

cha01102_ch03_048-087.qxd 12/17/10 7:59 AM Page 87

88

4

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with the major sources of
errors involved in numerical methods. Specific objectives and topics covered are

• Understanding the distinction between accuracy and precision.
• Learning how to quantify error.
• Learning how error estimates can be used to decide when to terminate an iterative

calculation.
• Understanding how roundoff errors occur because digital computers have a

limited ability to represent numbers.
• Understanding why floating-point numbers have limits on their range and

precision.
• Recognizing that truncation errors occur when exact mathematical formulations

are represented by approximations.
• Knowing how to use the Taylor series to estimate truncation errors.
• Understanding how to write forward, backward, and centered finite-difference

approximations of first and second derivatives.
• Recognizing that efforts to minimize truncation errors can sometimes increase

roundoff errors.

YOU’VE GOT A PROBLEM

I n Chap. 1, you developed a numerical model for the velocity of a bungee jumper. To
solve the problem with a computer, you had to approximate the derivative of velocity
with a finite difference.

dv

dt
∼= �v

�t
= v(ti+1) − v(ti)

ti+1 − ti

Roundoff and Truncation Errors

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 88

Thus, the resulting solution is not exact—that is, it has error.
In addition, the computer you use to obtain the solution is also an imperfect tool. Be-

cause it is a digital device, the computer is limited in its ability to represent the magnitudes
and precision of numbers. Consequently, the machine itself yields results that contain error.

So both your mathematical approximation and your digital computer cause your re-
sulting model prediction to be uncertain. Your problem is: How do you deal with such un-
certainty? In particular, is it possible to understand, quantify and control such errors in
order to obtain acceptable results? This chapter introduces you to some approaches and
concepts that engineers and scientists use to deal with this dilemma.

4.1 ERRORS

Engineers and scientists constantly find themselves having to accomplish objectives based
on uncertain information. Although perfection is a laudable goal, it is rarely if ever at-
tained. For example, despite the fact that the model developed from Newton’s second law
is an excellent approximation, it would never in practice exactly predict the jumper’s fall.
A variety of factors such as winds and slight variations in air resistance would result in de-
viations from the prediction. If these deviations are systematically high or low, then we
might need to develop a new model. However, if they are randomly distributed and tightly
grouped around the prediction, then the deviations might be considered negligible and the
model deemed adequate. Numerical approximations also introduce similar discrepancies
into the analysis.

This chapter covers basic topics related to the identification, quantification, and mini-
mization of these errors. General information concerned with the quantification of error is
reviewed in this section. This is followed by Sections 4.2 and 4.3, dealing with the two
major forms of numerical error: roundoff error (due to computer approximations) and trun-
cation error (due to mathematical approximations). We also describe how strategies to re-
duce truncation error sometimes increase roundoff. Finally, we briefly discuss errors not
directly connected with the numerical methods themselves. These include blunders, model
errors, and data uncertainty.

4.1.1 Accuracy and Precision

The errors associated with both calculations and measurements can be characterized with
regard to their accuracy and precision. Accuracy refers to how closely a computed or mea-
sured value agrees with the true value. Precision refers to how closely individual computed
or measured values agree with each other.

These concepts can be illustrated graphically using an analogy from target practice.
The bullet holes on each target in Fig. 4.1 can be thought of as the predictions of a numer-
ical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias) is
defined as systematic deviation from the truth. Thus, although the shots in Fig. 4.1c are
more tightly grouped than in Fig. 4.1a, the two cases are equally biased because they are
both centered on the upper left quadrant of the target. Imprecision (also called uncertainty),
on the other hand, refers to the magnitude of the scatter. Therefore, although Fig. 4.1b and
d are equally accurate (i.e., centered on the bull’s-eye), the latter is more precise because
the shots are tightly grouped.

4.1 ERRORS 89

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 89

90 ROUNDOFF AND TRUNCATION ERRORS

Numerical methods should be sufficiently accurate or unbiased to meet the require-
ments of a particular problem. They also should be precise enough for adequate design.
In this book, we will use the collective term error to represent both the inaccuracy and
imprecision of our predictions.

4.1.2 Error Definitions

Numerical errors arise from the use of approximations to represent exact mathematical op-
erations and quantities. For such errors, the relationship between the exact, or true, result
and the approximation can be formulated as

True value = approximation + error (4.1)

By rearranging Eq. (4.1), we find that the numerical error is equal to the discrepancy
between the truth and the approximation, as in

Et = true value − approximation (4.2)

where Et is used to designate the exact value of the error. The subscript t is included to des-
ignate that this is the “true” error. This is in contrast to other cases, as described shortly,
where an “approximate” estimate of the error must be employed. Note that the true error is
commonly expressed as an absolute value and referred to as the absolute error.

A shortcoming of this definition is that it takes no account of the order of magnitude of
the value under examination. For example, an error of a centimeter is much more significant

(c)

(a)

(d)

(b)

Increasing accuracy

In
cr

ea
si

n
g

 p
re

ci
si

o
n

FIGURE 4.1
An example from marksmanship illustrating the concepts of accuracy and precision:
(a) inaccurate and imprecise, (b) accurate and imprecise, (c) inaccurate and precise,
and (d) accurate and precise.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 90

if we are measuring a rivet than a bridge. One way to account for the magnitudes of the
quantities being evaluated is to normalize the error to the true value, as in

True fractional relative error = true value − approximation

true value

The relative error can also be multiplied by 100% to express it as

εt = true value − approximation

true value
100% (4.3)

where εt designates the true percent relative error.
For example, suppose that you have the task of measuring the lengths of a bridge and

a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and
10 cm, respectively, the error in both cases is 1 cm. However, their percent relative errors
can be computed using Eq. (4.3) as 0.01% and 10%, respectively. Thus, although both mea-
surements have an absolute error of 1 cm, the relative error for the rivet is much greater. We
would probably conclude that we have done an adequate job of measuring the bridge,
whereas our estimate for the rivet leaves something to be desired.

Notice that for Eqs. (4.2) and (4.3), E and ε are subscripted with a t to signify that the
error is based on the true value. For the example of the rivet and the bridge, we were pro-
vided with this value. However, in actual situations such information is rarely available.
For numerical methods, the true value will only be known when we deal with functions that
can be solved analytically. Such will typically be the case when we investigate the theo-
retical behavior of a particular technique for simple systems. However, in real-world ap-
plications, we will obviously not know the true answer a priori. For these situations, an
alternative is to normalize the error using the best available estimate of the true value—that
is, to the approximation itself, as in

εa = approximate error

approximation
100% (4.4)

where the subscript a signifies that the error is normalized to an approximate value. Note
also that for real-world applications, Eq. (4.2) cannot be used to calculate the error term in
the numerator of Eq. (4.4). One of the challenges of numerical methods is to determine
error estimates in the absence of knowledge regarding the true value. For example, certain
numerical methods use iteration to compute answers. In such cases, a present approxima-
tion is made on the basis of a previous approximation. This process is performed repeat-
edly, or iteratively, to successively compute (hopefully) better and better approximations.
For such cases, the error is often estimated as the difference between the previous and pre-
sent approximations. Thus, percent relative error is determined according to

εa = present approximation − previous approximation

present approximation
100% (4.5)

This and other approaches for expressing errors is elaborated on in subsequent chapters.
The signs of Eqs. (4.2) through (4.5) may be either positive or negative. If the approx-

imation is greater than the true value (or the previous approximation is greater than the cur-
rent approximation), the error is negative; if the approximation is less than the true value,
the error is positive. Also, for Eqs. (4.3) to (4.5), the denominator may be less than zero,

4.1 ERRORS 91

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 91

92 ROUNDOFF AND TRUNCATION ERRORS

which can also lead to a negative error. Often, when performing computations, we may not
be concerned with the sign of the error but are interested in whether the absolute value of the
percent relative error is lower than a prespecified tolerance εs . Therefore, it is often useful
to employ the absolute value of Eq. (4.5). For such cases, the computation is repeated until

|εa| < εs (4.6)

This relationship is referred to as a stopping criterion. If it is satisfied, our result is assumed
to be within the prespecified acceptable level εs . Note that for the remainder of this text, we
almost always employ absolute values when using relative errors.

It is also convenient to relate these errors to the number of significant figures in the ap-
proximation. It can be shown (Scarborough, 1966) that if the following criterion is met, we
can be assured that the result is correct to at least n significant figures.

εs = (0.5 × 102−n)% (4.7)

EXAMPLE 4.1 Error Estimates for Iterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite se-
ries. For example, the exponential function can be computed using

ex = 1 + x + x2

2
+ x3

3!
+ · · · + xn

n!
(E4.1.1)

Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of ex. Equation (E4.1.1) is called a Maclaurin series expansion.

Starting with the simplest version, ex = 1, add terms one at a time in order to estimate
e0.5. After each new term is added, compute the true and approximate percent relative errors
with Eqs. (4.3) and (4.5), respectively. Note that the true value is e0.5 = 1.648721 Add
terms until the absolute value of the approximate error estimate εa falls below a prespeci-
fied error criterion εs conforming to three significant figures.

Solution. First, Eq. (4.7) can be employed to determine the error criterion that ensures a
result that is correct to at least three significant figures:

εs = (0.5 × 102−3)% = 0.05%

Thus, we will add terms to the series until εa falls below this level.
The first estimate is simply equal to Eq. (E4.1.1) with a single term. Thus, the first

estimate is equal to 1. The second estimate is then generated by adding the second term
as in

ex = 1 + x

or for x = 0.5

e0.5 = 1 + 0.5 = 1.5

This represents a true percent relative error of [Eq. (4.3)]

εt =
∣∣∣∣1.648721 − 1.5

1.648721

∣∣∣∣ × 100% = 9.02%

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 92

Equation (4.5) can be used to determine an approximate estimate of the error, as in

εa =
∣∣∣∣1.5 − 1

1.5

∣∣∣∣ × 100% = 33.3%

Because εa is not less than the required value of εs , we would continue the computation by
adding another term, x2/2!, and repeating the error calculations. The process is continued
until |εa| < εs . The entire computation can be summarized as

Terms Result εt, % εa, %

1 1 39.3
2 1.5 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below εs = 0.05%, and the
computation is terminated. However, notice that, rather than three significant figures, the
result is accurate to five! This is because, for this case, both Eqs. (4.5) and (4.7) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although,
this is not always the case for Eq. (4.5), it is true most of the time.

4.1.3 Computer Algorithm for Iterative Calculations

Many of the numerical methods described in the remainder of this text involve iterative
calculations of the sort illustrated in Example 4.1. These all entail solving a mathematical
problem by computing successive approximations to the solution starting from an initial
guess.

The computer implementation of such iterative solutions involves loops. As we saw in
Sec. 3.3.2, these come in two basic flavors: count-controlled and decision loops. Most iter-
ative solutions use decision loops. Thus, rather than employing a pre-specified number of
iterations, the process typically is repeated until an approximate error estimate falls below
a stopping criterion as in Example 4.1.

To do this for the same problem as Example 4.1, the series expansion can be ex-
pressed as

ex ∼=
n∑

i=0

xn

n!

An M-file to implement this formula is shown in Fig. 4.2. The function is passed the value
to be evaluated (x) along with a stopping error criterion (es) and a maximum allowable
number of iterations (maxit). If the user omits either of the latter two parameters, the func-
tion assigns default values.

4.1 ERRORS 93

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 93

94 ROUNDOFF AND TRUNCATION ERRORS

The function then initializes three variables: (a) iter,which keeps track of the number
of iterations, (b) sol, which holds the current estimate of the solution, and (c) a variable,
ea,which holds the approximate percent relative error. Note that ea is initially set to a value
of 100 to ensure that the loop executes at least once.

These initializations are followed by a decision loop that actually implements the
iterative calculation. Prior to generating a new solution, the previous value, sol, is first as-
signed to solold. Then a new value of sol is computed and the iteration counter is in-
cremented. If the new value of sol is nonzero, the percent relative error, ea, is deter-
mined. The stopping criteria are then tested. If both are false, the loop repeats. If either is
true, the loop terminates and the final solution is sent back to the function call.

When the M-file is implemented, it generates an estimate for the exponential function
which is returned along with the approximate error and the number of iterations. For
example, e1 can be evaluated as

>> format long
>> [approxval, ea, iter] = IterMeth(1,1e-6,100)

FIGURE 4.2
An M-file to solve an iterative calculation. This example is set up to evaluate the Maclaurin series
expansion for ex as described in Example 4.1.

function [fx,ea,iter] = IterMeth(x,es,maxit)
% Maclaurin series of exponential function
% [fx,ea,iter] = IterMeth(x,es,maxit)
% input:
% x = value at which series evaluated
% es = stopping criterion (default = 0.0001)
% maxit = maximum iterations (default = 50)
% output:
% fx = estimated value
% ea = approximate relative error (%)
% iter = number of iterations

% defaults:
if nargin<2|isempty(es),es=0.0001;end
if nargin<3|isempty(maxit),maxit=50;end
% initialization
iter = 1; sol = 1; ea = 100;
% iterative calculation
while (1)

solold = sol;
sol = sol + x ^ iter / factorial(iter);
iter = iter + 1;
if sol~=0

ea=abs((sol - solold)/sol)*100;
end
if ea<=es | iter>=maxit,break,end

end
fx = sol;
end

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 94

approxval =
2.718281826198493

ea =
9.216155641522974e-007

iter =
12

We can see that after 12 iterations, we obtain a result of 2.7182818 with an
approximate error estimate of = 9.2162 × 10−7%. The result can be verified by using
the built-in exp function to directly calculate the exact value and the true percent rel-
ative error,

>> trueval=exp(1)

trueval =
2.718281828459046

>> et=abs((trueval- approxval)/trueval)*100

et =
8.316108397236229e-008

As was the case with Example 4.1, we obtain the desirable outcome that the true error is
less than the approximate error.

4.2 ROUNDOFF ERRORS

Roundoff errors arise because digital computers cannot represent some quantities ex-
actly. They are important to engineering and scientific problem solving because they
can lead to erroneous results. In certain cases, they can actually lead to a calculation
going unstable and yielding obviously erroneous results. Such calculations are said to
be ill-conditioned. Worse still, they can lead to subtler discrepancies that are difficult
to detect.

There are two major facets of roundoff errors involved in numerical calculations:

1. Digital computers have magnitude and precision limits on their ability to represent
numbers.

2. Certain numerical manipulations are highly sensitive to roundoff errors. This can re-
sult from both mathematical considerations as well as from the way in which comput-
ers perform arithmetic operations.

4.2.1 Computer Number Representation

Numerical roundoff errors are directly related to the manner in which numbers are stored
in a computer. The fundamental unit whereby information is represented is called a word.
This is an entity that consists of a string of binary digits, or bits. Numbers are typically
stored in one or more words. To understand how this is accomplished, we must first review
some material related to number systems.

A number system is merely a convention for representing quantities. Because we have
10 fingers and 10 toes, the number system that we are most familiar with is the decimal, or

4.2 ROUNDOFF ERRORS 95

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 95

96 ROUNDOFF AND TRUNCATION ERRORS

base-10, number system. A base is the number used as the reference for constructing the
system. The base-10 system uses the 10 digits—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9—to represent
numbers. By themselves, these digits are satisfactory for counting from 0 to 9.

For larger quantities, combinations of these basic digits are used, with the position or
place value specifying the magnitude. The rightmost digit in a whole number represents a
number from 0 to 9. The second digit from the right represents a multiple of 10. The third
digit from the right represents a multiple of 100 and so on. For example, if we have the
number 8642.9, then we have eight groups of 1000, six groups of 100, four groups of 10,
two groups of 1, and nine groups of 0.1, or

(8 × 103) + (6 × 102) + (4 × 101) + (2 × 100) + (9 × 10−1) = 8642.9

This type of representation is called positional notation.
Now, because the decimal system is so familiar, it is not commonly realized that

there are alternatives. For example, if human beings happened to have eight fingers and
toes we would undoubtedly have developed an octal, or base-8, representation. In the
same sense, our friend the computer is like a two-fingered animal who is limited to two
states—either 0 or 1. This relates to the fact that the primary logic units of digital com-
puters are on/off electronic components. Hence, numbers on the computer are repre-
sented with a binary, or base-2, system. Just as with the decimal system, quantities
can be represented using positional notation. For example, the binary number 101.1 is
equivalent to (1 × 22)+ (0 × 21) + (1 × 20) + (1 × 2−1) = 4 + 0 + 1 + 0.5 = 5.5 in the
decimal system.

Integer Representation. Now that we have reviewed how base-10 numbers can be rep-
resented in binary form, it is simple to conceive of how integers are represented on a com-
puter. The most straightforward approach, called the signed magnitude method, employs
the first bit of a word to indicate the sign, with a 0 for positive and a 1 for negative. The re-
maining bits are used to store the number. For example, the integer value of 173 is repre-
sented in binary as 10101101:

(10101101)2 = 27 + 25 + 23 + 22 + 20 = 128 + 32 + 8 + 4 + 1 = (173)10

Therefore, the binary equivalent of −173 would be stored on a 16-bit computer, as depicted
in Fig. 4.3.

If such a scheme is employed, there clearly is a limited range of integers that can be rep-
resented. Again assuming a 16-bit word size, if one bit is used for the sign, the 15 remaining
bits can represent binary integers from 0 to 111111111111111. The upper limit can be con-
verted to a decimal integer, as in (1 × 214) + (1 × 213) + . . . + (1 × 21) + (1 × 20) = 32,767.

1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1

Sign
Magnitude

FIGURE 4.3
The binary representation of the decimal integer –173 on a 16-bit computer using the signed
magnitude method.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 96

Note that this value can be simply evaluated as 215 − 1. Thus, a 16-bit computer word can
store decimal integers ranging from −32,767 to 32,767.

In addition, because zero is already defined as 0000000000000000, it is redundant
to use the number 1000000000000000 to define a “minus zero.” Therefore, it is conven-
tionally employed to represent an additional negative number: −32,768, and the range is
from −32,768 to 32,767. For an n-bit word, the range would be from �2n�1 to 2n�1 − 1.
Thus, 32-bit integers would range from −2,147,483,648 to +2,147,483,647.

Note that, although it provides a nice way to illustrate our point, the signed magnitude
method is not actually used to represent integers for conventional computers. A preferred
approach called the 2s complement technique directly incorporates the sign into the
number’s magnitude rather than providing a separate bit to represent plus or minus.
Regardless, the range of numbers is still the same as for the signed magnitude method
described above.

The foregoing serves to illustrate how all digital computers are limited in their capability
to represent integers. That is, numbers above or below the range cannot be represented. A
more serious limitation is encountered in the storage and manipulation of fractional quanti-
ties as described next.

Floating-Point Representation. Fractional quantities are typically represented in com-
puters using floating-point format. In this approach, which is very much like scientific
notation, the number is expressed as

±s × be

where s = the significand (or mantissa), b = the base of the number system being used, and
e = the exponent.

Prior to being expressed in this form, the number is normalized by moving the decimal
place over so that only one significant digit is to the left of the decimal point. This is done so
computer memory is not wasted on storing useless nonsignificant zeros. For example, a value
like 0.005678 could be represented in a wasteful manner as 0.005678 × 100. However, nor-
malization would yield 5.678 × 10−3 which eliminates the useless zeroes.

Before describing the base-2 implementation used on computers, we will first ex-
plore the fundamental implications of such floating-point representation. In particular,
what are the ramifications of the fact that in order to be stored in the computer, both
the mantissa and the exponent must be limited to a finite number of bits? As in the
next example, a nice way to do this is within the context of our more familiar base-10
decimal world.

EXAMPLE 4.2 Implications of Floating-Point Representation

Problem Statement. Suppose that we had a hypothetical base-10 computer with a 5-digit
word size. Assume that one digit is used for the sign, two for the exponent, and two for the
mantissa. For simplicity, assume that one of the exponent digits is used for its sign, leaving
a single digit for its magnitude.

Solution. A general representation of the number following normalization would be

s1d1.d2 × 10s0d0

4.2 ROUNDOFF ERRORS 97

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 97

98 ROUNDOFF AND TRUNCATION ERRORS

where s0 and s1 = the signs, d0 = the magnitude of the exponent, and d1 and d2 = the mag-
nitude of the significand digits.

Now, let’s play with this system. First, what is the largest possible positive quantity
that can be represented? Clearly, it would correspond to both signs being positive and all
magnitude digits set to the largest possible value in base-10, that is, 9:

Largest value = +9.9 × 10+9

So the largest possible number would be a little less than 10 billion. Although this might
seem like a big number, it’s really not that big. For example, this computer would be inca-
pable of representing a commonly used constant like Avogadro’s number (6.022 × 1023).

In the same sense, the smallest possible positive number would be

Smallest value = +1.0 × 10−9

Again, although this value might seem pretty small, you could not use it to represent a
quantity like Planck’s constant (6.626 × 10−34 J ·s).

Similar negative values could also be developed. The resulting ranges are displayed in
Fig. 4.4. Large positive and negative numbers that fall outside the range would cause an
overflow error. In a similar sense, for very small quantities there is a “hole” at zero, and
very small quantities would usually be converted to zero.

Recognize that the exponent overwhelmingly determines these range limitations. For
example, if we increase the mantissa by one digit, the maximum value increases slightly to
9.99 ×109. In contrast, a one-digit increase in the exponent raises the maximum by 90 orders
of magnitude to 9.9 ×1099!

When it comes to precision, however, the situation is reversed. Whereas the significand
plays a minor role in defining the range, it has a profound effect on specifying the precision.
This is dramatically illustrated for this example where we have limited the significand to
only 2 digits. As in Fig. 4.5, just as there is a “hole” at zero, there are also “holes” between
values.

For example, a simple rational number with a finite number of digits like 2−5 = 0.03125
would have to be stored as 3.1 × 10−2 or 0.031. Thus, a roundoff error is introduced. For this
case, it represents a relative error of

0.03125 − 0.031

0.03125
= 0.008

�9.9 � 109 9.9 � 109�1.0 � 10�9 1.0 � 10�9

“Hole” at zero

SmallestMinimum Maximum

Underflow OverflowOverflow

FIGURE 4.4
The number line showing the possible ranges corresponding to the hypothetical base-10
floating-point scheme described in Example 4.2.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 98

While we could store a number like 0.03125 exactly by expanding the digits of the
significand, quantities with infinite digits must always be approximated. For example, a
commonly used constant such as π (= 3.14159…) would have to be represented as 3.1 × 100

or 3.1. For this case, the relative error is

3.14159 − 3.1

3.14159
= 0.0132

Although adding significand digits can improve the approximation, such quantities will
always have some roundoff error when stored in a computer.

Another more subtle effect of floating-point representation is illustrated by Fig. 4.5.
Notice how the interval between numbers increases as we move between orders of mag-
nitude. For numbers with an exponent of −1 (i.e., between 0.1 and 1), the spacing is 0.01.
Once we cross over into the range from 1 to 10, the spacing increases to 0.1. This means
that the roundoff error of a number will be proportional to its magnitude. In addition, it
means that the relative error will have an upper bound. For this example, the maximum
relative error would be 0.05. This value is called the machine epsilon (or machine
precision).

As illustrated in Example 4.2, the fact that both the exponent and significand are finite
means that there are both range and precision limits on floating-point representation. Now,
let us examine how floating-point quantities are actually represented in a real computer
using base-2 or binary numbers.

First, let’s look at normalization. Since binary numbers consist exclusively of 0s and
1s, a bonus occurs when they are normalized. That is, the bit to the left of the binary point
will always be one! This means that this leading bit does not have to be stored. Hence,
nonzero binary floating-point numbers can be expressed as

±(1 + f) × 2e

where f = the mantissa (i.e., the fractional part of the significand). For example, if we nor-
malized the binary number 1101.1, the result would be 1.1011 × (2)−3 or (1 + 0.1011) × 2−3.

4.2 ROUNDOFF ERRORS 99

0.98 0.99 1 1.1 1.2

0.01 0.1

FIGURE 4.5
A small portion of the number line corresponding to the hypothetical base-10 floating-point
scheme described in Example 4.2. The numbers indicate values that can be represented
exactly. All other quantities falling in the “holes” between these values would exhibit some
roundoff error.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 99

100 ROUNDOFF AND TRUNCATION ERRORS

Thus, although the original number has five significant bits, we only have to store the four
fractional bits: 0.1011.

By default, MATLAB has adopted the IEEE double-precision format in which eight
bytes (64 bits) are used to represent floating-point numbers. As in Fig. 4.6, one bit is re-
served for the number’s sign. In a similar spirit to the way in which integers are stored, the
exponent and its sign are stored in 11 bits. Finally, 52 bits are set aside for the mantissa.
However, because of normalization, 53 bits can be stored.

Now, just as in Example 4.2, this means that the numbers will have a limited range and
precision. However, because the IEEE format uses many more bits, the resulting number
system can be used for practical purposes.

Range. In a fashion similar to the way in which integers are stored, the 11 bits used for
the exponent translates into a range from −1022 to 1023. The largest positive number can
be represented in binary as

Largest value = +1.1111 . . . 1111 × 2+1023

where the 52 bits in the mantissa are all 1. Since the significand is approximately 2 (it is ac-
tually 2 − 2−52), the largest value is therefore 21024 = 1.7977 × 10308. In a similar fashion,
the smallest positive number can be represented as

Smallest value = +1.0000 . . . 0000 × 2−1022

This value can be translated into a base-10 value of 2–1022 = 2.2251 × 10–308.

Precision. The 52 bits used for the mantissa correspond to about 15 to 16 base-10 digits.
Thus, π would be expressed as

>> format long
>> pi

ans =
3.14159265358979

Note that the machine epsilon is 2–52 = 2.2204 × 10–16.

FIGURE 4.6
The manner in which a floating-point number is stored in an 8-byte word in IEEE double-
precision format.

Signed
exponent

Sign
(1 bit)

Mantissa

52 bits11 bits

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 100

MATLAB has a number of built-in functions related to its internal number representa-
tion. For example, the realmax function displays the largest positive real number:

>> format long
>> realmax

ans =
1.797693134862316e+308

Numbers occurring in computations that exceed this value create an overflow. In MATLAB
they are set to infinity, inf. The realmin function displays the smallest positive real
number:

>> realmin

ans =
2.225073858507201e-308

Numbers that are smaller than this value create an underflow and, in MATLAB, are set to
zero. Finally, the eps function displays the machine epsilon:

>> eps

ans =
2.220446049250313e-016

4.2.2 Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in roundoff error. To understand how this
occurs, let’s look at how the computer performs simple addition and subtraction.

Because of their familiarity, normalized base-10 numbers will be employed to illus-
trate the effect of roundoff errors on simple addition and subtraction. Other number bases
would behave in a similar fashion. To simplify the discussion, we will employ a hypothet-
ical decimal computer with a 4-digit mantissa and a 1-digit exponent.

When two floating-point numbers are added, the numbers are first expressed so that
they have the same exponents. For example, if we want to add 1.557 + 0.04341, the com-
puter would express the numbers as 0.1557 × 101 + 0.004341 × 101. Then the mantissas
are added to give 0.160041 × 101. Now, because this hypothetical computer only carries a
4-digit mantissa, the excess number of digits get chopped off and the result is 0.1600 × 101.
Notice how the last two digits of the second number (41) that were shifted to the right have
essentially been lost from the computation.

Subtraction is performed identically to addition except that the sign of the subtrahend
is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

0.3641 × 102

−0.2686 × 102

0.0955 × 102

For this case the result must be normalized because the leading zero is unnecessary. So
we must shift the decimal one place to the right to give 0.9550 × 101 = 9.550. Notice that

4.2 ROUNDOFF ERRORS 101

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 101

102 ROUNDOFF AND TRUNCATION ERRORS

the zero added to the end of the mantissa is not significant but is merely appended to fill the
empty space created by the shift. Even more dramatic results would be obtained when the
numbers are very close as in

0.7642 × 103

−0.7641 × 103

0.0001 × 103

which would be converted to 0.1000 × 100 = 0.1000. Thus, for this case, three nonsignif-
icant zeros are appended.

The subtracting of two nearly equal numbers is called subtractive cancellation. It is
the classic example of how the manner in which computers handle mathematics can lead to
numerical problems. Other calculations that can cause problems include:

Large Computations. Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their final results. In addition, these computations are often inter-
dependent. That is, the later calculations are dependent on the results of earlier ones. Con-
sequently, even though an individual roundoff error could be small, the cumulative effect
over the course of a large computation can be significant. A very simple case involves sum-
ming a round base-10 number that is not round in base-2. Suppose that the following M-file
is constructed:

function sout = sumdemo()
s = 0;
for i = 1:10000

s = s + 0.0001;
end
sout = s;

When this function is executed, the result is

>> format long
>> sumdemo

ans =
0.99999999999991

The format long command lets us see the 15 significant-digit representation used
by MATLAB. You would expect that sum would be equal to 1. However, although
0.0001 is a nice round number in base-10, it cannot be expressed exactly in base-2. Thus,
the sum comes out to be slightly different than 1. We should note that MATLAB has fea-
tures that are designed to minimize such errors. For example, suppose that you form a
vector as in

>> format long
>> s = [0:0.0001:1];

For this case, rather than being equal to 0.99999999999991, the last entry will be exactly
one as verified by

>> s(10001)

ans =
1

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 102

Adding a Large and a Small Number. Suppose we add a small number, 0.0010, to a
large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 1-digit
exponent. After modifying the smaller number so that its exponent matches the larger,

0.4000 × 104

0.0000001 × 104

0.4000001 × 104

which is chopped to 0.4000 × 104 . Thus, we might as well have not performed the addi-
tion! This type of error can occur in the computation of an infinite series. The initial terms
in such series are often relatively large in comparison with the later terms. Thus, after a few
terms have been added, we are in the situation of adding a small quantity to a large quan-
tity. One way to mitigate this type of error is to sum the series in reverse order. In this way,
each new term will be of comparable magnitude to the accumulated sum.

Smearing. Smearing occurs whenever the individual terms in a summation are larger
than the summation itself. One case where this occurs is in a series of mixed signs.

Inner Products. As should be clear from the last sections, some infinite series are partic-
ularly prone to roundoff error. Fortunately, the calculation of series is not one of the more
common operations in numerical methods. A far more ubiquitous manipulation is the cal-
culation of inner products as in

n∑
i=1

xi yi = x1 y1 + x2 y2 + · · · + xn yn

This operation is very common, particularly in the solution of simultaneous linear algebraic
equations. Such summations are prone to roundofferror. Consequently, it is often desirable to
compute such summations in double precision as is done automatically in MATLAB.

4.3 TRUNCATION ERRORS

Truncation errors are those that result from using an approximation in place of an exact
mathematical procedure. For example, in Chap. 1 we approximated the derivative of veloc-
ity of a bungee jumper by a finite-difference equation of the form [Eq. (1.11)]

dv

dt
∼= �v

�t
= v(ti+1) − v(ti)

ti+1 − ti
(4.8)

A truncation error was introduced into the numerical solution because the difference equa-
tion only approximates the true value of the derivative (recall Fig. 1.3). To gain insight into
the properties of such errors, we now turn to a mathematical formulation that is used widely
in numerical methods to express functions in an approximate fashion—the Taylor series.

4.3.1 The Taylor Series

Taylor’s theorem and its associated formula, the Taylor series, is of great value in the study
of numerical methods. In essence, the Taylor theorem states that any smooth function can
be approximated as a polynomial. The Taylor series then provides a means to express this
idea mathematically in a form that can be used to generate practical results.

4.3 TRUNCATION ERRORS 103

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 103

104 ROUNDOFF AND TRUNCATION ERRORS

A useful way to gain insight into the Taylor series is to build it term by term. A good
problem context for this exercise is to predict a function value at one point in terms of the
function value and its derivatives at another point.

Suppose that you are blindfolded and taken to a location on the side of a hill facing
downslope (Fig. 4.7). We’ll call your horizontal location xi and your vertical distance with
respect to the base of the hill f (xi). You are given the task of predicting the height at a
position xi+1, which is a distance h away from you.

At first, you are placed on a platform that is completely horizontal so that you have no
idea that the hill is sloping down away from you. At this point, what would be your best
guess at the height at xi+1? If you think about it (remember you have no idea whatsoever
what’s in front of you), the best guess would be the same height as where you’re standing
now! You could express this prediction mathematically as

f (xi+1) ∼= f (xi) (4.9)

This relationship, which is called the zero-order approximation, indicates that the value of
f at the new point is the same as the value at the old point. This result makes intuitive sense
because if xi and xi+1 are close to each other, it is likely that the new value is probably sim-
ilar to the old value.

Equation (4.9) provides a perfect estimate if the function being approximated is, in
fact, a constant. For our problem, you would be right only if you happened to be standing
on a perfectly flat plateau. However, if the function changes at all over the interval, addi-
tional terms of the Taylor series are required to provide a better estimate.

So now you are allowed to get off the platform and stand on the hill surface with one
leg positioned in front of you and the other behind. You immediately sense that the front

1.0

0.5

0

h

Zero order
f (x) f (xi)

xi � 0 xi�1 � 1 x

f (xi�1)

f (xi�1) � f (xi) � f �(xi)h �
f ��(xi)

2! h2

f (xi�1) � f (xi) � f �(xi)h

f (xi�1) � f (xi)

Second order

True

First order

FIGURE 4.7
The approximation of f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2 at x = 1 by
zero-order, first-order, and second-order Taylor series expansions.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 104

foot is lower than the back foot. In fact, you’re allowed to obtain a quantitative estimate of
the slope by measuring the difference in elevation and dividing it by the distance between
your feet.

With this additional information, you’re clearly in a better position to predict the
height at f (xi+1). In essence, you use the slope estimate to project a straight line out to
xi+1. You can express this prediction mathematically by

f (xi+1) ∼= f (xi) + f ′(xi)h (4.10)

This is called a first-order approximation because the additional first-order term consists of
a slope f ′(xi) multiplied by h, the distance between xi and xi+1. Thus, the expression is
now in the form of a straight line that is capable of predicting an increase or decrease of the
function between xi and xi+1.

Although Eq. (4.10) can predict a change, it is only exact for a straight-line, or linear,
trend. To get a better prediction, we need to add more terms to our equation. So now you
are allowed to stand on the hill surface and take two measurements. First, you measure the
slope behind you by keeping one foot planted at xi and moving the other one back a dis-
tance �x . Let’s call this slope f ′

b(xi). Then you measure the slope in front of you by keep-
ing one foot planted at xi and moving the other one forward �x . Let’s call this slope
f ′

f (xi). You immediately recognize that the slope behind is milder than the one in front.
Clearly the drop in height is “accelerating” downward in front of you. Thus, the odds are
that f (xi) is even lower than your previous linear prediction.

As you might expect, you’re now going to add a second-order term to your equation
and make it into a parabola. The Taylor series provides the correct way to do this as in

f (xi+1) ∼= f (xi) + f ′(xi)h + f ′′(xi)

2!
h2 (4.11)

To make use of this formula, you need an estimate of the second derivative. You can use the
last two slopes you determined to estimate it as

f ′′(xi+1) ∼=
f ′

f (xi) − f ′
b(xi)

�x
(4.12)

Thus, the second derivative is merely a derivative of a derivative; in this case, the rate of
change of the slope.

Before proceeding, let’s look carefully at Eq. (4.11). Recognize that all the values
subscripted i represent values that you have estimated. That is, they are numbers. Conse-
quently, the only unknowns are the values at the prediction position xi+1. Thus, it is a qua-
dratic equation of the form

f (h) ∼= a2h2 + a1h + a0

Thus, we can see that the second-order Taylor series approximates the function with a second-
order polynomial.

Clearly, we could keep adding more derivatives to capture more of the function’s cur-
vature. Thus, we arrive at the complete Taylor series expansion

f (xi+1) = f (xi) + f ′(xi)h + f ′′(xi)

2!
h2+ f (3)(xi)

3!
h3 + · · · + f (n)(xi)

n!
hn + Rn (4.13)

4.3 TRUNCATION ERRORS 105

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 105

106 ROUNDOFF AND TRUNCATION ERRORS

Note that because Eq. (4.13) is an infinite series, an equal sign replaces the approximate
sign that was used in Eqs. (4.9) through (4.11). A remainder term is also included to
account for all terms from n + 1 to infinity:

Rn = f (n+1)(ξ)

(n + 1)!
hn+1 (4.14)

where the subscript n connotes that this is the remainder for the nth-order approximation
and ξ is a value of x that lies somewhere between xi and xi+1.

We can now see why the Taylor theorem states that any smooth function can be ap-
proximated as a polynomial and that the Taylor series provides a means to express this idea
mathematically.

In general, the nth-order Taylor series expansion will be exact for an nth-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yield an exact estimate. Each additional term will
contribute some improvement, however slight, to the approximation. This behavior will be
demonstrated in Example 4.3. Only if an infinite number of terms are added will the series
yield an exact result.

Although the foregoing is true, the practical value of Taylor series expansions is that,
in most cases, the inclusion of only a few terms will result in an approximation that is close
enough to the true value for practical purposes. The assessment of how many terms are
required to get “close enough” is based on the remainder term of the expansion (Eq. 4.14).
This relationship has two major drawbacks. First, ξ is not known exactly but merely lies
somewhere between xi and xi+1. Second, to evaluate Eq. (4.14), we need to determine the
(n + 1)th derivative of f (x). To do this, we need to know f (x). However, if we knew
f (x), there would be no need to perform the Taylor series expansion in the present
context!

Despite this dilemma, Eq. (4.14) is still useful for gaining insight into truncation
errors. This is because we do have control over the term h in the equation. In other words,
we can choose how far away from x we want to evaluate f (x), and we can control the num-
ber of terms we include in the expansion. Consequently, Eq. (4.14) is often expressed as

Rn = O(hn+1)

where the nomenclature O(hn+1) means that the truncation error is of the order of hn+1.
That is, the error is proportional to the step size h raised to the (n + 1)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply hn+1, it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the error is O(h), halving the step size
will halve the error. On the other hand, if the error is O(h2), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate approximation. This property is illus-
trated by the following example.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 106

EXAMPLE 4.3 Approximation of a Function with a Taylor Series Expansion

Problem Statement. Use Taylor series expansions with n = 0 to 6 to approximate
f (x) = cos x at xi+1 = π/3 on the basis of the value of f (x) and its derivatives at
xi = π/4. Note that this means that h = π/3 − π/4 = π/12.

Solution. Our knowledge of the true function allows us to determine the correct value
f (π/3) = 0.5. The zero-order approximation is [Eq. (4.9)]

f

(
π

3

)
∼= cos

(
π

4

)
= 0.707106781

which represents a percent relative error of

εt =
∣∣∣∣0.5 − 0.707106781

0.5

∣∣∣∣ 100% = 41.4%

For the first-order approximation, we add the first derivative term where f ′(x) = −sin x :

f

(
π

3

)
∼= cos

(
π

4

)
− sin

(
π

4

)(
π

12

)
= 0.521986659

which has |εt | = 4.40%. For the second-order approximation, we add the second deriva-
tive term where f ′′(x) = − cos x :

f

(
π

3

)
∼= cos

(
π

4

)
− sin

(
π

4

)(
π

12

)
− cos(π/4)

2

(
π

12

)2

= 0.497754491

with |εt | = 0.449%. Thus, the inclusion of additional terms results in an improved esti-
mate. The process can be continued and the results listed as in

Order n f (n)(x) f (π/3) |εt|
0 cos x 0.707106781 41.4
1 −sin x 0.521986659 4.40
2 −cos x 0.497754491 0.449
3 sin x 0.499869147 2.62 × 10−2

4 cos x 0.500007551 1.51 × 10−3

5 −sin x 0.500000304 6.08 × 10−5

6 −cos x 0.499999988 2.44 × 10−6

Notice that the derivatives never go to zero as would be the case for a polynomial.
Therefore, each additional term results in some improvement in the estimate. However,
also notice how most of the improvement comes with the initial terms. For this case, by the
time we have added the third-order term, the error is reduced to 0.026%, which means that
we have attained 99.974% of the true value. Consequently, although the addition of more
terms will reduce the error further, the improvement becomes negligible.

4.3 TRUNCATION ERRORS 107

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 107

108 ROUNDOFF AND TRUNCATION ERRORS

4.3.2 The Remainder for the Taylor Series Expansion

Before demonstrating how the Taylor series is actually used to estimate numerical errors,
we must explain why we included the argument ξ in Eq. (4.14). To do this, we will use a
simple, visually based explanation.

Suppose that we truncated the Taylor series expansion [Eq. (4.13)] after the zero-order
term to yield

f (xi+1) ∼= f (xi)

A visual depiction of this zero-order prediction is shown in Fig. 4.8. The remainder, or
error, of this prediction, which is also shown in the illustration, consists of the infinite
series of terms that were truncated

R0 = f ′(xi)h + f ′′(xi)

2!
h2+ f (3)(xi)

3!
h3+ · · ·

It is obviously inconvenient to deal with the remainder in this infinite series format. One
simplification might be to truncate the remainder itself, as in

R0
∼= f ′(xi)h (4.15)

Although, as stated in the previous section, lower-order derivatives usually account for a
greater share of the remainder than the higher-order terms, this result is still inexact be-
cause of the neglected second- and higher-order terms. This “inexactness” is implied by the
approximate equality symbol (∼=) employed in Eq. (4.15).

An alternative simplification that transforms the approximation into an equivalence is
based on a graphical insight. As in Fig. 4.9, the derivative mean-value theorem states that
if a function f (x) and its first derivative are continuous over an interval from xi to xi+1, then

FIGURE 4.8
Graphical depiction of a zero-order Taylor series prediction and remainder.

Zero-order prediction

Exact prediction

f (x)

xi xi + 1 x

h

f (xi)

R0

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 108

4.3 TRUNCATION ERRORS 109

FIGURE 4.9
Graphical depiction of the derivative mean-value theorem.

f (x)

xi xi + 1� x

h

R0

Slope = f �(�)

Slope =
R0
h

there exists at least one point on the function that has a slope, designated by f ′(ξ), that is
parallel to the line joining f (xi) and f (xi+1). The parameter ξ marks the x value where this
slope occurs (Fig. 4.9). A physical illustration of this theorem is that, if you travel between
two points with an average velocity, there will be at least one moment during the course of
the trip when you will be moving at that average velocity.

By invoking this theorem, it is simple to realize that, as illustrated in Fig. 4.9, the slope
f ′(ξ) is equal to the rise R0 divided by the run h, or

f ′(ξ) = R0

h
which can be rearranged to give

R0 = f ′(ξ)h (4.16)

Thus, we have derived the zero-order version of Eq. (4.14). The higher-order versions
are merely a logical extension of the reasoning used to derive Eq. (4.16). The first-order
version is

R1 = f ′′(ξ)

2!
h2 (4.17)

For this case, the value of ξ conforms to the x value corresponding to the second derivative
that makes Eq. (4.17) exact. Similar higher-order versions can be developed from Eq. (4.14).

4.3.3 Using the Taylor Series to Estimate Truncation Errors

Although the Taylor series will be extremely useful in estimating truncation errors through-
out this book, it may not be clear to you how the expansion can actually be applied to

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 109

110 ROUNDOFF AND TRUNCATION ERRORS

numerical methods. In fact, we have already done so in our example of the bungee jumper.
Recall that the objective of both Examples 1.1 and 1.2 was to predict velocity as a function
of time. That is, we were interested in determining v(t). As specified by Eq. (4.13), v(t)
can be expanded in a Taylor series:

v(ti+1) = v(ti) + v′(ti)(ti+1 − ti) + v′′(ti)
2!

(ti+1 − ti)
2 + · · · + Rn

Now let us truncate the series after the first derivative term:

v(ti+1) = v(ti) + v′(ti)(ti+1 − ti) + R1 (4.18)

Equation (4.18) can be solved for

v′(ti) = v(ti+1) − v(ti)

ti+1 − ti︸ ︷︷ ︸
First order

approximation

− R1

ti+1 − ti︸ ︷︷ ︸
Truncation

error

(4.19)

The first part of Eq. (4.19) is exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series approach,
we have now obtained an estimate of the truncation error associated with this approxima-
tion of the derivative. Using Eqs. (4.14) and (4.19) yields

R1

ti+1 − ti
= v′′(ξ)

2!
(ti+1 − ti)

or

R1

ti+1 − ti
= O(ti+1 − ti)

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.19)] has a trunca-
tion error of order ti+1 − ti . In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

4.3.4 Numerical Differentiation

Equation (4.19) is given a formal label in numerical methods—it is called a finite differ-
ence. It can be represented generally as

f ′(xi) = f (xi+1) − f (xi)

xi+1 − xi
+ O(xi+1 − xi) (4.20)

or

f ′(xi) = f (xi+1) − f (xi)

h
+ O(h) (4.21)

where h is called the step size—that is, the length of the interval over which the approxi-
mation is made, xi+1 − xi . It is termed a “forward” difference because it utilizes data at i
and i + 1 to estimate the derivative (Fig. 4.10a).

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 110

4.3 TRUNCATION ERRORS 111

True derivative

True derivative

Approxim
atio

n

(c)

Appro
xim

at
io

n

(b)

Approximation

(a)

f (x)

f (x)

f (x)

h

xi xxi�1

xi xxi�1

xxi�1 xi�1

h

2h

True derivative

Approxim
atio

n

FIGURE 4.10
Graphical depiction of (a) forward, (b) backward, and (c) centered finite-difference
approximations of the first derivative.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 111

112 ROUNDOFF AND TRUNCATION ERRORS

This forward difference is but one of many that can be developed from the Taylor
series to approximate derivatives numerically. For example, backward and centered differ-
ence approximations of the first derivative can be developed in a fashion similar to the
derivation of Eq. (4.19). The former utilizes values at xi−1 and xi (Fig. 4.10b), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig. 4.10c). More accurate approximations of the first derivative can be devel-
oped by including higher-order terms of the Taylor series. Finally, all the foregoing versions
can also be developed for second, third, and higher derivatives. The following sections pro-
vide brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can be
expanded backward to calculate a previous value on the basis of a present value, as in

f (xi−1) = f (xi) − f ′(xi)h + f ′′(xi)

2!
h2 − · · · (4.22)

Truncating this equation after the first derivative and rearranging yields

f ′(xi) ∼= f (xi) − f (xi−1)

h
(4.23)

where the error is O(h).

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.22) from the forward Taylor series expansion:

f (xi+1) = f (xi) + f ′(xi)h + f ′′(xi)

2!
h2 + · · · (4.24)

to yield

f (xi+1) = f (xi−1) + 2 f ′(xi)h + 2
f (3)(xi)

3!
h3 + · · ·

which can be solved for

f ′(xi) = f (xi+1) − f (xi−1)

2h
− f (3)(xi)

6
h2 + · · ·

or

f ′(xi) = f (xi+1) − f (xi−1)

2h
− O(h2) (4.25)

Equation (4.25) is a centered finite difference representation of the first derivative.
Notice that the truncation error is of the order of h2 in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor series analysis yields
the practical information that the centered difference is a more accurate representation of
the derivative (Fig. 4.10c). For example, if we halve the step size using a forward or back-
ward difference, we would approximately halve the truncation error, whereas for the cen-
tral difference, the error would be quartered.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 112

4.3 TRUNCATION ERRORS 113

EXAMPLE 4.4 Finite-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h) and
a centered difference approximation of O(h2) to estimate the first derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25. Note that the
derivative can be calculated directly as

f ′(x) = −0.4x3 − 0.45x2 − 1.0x − 0.25

and can be used to compute the true value as f ′(0.5) = −0.9125.

Solution. For h = 0.5, the function can be employed to determine

xi−1 = 0 f (xi−1) = 1.2

xi = 0.5 f (xi) = 0.925

xi+1 = 1.0 f (xi+1) = 0.2

These values can be used to compute the forward difference [Eq. (4.21)],

f ′(0.5) ∼= 0.2 − 0.925

0.5
= −1.45 |εt | = 58.9%

the backward difference [Eq. (4.23)],

f ′(0.5) ∼= 0.925 − 1.2

0.5
= −0.55 |εt | = 39.7%

and the centered difference [Eq. (4.25)],

f ′(0.5) ∼= 0.2 − 1.2

1.0
= −1.0 |εt | = 9.6%

For h = 0.25,

xi−1 = 0.25 f (xi−1) = 1.10351563

xi = 0.5 f (xi) = 0.925

xi+1 = 0.75 f (xi+1) = 0.63632813

which can be used to compute the forward difference,

f ′(0.5) ∼= 0.63632813 − 0.925

0.25
= −1.155 |εt | = 26.5%

the backward difference,

f ′(0.5) ∼= 0.925 − 1.10351563

0.25
= −0.714 |εt | = 21.7%

and the centered difference,

f ′(0.5) ∼= 0.63632813 − 1.10351563

0.5
= −0.934 |εt | = 2.4%

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 113

114 ROUNDOFF AND TRUNCATION ERRORS

For both step sizes, the centered difference approximation is more accurate than for-
ward or backward differences. Also, as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward differences and quar-
ters the error of the centered difference.

Finite-Difference Approximations of Higher Derivatives. Besides first derivatives, the
Taylor series expansion can be used to derive numerical estimates of higher derivatives. To
do this, we write a forward Taylor series expansion for f (xi+2) in terms of f (xi):

f (xi+2) = f (xi) + f ′(xi)(2h) + f ′′(xi)

2!
(2h)2 + · · · (4.26)

Equation (4.24) can be multiplied by 2 and subtracted from Eq. (4.26) to give

f (xi+2) − 2 f (xi+1) = − f (xi) + f ′′(xi)h
2 + · · ·

which can be solved for

f ′′(xi) = f (xi+2) − 2 f (xi+1) + f (xi)

h2
+ O(h) (4.27)

This relationship is called the second forward finite difference. Similar manipulations can
be employed to derive a backward version

f ′′(xi) = f (xi) − 2 f (xi−1) + f (xi−2)

h2
+ O(h)

A centered difference approximation for the second derivative can be derived by
adding Eqs. (4.22) and (4.24) and rearranging the result to give

f ′′(xi) = f (xi+1) − 2 f (xi) + f (xi−1)

h2
+ O(h2)

As was the case with the first-derivative approximations, the centered case is more accurate.
Notice also that the centered version can be alternatively expressed as

f ′′(xi) ∼=
f (xi+1) − f (xi)

h
− f (xi) − f (xi−1)

h
h

Thus, just as the second derivative is a derivative of a derivative, the second finite differ-
ence approximation is a difference of two first finite differences [recall Eq. (4.12)].

4.4 TOTAL NUMERICAL ERROR

The total numerical error is the summation of the truncation and roundoff errors. In general,
the only way to minimize roundoff errors is to increase the number of significant figures
of the computer. Further, we have noted that roundoff error may increase due to subtractive
cancellation or due to an increase in the number of computations in an analysis. In contrast,
Example 4.4 demonstrated that the truncation error can be reduced by decreasing the step
size. Because a decrease in step size can lead to subtractive cancellation or to an increase in
computations, the truncation errors are decreased as the roundoff errors are increased.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 114

4.4 TOTAL NUMERICAL ERROR 115

Therefore, we are faced by the following dilemma: The strategy for decreasing one
component of the total error leads to an increase of the other component. In a computation,
we could conceivably decrease the step size to minimize truncation errors only to discover
that in doing so, the roundoff error begins to dominate the solution and the total error
grows! Thus, our remedy becomes our problem (Fig. 4.11). One challenge that we face is
to determine an appropriate step size for a particular computation. We would like to choose
a large step size to decrease the amount of calculations and roundoff errors without incur-
ring the penalty of a large truncation error. If the total error is as shown in Fig. 4.11, the
challenge is to identify the point of diminishing returns where roundoff error begins to
negate the benefits of step-size reduction.

When using MATLAB, such situations are relatively uncommon because of its 15- to 16-
digit precision. Nevertheless, they sometimes do occur and suggest a sort of “numerical un-
certainty principle” that places an absolute limit on the accuracy that may be obtained using
certain computerized numerical methods. We explore such a case in the following section.

4.4.1 Error Analysis of Numerical Differentiation

As described in Sec. 4.3.4, a centered difference approximation of the first derivative can
be written as (Eq. 4.25)

f ′(xi) = f (xi+1) − f (xi−1)

2h
− f (3)(ξ)

6
h2

(4.28)
True Finite-difference Truncation
value approximation error

Thus, if the two function values in the numerator of the finite-difference approximation
have no roundoff error, the only error is due to truncation.

Log step size

Lo
g

 e
rr

o
r

Truncatio
n erro

r

Total error

Point of
diminishing

returns

Round-off error

FIGURE 4.11
A graphical depiction of the trade-off between roundoff and truncation error that sometimes
comes into play in the course of a numerical method. The point of diminishing returns is
shown, where roundoff error begins to negate the benefits of step-size reduction.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 115

116 ROUNDOFF AND TRUNCATION ERRORS

However, because we are using digital computers, the function values do include
roundoff error as in

f (xi−1) = f̃ (xi−1) + ei−1

f (xi+1) = f̃ (xi+1) + ei+1

where the f̃ ’s are the rounded function values and the e’s are the associated roundoff
errors. Substituting these values into Eq. (4.28) gives

f ′(xi) = f̃ (xi+1) − f̃ (xi−1)

2h
+ ei+1 − ei−1

2h
− f (3)(ξ)

6
h2

True Finite-difference Roundoff Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a roundoff
error that decreases with step size and a truncation error that increases with step size.

Assuming that the absolute value of each component of the roundoff error has an
upper bound of ε, the maximum possible value of the difference ei+1 – ei�1 will be 2ε. Fur-
ther, assume that the third derivative has a maximum absolute value of M. An upper bound
on the absolute value of the total error can therefore be represented as

Total error =
∣∣∣∣∣ f ′(xi) − f̃ (xi+1) − f̃ (xi−1)

2h

∣∣∣∣∣ ≤ ε

h
+ h2 M

6
(4.29)

An optimal step size can be determined by differentiating Eq. (4.29), setting the result
equal to zero and solving for

hopt = 3

√
3ε

M
(4.30)

EXAMPLE 4.5 Roundoff and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(h2) to estimate the first derivative of the following function at x = 0.5,

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

Perform the same computation starting with h = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how roundoff becomes dominant as the step size is reduced.
Relate your results to Eq. (4.30). Recall that the true value of the derivative is −0.9125.

Solution. We can develop the following M-file to perform the computations and plot the
results. Notice that we pass both the function and its analytical derivative as arguments:

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
D(1)=(func(x+h)-func(x-h))/(2*h);
E(1)=abs(dftrue-D(1));

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 116

4.4 TOTAL NUMERICAL ERROR 117

for i=2:n
h=h/10;
H(i)=h;
D(i)=(func(x+h)-func(x-h))/(2*h);
E(i)=abs(dftrue-D(i));

end
L=[H' D' E']';
fprintf(' step size finite difference true error\n');
fprintf('%14.10f %16.14f %16.13f\n',L);
loglog(H,E),xlabel('Step Size'),ylabel('Error')
title('Plot of Error Versus Step Size')
format short

The M-file can then be run using the following commands:

>> ff=@(x) -0.1*x^4-0.15*x^3-0.5*x^2-0.25*x+1.2;
>> df=@(x) -0.4*x^3-0.45*x^2-x-0.25;
>> diffex(ff,df,0.5,11)

step size finite difference true error
1.0000000000 -1.26250000000000 0.3500000000000
0.1000000000 -0.91600000000000 0.0035000000000
0.0100000000 -0.91253500000000 0.0000350000000
0.0010000000 -0.91250035000001 0.0000003500000
0.0001000000 -0.91250000349985 0.0000000034998
0.0000100000 -0.91250000003318 0.0000000000332
0.0000010000 -0.91250000000542 0.0000000000054
0.0000001000 -0.91249999945031 0.0000000005497
0.0000000100 -0.91250000333609 0.0000000033361
0.0000000010 -0.91250001998944 0.0000000199894
0.0000000001 -0.91250007550059 0.0000000755006

As depicted in Fig. 4.12, the results are as expected. At first, roundoff is minimal and the
estimate is dominated by truncation error. Hence, as in Eq. (4.29), the total error drops by a fac-
tor of 100 each time we divide the step by 10. However, starting at about h = 0.0001, we see
roundoff error begin to creep in and erode the rate at which the error diminishes. A minimum
error is reached at h = 10–6. Beyond this point, the error increases as roundoff dominates.

Because we are dealing with an easily differentiable function, we can also investigate
whether these results are consistent with Eq. (4.30). First, we can estimate M by evaluating
the function’s third derivative as

M = ∣∣ f (3)(0.5)
∣∣ = |−2.4(0.5) − 0.9| = 2.1

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of the
upper bound on roundoff would be about ε = 0.5 × 10−16. Substituting these values into
Eq. (4.30) gives

hopt = 3

√
3(0.5 × 10−16)

2.1
= 4.3 × 10−6

which is on the same order as the result of 1 × 10–6 obtained with MATLAB.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 117

118 ROUNDOFF AND TRUNCATION ERRORS

Plot of error versus step size

100

10�2

10�4

10�6

10�8

10�10

10�12

10�10 10�8 10�6 10�4 10�2 100

Step size

E
rr

o
r

FIGURE 4.12

4.4.2 Control of Numerical Errors

For most practical cases, we do not know the exact error associated with numerical methods.
The exception, of course, is when we know the exact solution, which makes our numerical
approximations unnecessary. Therefore, for most engineering and scientific applications we
must settle for some estimate of the error in our calculations.

There are no systematic and general approaches to evaluating numerical errors for all
problems. In many cases error estimates are based on the experience and judgment of the
engineer or scientist.

Although error analysis is to a certain extent an art, there are several practical pro-
gramming guidelines we can suggest. First and foremost, avoid subtracting two nearly
equal numbers. Loss of significance almost always occurs when this is done. Sometimes
you can rearrange or reformulate the problem to avoid subtractive cancellation. If this is not
possible, you may want to use extended-precision arithmetic. Furthermore, when adding
and subtracting numbers, it is best to sort the numbers and work with the smallest numbers
first. This avoids loss of significance.

Beyond these computational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool for analysis of such
errors. Prediction of total numerical error is very complicated for even moderately sized prob-
lems and tends to be pessimistic. Therefore, it is usually attempted for only small-scale tasks.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 118

4.5 BLUNDERS, MODEL ERRORS, AND DATA UNCERTAINTY 119

The tendency is to push forward with the numerical computations and try to estimate
the accuracy of your results. This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it may be possible to substitute the results back
into the original equation to check that it is actually satisfied.

Finally you should be prepared to perform numerical experiments to increase your
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and
comparing the results. We may employ sensitivity analysis to see how our solution changes
when we change model parameters or input values. We may want to try different numeri-
cal algorithms that have different theoretical foundations, are based on different computa-
tional strategies, or have different convergence properties and stability characteristics.

When the results of numerical computations are extremely critical and may involve
loss of human life or have severe economic ramifications, it is appropriate to take special
precautions. This may involve the use of two or more independent groups to solve the same
problem so that their results can be compared.

The roles of errors will be a topic of concern and analysis in all sections of this book.
We will leave these investigations to specific sections.

4.5 BLUNDERS, MODEL ERRORS, AND DATA UNCERTAINTY

Although the following sources of error are not directly connected with most of the nu-
merical methods in this book, they can sometimes have great impact on the success of a
modeling effort. Thus, they must always be kept in mind when applying numerical tech-
niques in the context of real-world problems.

4.5.1 Blunders

We are all familiar with gross errors, or blunders. In the early years of computers, erroneous
numerical results could sometimes be attributed to malfunctions of the computer itself.
Today, this source of error is highly unlikely, and most blunders must be attributed to human
imperfection.

Blunders can occur at any stage of the mathematical modeling process and can con-
tribute to all the other components of error. They can be avoided only by sound knowledge
of fundamental principles and by the care with which you approach and design your solu-
tion to a problem.

Blunders are usually disregarded in discussions of numerical methods. This is no doubt
due to the fact that, try as we may, mistakes are to a certain extent unavoidable. However, we
believe that there are a number of ways in which their occurrence can be minimized. In par-
ticular, the good programming habits that were outlined in Chap. 3 are extremely useful for
mitigating programming blunders. In addition, there are usually simple ways to check
whether a particular numerical method is working properly. Throughout this book, we dis-
cuss ways to check the results of numerical calculations.

4.5.2 Model Errors

Model errors relate to bias that can be ascribed to incomplete mathematical models. An ex-
ample of a negligible model error is the fact that Newton’s second law does not account for
relativistic effects. This does not detract from the adequacy of the solution in Example 1.1

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 119

120 ROUNDOFF AND TRUNCATION ERRORS

4.1 The “divide and average” method, an old-time method
for approximating the square root of any positive number a,
can be formulated as

x = x + a/x

2

Write a well-structured function to implement this algorithm
based on the algorithm outlined in Fig. 4.2.
4.2 Convert the following base-2 numbers to base 10:
(a) 1011001, (b) 0.01011, and (c) 110.01001.
4.3 Convert the following base-8 numbers to base 10:
61,565 and 2.71.
4.4 For computers, the machine epsilon ε can also be
thought of as the smallest number that when added to one

gives a number greater than 1. An algorithm based on this
idea can be developed as

Step 1: Set ε = 1.
Step 2: If 1 + ε is less than or equal to 1, then go to Step 5.

Otherwise go to Step 3.
Step 3: ε = ε/2
Step 4: Return to Step 2
Step 5: ε = 2 × ε

Write your own M-file based on this algorithm to determine
the machine epsilon. Validate the result by comparing it with
the value computed with the built-in function eps.
4.5 In a fashion similar to Prob. 4.4, develop your own
M-file to determine the smallest positive real number used in

PROBLEMS

because these errors are minimal on the time and space scales associated with the bungee
jumper problem.

However, suppose that air resistance is not proportional to the square of the fall velocity,
as in Eq. (1.7), but is related to velocity and other factors in a different way. If such were the
case, both the analytical and numerical solutions obtained in Chap. 1 would be erroneous be-
cause of model error. You should be cognizant of this type of error and realize that, if you are
working with a poorly conceived model, no numerical method will provide adequate results.

4.5.3 Data Uncertainty

Errors sometimes enter into an analysis because of uncertainty in the physical data on which
a model is based. For instance, suppose we wanted to test the bungee jumper model by hav-
ing an individual make repeated jumps and then measuring his or her velocity after a speci-
fied time interval. Uncertainty would undoubtedly be associated with these measurements, as
the parachutist would fall faster during some jumps than during others. These errors can ex-
hibit both inaccuracy and imprecision. If our instruments consistently underestimate or over-
estimate the velocity, we are dealing with an inaccurate, or biased, device. On the other hand,
if the measurements are randomly high and low, we are dealing with a question of precision.

Measurement errors can be quantified by summarizing the data with one or more well-
chosen statistics that convey as much information as possible regarding specific character-
istics of the data. These descriptive statistics are most often selected to represent (1) the
location of the center of the distribution of the data and (2) the degree of spread of the data.
As such, they provide a measure of the bias and imprecision, respectively. We will return to
the topic of characterizing data uncertainty when we discuss regression in Part Four.

Although you must be cognizant of blunders, model errors, and uncertain data, the nu-
merical methods used for building models can be studied, for the most part, independently
of these errors. Therefore, for most of this book, we will assume that we have not made gross
errors, we have a sound model, and we are dealing with error-free measurements. Under
these conditions, we can study numerical errors without complicating factors.

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 120

PROBLEMS 121

MATLAB. Base your algorithm on the notion that your com-
puter will be unable to reliably distinguish between zero and
a quantity that is smaller than this number. Note that the
result you obtain will differ from the value computed with
realmin. Challenge question: Investigate the results by
taking the base-2 logarithm of the number generated by your
code and those obtained with realmin.
4.6 Although it is not commonly used, MATLAB allows
numbers to be expressed in single precision. Each value
is stored in 4 bytes with 1 bit for the sign, 23 bits for the
mantissa, and 8 bits for the signed exponent. Determine the
smallest and largest positive floating-point numbers as well
as the machine epsilon for single precision representation.
Note that the exponents range from −126 to 127.
4.7 For the hypothetical base-10 computer in Example 4.2,
prove that the machine epsilon is 0.05.
4.8 The derivative of f(x) = 1/(1 − 3x2) is given by

6x

(1 − 3x2)2

Do you expect to have difficulties evaluating this function
at x = 0.577? Try it using 3- and 4-digit arithmetic with
chopping.
4.9 (a) Evaluate the polynomial

y = x3 − 7x2 + 8x − 0.35

at x = 1.37. Use 3-digit arithmetic with chopping. Evaluate
the percent relative error.
(b) Repeat (a) but express y as

y = ((x − 7)x + 8)x − 0.35

Evaluate the error and compare with part (a).
4.10 The following infinite series can be used to approxi-
mate ex:

ex = 1 + x + x2

2
+ x3

3!
+ · · · + xn

n!

(a) Prove that this Maclaurin series expansion is a special
case of the Taylor series expansion (Eq. 4.13) with xi =
0 and h = x.

(b) Use the Taylor series to estimate f (x) = e−x at xi+1 = 1
for xi = 0.25. Employ the zero-, first-, second-, and
third-order versions and compute the |εt | for each case.

4.11 The Maclaurin series expansion for cos x is

cos x = 1 − x2

2
+ x4

4!
− x6

6!
+ x8

8!
− · · ·

Starting with the simplest version, cos x = 1, add terms one
at a time to estimate cos(π/4). After each new term is added,

compute the true and approximate percent relative errors.
Use your pocket calculator or MATLAB to determine the
true value. Add terms until the absolute value of the approx-
imate error estimate falls below an error criterion conform-
ing to two significant figures.
4.12 Perform the same computation as in Prob. 4.11, but
use the Maclaurin series expansion for the sin x to estimate
sin(π/4).

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

4.13 Use zero- through third-order Taylor series expansions
to predict f (3) for

f (x) = 25x3 − 6x2 + 7x − 88

using a base point at x = 1. Compute the true percent relative
error εt for each approximation.
4.14 Prove that Eq. (4.11) is exact for all values of x if f(x) =
ax2 + bx + c.
4.15 Use zero- through fourth-order Taylor series expansions
to predict f(2) for f(x) = ln x using a base point at x = 1.
Compute the true percent relative error εt for each approxi-
mation. Discuss the meaning of the results.
4.16 Use forward and backward difference approximations
of O(h) and a centered difference approximation of O(h2) to
estimate the first derivative of the function examined in
Prob. 4.13. Evaluate the derivative at x = 2 using a step size
of h = 0.25. Compare your results with the true value of the
derivative. Interpret your results on the basis of the remain-
der term of the Taylor series expansion.
4.17 Use a centered difference approximation of O(h2) to
estimate the second derivative of the function examined in
Prob. 4.13. Perform the evaluation at x = 2 using step sizes
of h = 0.2 and 0.1. Compare your estimates with the true
value of the second derivative. Interpret your results on the
basis of the remainder term of the Taylor series expansion.
4.18 If |x | < 1 it is known that

1

1 − x
= 1 + x + x2 + x3 + · · ·

Repeat Prob. 4.11 for this series for x = 0.1.
4.19 To calculate a planet’s space coordinates, we have to
solve the function

f (x) = x − 1 − 0.5 sin x

Let the base point be a = xi = π/2 on the interval [0, π].
Determine the highest-order Taylor series expansion result-
ing in a maximum error of 0.015 on the specified interval.
The error is equal to the absolute value of the difference
between the given function and the specific Taylor series
expansion. (Hint: Solve graphically.)

cha01102_ch04_088-122.qxd 12/17/10 8:00 AM Page 121

122 ROUNDOFF AND TRUNCATION ERRORS

4.20 Consider the function f (x) = x3 − 2x + 4 on the inter-
val [−2, 2] with h = 0.25. Use the forward, backward, and
centered finite difference approximations for the first and
second derivatives so as to graphically illustrate which ap-
proximation is most accurate. Graph all three first-derivative
finite difference approximations along with the theoretical,
and do the same for the second derivative as well.
4.21 Derive Eq. (4.30).
4.22 Repeat Example 4.5, but for f (x) = cos(x) at x = π/6.
4.23 Repeat Example 4.5, but for the forward divided dif-
ference (Eq. 4.21).
4.24 One common instance where subtractive cancellation
occurs involves finding the roots of a parabola, ax2 � bx � c,
with the quadratic formula:

x = −b ± √
b2 − 4ac

2a

For cases where b2 �� 4ac, the difference in the numerator
can be very small and roundoff errors can occur. In such
cases, an alternative formulation can be used to minimize
subtractive cancellation:

x = −2c

b ± √
b2 − 4ac

Use 5-digit arithmetic with chopping to determine the roots
of the following equation with both versions of the quadratic
formula.

x2 − 5000.002x + 10

cha01102_ch04_088-122.qxd 12/20/10 7:51 AM Page 122

123123

PART TWO

Roots and Optimization

2.1 OVERVIEW

Years ago, you learned to use the quadratic formula

x = −b ± √
b2 − 4ac

2a
(PT2.1)

to solve

f (x) = ax2 + bx + c = 0 (PT2.2)

The values calculated with Eq. (PT2.1) are called the “roots” of Eq. (PT2.2). They repre-
sent the values of x that make Eq. (PT2.2) equal to zero. For this reason, roots are some-
times called the zeros of the equation.

Although the quadratic formula is handy for solving Eq. (PT2.2), there are many other
functions for which the root cannot be determined so easily. Before the advent of digital com-
puters, there were a number of ways to solve for the roots of such equations. For some cases,

the roots could be obtained by direct meth-
ods, as with Eq. (PT2.1). Although there
were equations like this that could be solved
directly, there were many more that could
not. In such instances, the only alternative is
an approximate solution technique.

One method to obtain an approximate
solution is to plot the function and deter-
mine where it crosses the x axis. This
point, which represents the x value for
which f (x) = 0, is the root. Although
graphical methods are useful for obtaining
rough estimates of roots, they are limited
because of their lack of precision. An alter-
native approach is to use trial and error.
This “technique” consists of guessing a
value of x and evaluating whether f(x) is
zero. If not (as is almost always the case),
another guess is made, and f (x) is again

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 123

evaluated to determine whether the new value provides a better estimate of the root. The
process is repeated until a guess results in an f(x) that is close to zero.

Such haphazard methods are obviously inefficient and inadequate for the requirements
of engineering and science practice. Numerical methods represent alternatives that are also
approximate but employ systematic strategies to home in on the true root. As elaborated in
the following pages, the combination of these systematic methods and computers makes
the solution of most applied roots-of-equations problems a simple and efficient task.

Besides roots, another feature of interest to engineers and scientists are a function’s
minimum and maximum values. The determination of such optimal values is referred to as
optimization. As you learned in calculus, such solutions can be obtained analytically by de-
termining the value at which the function is flat; that is, where its derivative is zero. Although
such analytical solutions are sometimes feasible, most practical optimization problems require
numerical, computer solutions. From a numerical standpoint, such optimization methods are
similar in spirit to the root-location methods we just discussed. That is, both involve guessing
and searching for a location on a function. The fundamental difference between the two types
of problems is illustrated in Figure PT2.1. Root location involves searching for the location
where the function equals zero. In contrast, optimization involves searching for the function’s
extreme points.

2.2 PART ORGANIZATION

The first two chapters in this part are devoted to root location. Chapter 5 focuses on brack-
eting methods for finding roots. These methods start with guesses that bracket, or contain,
the root and then systematically reduce the width of the bracket. Two specific methods are
covered: bisection and false position. Graphical methods are used to provide visual insight
into the techniques. Error formulations are developed to help you determine how much
computational effort is required to estimate the root to a prespecified level of precision.

Chapter 6 covers open methods. These methods also involve systematic trial-and-error
iterations but do not require that the initial guesses bracket the root. We will discover that
these methods are usually more computationally efficient than bracketing methods but that

124 PART 2 ROOTS AND OPTIMIZATION

Maximum

Minimum

0
Root

Root

Root

f (x)

x

f �(x) = 0
f �(x) � 0

f �(x) = 0
f �(x) � 0

f (x) = 0

FIGURE PT2.1
A function of a single variable illustrating the difference between roots and optima.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 124

they do not always work. We illustrate several open methods including the fixed-point
iteration, Newton-Raphson, and secant methods.

Following the description of these individual open methods, we then discuss a hybrid
approach called Brent’s root-finding method that exhibits the reliability of the bracketing
methods while exploiting the speed of the open methods. As such, it forms the basis for
MATLAB’s root-finding function, fzero. After illustrating how fzero can be used for en-
gineering and scientific problems solving, Chap. 6 ends with a brief discussion of special
methods devoted to finding the roots of polynomials. In particular, we describe MATLAB’s
excellent built-in capabilities for this task.

Chapter 7 deals with optimization. First, we describe two bracketing methods, golden-
section search and parabolic interpolation, for finding the optima of a function of a single
variable. Then, we discuss a robust, hybrid approach that combines golden-section search
and quadratic interpolation. This approach, which again is attributed to Brent, forms the
basis for MATLAB’s one-dimensional root-finding function:fminbnd. After describing
and illustrating fminbnd, the last part of the chapter provides a brief description of opti-
mization of multidimensional functions. The emphasis is on describing and illustrating the
use of MATLAB’s capability in this area: the fminsearch function. Finally, the chapter
ends with an example of how MATLAB can be employed to solve optimization problems
in engineering and science.

2.2 PART ORGANIZATION 125

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 125

5
Roots: Bracketing Methods

126

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with bracketing methods for
finding the root of a single nonlinear equation. Specific objectives and topics covered are

• Understanding what roots problems are and where they occur in engineering and
science.

• Knowing how to determine a root graphically.
• Understanding the incremental search method and its shortcomings.
• Knowing how to solve a roots problem with the bisection method.
• Knowing how to estimate the error of bisection and why it differs from error

estimates for other types of root-location algorithms.
• Understanding false position and how it differs from bisection.

YOU’VE GOT A PROBLEM

M edical studies have established that a bungee jumper’s chances of sustaining a
significant vertebrae injury increase significantly if the free-fall velocity exceeds
36 m/s after 4 s of free fall. Your boss at the bungee-jumping company wants you

to determine the mass at which this criterion is exceeded given a drag coefficient of
0.25 kg/m.

You know from your previous studies that the following analytical solution can be
used to predict fall velocity as a function of time:

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)
(5.1)

Try as you might, you cannot manipulate this equation to explicitly solve for m—that is,
you cannot isolate the mass on the left side of the equation.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 126

An alternative way of looking at the problem involves subtracting v(t) from both sides
to give a new function:

f (m) =
√

gm

cd
tanh

(√
gcd

m
t

)
− v(t) (5.2)

Now we can see that the answer to the problem is the value of m that makes the function
equal to zero. Hence, we call this a “roots” problem. This chapter will introduce you to how
the computer is used as a tool to obtain such solutions.

5.1 ROOTS IN ENGINEERING AND SCIENCE

Although they arise in other problem contexts, roots of equations frequently occur in the
area of design. Table 5.1 lists a number of fundamental principles that are routinely used in
design work. As introduced in Chap. 1, mathematical equations or models derived from
these principles are employed to predict dependent variables as a function of independent
variables, forcing functions, and parameters. Note that in each case, the dependent vari-
ables reflect the state or performance of the system, whereas the parameters represent its
properties or composition.

An example of such a model is the equation for the bungee jumper’s velocity. If the pa-
rameters are known, Eq. (5.1) can be used to predict the jumper’s velocity. Such computa-
tions can be performed directly because v is expressed explicitly as a function of the model
parameters. That is, it is isolated on one side of the equal sign.

However, as posed at the start of the chapter, suppose that we had to determine the
mass for a jumper with a given drag coefficient to attain a prescribed velocity in a set time
period. Although Eq. (5.1) provides a mathematical representation of the interrelationship
among the model variables and parameters, it cannot be solved explicitly for mass. In such
cases, m is said to be implicit.

5.1 ROOTS IN ENGINEERING AND SCIENCE 127

TABLE 5.1 Fundamental principles used in design problems.

Fundamental Dependent Independent
Principle Variable Variable Parameters

Heat balance Temperature Time and position Thermal properties of material, system geometry
Mass balance Concentration or quantity Time and position Chemical behavior of material, mass transfer,

of mass system geometry
Force balance Magnitude and direction Time and position Strength of material, structural properties, system

of forces geometry
Energy balance Changes in kinetic and Time and position Thermal properties, mass of material, system

potential energy geometry
Newton’s laws of Acceleration, velocity, Time and position Mass of material, system geometry, dissipative
motion or location parameters
Kirchhoff’s laws Currents and voltages Time Electrical properties (resistance, capacitance,

inductance)

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 127

This represents a real dilemma, because many design problems involve specifying the
properties or composition of a system (as represented by its parameters) to ensure that it
performs in a desired manner (as represented by its variables). Thus, these problems often
require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (5.1) by
subtracting the dependent variable v from both sides of the equation to give Eq. (5.2). The
value of m that makes f (m) = 0 is, therefore, the root of the equation. This value also rep-
resents the mass that solves the design problem.

The following pages deal with a variety of numerical and graphical methods for deter-
mining roots of relationships such as Eq. (5.2). These techniques can be applied to many
other problems confronted routinely in engineering and science.

5.2 GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f (x) = 0 is to make
a plot of the function and observe where it crosses the x axis. This point, which represents
the x value for which f (x) = 0, provides a rough approximation of the root.

EXAMPLE 5.1 The Graphical Approach

Problem Statement. Use the graphical approach to determine the mass of the bungee
jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of free
fall. Note: The acceleration of gravity is 9.81 m/s2.

Solution. The following MATLAB session sets up a plot of Eq. (5.2) versus mass:

>> cd = 0.25; g = 9.81; v = 36; t = 4;
>> mp = linspace(50,200);
>> fp = sqrt(g*mp/cd).*tanh(sqrt(g*cd./mp)*t)-v;
>> plot(mp,fp),grid

Root

�5
50 100 150 200

�4

�3

�2

�1

0

1

128 ROOTS: BRACKETING METHODS

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 128

The function crosses the m axis between 140 and 150 kg. Visual inspection of the plot
provides a rough estimate of the root of 145 kg (about 320 lb). The validity of the graphi-
cal estimate can be checked by substituting it into Eq. (5.2) to yield

>> sqrt(g*145/cd)*tanh(sqrt(g*cd/145)*t)-v

ans =
0.0456

which is close to zero. It can also be checked by substituting it into Eq. (5.1) along with the
parameter values from this example to give

>> sqrt(g*145/cd)*tanh(sqrt(g*cd/145)*t)

ans =
36.0456

which is close to the desired fall velocity of 36 m/s.

Graphical techniques are of limited practical value because they are not very precise.
However, graphical methods can be utilized to obtain rough estimates of roots. These esti-
mates can be employed as starting guesses for numerical methods discussed in this chapter.

Aside from providing rough estimates of the root, graphical interpretations are useful for
understanding the properties of the functions and anticipating the pitfalls of the numerical
methods. For example, Fig. 5.1 shows a number of ways in which roots can occur (or be
absent) in an interval prescribed by a lower bound xl and an upper bound xu. Figure 5.1b de-
picts the case where a single root is bracketed by negative and positive values of f (x). How-
ever, Fig. 5.1d, where f (xl) and f (xu) are also on opposite sides of the x axis, shows three
roots occurring within the interval. In general, if f (xl) and f (xu) have opposite signs, there
are an odd number of roots in the interval. As indicated by Fig. 5.1a and c, if f (xl) and f (xu)

have the same sign, there are either no roots or an even number of roots between the values.
Although these generalizations are usually true, there are cases where they do not hold.

For example, functions that are tangential to the x axis (Fig. 5.2a) and discontinuous func-
tions (Fig. 5.2b) can violate these principles. An example of a function that is tangential to
the axis is the cubic equation f (x) = (x − 2)(x − 2)(x − 4). Notice that x = 2 makes two
terms in this polynomial equal to zero. Mathematically, x = 2 is called a multiple root.
Although they are beyond the scope of this book, there are special techniques that are
expressly designed to locate multiple roots (Chapra and Canale, 2010).

The existence of cases of the type depicted in Fig. 5.2 makes it difficult to develop fool-
proof computer algorithms guaranteed to locate all the roots in an interval. However, when
used in conjunction with graphical approaches, the methods described in the following sec-
tions are extremely useful for solving many problems confronted routinely by engineers,
scientists, and applied mathematicians.

5.3 BRACKETING METHODS AND INITIAL GUESSES

If you had a roots problem in the days before computing, you’d often be told to use “trial and
error” to come up with the root. That is, you’d repeatedly make guesses until the function
was sufficiently close to zero. The process was greatly facilitated by the advent of software

5.3 BRACKETING METHODS AND INITIAL GUESSES 129

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 129

130 ROOTS: BRACKETING METHODS

(a)

(c)

(d)

f (x)

x

x

x

xl xu

(b)

x

f (x)

f (x)

f (x)

FIGURE 5.1
Illustration of a number of general ways that a root may
occur in an interval prescribed by a lower bound xl and
an upper bound xu . Parts (a) and (c) indicate that if both
f (xl) and f (xu) have the same sign, either there will
be no roots or there will be an even number of roots
within the interval. Parts (b) and (d) indicate that if the
function has different signs at the end points, there will
be an odd number of roots in the interval.

(a)

(b)

f (x)

f (x)

x

x

xl xu

FIGURE 5.2
Illustration of some exceptions to the general cases
depicted in Fig. 5.1. (a) Multiple roots that occur when
the function is tangential to the x axis. For this case,
although the end points are of opposite signs, there are
an even number of axis interceptions for the interval.
(b) Discontinuous functions where end points of opposite
sign bracket an even number of roots. Special strategies
are required for determining the roots for these cases.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 130

tools such as spreadsheets. By allowing you to make many guesses rapidly, such tools can
actually make the trial-and-error approach attractive for some problems.

But, for many other problems, it is preferable to have methods that come up with the
correct answer automatically. Interestingly, as with trial and error, these approaches require
an initial “guess” to get started. Then they systematically home in on the root in an itera-
tive fashion.

The two major classes of methods available are distinguished by the type of initial
guess. They are

• Bracketing methods. As the name implies, these are based on two initial guesses that
“bracket” the root—that is, are on either side of the root.

• Open methods. These methods can involve one or more initial guesses, but there is no
need for them to bracket the root.

For well-posed problems, the bracketing methods always work but converge slowly
(i.e., they typically take more iterations to home in on the answer). In contrast, the open
methods do not always work (i.e., they can diverge), but when they do they usually con-
verge quicker.

In both cases, initial guesses are required. These may naturally arise from the physical
context you are analyzing. However, in other cases, good initial guesses may not be obvi-
ous. In such cases, automated approaches to obtain guesses would be useful. The following
section describes one such approach, the incremental search.

5.3.1 Incremental Search

When applying the graphical technique in Example 5.1, you observed that f (x) changed
sign on opposite sides of the root. In general, if f (x) is real and continuous in the interval
from xl to xu and f (xl) and f (xu) have opposite signs, that is,

f (xl) f (xu) < 0 (5.3)

then there is at least one real root between xl and xu .
Incremental search methods capitalize on this observation by locating an interval

where the function changes sign. A potential problem with an incremental search is the
choice of the increment length. If the length is too small, the search can be very time con-
suming. On the other hand, if the length is too great, there is a possibility that closely
spaced roots might be missed (Fig. 5.3). The problem is compounded by the possible exis-
tence of multiple roots.

An M-file can be developed1 that implements an incremental search to locate the roots
of a function func within the range from xmin to xmax (Fig. 5.4). An optional argument
ns allows the user to specify the number of intervals within the range. If ns is omitted, it
is automatically set to 50. Afor loop is used to step through each interval. In the event that
a sign change occurs, the upper and lower bounds are stored in an array xb.

5.3 BRACKETING METHODS AND INITIAL GUESSES 131

1 This function is a modified version of an M-file originally presented by Recktenwald (2000).

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 131

function xb = incsearch(func,xmin,xmax,ns)
% incsearch: incremental search root locator
% xb = incsearch(func,xmin,xmax,ns):
% finds brackets of x that contain sign changes
% of a function on an interval
% input:
% func = name of function
% xmin, xmax = endpoints of interval
% ns = number of subintervals (default = 50)
% output:
% xb(k,1) is the lower bound of the kth sign change
% xb(k,2) is the upper bound of the kth sign change
% If no brackets found, xb = [].

if nargin < 3, error('at least 3 arguments required'), end
if nargin < 4, ns = 50; end %if ns blank set to 50

% Incremental search
x = linspace(xmin,xmax,ns);
f = func(x);
nb = 0; xb = []; %xb is null unless sign change detected
for k = 1:length(x)-1

if sign(f(k)) ~= sign(f(k+1)) %check for sign change
nb = nb + 1;
xb(nb,1) = x(k);
xb(nb,2) = x(k+1);

end
end
if isempty(xb) %display that no brackets were found

disp('no brackets found')
disp('check interval or increase ns')

else
disp('number of brackets:') %display number of brackets
disp(nb)

end

FIGURE 5.4
An M-file to implement an incremental search.

x6x0 x1 x2 x3 x4 x5

f (x)

x

FIGURE 5.3
Cases where roots could be missed because the incremental length of the search procedure is
too large. Note that the last root on the right is multiple and would be missed regardless of the
increment length.

132

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 132

EXAMPLE 5.2 Incremental Search

Problem Statement. Use the M-file incsearch (Fig. 5.4) to identify brackets within the
interval [3, 6] for the function:

f (x) = sin(10x) + cos(3x) (5.4)

Solution. The MATLAB session using the default number of intervals (50) is

>> incsearch(@(x) sin(10*x)+cos(3*x),3,6)
number of brackets:

5

ans =

3.2449 3.3061
3.3061 3.3673
3.7347 3.7959
4.6531 4.7143
5.6327 5.6939

A plot of Eq. (5.4) along with the root locations is shown here.

Although five sign changes are detected, because the subintervals are too wide, the func-
tion misses possible roots at x ∼= 4.25 and 5.2. These possible roots look like they might be
double roots. However, by using the zoom in tool, it is clear that each represents two real
roots that are very close together. The function can be run again with more subintervals
with the result that all nine sign changes are located

>> incsearch(@(x) sin(10*x)+cos(3*x),3,6,100)

number of brackets:
9

ans =
3.2424 3.2727
3.3636 3.3939
3.7273 3.7576

3
�2

�1

0

1

2

3.5 4 4.5 5 5.5 6

5.3 BRACKETING METHODS AND INITIAL GUESSES 133

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 133

4.2121 4.2424
4.2424 4.2727
4.6970 4.7273
5.1515 5.1818
5.1818 5.2121
5.6667 5.6970

The foregoing example illustrates that brute-force methods such as incremental search
are not foolproof. You would be wise to supplement such automatic techniques with any
other information that provides insight into the location of the roots. Such information can
be found by plotting the function and through understanding the physical problem from
which the equation originated.

5.4 BISECTION

The bisection method is a variation of the incremental search method in which the interval
is always divided in half. If a function changes sign over an interval, the function value at
the midpoint is evaluated. The location of the root is then determined as lying within the
subinterval where the sign change occurs. The subinterval then becomes the interval for
the next iteration. The process is repeated until the root is known to the required precision.
A graphical depiction of the method is provided in Fig. 5.5. The following example goes
through the actual computations involved in the method.

EXAMPLE 5.3 The Bisection Method

Problem Statement. Use bisection to solve the same problem approached graphically in
Example 5.1.

Solution. The first step in bisection is to guess two values of the unknown (in the present
problem, m) that give values for f (m) with different signs. From the graphical solution in

3
�2

�1

0

1

2

3.5 4 4.5 5 5.5 6

134 ROOTS: BRACKETING METHODS

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 134

Example 5.1, we can see that the function changes sign between values of 50 and 200. The
plot obviously suggests better initial guesses, say 140 and 150, but for illustrative purposes
let’s assume we don’t have the benefit of the plot and have made conservative guesses.
Therefore, the initial estimate of the root xr lies at the midpoint of the interval

xr = 50 + 200

2
= 125

Note that the exact value of the root is 142.7376. This means that the value of 125 calcu-
lated here has a true percent relative error of

|εt | =
∣∣∣∣142.7376 − 125

142.7376

∣∣∣∣ × 100% = 12.43%

Next we compute the product of the function value at the lower bound and at the midpoint:

f (50) f (125) = −4.579(−0.409) = 1.871

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located in the upper interval between 125 and
200. Therefore, we create a new interval by redefining the lower bound as 125.

5.4 BISECTION 135

�6

�4

�2

0

2

50 100 150

First iteration

Second iteration

Third iteration

Fourth iteration

Root

f (m)

m

xl xr xu

xl xr xu

xl xr xu

xl xr xu

FIGURE 5.5
A graphical depiction of the bisection method. This plot corresponds to the first four iterations
from Example 5.3.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 135

At this point, the new interval extends from xl = 125 to xu = 200. A revised root esti-
mate can then be calculated as

xr = 125 + 200

2
= 162.5

which represents a true percent error of |εt | = 13.85%. The process can be repeated to ob-
tain refined estimates. For example,

f (125) f (162.5) = −0.409(0.359) = −0.147

Therefore, the root is now in the lower interval between 125 and 162.5. The upper bound
is redefined as 162.5, and the root estimate for the third iteration is calculated as

xr = 125 + 162.5

2
= 143.75

which represents a percent relative error of εt = 0.709%. The method can be repeated until
the result is accurate enough to satisfy your needs.

We ended Example 5.3 with the statement that the method could be continued to obtain
a refined estimate of the root. We must now develop an objective criterion for deciding when
to terminate the method.

An initial suggestion might be to end the calculation when the error falls below some
prespecified level. For instance, in Example 5.3, the true relative error dropped from 12.43
to 0.709% during the course of the computation. We might decide that we should terminate
when the error drops below, say, 0.5%. This strategy is flawed because the error estimates
in the example were based on knowledge of the true root of the function. This would not be
the case in an actual situation because there would be no point in using the method if we
already knew the root.

Therefore, we require an error estimate that is not contingent on foreknowledge of the
root. One way to do this is by estimating an approximate percent relative error as in [recall
Eq. (4.5)]

|εa| =
∣∣∣∣ xnew

r − xold
r

xnew
r

∣∣∣∣ 100% (5.5)

where xnew
r is the root for the present iteration and xold

r is the root from the previous itera-
tion. When εa becomes less than a prespecified stopping criterion εs , the computation is
terminated.

EXAMPLE 5.4 Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a
stopping criterion of εs = 0.5%. Use Eq. (5.5) to compute the errors.

Solution. The results of the first two iterations for Example 5.3 were 125 and 162.5. Sub-
stituting these values into Eq. (5.5) yields

|εa| =
∣∣∣∣162.5 − 125

162.5

∣∣∣∣100% = 23.08%

136 ROOTS: BRACKETING METHODS

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 136

Recall that the true percent relative error for the root estimate of 162.5 was 13.85%. There-
fore, |εa| is greater than |εt |. This behavior is manifested for the other iterations:

Iteration xl xu xr |εa| (%) |εt| (%)

1 50 200 125 12.43
2 125 200 162.5 23.08 13.85
3 125 162.5 143.75 13.04 0.71
4 125 143.75 134.375 6.98 5.86
5 134.375 143.75 139.0625 3.37 2.58
6 139.0625 143.75 141.4063 1.66 0.93
7 141.4063 143.75 142.5781 0.82 0.11
8 142.5781 143.75 143.1641 0.41 0.30

Thus after eight iterations |εa| finally falls below εs = 0.5%, and the computation can be
terminated.

These results are summarized in Fig. 5.6. The “ragged” nature of the true error is due
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered
on the true root. They are close when the true root falls at either end of the interval.

5.4 BISECTION 137

0.1

1

10

100

Iterations

P
er

ce
n

t
re

la
ti

ve
 e

rr
o

r

Approximate error, ��a�

True error, ��t�

0 2 4 6 8

FIGURE 5.6
Errors for the bisection method. True and approximate errors are plotted versus the number
of iterations.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.6 suggests that |εa| captures the general downward trend of |εt |. In addition, the plot
exhibits the extremely attractive characteristic that |εa| is always greater than |εt |. Thus,

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 137

when |εa| falls below εs , the computation could be terminated with confidence that the root
is known to be at least as accurate as the prespecified acceptable level.

While it is dangerous to draw general conclusions from a single example, it can be
demonstrated that |εa| will always be greater than |εt | for bisection. This is due to the fact
that each time an approximate root is located using bisection as xr = (xl + xu)/2, we know
that the true root lies somewhere within an interval of �x = xu − xl . Therefore, the root
must lie within ±�x/2 of our estimate. For instance, when Example 5.4 was terminated,
we could make the definitive statement that

xr = 143.1641 ± 143.7500 − 142.5781

2
= 143.1641 ± 0.5859

In essence, Eq. (5.5) provides an upper bound on the true error. For this bound to be
exceeded, the true root would have to fall outside the bracketing interval, which by defini-
tion could never occur for bisection. Other root-locating techniques do not always behave
as nicely. Although bisection is generally slower than other methods, the neatness of its
error analysis is a positive feature that makes it attractive for certain engineering and
scientific applications.

Another benefit of the bisection method is that the number of iterations required to at-
tain an absolute error can be computed a priori—that is, before starting the computation.
This can be seen by recognizing that before starting the technique, the absolute error is

E0
a = x0

u − x0
l = �x0

where the superscript designates the iteration. Hence, before starting the method we are at
the “zero iteration.” After the first iteration, the error becomes

E1
a = �x0

2

Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations n is

En
a = �x0

2n

If Ea,d is the desired error, this equation can be solved for2

n = log(�x0/Ea,d)

log 2
= log2

(
�x0

Ea,d

)
(5.6)

Let’s test the formula. For Example 5.4, the initial interval was �x0 = 200 − 50 = 150.
After eight iterations, the absolute error was

Ea = |143.7500 − 142.5781|
2

= 0.5859

We can substitute these values into Eq. (5.6) to give

n = log2(150/0.5859) = 8

138 ROOTS: BRACKETING METHODS

2 MATLAB provides the log2 function to evaluate the base-2 logarithm directly. If the pocket calculator or
computer language you are using does not include the base-2 logarithm as an intrinsic function, this equation
shows a handy way to compute it. In general, logb(x) = log(x)/log(b).

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 138

Thus, if we knew beforehand that an error of less than 0.5859 was acceptable, the formula
tells us that eight iterations would yield the desired result.

Although we have emphasized the use of relative errors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.6) can provide a use-
ful root-location algorithm.

5.4.1 MATLAB M-file: bisect

An M-file to implement bisection is displayed in Fig. 5.7. It is passed the function (func)
along with lower (xl) and upper (xu) guesses. In addition, an optional stopping criterion (es)

5.4 BISECTION 139

function [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,varargin)
% bisect: root location zeroes
% [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,p1,p2,...):
% uses bisection method to find the root of func
% input:
% func = name of function
% xl, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by func
% output:
% root = real root
% fx = function value at root
% ea = approximate relative error (%)
% iter = number of iterations

if nargin<3,error('at least 3 input arguments required'),end
test = func(xl,varargin{:})*func(xu,varargin{:});
if test>0,error('no sign change'),end
if nargin<4|isempty(es), es=0.0001;end
if nargin<5|isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)

xrold = xr;
xr = (xl + xu)/2;
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*func(xr,varargin{:});
if test < 0

xu = xr;
elseif test > 0

xl = xr;
else

ea = 0;
end
if ea <= es | iter >= maxit,break,end

end
root = xr; fx = func(xr, varargin{:});

FIGURE 5.7
An M-file to implement the bisection method.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 139

and maximum iterations (maxit) can be entered. The function first checks whether there
are sufficient arguments and if the initial guesses bracket a sign change. If not, an error
message is displayed and the function is terminated. It also assigns default values if maxit
and es are not supplied. Then a while...break loop is employed to implement the
bisection algorithm until the approximate error falls below es or the iterations exceed
maxit.

We can employ this function to solve the problem posed at the beginning of the chapter.
Recall that you need to determine the mass at which a bungee jumper’s free-fall velocity
exceeds 36 m/s after 4 s of free fall given a drag coefficient of 0.25 kg/m. Thus, you have to
find the root of

f (m) =
√

9.81m

0.25
tanh

(√
9.81(0.25)

m
4

)
− 36

In Example 5.1 we generated a plot of this function versus mass and estimated that the root
fell between 140 and 150 kg. The bisect function from Fig. 5.7 can be used to determine
the root as

>> fm=@(m) sqrt(9.81*m/0.25)*tanh(sqrt(9.81*0.25/m)*4)-36;
>> [mass fx ea iter]=bisect(fm,40,200)

mass =
142.74

fx =
4.6089e-007

ea =
5.345e-005

iter =
21

Thus, a result of m = 142.74 kg is obtained after 21 iterations with an approximate relative
error of εa = 0.00005345%, and a function value close to zero.

5.5 FALSE POSITION

False position (also called the linear interpolation method) is another well-known bracket-
ing method. It is very similar to bisection with the exception that it uses a different strategy
to come up with its new root estimate. Rather than bisecting the interval, it locates the root
by joining f (xl) and f (xu) with a straight line (Fig. 5.8). The intersection of this line with
the x axis represents an improved estimate of the root. Thus, the shape of the function in-
fluences the new root estimate. Using similar triangles, the intersection of the straight line
with the x axis can be estimated as (see Chapra and Canale, 2010, for details),

xr = xu − f (xu)(xl − xu)

f (xl) − f (xu)
(5.7)

This is the false-position formula. The value of xr computed with Eq. (5.7) then re-
places whichever of the two initial guesses, xl or xu , yields a function value with the same

140 ROOTS: BRACKETING METHODS

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 140

sign as f (xr). In this way the values of xl and xu always bracket the true root. The process
is repeated until the root is estimated adequately. The algorithm is identical to the one for
bisection (Fig. 5.7) with the exception that Eq. (5.7) is used.

EXAMPLE 5.5 The False-Position Method

Problem Statement. Use false position to solve the same problem approached graphi-
cally and with bisection in Examples 5.1 and 5.3.

Solution. As in Example 5.3, initiate the computation with guesses of xl = 50 and
xu = 200.

First iteration:

xl = 50 f (xl) = −4.579387

xu = 200 f (xu) = 0.860291

xr = 200 − 0.860291(50 − 200)

−4.579387 − 0.860291
= 176.2773

which has a true relative error of 23.5%.

Second iteration:

f (xl) f (xr) = −2.592732

5.5 FALSE POSITION 141

x

f (x)

f (xl)

f (xu)

xu

xl

xr

FIGURE 5.8
False position.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 141

Therefore, the root lies in the first subinterval, and xr becomes the upper limit for the next
iteration, xu = 176.2773.

xl = 50 f (xl) = −4.579387

xu = 176.2773 f (xu) = 0.566174

xr = 176.2773 − 0.566174(50 − 176.2773)

−4.579387 − 0.566174
= 162.3828

which has true and approximate relative errors of 13.76% and 8.56%, respectively. Addi-
tional iterations can be performed to refine the estimates of the root.

Although false position often performs better than bisection, there are other cases
where it does not. As in the following example, there are certain cases where bisection
yields superior results.

EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position

Problem Statement. Use bisection and false position to locate the root of

f (x) = x10 − 1

between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2%. For false position, a
very different outcome is obtained:

Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.09430 90.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 73.7
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 17.1 59.2

After five iterations, the true error has only been reduced to about 59%. Insight into
these results can be gained by examining a plot of the function. As in Fig. 5.9, the curve
violates the premise on which false position was based—that is, if f (xl) is much closer to

142 ROOTS: BRACKETING METHODS

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 142

zero than f (xu), then the root should be much closer to xl than to xu (recall Fig. 5.8). Because
of the shape of the present function, the opposite is true.

The foregoing example illustrates that blanket generalizations regarding root-
location methods are usually not possible. Although a method such as false position is
often superior to bisection, there are invariably cases that violate this general conclusion.
Therefore, in addition to using Eq. (5.5), the results should always be checked by substi-
tuting the root estimate into the original equation and determining whether the result is
close to zero.

The example also illustrates a major weakness of the false-position method: its one-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to
stay fixed. This can lead to poor convergence, particularly for functions with significant
curvature. Possible remedies for this shortcoming are available elsewhere (Chapra and
Canale, 2010).

5.5 FALSE POSITION 143

1.0

10

5

0

f (x)

x

FIGURE 5.9
Plot of f (x) = x10 − 1, illustrating slow convergence of the false-position method.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 143

144 ROOTS: BRACKETING METHODS

310

330

350

370

1950 1960 1970 1980 1990 2000 2010

pCO2
(ppm)

5.6 CASE STUDY GREENHOUSE GASES AND RAINWATER

Background. It is well documented that the atmospheric levels of several so-called
“greenhouse” gases have been increasing over the past 50 years. For example, Fig. 5.10
shows data for the partial pressure of carbon dioxide (CO2) collected at Mauna Loa, Hawaii
from 1958 through 2008. The trend in these data can be nicely fit with a quadratic polyno-
mial,3

pCO2 = 0.012226(t − 1983)2 + 1.418542(t − 1983) + 342.38309

where pCO2 = CO2 partial pressure (ppm). These data indicate that levels have increased a
little over 22% over the period from 315 to 386 ppm.

One question that we can address is how this trend is affecting the pH of rainwater.
Outside of urban and industrial areas, it is well documented that carbon dioxide is the pri-
mary determinant of the pH of the rain. pH is the measure of the activity of hydrogen ions
and, therefore, its acidity or alkalinity. For dilute aqueous solutions, it can be computed as

pH = −log10[H+] (5.8)

where [H+] is the molar concentration of hydrogen ions.
The following five equations govern the chemistry of rainwater:

K1 = 106 [H+][HCO−
3]

K H pCO2

(5.9)

3 In Part Four, we will learn how to determine such polynomials.

FIGURE 5.10
Average annual partial pressures of atmospheric carbon dioxide (ppm) measured at Mauna Loa,
Hawaii.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 144

5.6 CASE STUDY 145

K2 = [H+][CO−2
3]

[HCO−
3]

(5.10)

Kw = [H+][OH−] (5.11)

cT = K H pCO2

106
+ [HCO−

3] + [CO−2
3] (5.12)

0 = [HCO−
3] + 2[CO−2

3] + [OH−] − [H+] (5.13)

where K H = Henry’s constant, and K1, K2, and Kw are equilibrium coefficients. The five
unknowns are cT = total inorganic carbon, [HCO−

3] = bicarbonate, [CO−2
3] = carbonate,

[H+] = hydrogen ion, and [OH−] = hydroxyl ion. Notice how the partial pressure of CO2

shows up in Eqs. (5.9) and (5.12).
Use these equations to compute the pH of rainwater given that K H =

10−1.46, K1 = 10−6.3, K2 = 10−10.3, and Kw = 10−14. Compare the results in 1958 when
the pCO2 was 315 and in 2008 when it was 386 ppm. When selecting a numerical method
for your computation, consider the following:

• You know with certainty that the pH of rain in pristine areas always falls between 2
and 12.

• You also know that pH can only be measured to two places of decimal precision.

Solution. There are a variety of ways to solve this system of five equations. One way
is to eliminate unknowns by combining them to produce a single function that only de-
pends on [H+]. To do this, first solve Eqs. (5.9) and (5.10) for

[HCO−
3] = K1

106[H+]
K H pCO2 (5.14)

[CO−2
3] = K2[HCO−

3]

[H+]
(5.15)

Substitute Eq. (5.14) into (5.15)

[CO−2
3] = K2 K1

106[H+]2
K H pCO2 (5.16)

Equations (5.14) and (5.16) can be substituted along with Eq. (5.11) into Eq. (5.13) to give

0 = K1

106[H+]
K H pCO2 + 2

K2 K1

106[H+]2
K H pCO2 + Kw

[H+]
− [H+] (5.17)

Although it might not be immediately apparent, this result is a third-order polynomial in
[H+]. Thus, its root can be used to compute the pH of the rainwater.

Now we must decide which numerical method to employ to obtain the solution. There
are two reasons why bisection would be a good choice. First, the fact that the pH always
falls within the range from 2 to 12, provides us with two good initial guesses. Second, be-
cause the pH can only be measured to two decimal places of precision, we will be satisfied

5.6 CASE STUDY continued

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 145

146 ROOTS: BRACKETING METHODS

5.6 CASE STUDY continued

with an absolute error of Ea,d = ±0.005. Remember that given an initial bracket and the
desired error, we can compute the number of iteration a priori. Substituting the present val-
ues into Eq. (5.6) gives

>> dx=12-2;
>> Ead=0.005;
>> n=log2(dx/Ead)

n =
10.9658

Eleven iterations of bisection will produce the desired precision.
Before implementing bisection, we must first express Eq. (5.17) as a function. Be-

cause it is relatively complicated, we will store it as an M-file:

function f = fpH(pH,pCO2)
K1=10^-6.3;K2=10^-10.3;Kw=10^-14;
KH=10^-1.46;
H=10^-pH;
f=K1/(1e6*H)*KH*pCO2+2*K2*K1/(1e6*H)*KH*pCO2+Kw/H-H;

We can then use the M-file from Fig. 5.7 to obtain the solution. Notice how we have
set the value of the desired relative error (εa = 1 × 10−8) at a very low level so that the it-
eration limit (maxit) is reached first so that exactly 11 iterations are implemented

>> [pH1958 fx ea iter]=bisect(@fpH,2,12,1e-8,11,315)

pH1958 =
5.6279

fx =
-2.7163e-008
ea =

0.08676
iter =

11

Thus, the pH is computed as 5.6279 with a relative error of 0.0868%. We can be confident
that the rounded result of 5.63 is correct to two decimal places. This can be verified by per-
forming another run with more iterations. For example, setting maxit to 50 yields

>> [pH1958 fx ea iter] = bisect(@fpH,2,12,1e-8,50,315)

pH1958 =
5.6304

fx =
1.615e-015

ea =
5.169e-009

iter =
35

For 2008, the result is

>> [pH2008 ea iter]=bisect(@fpH,2,12,1e-8,50,386)

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 146

PROBLEMS 147

CASE STUDY 5.6 continued5.6 CASE STUDY continued

PROBLEMS

5.1 Use bisection to determine the drag coefficient needed
so that an 80-kg bungee jumper has a velocity of 36 m/s after
4 s of free fall. Note: The acceleration of gravity is 9.81 m/s2.
Start with initial guesses of xl = 0.1 and xu = 0.2 and iter-
ate until the approximate relative error falls below 2%.
5.2 Develop your own M-file for bisection in a similar fashion
to Fig. 5.7. However, rather than using the maximum iterations
and Eq. (5.5), employ Eq. (5.6) as your stopping criterion. Make
sure to round the result of Eq. (5.6) up to the next highest integer.
Test your function by solving Prob. 5.1 using Ea,d = 0.0001.
5.3 Repeat Prob. 5.1, but use the false-position method to
obtain your solution.
5.4 Develop an M-file for the false-position method. Test it
by solving Prob. 5.1.

5.5 (a) Determine the roots of f (x) = −12 − 21x +
18x2 − 2.75x3 graphically. In addition, determine the first
root of the function with (b) bisection and (c) false position.
For (b) and (c) use initial guesses of xl = −1 and xu = 0
and a stopping criterion of 1%.
5.6 Locate the first nontrivial root of sin(x) = x2 where x is
in radians. Use a graphical technique and bisection with the
initial interval from 0.5 to 1. Perform the computation until
εa is less than εs = 2%.
5.7 Determine the positive real root of ln(x2) = 0.7 (a)
graphically, (b) using three iterations of the bisection
method, with initial guesses of xl = 0.5 and xu = 2, and
(c) using three iterations of the false-position method, with
the same initial guesses as in (b).

pH2008 =
5.5864

fx =
3.2926e-015

ea =
5.2098e-009

iter =
35

Interestingly, the results indicate that the 22.5% rise in atmospheric CO2 levels has
produced only a 0.78% drop in pH. Although this is certainly true, remember that the pH
represents a logarithmic scale as defined by Eq. (5.8). Consequently, a unit drop in pH rep-
resents an order-of-magnitude (i.e., a 10-fold) increase in the hydrogen ion. The concen-
tration can be computed as [H+] = 10−pH and its percent change can be calculated as.

>> ((10^-pH2008-10^-pH1958)/10^-pH1958)*100

ans =
10.6791

Therefore, the hydrogen ion concentration has increased about 10.7%.
There is quite a lot of controversy related to the meaning of the greenhouse gas trends.

Most of this debate focuses on whether the increases are contributing to global warming.
However, regardless of the ultimate implications, it is sobering to realize that something as
large as our atmosphere has changed so much over a relatively short time period. This case
study illustrates how numerical methods and MATLAB can be employed to analyze and in-
terpret such trends. Over the coming years, engineers and scientists can hopefully use such
tools to gain increased understanding of such phenomena and help rationalize the debate
over their ramifications.

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 147

148 ROOTS: BRACKETING METHODS

5.8 The saturation concentration of dissolved oxygen in
freshwater can be calculated with the equation

ln osf = −139.34411 + 1.575701 × 105

Ta

− 6.642308 × 107

T 2
a

+ 1.243800 × 1010

T 3
a

− 8.621949 × 1011

T 4
a

where osf = the saturation concentration of dissolved oxy-
gen in freshwater at 1 atm (mg L−1); and Ta = absolute
temperature (K). Remember that Ta = T + 273.15, where
T = temperature (°C). According to this equation, saturation
decreases with increasing temperature. For typical natural
waters in temperate climates, the equation can be used to de-
termine that oxygen concentration ranges from 14.621 mg/L
at 0 °C to 6.949 mg/L at 35 °C. Given a value of oxygen con-
centration, this formula and the bisection method can be
used to solve for temperature in °C.
(a) If the initial guesses are set as 0 and 35 °C, how many

bisection iterations would be required to determine tem-
perature to an absolute error of 0.05 °C?

(b) Based on (a), develop and test a bisection M-file function
to determine T as a function of a given oxygen concen-
tration. Test your function for osf = 8, 10 and 14 mg/L.
Check your results.

5.9 A beam is loaded as shown in Fig. P5.9. Use the bisec-
tion method to solve for the position inside the beam where
there is no moment.
5.10 Water is flowing in a trapezoidal channel at a rate of
Q = 20 m3/s. The critical depth y for such a channel must
satisfy the equation

0 = 1 − Q2

g A3
c

B

where g = 9.81 m/s2, Ac = the cross-sectional area (m2),
and B = the width of the channel at the surface (m). For this
case, the width and the cross-sectional area can be related to
depth y by

B = 3 + y

and

Ac = 3y + y2

2
Solve for the critical depth using (a) the graphical method,
(b) bisection, and (c) false position. For (b) and (c) use
initial guesses of xl = 0.5 and xu = 2.5, and iterate until the
approximate error falls below 1% or the number of iterations
exceeds 10. Discuss your results.
5.11 The Michaelis-Menten model describes the kinetics of
enzyme mediated reactions:

dS

dt
= −vm

S

ks + S

where S = substrate concentration (moles/L), vm = maxi-
mum uptake rate (moles/L/d), and ks = the half-saturation
constant, which is the substrate level at which uptake is half
of the maximum [moles/L]. If the initial substrate level at
t = 0 is S0, this differential equation can be solved for

S = S0 − vmt + ks ln(S0/S)

Develop an M-file to generate a plot of S versus t for the
case where S0 = 8 moles/L, vm = 0.7 moles/L/d, and
ks = 2.5 moles/L.
5.12 A reversible chemical reaction

2A + B
→
← C

can be characterized by the equilibrium relationship

K = cc

c2
acb

where the nomenclature ci represents the concentration of con-
stituent i. Suppose that we define a variable x as representing
the number of moles of C that are produced. Conservation of
mass can be used to reformulate the equilibrium relationship as

K = (cc,0 + x)

(ca,0 − 2x)2(cb,0 − x)

where the subscript 0 designates the initial concentration
of each constituent. If K = 0.016, ca,0 = 42, cb,0 = 28, and
cc,0 = 4, determine the value of x.
(a) Obtain the solution graphically.
(b) On the basis of (a), solve for the root with initial guesses of

xl = 0 and xu = 20 to εs = 0.5%. Choose either bisection or
false position to obtain your solution. Justify your choice.

5.13 Figure P5.13a shows a uniform beam subject to a lin-
early increasing distributed load. The equation for the result-
ing elastic curve is (see Fig. P5.13b)

y = w0

120E I L
(−x5 + 2L2x3 − L4x) (P5.13)

Use bisection to determine the point of maximum deflection
(i.e., the value of x where dy/dx = 0). Then substitute this
value into Eq. (P5.13) to determine the value of the maximum
deflection. Use the following parameter values in your

3’ 3’ 2’4’

100 lb100 lb/ft

FIGURE P5.9

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 148

PROBLEMS 149

computation: L = 600 cm, E = 50,000 kN/cm2, I =
30,000 cm4, and w0 = 2.5 kN/cm.
5.14 You buy a $35,000 vehicle for nothing down at $8,500
per year for 7 years. Use the bisect function from Fig. 5.7
to determine the interest rate that you are paying. Employ
initial guesses for the interest rate of 0.01 and 0.3 and a stop-
ping criterion of 0.00005. The formula relating present
worth P, annual payments A, number of years n, and interest
rate i is

A = P
i(1 + i)n

(1 + i)n − 1

5.15 Many fields of engineering require accurate population
estimates. For example, transportation engineers might find
it necessary to determine separately the population growth
trends of a city and adjacent suburb. The population of the
urban area is declining with time according to

Pu(t) = Pu,maxe−ku t + Pu,min

while the suburban population is growing, as in

Ps(t) = Ps,max

1 + [Ps,max/P0 − 1]e−ks t

where Pu,max, ku, Ps,max, P0, and ks = empirically derived pa-
rameters. Determine the time and corresponding values of
Pu(t) and Ps(t) when the suburbs are 20% larger than the city.
The parameter values are Pu,max = 80,000, ku = 0.05/yr,
Pu,min = 110,000 people, Ps,max = 320,000 people, P0 =
10,000 people, and ks = 0.09/yr. To obtain your solutions,
use (a) graphical, and (b) false-position methods.

5.16 The resistivity ρ of doped silicon is based on the
charge q on an electron, the electron density n, and the elec-
tron mobility μ. The electron density is given in terms of
the doping density N and the intrinsic carrier density ni. The
electron mobility is described by the temperature T, the ref-
erence temperature T0, and the reference mobility μ0. The
equations required to compute the resistivity are

ρ = 1

qnμ

where

n = 1

2

(
N +

√
N 2 + 4n2

i

)
and μ = μ0

(
T

T0

)−2.42

Determine N, given T0 = 300 K, T = 1000 K, μ0 =
1360 cm2 (V s)−1, q = 1.7 × 10−19 C, ni = 6.21 × 109 cm−3,
and a desired ρ = 6.5 × 106 V s cm/C. Employ initial
guesses of N = 0 and 2.5 × 1010. Use (a) bisection and
(b) the false position method.
5.17 A total charge Q is uniformly distributed around a ring-
shaped conductor with radius a. A charge q is located at a
distance x from the center of the ring (Fig. P5.17). The force
exerted on the charge by the ring is given by

F = 1

4πe0

q Qx

(x2 + a2)3/2

where e0 = 8.9 × 10−12 C2/(N m2). Find the distance x where
the force is 1.25 N if q and Q are 2 × 10−5 C for a ring with a
radius of 0.85 m.
5.18 For fluid flow in pipes, friction is described by a di-
mensionless number, the Fanning friction factor f. The Fan-
ning friction factor is dependent on a number of parameters
related to the size of the pipe and the fluid, which can
all be represented by another dimensionless quantity, the
Reynolds number Re. A formula that predicts f given Re is
the von Karman equation:

1√
f

= 4 log10

(
Re

√
f
)

− 0.4

Typical values for the Reynolds number for turbulent flow
are 10,000 to 500,000 and for the Fanning friction factor are
0.001 to 0.01. Develop a function that uses bisection to solve
for f given a user-supplied value of Re between 2,500 and

w0

L

(a)

(x = 0, y = 0)
(x = L, y = 0)

x

(b)

FIGURE P5.13

FIGURE P5.17

x

a

Q

q

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 149

150 ROOTS: BRACKETING METHODS

1,000,000. Design the function so that it ensures that the ab-
solute error in the result is Ea,d < 0.000005.
5.19 Mechanical engineers, as well as most other engineers,
use thermodynamics extensively in their work. The following
polynomial can be used to relate the zero-pressure specific
heat of dry air cp kJ/(kg K) to temperature (K):

cp = 0.99403 + 1.671 × 10−4T + 9.7215 × 10−8T 2

−9.5838 × 10−11T 3 + 1.9520 × 10−14T 4

Develop a plot of cp versus a range of T = 0 to 1200 K, and
then use bisection to determine the temperature that corre-
sponds to a specific heat of 1.1 kJ/(kg K).
5.20 The upward velocity of a rocket can be computed by
the following formula:

v = u ln
m0

m0 − qt
− gt

where v = upward velocity, u = the velocity at which fuel is
expelled relative to the rocket, m0 = the initial mass of the
rocket at time t = 0, q = the fuel consumption rate, and g = the
downward acceleration of gravity (assumed constant =
9.81 m/s2). If u = 1800 m/s, m0 = 160,000 kg, and q =
2600 kg/s, compute the time at which v = 750 m/s. (Hint: t
is somewhere between 10 and 50 s.) Determine your result so
that it is within 1% of the true value. Check your answer.
5.21 Although we did not mention it in Sec. 5.6, Eq. (5.13) is
an expression of electroneutrality—that is, that positive and
negative charges must balance. This can be seen more clearly
by expressing it as

[H+] = [HCO−
3] + 2[CO2−

3] + [OH−]

In other words, the positive charges must equal the negative
charges. Thus, when you compute the pH of a natural water
body such as a lake, you must also account for other ions that
may be present. For the case where these ions originate from
nonreactive salts, the net negative minus positive charges due
to these ions are lumped together in a quantity called alkalin-
ity, and the equation is reformulated as

Alk + [H+] = [HCO−
3] + 2[CO2−

3] + [OH−] (P5.21)

where Alk = alkalinity (eq/L). For example, the alkalinity of
Lake Superior is approximately 0.4 × 10–3 eq/L. Perform the
same calculations as in Sec. 5.6 to compute the pH of Lake
Superior in 2008. Assume that just like the raindrops, the lake
is in equilibrium with atmospheric CO2 but account for the
alkalinity as in Eq. (P5.21).
5.22 According to Archimedes’ principle, the buoyancy force
is equal to the weight of fluid displaced by the submerged
portion of the object. For the sphere depicted in Fig. P5.22,

use bisection to determine the height, h, of the portion that is
above water. Employ the following values for your computa-
tion: r = 1 m, ρs = density of sphere = 200 kg/m3, and ρw =
density of water = 1,000 kg/m3. Note that the volume of the
above-water portion of the sphere can be computed with

V = πh2

3
(3r − h)

5.23 Perform the same computation as in Prob. 5.22, but for
the frustrum of a cone as depicted in Fig. P5.23. Employ the
following values for your computation: r1 = 0.5 m, r2 = 1 m,
h = 1 m, ρ f = frustrum density = 200 kg/m3, and ρw = water
density = 1,000 kg/m3. Note that the volume of a frustrum is
given by

V = πh

3
(r2

1 + r2
2 + r1r2)

h

r

FIGURE P5.22

h1

h

r2

r1

FIGURE P5.23

cha01102_ch05_123-150.qxd 12/17/10 8:01 AM Page 150

151

6
Roots: Open Methods

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with open methods for finding
the root of a single nonlinear equation. Specific objectives and topics covered are

• Recognizing the difference between bracketing and open methods for root
location.

• Understanding the fixed-point iteration method and how you can evaluate its
convergence characteristics.

• Knowing how to solve a roots problem with the Newton-Raphson method and
appreciating the concept of quadratic convergence.

• Knowing how to implement both the secant and the modified secant methods.
• Understanding how Brent’s method combines reliable bracketing methods with

fast open methods to locate roots in a robust and efficient manner.
• Knowing how to use MATLAB’s fzero function to estimate roots.
• Learning how to manipulate and determine the roots of polynomials with

MATLAB.

F or the bracketing methods in Chap. 5, the root is located within an interval prescribed
by a lower and an upper bound. Repeated application of these methods always results
in closer estimates of the true value of the root. Such methods are said to be conver-

gent because they move closer to the truth as the computation progresses (Fig. 6.1a).
In contrast, the open methods described in this chapter require only a single starting

value or two starting values that do not necessarily bracket the root. As such, they some-
times diverge or move away from the true root as the computation progresses (Fig. 6.1b).
However, when the open methods converge (Fig. 6.1c) they usually do so much more
quickly than the bracketing methods. We will begin our discussion of open techniques with
a simple approach that is useful for illustrating their general form and also for demonstrat-
ing the concept of convergence.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 151

152 ROOTS: OPEN METHODS

6.1 SIMPLE FIXED-POINT ITERATION

As just mentioned, open methods employ a formula to predict the root. Such a formula can
be developed for simple fixed-point iteration (or, as it is also called, one-point iteration or
successive substitution) by rearranging the function f (x) = 0 so that x is on the left-hand
side of the equation:

x = g(x) (6.1)

This transformation can be accomplished either by algebraic manipulation or by simply
adding x to both sides of the original equation.

The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as a
function of an old value of x. Thus, given an initial guess at the root xi , Eq. (6.1) can be
used to compute a new estimate xi+1 as expressed by the iterative formula

xi+1 = g(xi) (6.2)

f (x)

x

(a)

xl xu

xl xu

f (x)

x

(b)

xi

xi�1

f (x)

x

(c)

xi

xi�1

xl xu

xl xu

xl xu

FIGURE 6.1
Graphical depiction of the fundamental difference between the (a) bracketing and (b) and (c)
open methods for root location. In (a), which is bisection, the root is constrained within the inter-
val prescribed by xl and xu . In contrast, for the open method depicted in (b) and (c), which is
Newton-Raphson, a formula is used to project from xi to xi+1 in an iterative fashion. Thus the
method can either (b) diverge or (c) converge rapidly, depending on the shape of the function
and the value of the initial guess.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 152

6.1 SIMPLE FIXED-POINT ITERATION 153

As with many other iterative formulas in this book, the approximate error for this equation
can be determined using the error estimator:

εa =
∣∣∣∣ xi+1 − xi

xi+1

∣∣∣∣ 100% (6.3)

EXAMPLE 6.1 Simple Fixed-Point Iteration

Problem Statement. Use simple fixed-point iteration to locate the root of f (x) = e−x − x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

xi+1 = e−xi

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute:

i xi |εa|, % |εt|, % |εt|i/|εt|i−1

0 0.0000 100.000
1 1.0000 100.000 76.322 0.763
2 0.3679 171.828 35.135 0.460
3 0.6922 46.854 22.050 0.628
4 0.5005 38.309 11.755 0.533
5 0.6062 17.447 6.894 0.586
6 0.5454 11.157 3.835 0.556
7 0.5796 5.903 2.199 0.573
8 0.5601 3.481 1.239 0.564
9 0.5711 1.931 0.705 0.569

10 0.5649 1.109 0.399 0.566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

Notice that the true percent relative error for each iteration of Example 6.1 is roughly
proportional (for this case, by a factor of about 0.5 to 0.6) to the error from the previous
iteration. This property, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the “pos-
sibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Section 5.2, we graphed a function to visualize its structure and
behavior. Such an approach is employed in Fig. 6.2a for the function f (x) = e−x − x . An
alternative graphical approach is to separate the equation into two component parts, as in

f1(x) = f2(x)

Then the two equations

y1 = f1(x) (6.4)

and

y2 = f2(x) (6.5)

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 153

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of f (x) = 0.

The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be reexpressed as a pair of equations y1 = x
and y2 = g(x). These two equations can then be plotted separately. As was the case with
Eqs. (6.4) and (6.5), the roots of f (x) = 0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y1 = x and four different shapes for y2 = g(x) are
plotted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of x0 is used to determine the corresponding
point on the y2 curve [x0, g(x0)]. The point [x1, x1] is located by moving left horizontally to
the y1 curve. These movements are equivalent to the first iteration of the fixed-point method:

x1 = g(x0)

Thus, in both the equation and in the plot, a starting value of x0 is used to obtain an esti-
mate of x1. The next iteration consists of moving to [x1, g(x1)] and then to [x2, x2]. This

154 ROOTS: OPEN METHODS

f (x)

f (x)

x

x

Root

Root

f (x) � e� x � x

f 1(x) � x

f 2(x) � e� x

(a)

(b)

FIGURE 6.2
Two alternative graphical methods for determining the root of f (x) = e−x − x. (a) Root at the
point where it crosses the x axis; (b) root at the intersection of the component functions.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 154

6.1 SIMPLE FIXED-POINT ITERATION 155

iteration is equivalent to the equation

x2 = g(x1)

The solution in Fig. 6.3a is convergent because the estimates of x move closer to the
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case for
Fig. 6.3c and d, where the iterations diverge from the root.

A theoretical derivation can be used to gain insight into the process. As described in
Chapra and Canale (2010), it can be shown that the error for any iteration is linearly pro-
portional to the error from the previous iteration multiplied by the absolute value of the
slope of g:

Ei+1 = g′(ξ)Ei

xx1

y1 � x

y2 � g(x)

x2 x0

y

(a)

x

y1 � x

y2 � g(x)

x0

y

(b)

x

y1�x

y2 � g(x)

x0

y

(c)

x

y1 � x

y2 � g(x)

x0

y

(d)

FIGURE 6.3
Graphical depiction of (a) and (b) convergence and (c) and (d) divergence of simple fixed-point
iteration. Graphs (a) and (c) are called monotone patterns whereas (b) and (c) are called
oscillating or spiral patterns. Note that convergence occurs when |g′(x)| < 1.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 155

Consequently, if |g′| < 1, the errors decrease with each iteration. For |g′| > 1 the errors
grow. Notice also that if the derivative is positive, the errors will be positive, and hence the
errors will have the same sign (Fig. 6.3a and c). If the derivative is negative, the errors will
change sign on each iteration (Fig. 6.3b and d).

6.2 NEWTON-RAPHSON

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson method
(Fig. 6.4). If the initial guess at the root is xi , a tangent can be extended from the point
[xi , f (xi)]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation. As in Fig. 6.4, the first derivative at x is equivalent to the slope:

f ′(xi) = f (xi) − 0

xi − xi+1

which can be rearranged to yield

xi+1 = xi − f (xi)

f ′(xi)
(6.6)

which is called the Newton-Raphson formula.

EXAMPLE 6.2 Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f (x) =
e−x − x employing an initial guess of x0 = 0.

Solution. The first derivative of the function can be evaluated as

f ′(x) = −e−x − 1

which can be substituted along with the original function into Eq. (6.6) to give

xi+1 = xi − e−xi − xi

−e−xi − 1

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute

i xi |εt|, %
0 0 100
1 0.500000000 11.8
2 0.566311003 0.147
3 0.567143165 0.0000220
4 0.567143290 <10−8

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
(compare with Example 6.1).

156 ROOTS: OPEN METHODS

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 156

6.2 NEWTON-RAPHSON 157

As with other root-location methods, Eq. (6.3) can be used as a termination criterion.
In addition, a theoretical analysis (Chapra and Canale, 2010) provides insight regarding the
rate of convergence as expressed by

Et,i+1 = − f ′′(xr)

2 f ′(xr)
E2

t,i (6.7)

Thus, the error should be roughly proportional to the square of the previous error. In other
words, the number of significant figures of accuracy approximately doubles with each
iteration. This behavior is called quadratic convergence and is one of the major reasons for
the popularity of the method.

Although the Newton-Raphson method is often very efficient, there are situations
where it performs poorly. A special case—multiple roots—is discussed elsewhere (Chapra
and Canale, 2010). However, even when dealing with simple roots, difficulties can also
arise, as in the following example.

EXAMPLE 6.3 A Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f (x) = x10 − 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

xi+1 = xi − x10
i − 1

10x9
i

which can be used to compute

f (x)

f (xi)

f(xi) � 0

Slope � f'(xi)

0 xxi�1 xi

xi � xi�1

FIGURE 6.4
Graphical depiction of the Newton-Raphson method. A tangent to the function of xi [that is,
f ′(x)] is extrapolated down to the x axis to provide an estimate of the root at xi+1.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 157

158 ROOTS: OPEN METHODS

i xi |εa|, %
0 0.5
1 51.65 99.032
2 46.485 11.111
3 41.8365 11.111
4 37.65285 11.111
•
•
•

40 1.002316 2.130
41 1.000024 0.229
42 1 0.002

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the first guess is in a region where the slope is near
zero. Thus, the first iteration flings the solution far away from the initial guess to a new
value (x = 51.65) where f(x) has an extremely high value. The solution then plods along
for over 40 iterations until converging on the root with adequate accuracy.

2E � 17

1E � 17

0
10 20 30 40 50

16

12

8

4

0
0.5 1

f (x)

0

x

FIGURE 6.5
Graphical depiction of the Newton-Raphson method for a case with slow convergence. The
inset shows how a near-zero slope initially shoots the solution far from the root. Thereafter,
the solution very slowly converges on the root.

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 158

6.2 NEWTON-RAPHSON 159

f (x)

f (x)

f (x)

f (x)

x2 x1

x0 x1 x

x0 x

x

x1 x0

x0 x2x4 x3 x1 x

x2

(a)

(b)

(c)

(d)

FIGURE 6.6
Four cases where the Newton-Raphson method exhibits poor convergence.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 159

160 ROOTS: OPEN METHODS

point (i.e., f ′(x) = 0) occurs in the vicinity of a root. Notice that iterations beginning at x0

progressively diverge from the root. Fig. 6.6b illustrates the tendency of the Newton-Raphson
technique to oscillate around a local maximum or minimum. Such oscillations may persist, or,
as in Fig. 6.6b, a near-zero slope is reached whereupon the solution is sent far from the area of
interest. Figure 6.6c shows how an initial guess that is close to one root can jump to a location
several roots away. This tendency to move away from the area of interest is due to the fact that
near-zero slopes are encountered. Obviously, a zero slope [f ′(x) = 0] is a real disaster be-
cause it causes division by zero in the Newton-Raphson formula [Eq. (6.6)]. As in Fig. 6.6d,
it means that the solution shoots off horizontally and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some func-
tions, no guess will work! Good guesses are usually predicated on knowledge of the phys-
ical problem setting or on devices such as graphs that provide insight into the behavior of
the solution. It also suggests that good computer software should be designed to recognize
slow convergence or divergence.

6.2.1 MATLAB M-file: newtraph

An algorithm for the Newton-Raphson method can be easily developed (Fig. 6.7). Note that
the program must have access to the function (func) and its first derivative (dfunc). These
can be simply accomplished by the inclusion of user-defined functions to compute these
quantities. Alternatively, as in the algorithm in Fig. 6.7, they can be passed to the function
as arguments.

After the M-file is entered and saved, it can be invoked to solve for root. For example,
for the simple function x2 − 9, the root can be determined as in

>> newtraph(@(x) x^2-9,@(x) 2*x,5)

ans =
3

EXAMPLE 6.4 Newton-Raphson Bungee Jumper Problem

Problem Statement. Use the M-file function from Fig. 6.7 to determine the mass of the
bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of
free fall. The acceleration of gravity is 9.81 m/s2.

Solution. The function to be evaluated is

f (m) =
√

gm

cd
tanh

(√
gcd

m
t

)
− v(t) (E6.4.1)

To apply the Newton-Raphson method, the derivative of this function must be evalu-
ated with respect to the unknown, m:

d f (m)

dm
= 1

2

√
g

mcd
tanh

(√
gcd

m
t

)
− g

2m
t sech2

(√
gcd

m
t

)
(E6.4.2)

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 160

6.3 SECANT METHODS 161

We should mention that although this derivative is not difficult to evaluate in principle, it
involves a bit of concentration and effort to arrive at the final result.

The two formulas can now be used in conjunction with the function newtraph to
evaluate the root:

>> y = @m sqrt(9.81*m/0.25)*tanh(sqrt(9.81*0.25/m)*4)-36;
>> dy = @m 1/2*sqrt(9.81/(m*0.25))*tanh((9.81*0.25/m) ...

^(1/2)*4)-9.81/(2*m)*sech(sqrt(9.81*0.25/m)*4)^2;

>> newtraph(y,dy,140,0.00001)

ans =
142.7376

6.3 SECANT METHODS

As in Example 6.4, a potential problem in implementing the Newton-Raphson method is
the evaluation of the derivative. Although this is not inconvenient for polynomials and
many other functions, there are certain functions whose derivatives may be difficult or

FIGURE 6.7
An M-file to implement the Newton-Raphson method.

function [root,ea,iter]=newtraph(func,dfunc,xr,es,maxit,varargin)
% newtraph: Newton-Raphson root location zeroes
% [root,ea,iter]=newtraph(func,dfunc,xr,es,maxit,p1,p2,...):
% uses Newton-Raphson method to find the root of func
% input:
% func = name of function
% dfunc = name of derivative of function
% xr = initial guess
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by function
% output:
% root = real root
% ea = approximate relative error (%)
% iter = number of iterations

if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(es),es=0.0001;end
if nargin<5|isempty(maxit),maxit=50;end
iter = 0;
while (1)

xrold = xr;
xr = xr - func(xr)/dfunc(xr);
iter = iter + 1;
if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end
if ea <= es | iter >= maxit, break, end

end
root = xr;

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 161

162 ROOTS: OPEN METHODS

inconvenient to evaluate. For these cases, the derivative can be approximated by a back-
ward finite divided difference:

f ′(xi) ∼= f (xi−1) − f (xi)

xi−1 − xi

This approximation can be substituted into Eq. (6.6) to yield the following iterative
equation:

xi+1 = xi − f (xi)(xi−1 − xi)

f (xi−1) − f (xi)
(6.8)

Equation (6.8) is the formula for the secant method. Notice that the approach requires two
initial estimates of x. However, because f (x) is not required to change signs between the
estimates, it is not classified as a bracketing method.

Rather than using two arbitrary values to estimate the derivative, an alternative ap-
proach involves a fractional perturbation of the independent variable to estimate f ′(x),

f ′(xi) ∼= f (xi + δxi) − f (xi)

δxi

where δ = a small perturbation fraction. This approximation can be substituted into
Eq. (6.6) to yield the following iterative equation:

xi+1 = xi − δxi f (xi)

f (xi + δxi) − f (xi)
(6.9)

We call this the modified secant method. As in the following example, it provides a nice
means to attain the efficiency of Newton-Raphson without having to compute derivatives.

EXAMPLE 6.5 Modified Secant Method

Problem Statement. Use the modified secant method to determine the mass of the
bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of
free fall. Note: The acceleration of gravity is 9.81 m/s2. Use an initial guess of 50 kg and a
value of 10−6 for the perturbation fraction.

Solution. Inserting the parameters into Eq. (6.9) yields

First iteration:

x0 = 50 f (x0) = −4.57938708

x0 + δx0 = 50.00005 f (x0 + δx0) = −4.579381118

x1 = 50 − 10−6(50)(−4.57938708)

−4.579381118 − (−4.57938708)

= 88.39931(|εt | = 38.1%; |εa| = 43.4%)

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 162

6.4 BRENT’S METHODS 163

Second iteration:

x1 = 88.39931 f (x1) = −1.69220771

x1 + δx1 = 88.39940 f (x1 + δx1) = −1.692203516

x2 = 88.39931 − 10−6(88.39931)(−1.69220771)

−1.692203516 − (−1.69220771)

= 124.08970(|εt | = 13.1%; |εa| = 28.76%)

The calculation can be continued to yield

i xi |εt|, % |εa|, %
0 50.0000 64.971
1 88.3993 38.069 43.438
2 124.0897 13.064 28.762
3 140.5417 1.538 11.706
4 142.7072 0.021 1.517
5 142.7376 4.1 × 10−6 0.021
6 142.7376 3.4 × 10−12 4.1 × 10−6

The choice of a proper value for δ is not automatic. If δ is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.9). If it is too big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for values sent to it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many lines of code that could take a sig-
nificant amount of execution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable.

6.4 BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm that
does just that by applying a speedy open method wherever possible, but reverting to a reli-
able bracketing method if necessary. The approach was developed by Richard Brent (1973)
based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.4), whereas two dif-
ferent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 163

6.4.1 Inverse Quadratic Interpolation

Inverse quadratic interpolation is similar in spirit to the secant method. As in Fig. 6.8a, the
secant method is based on computing a straight line that goes through two guesses. The
intersection of this straight line with the x axis represents the new root estimate. For this
reason, it is sometimes referred to as a linear interpolation method.

Now suppose that we had three points. In that case, we could determine a quadratic
function of x that goes through the three points (Fig. 6.8b). Just as with the linear secant
method, the intersection of this parabola with the x axis would represent the new root esti-
mate. And as illustrated in Fig. 6.8b, using a curve rather than a straight line often yields a
better estimate.

Although this would seem to represent a great improvement, the approach has a fun-
damental flaw: it is possible that the parabola might not intersect the x axis! Such would be
the case when the resulting parabola had complex roots. This is illustrated by the parabola,
y � f(x), in Fig. 6.9.

The difficulty can be rectified by employing inverse quadratic interpolation. That is,
rather than using a parabola in x, we can fit the points with a parabola in y. This amounts to
reversing the axes and creating a “sideways” parabola [the curve, x � f(y), in Fig. 6.9].

If the three points are designated as (xi–2, yi–2), (xi–1, yi–1), and (xi, yi), a quadratic
function of y that passes through the points can be generated as

g(y) = (y − yi−1)(y − yi)

(yi−2 − yi−1)(yi−2 − yi)
xi−2 + (y − yi−2)(y − yi)

(yi−1 − yi−2)(yi−1 − yi)
xi−1

+ (y − yi−2)(y − yi−1)

(yi − yi−2)(yi − yi−1)
xi (6.10)

164 ROOTS: OPEN METHODS

f (x)

x

(a) (b)

f (x)

x

FIGURE 6.8
Comparison of (a) the secant method and (b) inverse quadratic interpolation. Note that the
approach in (b) is called “inverse” because the quadratic function is written in y rather than in x.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 164

6.4 BRENT’S METHODS 165

As we will learn in Sec. 18.2, this form is called a Lagrange polynomial. The root, xi�1, cor-
responds to y � 0, which when substituted into Eq. (6.10) yields

xi+1 = yi−1 yi

(yi−2 − yi−1)(yi−2 − yi)
xi−2 + yi−2 yi

(yi−1 − yi−2)(yi−1 − yi)
xi−1

+ yi−2 yi−1

(yi − yi−2)(yi − yi−1)
xi (6.11)

As shown in Fig. 6.9, such a “sideways” parabola always intersects the x axis.

EXAMPLE 6.6 Inverse Quadratic Interpolation

Problem Statement. Develop quadratic equations in both x and y for the data points
depicted in Fig. 6.9: (1, 2), (2, 1), and (4, 5). For the first, y � f(x), employ the quadratic
formula to illustrate that the roots are complex. For the latter, x � g(y), use inverse qua-
dratic interpolation (Eq. 6.11) to determine the root estimate.

Solution. By reversing the x’s and y’s, Eq. (6.10) can be used to generate a quadratic in x
as

f (x) = (x − 2)(x − 4)

(1 − 2)(1 − 4)
2 + (x − 1)(x − 4)

(2 − 1)(2 − 4)
1 + (x − 1)(x − 2)

(4 − 1)(4 − 2)
5

or collecting terms

f (x) = x2 − 4x + 5

42

6

4

2

0

y

x � f(y)

y � f(x)

x

Root

FIGURE 6.9
Two parabolas fit to three points. The parabola written as a function of x, y � f(x), has complex
roots and hence does not intersect the x axis. In contrast, if the variables are reversed, and the
parabola developed as x � f (y), the function does intersect the x axis.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 165

This equation was used to generate the parabola, y � f(x), in Fig. 6.9. The quadratic for-
mula can be used to determine that the roots for this case are complex,

x = 4 ±
√

(−4)2 − 4(1)(5)

2
= 2 ± i

Equation (6.10) can be used to generate the quadratic in y as

g(y) = (y − 1)(y − 5)

(2 − 1)(2 − 5)
1 + (y − 2)(y − 5)

(1 − 2)(1 − 5)
2 + (y − 2)(y − 1)

(5 − 2)(5 − 1)
4

or collecting terms:

g(y) = 0.5x2 − 2.5x + 4

Finally, Eq. (6.11) can be used to determine the root as

xi+1 = −1(−5)

(2 − 1)(2 − 5)
1 + −2(−5)

(1 − 2)(1 − 5)
2 + −2(−1)

(5 − 2)(5 − 1)
4 = 4

Before proceeding to Brent’s algorithm, we need to mention one more case where
inverse quadratic interpolation does not work. If the three y values are not distinct (i.e.,
yi–2 � yi–1 or yi–1 � yi), an inverse quadratic function does not exist. So this is where the
secant method comes into play. If we arrive at a situation where the y values are not distinct,
we can always revert to the less efficient secant method to generate a root using two of
the points. If yi�2 � yi�1, we use the secant method with xi–1 and xi. If yi–1 � yi, we use xi–2

and xi–1.

6.4.2 Brent’s Method Algorithm

The general idea behind the Brent’s root-finding method is whenever possible to use one of
the quick open methods. In the event that these generate an unacceptable result (i.e., a root
estimate that falls outside the bracket), the algorithm reverts to the more conservative
bisection method. Although bisection may be slower, it generates an estimate guaranteed to
fall within the bracket. This process is then repeated until the root is located to within an
acceptable tolerance. As might be expected, bisection typically dominates at first but as the
root is approached, the technique shifts to the faster open methods.

Figure 6.10 presents a function based on a MATLAB M-file developed by Cleve
Moler (2004). It represents a stripped down version of the fzero function which is the pro-
fessional root-location function employed in MATLAB. For that reason, we call the
simplified version: fzerosimp. Note that it requires another function f that holds the
equation for which the root is being evaluated.

The fzerosimp function is passed two initial guesses that must bracket the root.
Then, the three variables defining the search interval (a,b,c) are initialized, and f is eval-
uated at the endpoints.

A main loop is then implemented. If necessary, the three points are rearranged to satisfy
the conditions required for the algorithm to work effectively. At this point, if the stopping

166 ROOTS: OPEN METHODS

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 166

6.4 BRENT’S METHODS 167

function b = fzerosimp(xl,xu)
a = xl; b = xu; fa = f(a); fb = f(b);
c = a; fc = fa; d = b - c; e = d;
while (1)

if fb == 0, break, end
if sign(fa) == sign(fb) %If needed, rearrange points

a = c; fa = fc; d = b - c; e = d;
end
if abs(fa) < abs(fb)

c = b; b = a; a = c;
fc = fb; fb = fa; fa = fc;

end
m = 0.5*(a - b); %Termination test and possible exit
tol = 2 * eps * max(abs(b), 1);
if abs(m) <= tol | fb == 0.

break
end
%Choose open methods or bisection
if abs(e) >= tol & abs(fc) > abs(fb)

s = fb/fc;
if a == c %Secant method

p = 2*m*s;
q = 1 - s;

else %Inverse quadratic interpolation
q = fc/fa; r = fb/fa;
p = s * (2*m*q * (q - r) - (b - c)*(r - 1));
q = (q - 1)*(r - 1)*(s - 1);

end
if p > 0, q = -q; else p = -p; end;
if 2*p < 3*m*q - abs(tol*q) & p < abs(0.5*e*q)

e = d; d = p/q;
else

d = m; e = m;
end

else %Bisection
d = m; e = m;

end
c = b; fc = fb;
if abs(d) > tol, b=b+d; else b=b-sign(b-a)*tol; end
fb = f(b);

end

FIGURE 6.10
Function for Brent’s root-finding algorithm based on a MATLAB M-file developed by Cleve Moler
(2005).

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 167

criteria are met, the loop is terminated. Otherwise, a decision structure chooses among the
three methods and checks whether the outcome is acceptable. A final section then evaluates
f at the new point and the loop is repeated. Once the stopping criteria are met, the loop
terminates and the final root estimate is returned.

6.5 MATLAB FUNCTION: fzero

The fzero function is designed to find the real root of a single equation. A simple repre-
sentation of its syntax is

fzero(function,x0)

where function is the name of the function being evaluated, and x0 is the initial guess.
Note that two guesses that bracket the root can be passed as a vector:

fzero(function,[x0 x1])

where x0 and x1 are guesses that bracket a sign change.
Here is a simple MATLAB session that solves for the root of a simple quadratic: x2 − 9.

Clearly two roots exist at −3 and 3. To find the negative root:

>> x = fzero(@(x) x^2-9,-4)

x =
-3

If we want to find the positive root, use a guess that is near it:

>> x = fzero(@(x) x^2-9,4)

x =
3

If we put in an initial guess of zero, it finds the negative root:

>> x = fzero(@(x) x^2-9,0)

x =
-3

If we wanted to ensure that we found the positive root, we could enter two guesses as in

>> x = fzero(@(x) x^2-9,[0 4])

x =
3

Also, if a sign change does not occur between the two guesses, an error message is displayed

>> x = fzero(@(x) x^2-9,[-4 4])

??? Error using ==> fzero
The function values at the interval endpoints must ...
differ in sign.

168 ROOTS: OPEN METHODS

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 168

6.5 MATLAB FUNCTION: fzero 169

The fzero function works as follows. If a single initial guess is passed, it first performs
a search to identify a sign change. This search differs from the incremental search described
in Section 5.3.1, in that the search starts at the single initial guess and then takes increasingly
bigger steps in both the positive and negative directions until a sign change is detected.

Thereafter, the fast methods (secant and inverse quadratic interpolation) are used un-
less an unacceptable result occurs (e.g., the root estimate falls outside the bracket). If an
unacceptable result happens, bisection is implemented until an acceptable root is obtained
with one of the fast methods. As might be expected, bisection typically dominates at first
but as the root is approached, the technique shifts to the faster methods.

A more complete representation of the fzero syntax can be written as

[x,fx] = fzero(function,x0,options,p1,p2,...)

where [x,fx] = a vector containing the root x and the function evaluated at the root fx,
options is a data structure created by the optimset function, and p1, p2... are any
parameters that the function requires. Note that if you desire to pass in parameters but not
use the options, pass an empty vector [] in its place.

The optimset function has the syntax

options = optimset('par1',val1,'par2',val2,...)

where the parameter pari has the value vali. A complete listing of all the possible param-
eters can be obtained by merely entering optimset at the command prompt. The parame-
ters that are commonly used with the fzero function are

display: When set to 'iter' displays a detailed record of all the iterations.
tolx:A positive scalar that sets a termination tolerance on x.

EXAMPLE 6.7 The fzero and optimset Functions

Problem Statement. Recall that in Example 6.3, we found the positive root of f (x) =
x10 − 1 using the Newton-Raphson method with an initial guess of 0.5. Solve the same
problem with optimset and fzero.

Solution. An interactive MATLAB session can be implemented as follows:

>> options = optimset('display','iter');
>> [x,fx] = fzero(@(x) x^10-1,0.5,options)

Func-count x f(x) Procedure
1 0.5 -0.999023 initial
2 0.485858 -0.999267 search
3 0.514142 -0.998709 search
4 0.48 -0.999351 search
5 0.52 -0.998554 search
6 0.471716 -0.999454 search
•
•
•
23 0.952548 -0.385007 search
24 -0.14 -1 search
25 1.14 2.70722 search

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 169

Looking for a zero in the interval [-0.14, 1.14]

26 0.205272 -1 interpolation
27 0.672636 -0.981042 bisection
28 0.906318 -0.626056 bisection
29 1.02316 0.257278 bisection
30 0.989128 -0.103551 interpolation
31 0.998894 -0.0110017 interpolation
32 1.00001 7.68385e-005 interpolation
33 1 -3.83061e-007 interpolation
34 1 -1.3245e-011 interpolation
35 1 0 interpolation

Zero found in the interval: [-0.14, 1.14].

x =
1

fx =
0

Thus, after 25 iterations of searching, fzero finds a sign change. It then uses interpo-
lation and bisection until it gets close enough to the root so that interpolation takes over and
rapidly converges on the root.

Suppose that we would like to use a less stringent tolerance. We can use the optimset
function to set a low maximum tolerance and a less accurate estimate of the root results:

>> options = optimset ('tolx', 1e-3);
>> [x,fx] = fzero(@(x) x^10-1,0.5,options)

x =
1.0009

fx =
0.0090

6.6 POLYNOMIALS

Polynomials are a special type of nonlinear algebraic equation of the general form

fn(x) = a1xn + a2xn−1 + · · · + an−1x2 + an x + an+1 (6.12)

where n is the order of the polynomial, and the a’s are constant coefficients. In many (but
not all) cases, the coefficients will be real. For such cases, the roots can be real and/or com-
plex. In general, an nth order polynomial will have n roots.

Polynomials have many applications in engineering and science. For example,
they are used extensively in curve fitting. However, one of their most interesting and
powerful applications is in characterizing dynamic systems—and, in particular, linear
systems. Examples include reactors, mechanical devices, structures, and electrical
circuits.

170 ROOTS: OPEN METHODS

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 170

6.6 POLYNOMIALS 171

6.6.1 MATLAB Function: roots

If you are dealing with a problem where you must determine a single real root of a poly-
nomial, the techniques such as bisection and the Newton-Raphson method can have utility.
However, in many cases, engineers desire to determine all the roots, both real and complex.
Unfortunately, simple techniques like bisection and Newton-Raphson are not available for
determining all the roots of higher-order polynomials. However, MATLAB has an excel-
lent built-in capability, the roots function, for this task.

The roots function has the syntax,

x = roots(c)

where x is a column vector containing the roots and c is a row vector containing the poly-
nomial’s coefficients.

So how does the roots function work? MATLAB is very good at finding the eigen-
values of a matrix. Consequently, the approach is to recast the root evaluation task as an
eigenvalue problem. Because we will be describing eigenvalue problems later in the book,
we will merely provide an overview here.

Suppose we have a polynomial

a1x5 + a2x4 + a3x3 + a4x2 + a5x + a6 = 0 (6.13)

Dividing by a1 and rearranging yields

x5 = −a2

a1
x4 − a3

a1
x3 − a4

a1
x2 − a5

a1
x − a6

a1

A special matrix can be constructed by using the coefficients from the right-hand side as
the first row and with 1’s and 0’s written for the other rows as shown:

⎡
⎢⎢⎢⎣

−a2/a1 −a3/a1 −a4/a1 −a5/a1 −a6/a1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎦ (6.14)

Equation (6.14) is called the polynomial’s companion matrix. It has the useful prop-
erty that its eigenvalues are the roots of the polynomial. Thus, the algorithm underlying
the roots function consists of merely setting up the companion matrix and then using
MATLAB’s powerful eigenvalue evaluation function to determine the roots. Its applica-
tion, along with some other related polynomial manipulation functions, are described in the
following example.

We should note that roots has an inverse function called poly, which when passed
the values of the roots, will return the polynomial’s coefficients. Its syntax is

c = poly(r)

where r is a column vector containing the roots and c is a row vector containing the poly-
nomial’s coefficients.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 171

EXAMPLE 6.8 Using MATLAB to Manipulate Polynomials and Determine Their Roots

Problem Statement. Use the following equation to explore how MATLAB can be em-
ployed to manipulate polynomials:

f5(x) = x5 − 3.5x4 + 2.75x3 + 2.125x2 − 3.875x + 1.25 (E6.8.1)

Note that this polynomial has three real roots: 0.5, −1.0, and 2; and one pair of complex
roots: 1 ± 0.5i.

Solution. Polynomials are entered into MATLAB by storing the coefficients as a row
vector. For example, entering the following line stores the coefficients in the vector a:

>> a = [1 -3.5 2.75 2.125 -3.875 1.25];

We can then proceed to manipulate the polynomial. For example we can evaluate it at
x = 1, by typing

>> polyval(a,1)

with the result, 1(1)5 − 3.5(1)4 + 2.75(1)3 + 2.125(1)2 − 3.875(1) + 1.25 = −0.25:

ans =
-0.2500

We can create a quadratic polynomial that has roots corresponding to two of the
original roots of Eq. (E6.8.1): 0.5 and −1. This quadratic is (x − 0.5)(x + 1) = x2 +
0.5x − 0.5. It can be entered into MATLAB as the vector b:

>> b = [1 .5 -.5]

b =
1.0000 0.5000 -0.5000

Note that the poly function can be used to perform the same task as in

>> b = poly([0.5 -1])

b =
1.0000 0.5000 -0.5000

We can divide this polynomial into the original polynomial by

>> [q,r] = deconv(a,b)

with the result being a quotient (a third-order polynomial, q) and a remainder (r)

q =
1.0000 -4.0000 5.2500 -2.5000

r =
0 0 0 0 0 0

Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

>> x = roots(q)

172 ROOTS: OPEN METHODS

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 172

6.7 CASE STUDY 173

with the expected result that the remaining roots of the original polynomial Eq. (E6.8.1) are
found:

x =
2.0000
1.0000 + 0.5000i
1.0000 - 0.5000i

We can now multiply q by b to come up with the original polynomial:

>> a = conv(q,b)

a =
1.0000 -3.5000 2.7500 2.1250 -3.8750 1.2500

We can then determine all the roots of the original polynomial by

>> x = roots(a)

x =
2.0000
-1.0000
1.0000 + 0.5000i
1.0000 - 0.5000i
0.5000

Finally, we can return to the original polynomial again by using the poly function:

>> a = poly(x)

a =
1.0000 -3.5000 2.7500 2.1250 -3.8750 1.2500

Background. Determining fluid flow through pipes and tubes has great relevance in
many areas of engineering and science. In engineering, typical applications include the flow
of liquids and gases through pipelines and cooling systems. Scientists are interested in top-
ics ranging from flow in blood vessels to nutrient transmission through a plant’s vascular
system.

The resistance to flow in such conduits is parameterized by a dimensionless number
called the friction factor. For turbulent flow, the Colebrook equation provides a means to
calculate the friction factor:

0 = 1√
f

+ 2.0 log
(

ε

3.7D
+ 2.51

Re
√

f

)
(6.15)

6.7 CASE STUDY PIPE FRICTION

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 173

174 ROOTS: OPEN METHODS

6.7 CASE STUDY continued

where ε = the roughness (m), D = diameter (m), and Re = the Reynolds number:

Re = ρVD

μ

where ρ = the fluid’s density (kg/m3), V = its velocity (m/s), and μ = dynamic viscosity
(N · s/m2). In addition to appearing in Eq. (6.15), the Reynolds number also serves as the
criterion for whether flow is turbulent (Re � 4000).

In this case study, we will illustrate how the numerical methods covered in this part of
the book can be employed to determine f for air flow through a smooth, thin tube. For this
case, the parameters are ρ = 1.23 kg/m3, μ = 1.79 × 10–5 N · s/m2, D = 0.005 m, V = 40 m/s
and ε = 0.0015 mm. Note that friction factors range from about 0.008 to 0.08. In addition,
an explicit formulation called the Swamee-Jain equation provides an approximate estimate:

f = 1.325[
ln

(
ε

3.7D
+ 5.74

Re0.9

)]2 (6.16)

Solution. The Reynolds number can be computed as

Re = ρVD

μ
= 1.23(40)0.005

1.79 × 10−5
= 13,743

This value along with the other parameters can be substituted into Eq. (6.15) to give

g(f) = 1√
f

+ 2.0 log
(

0.0000015

3.7(0.005)
+ 2.51

13,743
√

f

)

Before determining the root, it is advisable to plot the function to estimate initial
guesses and to anticipate possible difficulties. This can be done easily with MATLAB:

>> rho=1.23;mu=1.79e-5;D=0.005;V=40;e=0.0015/1000;
>> Re=rho*V*D/mu;
>> g=@(f) 1/sqrt(f)+2*log10(e/(3.7*D)+2.51/(Re*sqrt(f)));
>> fplot(g,[0.008 0.08]),grid,xlabel('f'),ylabel('g(f)')

As in Fig. 6.11, the root is located at about 0.03.
Because we are supplied initial guesses (xl = 0.008 and xu = 0.08), either of the brack-

eting methods from Chap. 5 could be used. For example, the bisect function developed
in Fig. 5.7 gives a value of f = 0.0289678 with a percent relative error of error of 5.926 ×
10–5 in 22 iterations. False position yields a result of similar precision in 26 iterations.
Thus, although they produce the correct result, they are somewhat inefficient. This would
not be important for a single application, but could become prohibitive if many evaluations
were made.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 174

6.7 CASE STUDY 175

6.7 CASE STUDY continued

We could try to attain improved performance by turning to an open method. Because
Eq. (6.15) is relatively straightforward to differentiate, the Newton-Raphson method is a
good candidate. For example, using an initial guess at the lower end of the range (x0 =
0.008), the newtraph function developed in Fig. 6.7 converges quickly:

>> dg=@(f) -2/log(10)*1.255/Re*f^(-3/2)/(e/D/3.7 ...
+2.51/Re/sqrt(f))-0.5/f^(3/2);

>> [f ea iter]=newtraph(g,dg,0.008)

f =
0.02896781017144

ea =
6.870124190058040e-006

iter =
6

However, when the initial guess is set at the upper end of the range (x0 = 0.08), the routine
diverges,

>> [f ea iter]=newtraph(g,dg,0.08)

f =
NaN + NaNi

As can be seen by inspecting Fig. 6.11, this occurs because the function’s slope at the initial
guess causes the first iteration to jump to a negative value. Further runs demonstrate that
for this case, convergence only occurs when the initial guess is below about 0.066.

–3
0.020.01 0.03 0.04 0.05 0.06 0.07 0.08

–2

–1

0

1

2

3

4

5

6

g
(f

)

f

FIGURE 6.11

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 175

176 ROOTS: OPEN METHODS

6.7 CASE STUDY continued

So we can see that although the Newton-Raphson is very efficient, it requires good
initial guesses. For the Colebrook equation, a good strategy might be to employ the
Swamee-Jain equation (Eq. 6.16) to provide the initial guess as in

>> fSJ=1.325/log(e/(3.7*D)+5.74/Re^0.9)^2

fSJ =
0.02903099711265

>> [f ea iter]=newtraph(g,dg,fSJ)

f =
0.02896781017144

ea =
8.510189472800060e-010

iter =
3

Aside from our homemade functions, we can also use MATLAB’s built-in fzero
function. However, just as with the Newton-Raphson method, divergence also occurs when
fzero function is used with a single guess. However, in this case, guesses at the lower end
of the range cause problems. For example,

>> fzero(g,0.008)

Exiting fzero: aborting search for an interval containing a sign
change because complex function value encountered ...

during search.
(Function value at -0.0028 is -4.92028-20.2423i.)
Check function or try again with a different starting value.
ans =

NaN

If the iterations are displayed using optimset (recall Example 6.7), it is revealed that a
negative value occurs during the search phase before a sign change is detected and the rou-
tine aborts. However, for single initial guesses above about 0.016, the routine works nicely.
For example, for the guess of 0.08 that caused problems for Newton-Raphson, fzero does
just fine:

>> fzero(g,0.08)

ans =
0.02896781017144

As a final note, let’s see whether convergence is possible for simple fixed-point itera-
tion. The easiest and most straightforward version involves solving for the first f in
Eq. (6.15):

fi+1 = 0.25(
log

(
ε

3.7D
+ 2.51

Re
√

fi

))2 (6.17)

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 176

6.7 CASE STUDY 177

6.7 CASE STUDY continued

0

0.01

0.02

0.03

0.04

0.05

0 0.02 0.04 0.06 0.08

y2 = g(x)

y1 = x

x

y

FIGURE 6.12

The two-curve display of this function depicted indicates a surprising result (Fig. 6.12).
Recall that fixed-point iteration converges when the y2 curve has a relatively flat slope (i.e.,
|g′(ξ)| < 1). As indicated by Fig. 6.12, the fact that the y2 curve is quite flat in the range
from f = 0.008 to 0.08 means that not only does fixed-point iteration converge, but it con-
verges fairly rapidly! In fact, for initial guesses anywhere between 0.008 and 0.08, fixed-
point iteration yields predictions with percent relative errors less than 0.008% in six or
fewer iterations! Thus, this simple approach that requires only one guess and no derivative
estimates performs really well for this particular case.

The take-home message from this case study is that even great, professionally devel-
oped software like MATLAB is not always foolproof. Further, there is usually no single
method that works best for all problems. Sophisticated users understand the strengths and
weaknesses of the available numerical techniques. In addition, they understand enough of
the underlying theory so that they can effectively deal with situations where a method
breaks down.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 177

178 ROOTS: OPEN METHODS

6.1 Employ fixed-point iteration to locate the root of

f (x) = sin
(√

x
) − x

Use an initial guess of x0 = 0.5 and iterate until εa ≤ 0.01%.
Verify that the process is linearly convergent as described at
the end of Sec. 6.1.
6.2 Use (a) fixed-point iteration and (b) the Newton-
Raphson method to determine a root of f (x) = −0.9x2 +
1.7x + 2.5 using x0 = 5. Perform the computation until εa

is less than εs = 0.01%. Also check your final answer.
6.3 Determine the highest real root of f (x) = x3− 6x2 +
11x − 6.1:
(a) Graphically.
(b) Using the Newton-Raphson method (three iterations,

xi = 3.5).

(c) Using the secant method (three iterations, xi−1 = 2.5
and xi = 3.5).

(d) Using the modified secant method (three iterations,
xi = 3.5, δ = 0.01).

(e) Determine all the roots with MATLAB.
6.4 Determine the lowest positive root of f (x) =
7 sin(x)e−x − 1:
(a) Graphically.
(b) Using the Newton-Raphson method (three iterations,

xi = 0.3).

(c) Using the secant method (three iterations, xi−1 = 0.5
and xi = 0.4.

(d) Using the modified secant method (five iterations,
xi = 0.3, δ = 0.01).

6.5 Use (a) the Newton-Raphson method and (b) the modi-
fied secant method (δ = 0.05) to determine a root of f (x) =
x5 −16.05x4 +88.75x3 −192.0375x2 +116.35x +31.6875
using an initial guess of x = 0.5825 and εs = 0.01%.
Explain your results.
6.6 Develop an M-file for the secant method. Along with
the two initial guesses, pass the function as an argument.
Test it by solving Prob. 6.3.
6.7 Develop an M-file for the modified secant method.
Along with the initial guess and the perturbation fraction,
pass the function as an argument. Test it by solving
Prob. 6.3.
6.8 Differentiate Eq. (E6.4.1) to get Eq. (E6.4.2).
6.9 Employ the Newton-Raphson method to determine a
real root for f (x) = −2 + 6x − 4x2 + 0.5x3, using an ini-
tial guess of (a) 4.5, and (b) 4.43. Discuss and use graphical
and analytical methods to explain any peculiarities in your
results.

6.10 The “divide and average” method, an old-time method
for approximating the square root of any positive number a,
can be formulated as

xi+1 = xi + a/xi

2

Prove that this formula is based on the Newton-Raphson
algorithm.
6.11 (a) Apply the Newton-Raphson method to the function
f (x) = tanh(x2 − 9) to evaluate its known real root at
x = 3. Use an initial guess of x0 = 3.2 and take a minimum
of three iterations. (b) Did the method exhibit convergence
onto its real root? Sketch the plot with the results for each
iteration labeled.
6.12 The polynomial f (x) = 0.0074x4 − 0.284x3 +
3.355x2− 12.183x + 5 has a real root between 15 and 20.
Apply the Newton-Raphson method to this function using an
initial guess of x0 = 16.15. Explain your results.
6.13 Mechanical engineers, as well as most other engineers,
use thermodynamics extensively in their work. The follow-
ing polynomial can be used to relate the zero-pressure spe-
cific heat of dry air cp in kJ/(kg K) to temperature in K:

cp = 0.99403 + 1.671 × 10−4T + 9.7215 × 10−8T 2

−9.5838 × 10−11T 3 + 1.9520 × 10−14T 4

Write a MATLAB script (a) to plot cp versus a range of
T = 0 to 1200 K, and (b) to determine the temperature that
corresponds to a specific heat of 1.1 kJ/(kg K) with MATLAB
polynomial functions.
6.14 In a chemical engineering process, water vapor (H2O)
is heated to sufficiently high temperatures that a significant
portion of the water dissociates, or splits apart, to form oxy-
gen (O2) and hydrogen (H2):

H2O →← H2 + 1
2 O2

If it is assumed that this is the only reaction involved, the
mole fraction x of H2O that dissociates can be represented by

K = x

1 − x

√
2pt

2 + x
(P6.14.1)

where K is the reaction’s equilibrium constant and pt is the
total pressure of the mixture. If pt = 3 atm and K = 0.05,
determine the value of x that satisfies Eq. (P6.14.1).
6.15 The Redlich-Kwong equation of state is given by

p = RT

v − b
− a

v(v + b)
√

T

PROBLEMS

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 178

PROBLEMS 179

where R = the universal gas constant [= 0.518 kJ/(kg K)],
T = absolute temperature (K), p = absolute pressure (kPa),
and v = the volume of a kg of gas (m3/kg). The parameters
a and b are calculated by

a = 0.427
R2T 2.5

c

pc
b = 0.0866R

Tc

pc

where pc = 4600 kPa and Tc = 191 K. As a chemical engi-
neer, you are asked to determine the amount of methane fuel
that can be held in a 3-m3 tank at a temperature of −40 ◦C
with a pressure of 65,000 kPa. Use a root-locating method of
your choice to calculate v and then determine the mass of
methane contained in the tank.
6.16 The volume of liquid V in a hollow horizontal cylinder
of radius r and length L is related to the depth of the liquid h by

V =
[

r2 cos−1
(

r − h

r

)
− (r − h)

√
2rh − h2

]
L

Determine h given r = 2 m, L = 5 m3, and V = 8 m3.
6.17 A catenary cable is one which is hung between two
points not in the same vertical line. As depicted in
Fig. P6.17a, it is subject to no loads other than its own
weight. Thus, its weight acts as a uniform load per unit
length along the cable w (N/m). A free-body diagram of a
section AB is depicted in Fig. P6.17b, where TA and TB are
the tension forces at the end. Based on horizontal and verti-
cal force balances, the following differential equation model
of the cable can be derived:

d2 y

dx2
= w

TA

√
1 +

(
dy

dx

)2

(a) (b)

W � ws

�

y

A

B

w

x

y0
TA

TB

FIGURE P6.17

R L C

FIGURE P6.19

Calculus can be employed to solve this equation for the
height of the cable y as a function of distance x:

y = TA

w
cosh

(
w

TA
x

)
+ y0 − TA

w

(a) Use a numerical method to calculate a value for the
parameter TA given values for the parameters w = 10
and y0 = 5, such that the cable has a height of y = 15 at
x = 50.

(b) Develop a plot of y versus x for x = −50 to 100.
6.18 An oscillating current in an electric circuit is described
by I = 9e−t sin(2π t), where t is in seconds. Determine all
values of t such that I = 3.5
6.19 Figure P6.19 shows a circuit with a resistor, an induc-
tor, and a capacitor in parallel. Kirchhoff’s rules can be used
to express the impedance of the system as

1

Z
=

√
1

R2
+

(
ωC − 1

ωL

)2

where Z = impedance (�), and ω is the angular frequency. Find
the ω that results in an impedance of 100 � using the fzero
function with initial guesses of 1 and 1000 for the following pa-
rameters: R = 225 �, C = 0.6 × 10−6 F, and L = 0.5 H.

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 179

180 ROOTS: OPEN METHODS

v0

y

x

0

FIGURE P6.21

hV

R

FIGURE P6.22

6.20 Real mechanical systems may involve the deflection
of nonlinear springs. In Fig. P6.20, a block of mass m is
released a distance h above a nonlinear spring. The resis-
tance force F of the spring is given by

F = −(k1d + k2d3/2)

Conservation of energy can be used to show that

0 = 2k2d5/2

5
+ 1

2
k1d2 − mgd − mgh

Solve for d, given the following parameter values: k1 =
40,000 g/s2, k2 = 40 g/(s2 m5), m = 95 g, g = 9.81 m/s2,

and h = 0.43 m.
6.21 Aerospace engineers sometimes compute the trajec-
tories of projectiles such as rockets. A related problem deals
with the trajectory of a thrown ball. The trajectory of a ball
thrown by a right fielder is defined by the (x, y) coordinates
as displayed in Fig. P6.21. The trajectory can be modeled as

y = (tan θ0)x − g

2v2
0 cos2 θ0

x2 + y0

Find the appropriate initial angle θ0, if v0 = 30 m/s, and the
distance to the catcher is 90 m. Note that the throw leaves the
right fielder’s hand at an elevation of 1.8 m and the catcher
receives it at 1 m.
6.22 You are designing a spherical tank (Fig. P6.22) to hold
water for a small village in a developing country. The vol-
ume of liquid it can hold can be computed as

V = πh2 [3R − h]

3
where V = volume [m3], h = depth of water in tank [m], and
R = the tank radius [m].

h

(a) (b)

d
h � d

FIGURE P6.20

If R = 3 m, what depth must the tank be filled to so that
it holds 30 m3? Use three iterations of the most efficient
numerical method possible to determine your answer. Deter-
mine the approximate relative error after each iteration.
Also, provide justification for your choice of method. Extra
information: (a) For bracketing methods, initial guesses of 0
and R will bracket a single root for this example. (b) For
open methods, an initial guess of R will always converge.
6.23 Perform the identical MATLAB operations as those
in Example 6.8 to manipulate and find all the roots of the
polynomial

f5(x) = (x + 2)(x + 5)(x − 6)(x − 4)(x − 8)

6.24 In control systems analysis, transfer functions are
developed that mathematically relate the dynamics of a sys-
tem’s input to its output. A transfer function for a robotic
positioning system is given by

G(s) = C(s)

N (s)
= s3 + 9s2 + 26s + 24

s4 + 15s3 + 77s2 + 153s + 90

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 180

where G(s) = system gain, C(s) = system output, N(s) =
system input, and s = Laplace transform complex frequency.
Use MATLAB to find the roots of the numerator and de-
nominator and factor these into the form

G(s) = (s + a1)(s + a2)(s + a3)

(s + b1)(s + b2)(s + b3)(s + b4)

where ai and bi = the roots of the numerator and denomina-
tor, respectively.
6.25 The Manning equation can be written for a rectangular
open channel as

Q =
√

S(B H)5/3

n(B + 2H)2/3

where Q = flow (m3/s), S = slope (m/m), H = depth (m),
and n = the Manning roughness coefficient. Develop a
fixed-point iteration scheme to solve this equation for H
given Q = 5, S = 0.0002, B = 20, and n = 0.03. Perform the
computation until εa is less than εs = 0.05%. Prove that
your scheme converges for all initial guesses greater than or
equal to zero.
6.26 See if you can develop a foolproof function to compute
the friction factor based on the Colebrook equation as
described in Sec. 6.7. Your function should return a precise
result for Reynolds number ranging from 4000 to 107 and for
ε/D ranging from 0.00001 to 0.05.
6.27 Use the Newton-Raphson method to find the root of

f (x) = e−0.5x(4 − x) − 2

Employ initial guesses of (a) 2, (b) 6, and (c) 8. Explain your
results.
6.28 Given

f (x) = −2x6 − 1.5x4 + 10x + 2

Use a root-location technique to determine the maximum of
this function. Perform iterations until the approximate rela-
tive error falls below 5%. If you use a bracketing method,
use initial guesses of xl = 0 and xu = 1. If you use the
Newton-Raphson or the modified secant method, use an ini-
tial guess of xi = 1. If you use the secant method, use initial

PROBLEMS 181

guesses of xi−1 = 0 and xi = 1. Assuming that conver-
gence is not an issue, choose the technique that is best suited
to this problem. Justify your choice.
6.29 You must determine the root of the following easily
differentiable function:

e0.5x = 5 − 5x

Pick the best numerical technique, justify your choice, and
then use that technique to determine the root. Note that it is
known that for positive initial guesses, all techniques except
fixed-point iteration will eventually converge. Perform iter-
ations until the approximate relative error falls below 2%. If
you use a bracketing method, use initial guesses of xl = 0
and xu = 2. If you use the Newton-Raphson or the modified
secant method, use an initial guess of xi = 0.7. If you use
the secant method, use initial guesses of xi−1 = 0 and
xi = 2.
6.30 (a) Develop an M-file function to implement Brent’s
root-location method. Base your function on Fig. 6.10, but
with the beginning of the function changed to

function [b,fb] = fzeronew(f,xl,xu,varargin)
% fzeronew: Brent root location zeroes
% [b,fb] = fzeronew(f,xl,xu,p1,p2,...):
% uses Brent’s method to find the root of f
% input:
% f = name of function
% xl, xu = lower and upper guesses
% p1,p2,... = additional parameters used by f
% output:
% b = real root
% fb = function value at root

Make the appropriate modifications so that the function per-
forms as outlined in the documentation statements. In addi-
tion, include error traps to ensure that the function’s three
required arguments (f,xl,xu) are prescribed, and that the
initial guesses bracket a root.
(b) Test your function by using it to solve for the root of the
function from Example 5.6 using

>> [x,fx] = fzeronew(@(x,n) x^n-1,0,1.3,10)

cha01102_ch06_151-181.qxd 12/17/10 8:05 AM Page 181

182

7
Optimization

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to how optimization can be
used to determine minima and maxima of both one-dimensional and multidimensional
functions. Specific objectives and topics covered are

• Understanding why and where optimization occurs in engineering and scientific
problem solving.

• Recognizing the difference between one-dimensional and multidimensional
optimization.

• Distinguishing between global and local optima.
• Knowing how to recast a maximization problem so that it can be solved with a

minimizing algorithm.
• Being able to define the golden ratio and understand why it makes one-

dimensional optimization efficient.
• Locating the optimum of a single-variable function with the golden-section search.
• Locating the optimum of a single-variable function with parabolic interpolation.
• Knowing how to apply the fminbnd function to determine the minimum of a

one-dimensional function.
• Being able to develop MATLAB contour and surface plots to visualize two-

dimensional functions.
• Knowing how to apply the fminsearch function to determine the minimum of a

multidimensional function.

YOU’VE GOT A PROBLEM

A n object like a bungee jumper can be projected upward at a specified velocity. If it
is subject to linear drag, its altitude as a function of time can be computed as

z = z0 + m

c

(
v0 + mg

c

) (
1 − e−(c/m)t

) − mg

c
t (7.1)

cha01102_ch07_182-204.qxd 12/18/10 1:57 PM Page 182

7.1 INTRODUCTION AND BACKGROUND 183

FIGURE 7.1
Elevation as a function of time for an object initially projected upward with an initial velocity.

where z = altitude (m) above the earth’s surface (defined as z = 0), z0 = the initial altitude
(m), m = mass (kg), c = a linear drag coefficient (kg/s), v0 = initial velocity (m/s), and t =
time (s). Note that for this formulation, positive velocity is considered to be in the upward
direction. Given the following parameter values: g = 9.81 m/s2, z0 = 100 m, v0 = 55 m/s,
m = 80 kg, and c = 15 kg/s, Eq. (7.1) can be used to calculate the jumper’s altitude. As
displayed in Fig. 7.1, the jumper rises to a peak elevation of about 190 m at about t = 4 s.

Suppose that you are given the job of determining the exact time of the peak elevation.
The determination of such extreme values is referred to as optimization. This chapter will
introduce you to how the computer is used to make such determinations.

7.1 INTRODUCTION AND BACKGROUND

In the most general sense, optimization is the process of creating something that is as
effective as possible. As engineers, we must continuously design devices and products that
perform tasks in an efficient fashion for the least cost. Thus, engineers are always con-
fronting optimization problems that attempt to balance performance and limitations. In
addition, scientists have interest in optimal phenomena ranging from the peak elevation of
projectiles to the minimum free energy.

From a mathematical perspective, optimization deals with finding the maxima and
minima of a function that depends on one or more variables. The goal is to determine the
values of the variables that yield maxima or minima for the function. These can then be
substituted back into the function to compute its optimal values.

Although these solutions can sometimes be obtained analytically, most practical
optimization problems require numerical, computer solutions. From a numerical stand-
point, optimization is similar in spirit to the root-location methods we just covered in
Chaps. 5 and 6. That is, both involve guessing and searching for a point on a function. The
fundamental difference between the two types of problems is illustrated in Fig. 7.2. Root
location involves searching for the location where the function equals zero. In contrast,
optimization involves searching for the function’s extreme points.

t, s

z, m

–100

0

100

200

2 4 6 8 10 12

Maximum
elevation

cha01102_ch07_182-204.qxd 12/20/10 7:21 AM Page 183

184 OPTIMIZATION

Maximum

Minimum

0
Root

Root

Root

f (x)

x

f �(x) = 0
f �(x) � 0

f �(x) = 0
f �(x) � 0

f (x) = 0

FIGURE 7.2
A function of a single variable illustrating the difference between roots and optima.

As can be seen in Fig. 7.2, the optimums are the points where the curve is flat. In math-
ematical terms, this corresponds to the x value where the derivative f ′(x) is equal to zero.
Additionally, the second derivative, f ′′(x), indicates whether the optimum is a minimum or
a maximum: if f ′′(x) < 0, the point is a maximum; if f ′′(x) > 0, the point is a minimum.

Now, understanding the relationship between roots and optima would suggest a possi-
ble strategy for finding the latter. That is, you can differentiate the function and locate the
root (i.e., the zero) of the new function. In fact, some optimization methods do just this by
solving the root problem: f ′(x) = 0.

EXAMPLE 7.1 Determining the Optimum Analytically by Root Location

Problem Statement. Determine the time and magnitude of the peak elevation based on
Eq. (7.1). Use the following parameter values for your calculation: g = 9.81 m/s2,
z0 = 100 m, v0 = 55 m/s, m = 80 kg, and c = 15 kg/s.

Solution. Equation (7.1) can be differentiated to give

dz

dt
= v0e−(c/m)t − mg

c

(
1 − e−(c/m)t

)
(E7.1.1)

Note that because v = dz/dt , this is actually the equation for the velocity. The maximum
elevation occurs at the value of t that drives this equation to zero. Thus, the problem
amounts to determining the root. For this case, this can be accomplished by setting the de-
rivative to zero and solving Eq. (E7.1.1) analytically for

t = m

c
ln

(
1 + cv0

mg

)

Substituting the parameters gives

t = 80

15
ln

(
1 + 15(55)

80(9.81)

)
= 3.83166 s

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 184

7.1 INTRODUCTION AND BACKGROUND 185

x*

x*

x

x

(b)(a)

Optimum f (x*, y*)

Minimum f (x)

f (x)

– f (x)

Maximum – f (x)

 f (x, y)

 f (x)

y*

y

FIGURE 7.3
(a) One-dimensional optimization. This figure also illustrates how minimization of f (x) is
equivalent to the maximization of − f (x). (b) Two-dimensional optimization. Note that this
figure can be taken to represent either a maximization (contours increase in elevation up to
the maximum like a mountain) or a minimization (contours decrease in elevation down to the
minimum like a valley).

This value along with the parameters can then be substituted into Eq. (7.1) to compute the
maximum elevation as

z = 100 + 80

15

(
50 + 80(9.81)

15

)(
1 − e−(15/80)3.83166) − 80(9.81)

15
(3.83166) = 192.8609 m

We can verify that the result is a maximum by differentiating Eq. (E7.1.1) to obtain the
second derivative

d2z

dt2
= − c

m
v0e−(c/m)t − ge−(c/m)t = −9.81

m

s2

The fact that the second derivative is negative tells us that we have a maximum. Further,
the result makes physical sense since the acceleration should be solely equal to the force of
gravity at the maximum when the vertical velocity (and hence drag) is zero.

Although an analytical solution was possible for this case, we could have obtained the
same result using the root-location methods described in Chaps. 5 and 6. This will be left
as a homework exercise.

Although it is certainly possible to approach optimization as a roots problem, a variety
of direct numerical optimization methods are available. These methods are available for both
one-dimensional and multidimensional problems. As the name implies, one-dimensional
problems involve functions that depend on a single dependent variable. As in Fig. 7.3a, the
search then consists of climbing or descending one-dimensional peaks and valleys. Multi-
dimensional problems involve functions that depend on two or more dependent variables.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 185

186 OPTIMIZATION

Global
maximum

Local
minimumGlobal

minimum

Local
maximum

f (x)

x

FIGURE 7.4
A function that asymptotically approaches zero at plus and minus ∞ and has two maximum and
two minimum points in the vicinity of the origin. The two points to the right are local optima,
whereas the two to the left are global.

In the same spirit, a two-dimensional optimization can again be visualized as searching out
peaks and valleys (Fig. 7.3b). However, just as in real hiking, we are not constrained to walk
a single direction; instead the topography is examined to efficiently reach the goal.

Finally, the process of finding a maximum versus finding a minimum is essentially
identical because the same value x∗ both minimizes f (x) and maximizes − f (x). This
equivalence is illustrated graphically for a one-dimensional function in Fig. 7.3a.

In the next section, we will describe some of the more common approaches for one-
dimensional optimization. Then we will provide a brief description of how MATLAB can
be employed to determine optima for multidimensional functions.

7.2 ONE-DIMENSIONAL OPTIMIZATION

This section will describe techniques to find the minimum or maximum of a function of a
single variable f (x). A useful image in this regard is the one-dimensional “roller
coaster”–like function depicted in Fig. 7.4. Recall from Chaps. 5 and 6 that root location
was complicated by the fact that several roots can occur for a single function. Similarly,
both local and global optima can occur in optimization.

A global optimum represents the very best solution. A local optimum, though not the
very best, is better than its immediate neighbors. Cases that include local optima are called
multimodal. In such cases, we will almost always be interested in finding the global optimum.
In addition, we must be concerned about mistaking a local result for the global optimum.

Just as in root location, optimization in one dimension can be divided into bracketing
and open methods. As described in the next section, the golden-section search is an example
of a bracketing method that is very similar in spirit to the bisection method for root location.
This is followed by a somewhat more sophisticated bracketing approach—parabolic inter-
polation. We will then show how these two methods are combined and implemented with
MATLAB’s fminbnd function.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 186

7.2 ONE-DIMENSIONAL OPTIMIZATION 187

7.2.1 Golden-Section Search

In many cultures, certain numbers are ascribed magical qualities. For example, we in the West
are all familiar with “lucky 7” and “Friday the 13th.” Beyond such superstitious quantities,
there are several well-known numbers that have such interesting and powerful mathematical
properties that they could truly be called “magical.” The most common of these are the ratio
of a circle’s circumference to its diameter π and the base of the natural logarithm e.

Although not as widely known, the golden ratio should surely be included in the pan-
theon of remarkable numbers. This quantity, which is typically represented by the Greek
letter φ (pronounced: fee), was originally defined by Euclid (ca. 300 BCE) because of its
role in the construction of the pentagram or five-pointed star. As depicted in Fig. 7.5,
Euclid’s definition reads: “A straight line is said to have been cut in extreme and mean ratio
when, as the whole line is to the greater segment, so is the greater to the lesser.”

The actual value of the golden ratio can be derived by expressing Euclid’s definition as

�1 + �2

�1
= �1

�2
(7.2)

Multiplying by �1/�2 and collecting terms yields

φ2 − φ − 1 = 0 (7.3)

where φ = �1/�2. The positive root of this equation is the golden ratio:

φ = 1 + √
5

2
= 1.61803398874989 . . . (7.4)

The golden ratio has long been considered aesthetically pleasing in Western cultures.
In addition, it arises in a variety of other contexts including biology. For our purposes, it
provides the basis for the golden-section search, a simple, general-purpose method for de-
termining the optimum of a single-variable function.

The golden-section search is similar in spirit to the bisection approach for locating
roots in Chap. 5. Recall that bisection hinged on defining an interval, specified by a lower
guess (xl) and an upper guess (xu) that bracketed a single root. The presence of a root be-
tween these bounds was verified by determining that f (xl) and f (xu) had different signs.
The root was then estimated as the midpoint of this interval:

xr = xl + xu

2
(7.5)

FIGURE 7.5
Euclid’s definition of the golden ratio is based on dividing a line into two segments so that the
ratio of the whole line to the larger segment is equal to the ratio of the larger segment to the
smaller segment. This ratio is called the golden ratio.

�1 �2

�1��2

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 187

188 OPTIMIZATION

The final step in a bisection iteration involved determining a new smaller bracket. This was
done by replacing whichever of the bounds xl or xu had a function value with the same sign
as f (xr). A key advantage of this approach was that the new value xr replaced one of the old
bounds.

Now suppose that instead of a root, we were interested in determining the minimum of
a one-dimensional function. As with bisection, we can start by defining an interval that
contains a single answer. That is, the interval should contain a single minimum, and hence
is called unimodal. We can adopt the same nomenclature as for bisection, where xl and xu

defined the lower and upper bounds, respectively, of such an interval. However, in contrast
to bisection, we need a new strategy for finding a minimum within the interval. Rather than
using a single intermediate value (which is sufficient to detect a sign change, and hence a
zero), we would need two intermediate function values to detect whether a minimum
occurred.

The key to making this approach efficient is the wise choice of the intermediate points.
As in bisection, the goal is to minimize function evaluations by replacing old values with
new values. For bisection, this was accomplished by choosing the midpoint. For the
golden-section search, the two intermediate points are chosen according to the golden
ratio:

x1 = xl + d (7.6)

x2 = xu − d (7.7)

where

d = (φ − 1)(xu − xl) (7.8)

The function is evaluated at these two interior points. Two results can occur:

1. If, as in Fig. 7.6a, f (x1)< f (x2), then f (x1) is the minimum, and the domain of x to the
left of x2, from xl to x2, can be eliminated because it does not contain the minimum. For
this case, x2 becomes the new xl for the next round.

2. If f (x2)< f (x1), then f (x2) is the minimum and the domain of x to the right of x1, from
x1 to xu would be eliminated. For this case, x1 becomes the new xu for the next round.

Now, here is the real benefit from the use of the golden ratio. Because the original x1

and x2 were chosen using the golden ratio, we do not have to recalculate all the function
values for the next iteration. For example, for the case illustrated in Fig. 7.6, the old x1 be-
comes the new x2. This means that we already have the value for the new f (x2), since it is
the same as the function value at the old x1.

To complete the algorithm, we need only determine the new x1. This is done with
Eq. (7.6) with d computed with Eq. (7.8) based on the new values of xl and xu. A similar
approach would be used for the alternate case where the optimum fell in the left subinterval.
For this case, the new x2 would be computed with Eq. (7.7).

As the iterations are repeated, the interval containing the extremum is reduced rapidly.
In fact, each round the interval is reduced by a factor of φ − 1 (about 61.8%). That means
that after 10 rounds, the interval is shrunk to about 0.61810 or 0.008 or 0.8% of its initial
length. After 20 rounds, it is about 0.0066%. This is not quite as good as the reduction
achieved with bisection (50%), but this is a harder problem.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 188

7.2 ONE-DIMENSIONAL OPTIMIZATION 189

x

xl

xl d x1
x2 d xu

Eliminate
Minimum

x

x2 xux1

Old
x2

Old
x1

New

f (x)

f (x)

(b)

(a)

FIGURE 7.6
(a) The initial step of the golden-section search algorithm involves choosing two interior points
according to the golden ratio. (b) The second step involves defining a new interval that
encompasses the optimum.

EXAMPLE 7.2 Golden-Section Search

Problem Statement. Use the golden-section search to find the minimum of

f (x) = x2

10
− 2 sin x

within the interval from xl = 0 to xu = 4.

Solution. First, the golden ratio is used to create the two interior points:

d = 0.61803(4 − 0) = 2.4721

x1 = 0 + 2.4721 = 2.4721

x2 = 4 − 2.4721 = 1.5279

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 189

190 OPTIMIZATION

The function can be evaluated at the interior points:

f (x2) = 1.52792

10
− 2 sin(1.5279) = −1.7647

f (x1) = 2.47212

10
− 2 sin(2.4721) = −0.6300

Because f (x2)< f (x1), our best estimate of the minimum at this point is that it is
located at x = 1.5279 with a value of f (x) = –1.7647. In addition, we also know that the
minimum is in the interval defined by xl, x2, and x1. Thus, for the next iteration, the lower
bound remains xl = 0, and x1 becomes the upper bound, that is, xu = 2.4721. In addition,
the former x2 value becomes the new x1, that is, x1 = 1.5279. In addition, we do not have to
recalculate f (x1), it was determined on the previous iteration as f (1.5279) = –1.7647.

All that remains is to use Eqs. (7.8) and (7.7) to compute the new value of d and x2:

d = 0.61803(2.4721 − 0) = 1.5279

x2 = 2.4721 − 1.5279 = 0.9443

The function evaluation at x2 is f (0.9943) = −1.5310. Since this value is less than the
function value at x1, the minimum is f (1.5279) = −1.7647, and it is in the interval pre-
scribed by x2, x1, and xu. The process can be repeated, with the results tabulated here:

i xl f (xl) x2 f (x2) x1 f (x1) xu f (xu) d

1 0 0 1.5279 −1.7647 2.4721 −0.6300 4.0000 3.1136 2.4721
2 0 0 0.9443 −1.5310 1.5279 −1.7647 2.4721 −0.6300 1.5279
3 0.9443 −1.5310 1.5279 −1.7647 1.8885 −1.5432 2.4721 −0.6300 0.9443
4 0.9443 −1.5310 1.3050 −1.7595 1.5279 −1.7647 1.8885 −1.5432 0.5836
5 1.3050 −1.7595 1.5279 −1.7647 1.6656 −1.7136 1.8885 −1.5432 0.3607
6 1.3050 −1.7595 1.4427 −1.7755 1.5279 −1.7647 1.6656 −1.7136 0.2229
7 1.3050 −1.7595 1.3901 −1.7742 1.4427 −1.7755 1.5279 −1.7647 0.1378
8 1.3901 −1.7742 1.4427 −1.7755 1.4752 −1.7732 1.5279 −1.7647 0.0851

Note that the current minimum is highlighted for every iteration. After the eighth
iteration, the minimum occurs at x = 1.4427 with a function value of −1.7755. Thus, the
result is converging on the true value of −1.7757 at x = 1.4276.

Recall that for bisection (Sec. 5.4), an exact upper bound for the error can be calcu-
lated at each iteration. Using similar reasoning, an upper bound for golden-section search
can be derived as follows: Once an iteration is complete, the optimum will either fall in one
of two intervals. If the optimum function value is at x2, it will be in the lower interval (xl,
x2, x1). If the optimum function value is at x1, it will be in the upper interval (x2, x1, xu).
Because the interior points are symmetrical, either case can be used to define the error.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 190

7.2 ONE-DIMENSIONAL OPTIMIZATION 191

Looking at the upper interval (x2, x1, xu), if the true value were at the far left, the max-
imum distance from the estimate would be

�xa = x1 − x2

= xl + (φ − 1)(xu − xl) − xu + (φ − 1)(xu − xl)

= (xl − xu) + 2(φ − 1)(xu − xl)

= (2φ − 3)(xu − xl)

or 0.2361 (xu − xl). If the true value were at the far right, the maximum distance from the
estimate would be

�xb = xu − x1

= xu − xl − (φ − 1)(xu − xl)

= (xu − xl) − (φ − 1)(xu − xl)

= (2 − φ)(xu − xl)

or 0.3820 (xu − xl). Therefore, this case would represent the maximum error. This result can
then be normalized to the optimal value for that iteration xopt to yield

εa = (2 − φ)

∣∣∣∣ xu − xl

xopt

∣∣∣∣ × 100% (7.9)

This estimate provides a basis for terminating the iterations.
An M-file function for the golden-section search for minimization is presented in

Fig. 7.7. The function returns the location of the minimum, the value of the function, the
approximate error, and the number of iterations.

The M-file can be used to solve the problem from Example 7.1.

>> g=9.81;v0=55;m=80;c=15;z0=100;
>> z=@(t) -(z0+m/c*(v0+m*g/c)*(1-exp(-c/m*t))-m*g/c*t);
>> [xmin,fmin,ea,iter]=goldmin(z,0,8)

xmin =
3.8317

fmin =
-192.8609
ea =

6.9356e-005

Notice how because this is a maximization, we have entered the negative of Eq. (7.1).
Consequently, fmin corresponds to a maximum height of 192.8609.

You may be wondering why we have stressed the reduced function evaluations of the
golden-section search. Of course, for solving a single optimization, the speed savings
would be negligible. However, there are two important contexts where minimizing the
number of function evaluations can be important. These are

1. Many evaluations. There are cases where the golden-section search algorithm may be a
part of a much larger calculation. In such cases, it may be called many times. Therefore,
keeping function evaluations to a minimum could pay great dividends for such cases.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 191

192 OPTIMIZATION

FIGURE 7.7
An M-file to determine the minimum of a function with the golden-section search.

function [x,fx,ea,iter]=goldmin(f,xl,xu,es,maxit,varargin)
% goldmin: minimization golden section search
% [x,fx,ea,iter]=goldmin(f,xl,xu,es,maxit,p1,p2,...):
% uses golden section search to find the minimum of f
% input:
% f = name of function
% xl, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by f
% output:
% x = location of minimum
% fx = minimum function value
% ea = approximate relative error (%)
% iter = number of iterations

if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(es), es=0.0001;end
if nargin<5|isempty(maxit), maxit=50;end
phi=(1+sqrt(5))/2;
iter=0;
while(1)

d = (phi-1)*(xu - xl);
x1 = xl + d;
x2 = xu - d;
if f(x1,varargin{:}) < f(x2,varargin{:})

xopt = x1;
xl = x2;

else
xopt = x2;
xu = x1;

end
iter=iter+1;
if xopt~=0, ea = (2 - phi) * abs((xu - xl) / xopt) * 100;end
if ea <= es | iter >= maxit,break,end

end
x=xopt;fx=f(xopt,varargin{:});

2. Time-consuming evaluation. For pedagogical reasons, we use simple functions in
most of our examples. You should understand that a function can be very complex
and time-consuming to evaluate. For example, optimization can be used to estimate
the parameters of a model consisting of a system of differential equations. For such
cases, the “function” involves time-consuming model integration. Any method that
minimizes such evaluations would be advantageous.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 192

7.2 ONE-DIMENSIONAL OPTIMIZATION 193

7.2.2 Parabolic Interpolation

Parabolic interpolation takes advantage of the fact that a second-order polynomial often
provides a good approximation to the shape of f (x) near an optimum (Fig. 7.8).

Just as there is only one straight line connecting two points, there is only one parabola
connecting three points. Thus, if we have three points that jointly bracket an optimum, we
can fit a parabola to the points. Then we can differentiate it, set the result equal to zero, and
solve for an estimate of the optimal x. It can be shown through some algebraic manipula-
tions that the result is

x4 = x2 − 1

2

(x2 − x1)
2 [f (x2) − f (x3)] − (x2 − x3)

2 [f (x2) − f (x1)]
(x2 − x1) [f (x2) − f (x3)] − (x2 − x3) [f (x2) − f (x1)]

(7.10)

where x1, x2, and x3 are the initial guesses, and x4 is the value of x that corresponds to the
optimum value of the parabolic fit to the guesses.

EXAMPLE 7.3 Parabolic Interpolation

Problem Statement. Use parabolic interpolation to approximate the minimum of

f (x) = x2

10
− 2 sin x

with initial guesses of x1 = 0, x2 = 1, and x3 = 4.

Solution. The function values at the three guesses can be evaluated:

x1 = 0 f (x1) = 0
x2 = 1 f (x2) = −1.5829
x3 = 4 f (x3) = 3.1136

FIGURE 7.8
Graphical depiction of parabolic interpolation.

xx1 x2 x4 x3

Parabolic
approximation
of maximum

Parabolic
function

True maximum

True functionf (x)

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 193

194 OPTIMIZATION

and substituted into Eq. (7.10) to give

x4 = 1 − 1

2

(1 − 0)2 [−1.5829 − 3.1136] − (1 − 4)2 [−1.5829 − 0]
(1 − 0) [−1.5829 − 3.1136] − (1 − 4) [−1.5829 − 0]

= 1.5055

which has a function value of f (1.5055) = −1.7691.
Next, a strategy similar to the golden-section search can be employed to determine

which point should be discarded. Because the function value for the new point is lower
than for the intermediate point (x2) and the new x value is to the right of the intermediate
point, the lower guess (x1) is discarded. Therefore, for the next iteration:

x1 = 1 f (x1) = −1.5829
x2 = 1.5055 f (x2) = −1.7691
x3 = 4 f (x3) = 3.1136

which can be substituted into Eq. (7.10) to give

x4 = 1.5055 − 1

2

(1.5055 − 1)2 [−1.7691 − 3.1136] − (1.5055 − 4)2 [−1.7691 − (−1.5829)]
(1.5055 − 1) [−1.7691 − 3.1136] − (1.5055 − 4) [−1.7691 − (−1.5829)]

= 1.4903

which has a function value of f (1.4903) = −1.7714. The process can be repeated, with the
results tabulated here:

i x1 f (x1) x2 f (x2) x3 f (x3) x4 f (x4)

1 0.0000 0.0000 1.0000 −1.5829 4.0000 3.1136 1.5055 −1.7691
2 1.0000 −1.5829 1.5055 −1.7691 4.0000 3.1136 1.4903 −1.7714
3 1.0000 −1.5829 1.4903 −1.7714 1.5055 −1.7691 1.4256 −1.7757
4 1.0000 −1.5829 1.4256 −1.7757 1.4903 −1.7714 1.4266 −1.7757
5 1.4256 −1.7757 1.4266 −1.7757 1.4903 −1.7714 1.4275 −1.7757

Thus, within five iterations, the result is converging rapidly on the true value of −1.7757
at x = 1.4276.

7.2.3 MATLAB Function: fminbnd

Recall that in Sec. 6.4 we described Brent’s method for root location, which combined sev-
eral root-finding methods into a single algorithm that balanced reliability with efficiency.
Because of these qualities, it forms the basis for the built-in MATLAB function fzero.

Brent also developed a similar approach for one-dimensional minimization which
forms the basis for the MATLAB fminbnd function. It combines the slow, dependable
golden-section search with the faster, but possibly unreliable, parabolic interpolation. It
first attempts parabolic interpolation and keeps applying it as long as acceptable results are
obtained. If not, it uses the golden-section search to get matters in hand.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 194

7.3 MULTIDIMENSIONAL OPTIMIZATION 195

A simple expression of its syntax is

[xmin, fval] = fminbnd(function,x1,x2)

where x and fval are the location and value of the minimum, function is the name of the
function being evaluated, and x1 and x2 are the bounds of the interval being searched.

Here is a simple MATLAB session that uses fminbnd to solve the problem from
Example 7.1.

>> g=9.81;v0=55;m=80;c=15;z0=100;
>> z=@(t) -(z0+m/c*(v0+m*g/c)*(1-exp(-c/m*t))-m*g/c*t);
>> [x,f]=fminbnd(z,0,8)

x =
3.8317

f =
-192.8609

As with fzero, optional parameters can be specified using optimset. For example,
we can display calculation details:

>> options = optimset('display','iter');
>> fminbnd(z,0,8,options)

Func-count x f(x) Procedure
1 3.05573 -189.759 initial
2 4.94427 -187.19 golden
3 1.88854 -171.871 golden
4 3.87544 -192.851 parabolic
5 3.85836 -192.857 parabolic
6 3.83332 -192.861 parabolic
7 3.83162 -192.861 parabolic
8 3.83166 -192.861 parabolic
9 3.83169 -192.861 parabolic

Optimization terminated:
the current x satisfies the termination criteria using
OPTIONS.TolX of 1.000000e-004

ans =
3.8317

Thus, after three iterations, the method switches from golden to parabolic, and after eight
iterations, the minimum is determined to a tolerance of 0.0001.

7.3 MULTIDIMENSIONAL OPTIMIZATION

Aside from one-dimensional functions, optimization also deals with multidimensional
functions. Recall from Fig. 7.3a that our visual image of a one-dimensional search was like
a roller coaster. For two-dimensional cases, the image becomes that of mountains and
valleys (Fig. 7.3b). As in the following example, MATLAB’s graphic capabilities provide
a handy means to visualize such functions.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 195

196 OPTIMIZATION

x2 x1

3

2

1

0 –2

–1

0

3

�

�

�

�

�

�

3

�
4

1

2

�
3

�2

�
4

�6�
78 �

5

7
6

(a) Contour plot (b) Mesh plot

2.5

2

1.5x 2

x1

f (
x 1

, x
2)

1

0.5

0
–2 –1.5 –1 –0.5 0

8

6

4

 2

0

FIGURE 7.9
(a) Contour and (b) mesh plots of a two-dimensional function.

EXAMPLE 7.4 Visualizing a Two-Dimensional Function

Problem Statement. Use MATLAB’s graphical capabilities to display the following
function and visually estimate its minimum in the range –2 ≤ x1 ≤ 0 and 0 ≤ x2 ≤ 3:

f (x1, x2) = 2 + x1 − x2 + 2x2
1 + 2x1x2 + x2

2

Solution. The following script generates contour and mesh plots of the function:

x=linspace(-2,0,40);y=linspace(0,3,40);
[X,Y] = meshgrid(x,y);
Z=2+X-Y+2*X.^2+2*X.*Y+Y.^2;
subplot(1,2,1);
cs=contour(X,Y,Z);clabel(cs);
xlabel('x_1');ylabel('x_2');
title('(a) Contour plot');grid;
subplot(1,2,2);
cs=surfc(X,Y,Z);
zmin=floor(min(Z));
zmax=ceil(max(Z));
xlabel('x_1');ylabel('x_2');zlabel('f(x_1,x_2)');
title('(b) Mesh plot');

As displayed in Fig. 7.9, both plots indicate that function has a minimum value of about
f (x1, x2) = 0 to 1 located at about x1 = −1 and x2 = 1.5.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 196

7.4 CASE STUDY 197

Techniques for multidimensional unconstrained optimization can be classified in a
number of ways. For purposes of the present discussion, we will divide them depending
on whether they require derivative evaluation. Those that require derivatives are called
gradient, or descent (or ascent), methods. The approaches that do not require derivative eval-
uation are called nongradient, or direct, methods. As described next, the built-in MATLAB
function fminsearch is a direct method.

7.3.1 MATLAB Function: fminsearch

Standard MATLAB has a function fminsearch that can be used to determine the mini-
mum of a multidimensional function. It is based on the Nelder-Mead method, which is a
direct-search method that uses only function values (does not require derivatives) and
handles non-smooth objective functions. A simple expression of its syntax is

[xmin, fval] = fminsearch(function,x0)

where xmin and fval are the location and value of the minimum, function is the name of
the function being evaluated, and x0 is the initial guess. Note that x0 can be a scalar, vector,
or a matrix.

Here is a simple MATLAB session that uses fminsearch to determine minimum for
the function we just graphed in Example 7.4:

>> f=@(x) 2+x(1)-x(2)+2*x(1)^2+2*x(1)*x(2)+x(2)^2;
>> [x,fval]=fminsearch(f,[-0.5,0.5])

x =
-1.0000 1.5000

fval =
0.7500

7.4 CASE STUDY EQUILIBRIUM AND MINIMUM POTENTIAL ENERGY

Background. As in Fig. 7.10a, an unloaded spring can be attached to a wall mount.
When a horizontal force is applied, the spring stretches. The displacement is related to the
force by Hookes law, F = kx. The potential energy of the deformed state consists of the dif-
ference between the strain energy of the spring and the work done by the force:

PE(x) = 0.5kx2 − Fx
(7.11)

(a)

(b)
F

k

x

FIGURE 7.10
(a) An unloaded spring attached to a wall mount. (b) Application of a horizontal force stretches
the spring where the relationship between force and displacement is described by Hooke’s law.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 197

198 OPTIMIZATION

7.4 CASE STUDY continued

(b)(a)

La

Lb kb

ka

F2

F1

x2

x1

Equation (7.11) defines a parabola. Since the potential energy will be at a minimum at
equilibrium, the solution for displacement can be viewed as a one-dimensional optimiza-
tion problem. Because this equation is so easy to differentiate, we can solve for the dis-
placement as x = F/k. For example, if k = 2 N/cm and F = 5 N, x = 5N/(2 N/cm) =
2.5 cm.

A more interesting two-dimensional case is shown in Fig. 7.11. In this system, there
are two degrees of freedom in that the system can move both horizontally and vertically.
In the same way that we approached the one-dimensional system, the equilibrium defor-
mations are the values of x1 and x2 that minimize the potential energy:

PE(x1, x2) = 0.5ka

(√
x2

1 + (La − x2)2 − La

)2

+ 0.5kb

(√
x2

1 + (Lb + x2)2 − Lb

)2

− F1x1 − F2x2 (7.12)

If the parameters are ka = 9 N/cm, kb = 2 N/cm, La = 10 cm, Lb = 10 cm, F1 = 2 N, and
F2 = 4 N, use MATLAB to solve for the displacements and the potential energy.

FIGURE 7.11
A two-spring system: (a) unloaded and (b) loaded.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 198

PROBLEMS 199

PROBLEMS

7.1 Perform three iterations of the Newton-Raphson method
to determine the root of Eq. (E7.1.1). Use the parameter val-
ues from Example 7.1 along with an initial guess of t = 3 s.
7.2 Given the formula

f (x) = −x2 + 8x − 12

(a) Determine the maximum and the corresponding value of
x for this function analytically (i.e., using differentiation).

(b) Verify that Eq. (7.10) yields the same results based on
initial guesses of x1 = 0, x2 = 2, and x3 = 6.

7.3 Consider the following function:

f (x) = 3 + 6x + 5x2 + 3x3 + 4x4

Locate the minimum by finding the root of the derivative of
this function. Use bisection with initial guesses of xl = −2
and xu = 1.
7.4 Given

f (x) = −1.5x6 − 2x4 + 12x

(a) Plot the function.
(b) Use analytical methods to prove that the function is con-

cave for all values of x.

(c) Differentiate the function and then use a root-location
method to solve for the maximum f (x) and the corre-
sponding value of x.

7.5 Solve for the value of x that maximizes f(x) in Prob. 7.4
using the golden-section search. Employ initial guesses of
xl = 0 and xu = 2, and perform three iterations.
7.6 Repeat Prob. 7.5, except use parabolic interpolation.
Employ initial guesses of x1 = 0, x2 = 1, and x3 = 2, and per-
form three iterations.
7.7 Employ the following methods to find the maximum of

f (x) = 4x − 1.8x2 + 1.2x3 − 0.3x4

(a) Golden-section search (xl = – 2, xu = 4, εs = 1%).
(b) Parabolic interpolation (x1 = 1.75, x2 = 2, x3 = 2.5,

iterations = 5).
7.8 Consider the following function:

f (x) = x4 + 2x3 + 8x2 + 5x

Use analytical and graphical methods to show the function
has a minimum for some value of x in the range
−2 ≤ x ≤ 1.

7.4 CASE STUDY continued

Solution. An M-file can be developed to hold the potential energy function:

function p=PE(x,ka,kb,La,Lb,F1,F2)
PEa=0.5*ka*(sqrt(x(1)^2+(La-x(2))^2)-La)^2;
PEb=0.5*kb*(sqrt(x(1)^2+(Lb+x(2))^2)-Lb)^2;
W=F1*x(1)+F2*x(2);
p=PEa+PEb-W;

The solution can be obtained with the fminsearch function:

>> ka=9;kb=2;La=10;Lb=10;F1=2;F2=4;
>> [x,f]=fminsearch(@PE,[-0.5,0.5],[],ka,kb,La,Lb,F1,F2)

x =
4.9523 1.2769

f =
-9.6422

Thus, at equilibrium, the potential energy is −9.6422 N · cm. The connecting point is
located 4.9523 cm to the right and 1.2759 cm above its original position.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 199

200 OPTIMIZATION

7.9 Employ the following methods to find the minimum of
the function from Prob. 7.8:
(a) Golden-section search (xl = −2, xu = 1, εs = 1%).
(b) Parabolic interpolation (x1 = −2, x2 = −1, x3 = 1,

iterations = 5).
7.10 Consider the following function:

f (x) = 2x + 3

x

Perform 10 iterations of parabolic interpolation to locate
the minimum. Comment on the convergence of your results
(x1 = 0.1, x2 = 0.5, x3 = 5)
7.11 Develop a single script to (a) generate contour and
mesh subplots of the following temperature field in a similar
fashion to Example 7.4:

T (x, y) = 2x2 + 3y2 − 4xy − y − 3x

and (b) determine the minimum with fminsearch.
7.12 The head of a groundwater aquifer is described in
Cartesian coordinates by

h(x, y) = 1

1 + x2 + y2 + x + xy

Develop a single script to (a) generate contour and mesh
subplots of the function in a similar fashion to Example 7.4,
and (b) determine the maximum with fminsearch.
7.13 Recent interest in competitive and recreational cycling
has meant that engineers have directed their skills toward the
design and testing of mountain bikes (Fig. P7.13a). Suppose
that you are given the task of predicting the horizontal
and vertical displacement of a bike bracketing system in
response to a force. Assume the forces you must analyze can
be simplified as depicted in Fig. P7.13b. You are interested

in testing the response of the truss to a force exerted in any
number of directions designated by the angle θ . The
parameters for the problem are E = Young’s modulus
= 2 × 1011 Pa, A = cross-sectional area = 0.0001 m2, w =
width = 0.44 m, � = length = 0.56 m, and h = height
= 0.5 m. The displacements x and y can be solved by deter-
mining the values that yield a minimum potential energy.
Determine the displacements for a force of 10,000 N and a
range of θ ’s from 0° (horizontal) to 90° (vertical).
7.14 As electric current moves through a wire (Fig. P7.14),
heat generated by resistance is conducted through a layer of
insulation and then convected to the surrounding air. The
steady-state temperature of the wire can be computed as

T = Tair + q

2π

[
1

k
ln

(
rw + ri

rw

)
+ 1

h

1

rw + ri

]

Determine the thickness of insulation ri (m) that minimizes
the wire’s temperature given the following parameters: q =
heat generation rate = 75 W/m, rw = wire radius = 6 mm,
k = thermal conductivity of insulation = 0.17 W/(m K),
h = convective heat transfer coefficient = 12 W/(m2 K),
and Tair = air temperature = 293 K.
7.15 Develop an M-file that is expressly designed to locate
a maximum with the golden-section search. In other words,
set if up so that it directly finds the maximum rather than
finding the minimum of −f (x). The function should have the
following features:

• Iterate until the relative error falls below a stopping cri-
terion or exceeds a maximum number of iterations.

• Return both the optimal x and f (x).

Test your program with the same problem as Example 7.1.

x

Fy

h �

w

�

(b)(a)

FIGURE P7.13
(a) A mountain bike along with (b) a free-body diagram
for a part of the frame.

ri

rw

Tw

Tair

FIGURE P7.14
Cross-section of an insulated wire.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 200

PROBLEMS 201

7.22 The normal distribution is a bell-shaped curve defined by

y = e−x2

Use the golden-section search to determine the location of
the inflection point of this curve for positive x.
7.23 Use the fminsearch function to determine the
minimum of

f (x, y) = 2y2 − 2.25xy − 1.75y + 1.5x2

7.24 Use the fminsearch function to determine the
maximum of

f (x, y) = 4x + 2y + x2 − 2x4 + 2xy − 3y2

7.25 Given the following function:

f (x, y) = −8x + x2 + 12y + 4y2 − 2xy

Determine the minimum (a) graphically, (b) numerically
with the fminsearch function, and (c) substitute the result
of (b) back into the function to determine the minimum
f (x, y).
7.26 The specific growth rate of a yeast that produces an
antibiotic is a function of the food concentration c:

g = 2c

4 + 0.8c + c2 + 0.2c3

As depicted in Fig. P7.26, growth goes to zero at very low
concentrations due to food limitation. It also goes to zero at
high concentrations due to toxicity effects. Find the value of
c at which growth is a maximum.
7.27 A compound A will be converted into B in a stirred
tank reactor. The product B and unreacted A are purified in a
separation unit. Unreacted A is recycled to the reactor. A
process engineer has found that the initial cost of the system

7.16 Develop an M-file to locate a minimum with the
golden-section search. Rather than using the maximum itera-
tions and Eq. (7.9) as the stopping criteria, determine the
number of iterations needed to attain a desired tolerance. Test
your function by solving Example 7.2 using Ea,d = 0.0001.
7.17 Develop an M-file to implement parabolic interpola-
tion to locate a minimum. The function should have the
following features:

• Base it on two initial guesses, and have the program
generate the third initial value at the midpoint of the
interval.

• Check whether the guesses bracket a maximum. If not,
the function should not implement the algorithm, but
should return an error message.

• Iterate until the relative error falls below a stopping cri-
terion or exceeds a maximum number of iterations.

• Return both the optimal x and f (x).

Test your program with the same problem as Example 7.3.
7.18 Pressure measurements are taken at certain points
behind an airfoil over time. These data best fit the curve
y = 6 cos x − 1.5 sin x from x = 0 to 6 s. Use four iterations
of the golden-search method to find the minimum pressure.
Set xl = 2 and xu = 4.
7.19 The trajectory of a ball can be computed with

y = (tan θ0)x − g

2v2
0 cos2 θ0

x2 + y0

where y = the height (m), θ 0 = the initial angle (radians),
v0 = the initial velocity (m/s), g = the gravitational
constant = 9.81 m/s2, and y0 = the initial height (m). Use the
golden-section search to determine the maximum height
given y0 = 1 m, v0 = 25 m/s, and θ 0 = 50◦. Iterate until the
approximate error falls below εs = 1% using initial guesses
of xl = 0 and xu = 60 m.
7.20 The deflection of a uniform beam subject to a linearly
increasing distributed load can be computed as

y = w0

120E I L
(−x5 + 2L2x3 − L4x)

Given that L = 600 cm, E = 50,000 kN/cm2, I = 30,000 cm4,
and w0 = 2.5 kN/cm, determine the point of maximum de-
flection (a) graphically, (b) using the golden-section search
until the approximate error falls below εs = 1% with initial
guesses of xl = 0 and xu = L.
7.21 A object with a mass of 90 kg is projected upward
from the surface of the earth at a velocity of 60 m/s. If the
object is subject to linear drag (c = 15 kg/s), use the golden-
section search to determine the maximum height the object
attains.

5 10

0.4

0
0

c (mg/L)

g
(d�1) 0.2

FIGURE P7.26
The specific growth rate of a yeast that produces an
antibiotic versus the food concentration.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 201

202 OPTIMIZATION

is a function of the conversion xA. Find the conversion that
will result in the lowest cost system. C is a proportionality
constant.

Cost = C

[(
1

(1 − xA)2

)0.6

+ 6
(

1

xA

)0.6
]

7.28 A finite-element model of a cantilever beam subject to
loading and moments (Fig. P7.28) is given by optimizing

f (x, y) = 5x2 − 5xy + 2.5y2 − x − 1.5y

where x = end displacement and y = end moment. Find the
values of x and y that minimize f(x, y).
7.29 The Streeter-Phelps model can be used to compute the
dissolved oxygen concentration in a river below a point dis-
charge of sewage (Fig. P7.29),

o = os − kd Lo

kd + ks − ka

(
e−ka t − e−(kd +ks)t

)
− Sb

ka
(1 − e−ka t)

(P7.29)

where o = dissolved oxygen concentration (mg/L), os =
oxygen saturation concentration (mg/L), t = travel time (d),
Lo = biochemical oxygen demand (BOD) concentration at
the mixing point (mg/L), kd = rate of decomposition of
BOD (d−1), ks = rate of settling of BOD (d−1), ka = reaera-
tion rate (d−1), and Sb = sediment oxygen demand (mg/L/d).

As indicated in Fig. P7.29, Eq. (P7.29) produces an
oxygen “sag” that reaches a critical minimum level oc, some
travel time tc below the point discharge. This point is called
“critical” because it represents the location where biota that
depend on oxygen (like fish) would be the most stressed.
Determine the critical travel time and concentration, given
the following values:

os = 10 mg/L kd = 0.1 d−1 ka = 0.6 d−1

ks = 0.05 d−1 Lo = 50 mg/L Sb = 1 mg/L/d

7.30 The two-dimensional distribution of pollutant concen-
tration in a channel can be described by

c(x, y) = 7.9 + 0.13x + 0.21y − 0.05x2

−0.016y2 − 0.007xy

Determine the exact location of the peak concentration given
the function and the knowledge that the peak lies within the
bounds −10 ≤ x ≤ 10 and 0 ≤ y ≤ 20.
7.31 A total charge Q is uniformly distributed around a ring-
shaped conductor with radius a. A charge q is located at a
distance x from the center of the ring (Fig. P7.31). The force
exerted on the charge by the ring is given by

F = 1

4πe0

q Qx

(x2 + a2)3/2

where e0 = 8.85 × 10−12 C2/(N m2), q = Q = 2 × 10−5 C,
and a = 0.9 m. Determine the distance x where the force is a
maximum.
7.32 The torque transmitted to an induction motor is a func-
tion of the slip between the rotation of the stator field and the
rotor speed s, where slip is defined as

s = n − nR

n

x

a

Q

q

FIGURE P7.31

15 20

8

12

0
0

t (d)
5

4

10

o
(mg/L) o

os

tc

oc

FIGURE P7.29
A dissolved oxygen “sag” below a point discharge of
sewage into a river.

x

y

FIGURE P7.28
A cantilever beam.

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 202

PROBLEMS 203

s

T

4 8 10

3

4

0
0

2

2

6

1

FIGURE P7.32
Torque transmitted to an inductor as a function of slip.

400 800 1,200

10,000

20,000

Total

Minimum

Lift Friction

0
0

V

D

FIGURE P7.33
Plot of drag versus velocity for an airfoil.

F

F

x

FIGURE P7.34
Roller bearings.

where n = revolutions per second of rotating stator speed
and nR = rotor speed. Kirchhoff’s laws can be used to show
that the torque (expressed in dimensionless form) and slip
are related by

T = 15s(1 − s)

(1 − s)(4s2 − 3s + 4)

Figure P7.32 shows this function. Use a numerical method
to determine the slip at which the maximum torque occurs.
7.33 The total drag on an airfoil can be estimated by

D = 0.01σ V 2 + 0.95

σ

(
W

V

)2

Friction Lift

where D = drag, σ = ratio of air density between the flight
altitude and sea level, W = weight, and V = velocity. As seen
in Fig. P7.33, the two factors contributing to drag are affected
differently as velocity increases. Whereas friction drag in-
creases with velocity, the drag due to lift decreases. The com-
bination of the two factors leads to a minimum drag.

(a) If σ = 0.6 and W = 16,000, determine the minimum
drag and the velocity at which it occurs.

(b) In addition, develop a sensitivity analysis to determine
how this optimum varies in response to a range of
W = 12,000 to 20,000 with σ = 0.6.

7.34 Roller bearings are subject to fatigue failure caused by
large contact loads F (Fig. P7.34). The problem of finding
the location of the maximum stress along the x axis can be
shown to be equivalent to maximizing the function:

f (x) = 0.4√
1 + x2

−
√

1 + x2

(
1 − 0.4

1 + x2

)
+ x

Find the x that maximizes f(x).
7.35 In a similar fashion to the case study described in
Sec. 7.4, develop the potential energy function for the sys-
tem depicted in Fig. P7.35. Develop contour and surface

FIGURE P7.35
Two frictionless masses connected to a wall by a pair of
linear elastic springs.

1 2
F

kbka

x1 x2

cha01102_ch07_182-204.qxd 12/20/10 8:04 AM Page 203

204 OPTIMIZATION

plots in MATLAB. Minimize the potential energy function
to determine the equilibrium displacements x1 and x2 given
the forcing function F = 100 N and the parameters ka = 20
and kb = 15 N/m.
7.36 As an agricultural engineer, you must design a trape-
zoidal open channel to carry irrigation water (Fig. P7.36).
Determine the optimal dimensions to minimize the wetted
perimeter for a cross-sectional area of 50 m2. Are the relative
dimensions universal?
7.37 Use the function fminsearch to determine the length
of the shortest ladder that reaches from the ground over the
fence to the building’s wall (Fig. P7.37). Test it for the case
where h = d = 4 m.

7.38 The length of the longest ladder that can negotiate
the corner depicted in Fig. P7.38 can be determined by
computing the value of θ that minimizes the following
function:

L(θ) = w1

sin θ
+ w2

sin(π − α − θ)

For the case where w1 = w2 = 2 m, use a numerical method
described in this chapter (including MATLAB’s built-in
capabilities) to develop a plot of L versus a range of α’s from
45 to 135◦.

FIGURE P7.37
A ladder leaning against a fence and just touching a wall.

FIGURE P7.38
A ladder negotiating a corner formed by two hallways.

h

d

a

q

w2

w1

L

w

d

��

FIGURE P7.36

cha01102_ch07_182-204.qxd 12/17/10 8:06 AM Page 204

205

PART THREE

Linear Systems

3.1 OVERVIEW

What Are Linear Algebraic Equations?

In Part Two, we determined the value x that satisfied a single equation, f (x) = 0. Now, we
deal with the case of determining the values x1, x2, . . . , xn that simultaneously satisfy a set
of equations:

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0
. .
. .
. .

fn(x1, x2, . . . , xn) = 0

Such systems are either linear or nonlinear. In Part Three, we deal with linear algebraic
equations that are of the general form

a11x1 + a12x2 + · · · + a1n xn = b1

a21x1 + a22x2 + · · · + a2n xn = b2

...
...

an1x1 + an2x2 + · · · + ann xn = bn

(PT3.1)

where the a’s are constant coefficients, the b’s
are constants, the x’s are unknowns, and n is the num-
ber of equations. All other algebraic equations are
nonlinear.

Linear Algebraic Equations in
Engineering and Science

Many of the fundamental equations of engineering
and science are based on conservation laws. Some
familiar quantities that conform to such laws are
mass, energy, and momentum. In mathematical
terms, these principles lead to balance or continuity
equations that relate system behavior as represented

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 205

by the levels or response of the quantity being modeled to the properties or characteristics
of the system and the external stimuli or forcing functions acting on the system.

As an example, the principle of mass conservation can be used to formulate a model
for a series of chemical reactors (Fig. PT3.1a). For this case, the quantity being modeled is
the mass of the chemical in each reactor. The system properties are the reaction character-
istics of the chemical and the reactors’ sizes and flow rates. The forcing functions are the
feed rates of the chemical into the system.

When we studied roots of equations, you saw how single-component systems result in
a single equation that can be solved using root-location techniques. Multicomponent sys-
tems result in a coupled set of mathematical equations that must be solved simultaneously.
The equations are coupled because the individual parts of the system are influenced by other
parts. For example, in Fig. PT3.1a, reactor 4 receives chemical inputs from reactors 2 and 3.
Consequently, its response is dependent on the quantity of chemical in these other reactors.

When these dependencies are expressed mathematically, the resulting equations are
often of the linear algebraic form of Eq. (PT3.1). The x’s are usually measures of the magni-
tudes of the responses of the individual components. Using Fig. PT3.1a as an example, x1

might quantify the amount of chemical mass in the first reactor, x2 might quantify the amount
in the second, and so forth. The a’s typically represent the properties and characteristics that
bear on the interactions between components. For instance, the a’s for Fig. PT3.1a might be
reflective of the flow rates of mass between the reactors. Finally, the b’s usually represent the
forcing functions acting on the system, such as the feed rate.

Multicomponent problems of these types arise from both lumped (macro-) or distributed
(micro-) variable mathematical models. Lumped variable problems involve coupled

206 PART 3 LINEAR SYSTEMS

Feed x1xi�1 xi xi�1 xn

(a)

(b)

x2 x4

Feed

x3

x1 x5

FIGURE PT3.1
Two types of systems that can be modeled using linear algebraic equations: (a) lumped variable
system that involves coupled finite components and (b) distributed variable system that involves
a continuum.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 206

finite components. The three interconnected bungee jumpers described at the beginning
of Chap. 8 are a lumped system. Other examples include trusses, reactors, and electric
circuits.

Conversely, distributed variable problems attempt to describe the spatial detail on a
continuous or semicontinuous basis. The distribution of chemicals along the length of an
elongated, rectangular reactor (Fig. PT3.1b) is an example of a continuous variable model.
Differential equations derived from conservation laws specify the distribution of the de-
pendent variable for such systems. These differential equations can be solved numerically
by converting them to an equivalent system of simultaneous algebraic equations.

The solution of such sets of equations represents a major application area for the meth-
ods in the following chapters. These equations are coupled because the variables at one loca-
tion are dependent on the variables in adjoining regions. For example, the concentration at
the middle of the reactor in Fig. PT3.1b is a function of the concentration in adjoining
regions. Similar examples could be developed for the spatial distribution of temperature,
momentum, or electricity.

Aside from physical systems, simultaneous linear algebraic equations also arise in a
variety of mathematical problem contexts. These result when mathematical functions are
required to satisfy several conditions simultaneously. Each condition results in an equation
that contains known coefficients and unknown variables. The techniques discussed in this
part can be used to solve for the unknowns when the equations are linear and algebraic.
Some widely used numerical techniques that employ simultaneous equations are regres-
sion analysis and spline interpolation.

3.2 PART ORGANIZATION

Due to its importance in formulating and solving linear algebraic equations, Chap. 8
provides a brief overview of matrix algebra. Aside from covering the rudiments of matrix
representation and manipulation, the chapter also describes how matrices are handled in
MATLAB.

Chapter 9 is devoted to the most fundamental technique for solving linear algebraic
systems: Gauss elimination. Before launching into a detailed discussion of this technique,
a preliminary section deals with simple methods for solving small systems. These ap-
proaches are presented to provide you with visual insight and because one of the methods—
the elimination of unknowns—represents the basis for Gauss elimination.

After this preliminary material, “naive” Gauss elimination is discussed. We start with
this “stripped-down” version because it allows the fundamental technique to be elaborated
on without complicating details. Then, in subsequent sections, we discuss potential prob-
lems of the naive approach and present a number of modifications to minimize and cir-
cumvent these problems. The focus of this discussion will be the process of switching
rows, or partial pivoting. The chapter ends with a brief description of efficient methods for
solving tridiagonal matrices.

Chapter 10 illustrates how Gauss elimination can be formulated as an LU factorization.
Such solution techniques are valuable for cases where many right-hand-side vectors need
to be evaluated. The chapter ends with a brief outline of how MATLAB solves linear
systems.

3.2 PART ORGANIZATION 207

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 207

Chapter 11 starts with a description of how LU factorization can be employed to effi-
ciently calculate the matrix inverse, which has tremendous utility in analyzing stimulus-
response relationships of physical systems. The remainder of the chapter is devoted to the
important concept of matrix condition. The condition number is introduced as a measure of
the roundoff errors that can result when solving ill-conditioned matrices.

Chapter 12 deals with iterative solution techniques, which are similar in spirit to the
approximate methods for roots of equations discussed in Chap. 6. That is, they involve guess-
ing a solution and then iterating to obtain a refined estimate. The emphasis is on the Gauss-
Seidel method, although a description is provided of an alternative approach, the Jacobi
method. The chapter ends with a brief description of how nonlinear simultaneous equations
can be solved.

Finally, Chap. 13 is devoted to eigenvalue problems. These have general mathematical
relevance as well as many applications in engineering and science. We describe two simple
methods as well as MATLAB’s capabilities for determining eigenvalues and eigenvectors.
In terms of applications, we focus on their use to study the vibrations and oscillations of
mechanical systems and structures.

208 PART 3 LINEAR SYSTEMS

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 208

209

8
Linear Algebraic Equations
and Matrices

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with linear algebraic equations
and their relationship to matrices and matrix algebra. Specific objectives and topics
covered are

• Understanding matrix notation.
• Being able to identify the following types of matrices: identity, diagonal,

symmetric, triangular, and tridiagonal.
• Knowing how to perform matrix multiplication and being able to assess when it is

feasible.
• Knowing how to represent a system of linear algebraic equations in matrix

form.
• Knowing how to solve linear algebraic equations with left division and matrix

inversion in MATLAB.

YOU’VE GOT A PROBLEM

S uppose that three jumpers are connected by bungee cords. Figure 8.1a shows them
being held in place vertically so that each cord is fully extended but unstretched. We
can define three distances, x1, x2, and x3, as measured downward from each of their

unstretched positions. After they are released, gravity takes hold and the jumpers will even-
tually come to the equilibrium positions shown in Fig. 8.1b.

Suppose that you are asked to compute the displacement of each of the jumpers. If we
assume that each cord behaves as a linear spring and follows Hooke’s law, free-body
diagrams can be developed for each jumper as depicted in Fig. 8.2.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 209

210 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

Using Newton’s second law, force balances can be written for each jumper:

m1
d2x1

dt2
= m1g + k2(x2 − x1) − k1x1

m2
d2x2

dt2
= m2g + k3(x3 − x2) + k2(x1 − x2) (8.1)

m3
d2x3

dt2
= m3g + k3(x2 − x3)

where mi = the mass of jumper i (kg), t = time (s), kj = the spring constant for cord
j (N/m), xi = the displacement of jumper i measured downward from the equilibrium
position (m), and g = gravitational acceleration (9.81 m/s2). Because we are interested in the
steady-state solution, the second derivatives can be set to zero. Collecting terms gives

(k1 + k2)x1 − k2x2 = m1g

−k2x1 + (k2 + k3)x2 − k3x3 = m2g

−k3x2 + k3x3 = m3g

(8.2)

Thus, the problem reduces to solving a system of three simultaneous equations for
the three unknown displacements. Because we have used a linear law for the cords, these
equations are linear algebraic equations. Chapters 8 through 12 will introduce you to how
MATLAB is used to solve such systems of equations.

(a) Unstretched (b) Stretched

x1 � 0

x2 � 0

x3 � 0

FIGURE 8.1
Three individuals connected by bungee cords.

k3(x3 � x2)m2gk2(x2 � x1)m1g m3g

k3(x3 � x2)k2(x2 � x1)k1x1

FIGURE 8.2
Free-body diagrams.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 210

8.1 MATRIX ALGEBRA OVERVIEW

Knowledge of matrices is essential for understanding the solution of linear algebraic equa-
tions. The following sections outline how matrices provide a concise way to represent and
manipulate linear algebraic equations.

8.1.1 Matrix Notation

A matrix consists of a rectangular array of elements represented by a single symbol. As
depicted in Fig. 8.3, [A] is the shorthand notation for the matrix and ai j designates an indi-
vidual element of the matrix.

A horizontal set of elements is called a row and a vertical set is called a column. The
first subscript i always designates the number of the row in which the element lies. The sec-
ond subscript j designates the column. For example, element a23 is in row 2 and column 3.

The matrix in Fig. 8.3 has m rows and n columns and is said to have a dimension of
m by n (or m × n). It is referred to as an m by n matrix.

Matrices with row dimension m = 1, such as

[b] = [b1 b2 · · · bn]

are called row vectors. Note that for simplicity, the first subscript of each element is
dropped. Also, it should be mentioned that there are times when it is desirable to employ a
special shorthand notation to distinguish a row matrix from other types of matrices. One
way to accomplish this is to employ special open-topped brackets, as in �b� .1

Matrices with column dimension n = 1, such as

[c] =

⎡
⎢⎢⎢⎣

c1

c2
...

cm

⎤
⎥⎥⎥⎦ (8.3)

8.1 MATRIX ALGEBRA OVERVIEW 211

1 In addition to special brackets, we will use case to distinguish between vectors (lowercase) and matrices
(uppercase).

. . .

. . .

. . .

....

....

....

amnam3am2am1

a2na22a21

a11 a1na13a12a11

[A] �

a23

Column 3

Row 2

FIGURE 8.3
A matrix.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 211

are referred to as column vectors. For simplicity, the second subscript is dropped. As with the
row vector, there are occasions when it is desirable to employ a special shorthand notation
to distinguish a column matrix from other types of matrices. One way to accomplish this is
to employ special brackets, as in {c}.

Matrices where m = n are called square matrices. For example, a 3 × 3 matrix is

[A] =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

The diagonal consisting of the elements a11, a22, and a33 is termed the principal or main
diagonal of the matrix.

Square matrices are particularly important when solving sets of simultaneous linear
equations. For such systems, the number of equations (corresponding to rows) and the
number of unknowns (corresponding to columns) must be equal for a unique solution to be
possible. Consequently, square matrices of coefficients are encountered when dealing with
such systems.

There are a number of special forms of square matrices that are important and should
be noted:

A symmetric matrix is one where the rows equal the columns—that is, ai j = aji for all
i’s and j’s. For example,

[A] =
⎡
⎣ 5 1 2

1 3 7
2 7 8

⎤
⎦

is a 3 × 3 symmetric matrix.
A diagonal matrix is a square matrix where all elements off the main diagonal are

equal to zero, as in

[A] =
⎡
⎣a11

a22

a33

⎤
⎦

Note that where large blocks of elements are zero, they are left blank.
An identity matrix is a diagonal matrix where all elements on the main diagonal are

equal to 1, as in

[I] =
⎡
⎣1

1
1

⎤
⎦

The identity matrix has properties similar to unity. That is,

[A][I] = [I][A] = [A]

An upper triangular matrix is one where all the elements below the main diagonal are
zero, as in

[A] =
⎡
⎣a11 a12 a13

a22 a23

a33

⎤
⎦

212 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 212

A lower triangular matrix is one where all elements above the main diagonal are zero,
as in

[A] =
⎡
⎣a11

a21 a22

a31 a32 a33

⎤
⎦

A banded matrix has all elements equal to zero, with the exception of a band centered
on the main diagonal:

[A] =

⎡
⎢⎢⎣

a11 a12

a21 a22 a23

a32 a33 a34

a43 a44

⎤
⎥⎥⎦

The preceding matrix has a bandwidth of 3 and is given a special name—the tridiagonal
matrix.

8.1.2 Matrix Operating Rules

Now that we have specified what we mean by a matrix, we can define some operating rules
that govern its use. Two m by n matrices are equal if, and only if, every element in the first
is equal to every element in the second—that is, [A] = [B] if ai j = bi j for all i and j.

Addition of two matrices, say, [A] and [B], is accomplished by adding corresponding
terms in each matrix. The elements of the resulting matrix [C] are computed as

ci j = ai j + bi j

for i = 1, 2, . . . , m and j = 1, 2, . . . , n . Similarly, the subtraction of two matrices, say,
[E] minus [F], is obtained by subtracting corresponding terms, as in

di j = ei j − fi j

for i = 1, 2, . . . , m and j = 1, 2, . . . , n . It follows directly from the preceding definitions
that addition and subtraction can be performed only between matrices having the same
dimensions.

Both addition and subtraction are commutative:

[A] + [B] = [B] + [A]

and associative:

([A] + [B]) + [C] = [A] + ([B] + [C])

The multiplication of a matrix [A] by a scalar g is obtained by multiplying every
element of [A] by g. For example, for a 3 × 3 matrix:

[D] = g[A] =
⎡
⎣ga11 ga12 ga13

ga21 ga22 ga23

ga31 ga32 ga33

⎤
⎦

8.1 MATRIX ALGEBRA OVERVIEW 213

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 213

The product of two matrices is represented as [C] = [A][B], where the elements of [C]
are defined as

ci j =
n∑

k=1

aikbk j (8.4)

where n = the column dimension of [A] and the row dimension of [B]. That is, the ci j ele-
ment is obtained by adding the product of individual elements from the ith row of the first
matrix, in this case [A], by the jth column of the second matrix [B]. Figure 8.4 depicts how
the rows and columns line up in matrix multiplication.

According to this definition, matrix multiplication can be performed only if the first
matrix has as many columns as the number of rows in the second matrix. Thus, if [A] is an
m by n matrix, [B] could be an n by l matrix. For this case, the resulting [C] matrix would
have the dimension of m by l. However, if [B] were an m by l matrix, the multiplication
could not be performed. Figure 8.5 provides an easy way to check whether two matrices
can be multiplied.

If the dimensions of the matrices are suitable, matrix multiplication is associative:

([A][B]) [C] = [A]([B][C])

and distributive:

[A]([B] + [C]) = [A][B] + [A][C]

or

([A] + [B])[C] = [A][C] + [B][C]

However, multiplication is not generally commutative:

[A][B] �= [B][A]

That is, the order of matrix multiplication is important.

214 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

1

6

3

8

0 4

3 � 5 � 1 � 7 � 22

5

7

9

2

FIGURE 8.4
Visual depiction of how the rows and columns line up in
matrix multiplication.

[A]m�n [B]n�l [C]m�l�

Interior dimensions
are equal,

multiplication
is possible

Exterior dimensions define
the dimensions of the result

FIGURE 8.5
Matrix multiplication can be performed only if
the inner dimensions are equal.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 214

Although multiplication is possible, matrix division is not a defined operation. How-
ever, if a matrix [A] is square and nonsingular, there is another matrix [A]−1, called the
inverse of [A], for which

[A][A]−1 = [A]−1[A] = [I]

Thus, the multiplication of a matrix by the inverse is analogous to division, in the sense that
a number divided by itself is equal to 1. That is, multiplication of a matrix by its inverse
leads to the identity matrix.

The inverse of a 2 × 2 matrix can be represented simply by

[A]−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]

Similar formulas for higher-dimensional matrices are much more involved. Chapter 11 will
deal with techniques for using numerical methods and the computer to calculate the inverse
for such systems.

The transpose of a matrix involves transforming its rows into columns and its columns
into rows. For example, for the 3 × 3 matrix:

[A] =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

the transpose, designated [A]T, is defined as

[A]T =
⎡
⎣a11 a21 a31

a12 a22 a32

a13 a23 a33

⎤
⎦

In other words, the element ai j of the transpose is equal to the aji element of the original
matrix.

The transpose has a variety of functions in matrix algebra. One simple advantage is
that it allows a column vector to be written as a row, and vice versa. For example, if

{c} =
{c1

c1

c1

}

then

{c}T = �c1 c2 c3�
In addition, the transpose has numerous mathematical applications.

A permutation matrix (also called a transposition matrix) is an identity matrix with
rows and columns interchanged. For example, here is a permutation matrix that is con-
structed by switching the first and third rows and columns of a 3 × 3 identity matrix:

[P] =
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

8.1 MATRIX ALGEBRA OVERVIEW 215

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 215

216 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

Left multiplying a matrix [A] by this matrix, as in [P][A], will switch the corresponding
rows of [A]. Right multiplying, as in [A][P], will switch the corresponding columns. Here
is an example of left multiplication:

[P][A] =
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

⎡
⎣2 −7 4

8 3 −6
5 1 9

⎤
⎦ =

⎡
⎣5 1 9

8 3 −6
2 −7 4

⎤
⎦

The final matrix manipulation that will have utility in our discussion is augmentation.
A matrix is augmented by the addition of a column (or columns) to the original matrix. For
example, suppose we have a 3 × 3 matrix of coefficients. We might wish to augment this
matrix [A] with a 3 × 3 identity matrix to yield a 3 × 6 dimensional matrix:

⎡
⎣a11 a11 a11

a21 a21 a21

a31 a31 a31

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤
⎦

Such an expression has utility when we must perform a set of identical operations on the
rows of two matrices. Thus, we can perform the operations on the single augmented matrix
rather than on the two individual matrices.

EXAMPLE 8.1 MATLAB Matrix Manipulations

Problem Statement. The following example illustrates how a variety of matrix manipu-
lations are implemented with MATLAB. It is best approached as a hands-on exercise on the
computer.

Solution. Create a 3 × 3 matrix:

>> A = [1 5 6;7 4 2;-3 6 7]

A =
1 5 6
7 4 2
-3 6 7

The transpose of [A] can be obtained using the ' operator:

>> A'

ans =
1 7 -3
5 4 6
6 2 7

Next we will create another 3 × 3 matrix on a row basis. First create three row vectors:

>> x = [8 6 9];
>> y = [-5 8 1];
>> z = [4 8 2];

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 216

8.1 MATRIX ALGEBRA OVERVIEW 217

Then we can combine these to form the matrix:

>> B = [x; y; z]

B =
8 6 9
-5 8 1
4 8 2

We can add [A] and [B] together:

>> C = A+B

C =
9 11 15
2 12 3
1 14 9

Further, we can subtract [B] from [C] to arrive back at [A]:

>> A = C-B

A =
1 5 6
7 4 2
-3 6 7

Because their inner dimensions are equal, [A] and [B] can be multiplied

>> A*B

ans =
7 94 26
44 90 71
-26 86 -7

Note that [A] and [B] can also be multiplied on an element-by-element basis by including
a period with the multiplication operator as in

>> A.*B

ans =
8 30 54

-35 32 2
-12 48 14

A 2 × 3 matrix can be set up

>> D = [1 4 3;5 8 1];

If [A] is multiplied times [D], an error message will occur

>> A*D

??? Error using ==> mtimes
Inner matrix dimensions must agree.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 217

However, if we reverse the order of multiplication so that the inner dimensions match,
matrix multiplication works

>> D*A

ans =

20 39 35
58 63 53

The matrix inverse can be computed with the inv function:

>> AI = inv(A)

AI =

0.2462 0.0154 -0.2154
-0.8462 0.3846 0.6154
0.8308 -0.3231 -0.4769

To test that this is the correct result, the inverse can be multiplied by the original matrix to
give the identity matrix:

>> A*AI

ans =

1.0000 -0.0000 -0.0000
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

The eye function can be used to generate an identity matrix:

>> I = eye(3)

I =

1 0 0
0 1 0
0 0 1

We can set up a permutation matrix to switch the first and third rows and columns of a
3 × 3 matrix as

>> P=[0 0 1;0 1 0;1 0 0]

P =

0 0 1
0 1 0
1 0 0

We can then either switch the rows:

>> PA=P*A

PA =

-3 6 7
7 4 2
1 5 6

218 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 218

or the columns:

>> AP=A*P

AP =

6 5 1
2 4 7
7 6 -3

Finally, matrices can be augmented simply as in

>> Aug = [A I]

Aug =

1 5 6 1 0 0
7 4 2 0 1 0
-3 6 7 0 0 1

Note that the dimensions of a matrix can be determined by the size function:

>> [n,m] = size(Aug)

n =
3

m =
6

8.1.3 Representing Linear Algebraic Equations in Matrix Form

It should be clear that matrices provide a concise notation for representing simultaneous
linear equations. For example, a 3 × 3 set of linear equations,

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(8.5)

can be expressed as

[A]{x} = {b} (8.6)

where [A] is the matrix of coefficients:

[A] =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

8.1 MATRIX ALGEBRA OVERVIEW 219

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 219

{b} is the column vector of constants:

{b}T = �b1 b2 b3�

and {x} is the column vector of unknowns:

{x}T = �x1 x2 x3�

Recall the definition of matrix multiplication [Eq. (8.4)] to convince yourself that
Eqs. (8.5) and (8.6) are equivalent. Also, realize that Eq. (8.6) is a valid matrix multiplica-
tion because the number of columns n of the first matrix [A] is equal to the number of rows
n of the second matrix {x}.

This part of the book is devoted to solving Eq. (8.6) for {x}. A formal way to obtain a
solution using matrix algebra is to multiply each side of the equation by the inverse of [A]
to yield

[A]−1[A]{x} = [A]−1{b}

Because [A]−1[A] equals the identity matrix, the equation becomes

{x} = [A]−1{b} (8.7)

Therefore, the equation has been solved for {x}. This is another example of how the inverse
plays a role in matrix algebra that is similar to division. It should be noted that this is not a
very efficient way to solve a system of equations. Thus, other approaches are employed in
numerical algorithms. However, as discussed in Section 11.1.2, the matrix inverse itself
has great value in the engineering analyses of such systems.

It should be noted that systems with more equations (rows) than unknowns (columns),
m > n, are said to be overdetermined. A typical example is least-squares regression where
an equation with n coefficients is fit to m data points (x, y). Conversely, systems with less
equations than unknowns, m < n, are said to be underdetermined. A typical example of
underdetermined systems is numerical optimization.

8.2 SOLVING LINEAR ALGEBRAIC EQUATIONS WITH MATLAB

MATLAB provides two direct ways to solve systems of linear algebraic equations. The most
efficient way is to employ the backslash, or “left-division,” operator as in

>> x = A\b

The second is to use matrix inversion:

>> x = inv(A)*b

As stated at the end of Section 8.1.3, the matrix inverse solution is less efficient than using
the backslash. Both options are illustrated in the following example.

220 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 220

EXAMPLE 8.2 Solving the Bungee Jumper Problem with MATLAB

Problem Statement. Use MATLAB to solve the bungee jumper problem described at the
beginning of this chapter. The parameters for the problem are

Spring Constant Unstretched Cord
Jumper Mass (kg) (N/m) Length (m)

Top (1) 60 50 20
Middle (2) 70 100 20
Bottom (3) 80 50 20

Solution. Substituting these parameter values into Eq. (8.2) gives⎡
⎣ 150 −100 0

−100 150 −50
0 −50 50

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

588.6
686.7
784.8

⎫⎬
⎭

Start up MATLAB and enter the coefficient matrix and the right-hand-side vector:

>> K = [150 -100 0;-100 150 -50;0 -50 50]

K =
150 -100 0

-100 150 -50
0 -50 50

>> mg = [588.6; 686.7; 784.8]

mg =
588.6000
686.7000
784.8000

Employing left division yields

>> x = K\mg

x =
41.2020
55.9170
71.6130

Alternatively, multiplying the inverse of the coefficient matrix by the right-hand-side vec-
tor gives the same result:

>> x = inv(K)*mg

x =
41.2020
55.9170
71.6130

8.2 SOLVING LINEAR ALGEBRAIC EQUATIONS WITH MATLAB 221

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 221

Because the jumpers were connected by 20-m cords, their initial
positions relative to the platform is

>> xi = [20;40;60];

Thus, their final positions can be calculated as

>> xf = x+xi

xf =
61.2020
95.9170
131.6130

The results, which are displayed in Fig. 8.6, make sense.
The first cord is extended the longest because it has a lower
spring constant and is subject to the most weight (all three
jumpers). Notice that the second and third cords are extended
about the same amount. Because it is subject to the weight of two
jumpers, one might expect the second cord to be extended longer
than the third. However, because it is stiffer (i.e., it has a higher
spring constant), it stretches less than expected based on the
weight it carries.

0

(a) (b)

40

80

120

FIGURE 8.6
Positions of three
individuals connected
by bungee cords.
(a) Unstretched and
(b) stretched.

8.3 CASE STUDY CURRENTS AND VOLTAGES IN CIRCUITS

Background. Recall that in Chap. 1 (Table 1.1), we summarized some models and as-
sociated conservation laws that figure prominently in engineering. As in Fig. 8.7, each
model represents a system of interacting elements. Consequently, steady-state balances de-
rived from the conservation laws yield systems of simultaneous equations. In many cases,
such systems are linear and hence can be expressed in matrix form. The present case study
focuses on one such application: circuit analysis.

A common problem in electrical engineering involves determining the currents and
voltages at various locations in resistor circuits. These problems are solved using Kirch-
hoff’s current and voltage rules. The current (or point) rule states that the algebraic sum of
all currents entering a node must be zero (Fig. 8.8a), or∑

i = 0 (8.8)

where all current entering the node is considered positive in sign. The current rule is an
application of the principle of conservation of charge (recall Table 1.1).

222 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 222

8.3 CASE STUDY 223

8.3 CASE STUDY continued

The voltage (or loop) rule specifies that the algebraic sum of the potential differences
(i.e., voltage changes) in any loop must equal zero. For a resistor circuit, this is expressed as∑

ξ −
∑

iR = 0 (8.9)

where ξ is the emf (electromotive force) of the voltage sources, and R is the resistance of
any resistors on the loop. Note that the second term derives from Ohm’s law (Fig. 8.8b),
which states that the voltage drop across an ideal resistor is equal to the product of the
current and the resistance. Kirchhoff’s voltage rule is an expression of the conservation of
energy.

Solution. Application of these rules results in systems of simultaneous linear algebraic
equations because the various loops within a circuit are interconnected. For example, con-
sider the circuit shown in Fig. 8.9. The currents associated with this circuit are unknown
both in magnitude and direction. This presents no great difficulty because one simply
assumes a direction for each current. If the resultant solution from Kirchhoff’s laws is
negative, then the assumed direction was incorrect. For example, Fig. 8.10 shows some
assumed currents.

Structure

Machine

Reactors

Circuit

�

�

(a) Chemical engineering (b) Civil engineering

(d) Mechanical engineering(c) Electrical engineering

i1 i3

i2

Vi Vj
Rij

iij

(a)

(b)

FIGURE 8.8
Schematic representations
of (a) Kirchhoff’s current rule
and (b) Ohm’s law.

FIGURE 8.7
Engineering systems which, at steady state, can be modeled with linear algebraic
equations.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 223

224 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

8.3 CASE STUDY continued

Given these assumptions, Kirchhoff’s current rule is applied at each node to yield

i12 + i52 + i32 = 0

i65 − i52 − i54 = 0

i43 − i32 = 0

i54 − i43 = 0

Application of the voltage rule to each of the two loops gives

−i54 R54 − i43 R43 − i32 R32 + i52 R52 = 0

−i65 R65 − i52 R52 + i12 R12 − 200 = 0

or, substituting the resistances from Fig. 8.9 and bringing constants to the right-hand side,

−15i54 − 5i43 − 10i32 + 10i52 = 0

−20i65 − 10i52 + 5i12 = 200

Therefore, the problem amounts to solving six equations with six unknown currents. These
equations can be expressed in matrix form as

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
0 −1 0 1 −1 0
0 0 −1 0 0 1
0 0 0 0 1 −1
0 10 −10 0 −15 −5
5 −10 0 −20 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i12

i52

i32

i65

i54

i43

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
0
0
0
0

200

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

R � 10 �
V1 � 200 V

V6 � 0 V

3 2 1

4 5 6

R � 5 �

R � 5 � R � 10 �

R � 15 � R � 20 �

FIGURE 8.9
A resistor circuit to be solved using simultaneous
linear algebraic equations.

3 2 1

4 5 6

i12

i65
i52

i32

i54
i43

FIGURE 8.10
Assumed current directions.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 224

8.3 CASE STUDY 225

8.3 CASE STUDY continued

Although impractical to solve by hand, this system is easily handled by MATLAB.
The solution is

>> A=[1 1 1 0 0 0
0 -1 0 1 -1 0
0 0 -1 0 0 1
0 0 0 0 1 -1
0 10 -10 0 -15 -5
5 -10 0 -20 0 0];
>> b=[0 0 0 0 0 200]';
>> current=A\b

current =
6.1538
-4.6154
-1.5385
-6.1538
-1.5385
-1.5385

Thus, with proper interpretation of the signs of the result, the circuit currents and volt-
ages are as shown in Fig. 8.11. The advantages of using MATLAB for problems of this type
should be evident.

V � 153.85 V � 169.23

i � 1.5385

V � 146.15 V � 123.08
V � 0

V � 200

i � 6.1538

FIGURE 8.11
The solution for currents and voltages obtained using MATLAB.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 225

226 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

PROBLEMS

8.1 Given a square matrix [A], write a single line MATLAB
command that will create a new matrix [Aug] that consists of
the original matrix [A] augmented by an identity matrix [I].
8.2 A number of matrices are defined as

[A] =
⎡
⎣ 4 5

1 2
5 6

⎤
⎦ [B] =

⎡
⎣ 4 3 7

1 2 6
2 0 4

⎤
⎦

{C} =
⎧⎨
⎩

2
6
1

⎫⎬
⎭ [D] =

[
5 4 3 −7
2 1 7 5

]

[E] =
⎡
⎣ 1 5 6

7 1 3
4 0 6

⎤
⎦

[F] =
[

2 0 1
1 7 4

]
�G� = � 8 6 4 �

Answer the following questions regarding these matrices:
(a) What are the dimensions of the matrices?
(b) Identify the square, column, and row matrices.
(c) What are the values of the elements: a12, b23, d32, e22,

f12, g12?
(d) Perform the following operations:

(1) [E] + [B] (2) [A] + [F] (3) [B] − [E]

(4) 7 × [B] (5) {C}T (6) [E] × [B]

(7) [B] × [E] (8) [D]T (9) [G] × {C}

(10) [I] × [B] (11) [E]T × [E] (12) {C}T × {C}

8.3 Write the following set of equations in matrix form:

50 = 5x3 − 6x2

2x2 + 7x3 + 30 = 0

x1 − 7x3 = 50 − 3x2 + 5x1

Use MATLAB to solve for the unknowns. In addition, use it
to compute the transpose and the inverse of the coefficient
matrix.
8.4 Three matrices are defined as

[A] =
⎡
⎣ 6 −1

12 7
−5 3

⎤
⎦ [B] =

[
4 0

0.6 8

]
[C] =

[
1 −2

−6 1

]

(a) Perform all possible multiplications that can be com-
puted between pairs of these matrices.

(b) Justify why the remaining pairs cannot be multiplied.

(c) Use the results of (a) to illustrate why the order of mul-
tiplication is important.

8.5 Solve the following system with MATLAB:

[
3 + 2i 4

−i 1

]{
z1

z2

}
=

{
2 + i

3

}

8.6 Develop, debug, and test your own M-file to multiply
two matrices—that is, [X] = [Y][Z], where [Y] is m by n and
[Z] is n by p. Employ for...end loops to implement the
multiplication and include error traps to flag bad cases. Test
the program using the matrices from Prob. 8.4.
8.7 Develop, debug, and test your own M-file to generate
the transpose of a matrix. Employ for...end loops to im-
plement the transpose. Test it on the matrices from
Prob. 8.4.
8.8 Develop, debug, and test your own M-file function to
switch the rows of a matrix using a permutation matrix. The
first lines of the function should be as follows:

function B = permut(A,r1,r2)
% Permut: Switch rows of matrix A
% with a permutation matrix
% B = permut(A,r1,r2)
% input:
% A = original matrix
% r1, r2 = rows to be switched
% output:
% B = matrix with rows switched

Include error traps for erroneous inputs (e.g., user specifies
rows that exceed the dimensions of the original matrix).
8.9 Five reactors linked by pipes are shown in Fig. P8.9.
The rate of mass flow through each pipe is computed as the
product of flow (Q) and concentration (c). At steady state,
the mass flow into and out of each reactor must be equal.
For example, for the first reactor, a mass balance can be
written as

Q01c01 + Q31c3 = Q15c1 + Q12c1

Write mass balances for the remaining reactors in Fig. P8.9
and express the equations in matrix form. Then use MATLAB
to solve for the concentrations in each reactor.
8.10 An important problem in structural engineering is that
of finding the forces in a statically determinate truss
(Fig. P8.10). This type of structure can be described as a
system of coupled linear algebraic equations derived from
force balances. The sum of the forces in both horizontal and

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 226

PROBLEMS 227

vertical directions must be zero at each node, because the sys-
tem is at rest. Therefore, for node 1:∑

FH = 0 = −F1 cos 30◦ + F3 cos 60◦ + F1,h∑
FV = 0 = −F1 sin 30◦ − F3 sin 60◦ + F1,v

for node 2:∑
FH = 0 = F2 + F1 cos 30◦ + F2,h + H2∑
FV = 0 = F1 sin 30◦ + F2,v + V2

for node 3:∑
FH = 0 = −F2 − F3 cos 60◦ + F3,h∑
FV = 0 = F3 sin 60◦ + F3,v + V3

where Fi,h is the external horizontal force applied to node i
(where a positive force is from left to right) and Fi,v is the ex-
ternal vertical force applied to node i (where a positive force
is upward). Thus, in this problem, the 2000-N downward
force on node 1 corresponds to Fi,v = −2000. For this case,
all other Fi,v’s and Fi,h’s are zero. Express this set of linear
algebraic equations in matrix form and then use MATLAB
to solve for the unknowns.
8.11 Consider the three mass-four spring system in
Fig. P8.11. Determining the equations of motion from �Fx =
max for each mass using its free-body diagram results in the

60�

90�

30�

1

2000 N

2

V2

H2

F1 F3

F2

V3

3

FIGURE P8.10

Q15 � 5

Q25 � 1

Q23 � 2

Q55 � 4

Q54 � 2

Q12 � 4

Q31 � 3

c5

c2

c3

c1

Q34 � 6

c4

Q24 � 1 Q44 � 9Q01 � 6

c01 � 20

Q03 � 7

c03 � 50

FIGURE P8.9

k2 k3 k4k1

x1 x2 x3

m1 m2 m3

FIGURE P8.11

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 227

228 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

R � 10 �
V1 � 200 volts

V6 � 0 volts

3 2 1

4 5 6

R � 5 �

R � 5 � R � 10 �

R � 15 � R � 20 �

FIGURE P8.14

R
� 7 �R � 8 � R � 10 �

R � 30 �3 2 1

4 5 6

R � 15 �

R � 35 �
V1 � 20 volts

V6 � 140 volts
R � 5 �

FIGURE P8.15

following differential equations:

ẍ1 +
(

k1 + k2

m1

)
x1 −

(
k2

m1

)
x2 = 0

ẍ2 −
(

k2

m2

)
x1 +

(
k2 + k3

m2

)
x2 −

(
k3

m2

)
x3 = 0

ẍ3 −
(

k3

m3

)
x2 +

(
k3 + k4

m3

)
x3 = 0

where k1 = k4 = 10 N/m, k2 = k3 = 40 N/m, and m1 = m2 =
m3 = 1 kg. The three equations can be written in matrix form:

0 = {Acceleration vector}
+ [k/m matrix]{displacement vector x}

At a specific time where x1 = 0.05 m, x2 = 0.04 m, and x3 =
0.03 m, this forms a tridiagonal matrix. Use MATLAB to
solve for the acceleration of each mass.
8.12 Perform the same computation as in Example 8.2, but
use five jumpers with the following characteristics:

Spring Unstretched
Mass Constant Cord

Jumper (kg) (N/m) Length (m)

1 65 80 10
2 75 40 10
3 60 70 10
4 75 100 10
5 90 20 10

8.13 Three masses are suspended vertically by a series of
identical springs where mass 1 is at the top and mass 3 is at
the bottom. If g = 9.81 m/s2, m1 = 2 kg, m2 = 2.5 kg, m3 =
3 kg, and the k’s = 15 kg/s2, use MATLAB to solve for the
displacements x.
8.14 Perform the same computation as in Sec. 8.3, but for
the circuit in Fig. P8.14.
8.15 Perform the same computation as in Sec. 8.3, but for
the circuit in Fig. P8.15.

cha01102_ch08_205-228.qxd 12/17/10 9:21 AM Page 228

229

9
Gauss Elimination

CHAPTER OBJECTIVES
The primary objective of this chapter is to describe the Gauss elimination algorithm
for solving linear algebraic equations. Specific objectives and topics covered are

• Knowing how to solve small sets of linear equations with the graphical method
and Cramer’s rule.

• Understanding how to implement forward elimination and back substitution as in
Gauss elimination.

• Understanding how to count flops to evaluate the efficiency of an algorithm.
• Understanding the concepts of singularity and ill-condition.
• Understanding how partial pivoting is implemented and how it differs from

complete pivoting.
• Knowing how to compute the determinant as part of the Gauss elimination

algorithm with partial pivoting.
• Recognizing how the banded structure of a tridiagonal system can be exploited

to obtain extremely efficient solutions.

A t the end of Chap. 8, we stated that MATLAB provides two simple and direct
methods for solving systems of linear algebraic equations: left division,

>> x = A\b

and matrix inversion,

>> x = inv(A)*b

Chapters 9 and 10 provide background on how such solutions are obtained. This ma-
terial is included to provide insight into how MATLAB operates. In addition, it is intended
to show how you can build your own solution algorithms in computational environments
that do not have MATLAB’s built-in capabilities.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 229

230 GAUSS ELIMINATION

The technique described in this chapter is called Gauss elimination because it involves
combining equations to eliminate unknowns. Although it is one of the earliest methods for
solving simultaneous equations, it remains among the most important algorithms in use
today and is the basis for linear equation solving on many popular software packages
including MATLAB.

9.1 SOLVING SMALL NUMBERS OF EQUATIONS

Before proceeding to Gauss elimination, we will describe several methods that are appro-
priate for solving small (n ≤ 3) sets of simultaneous equations and that do not require a
computer. These are the graphical method, Cramer’s rule, and the elimination of unknowns.

9.1.1 The Graphical Method

A graphical solution is obtainable for two linear equations by plotting them on Cartesian
coordinates with one axis corresponding to x1 and the other to x2. Because the equations
are linear, each equation will plot as a straight line. For example, suppose that we have the
following equations:

3x1 + 2x2 = 18

−x1 + 2x2 = 2

If we assume that x1 is the abscissa, we can solve each of these equations for x2:

x2 = −3

2
x1 + 9

x2 = 1

2
x1 + 1

The equations are now in the form of straight lines—that is, x2 = (slope) x1 + intercept.
When these equations are graphed, the values of x1 and x2 at the intersection of the lines
represent the solution (Fig. 9.1). For this case, the solution is x1 = 4 and x2 = 3.

For three simultaneous equations, each equation would be represented by a plane in a
three-dimensional coordinate system. The point where the three planes intersect would rep-
resent the solution. Beyond three equations, graphical methods break down and, conse-
quently, have little practical value for solving simultaneous equations. However, they are
useful in visualizing properties of the solutions.

For example, Fig. 9.2 depicts three cases that can pose problems when solving sets of
linear equations. Fig. 9.2a shows the case where the two equations represent parallel lines.
For such situations, there is no solution because the lines never cross. Figure 9.2b depicts
the case where the two lines are coincident. For such situations there is an infinite number
of solutions. Both types of systems are said to be singular.

In addition, systems that are very close to being singular (Fig. 9.2c) can also cause
problems. These systems are said to be ill-conditioned. Graphically, this corresponds to the
fact that it is difficult to identify the exact point at which the lines intersect. Ill-conditioned
systems will also pose problems when they are encountered during the numerical solution
of linear equations. This is because they will be extremely sensitive to roundoff error.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 230

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 231

9.1.2 Determinants and Cramer’s Rule

Cramer’s rule is another solution technique that is best suited to small numbers of equa-
tions. Before describing this method, we will briefly review the concept of the determinant,
which is used to implement Cramer’s rule. In addition, the determinant has relevance to the
evaluation of the ill-conditioning of a matrix.

0 62 4
0

6

2

4

8

x2

x1

Solution: x1 � 4; x2 � 3

�x 1 �
 2x 2 �

 2

3x
1 �

 2x
2 �

 18

FIGURE 9.1
Graphical solution of a set of two simultaneous linear algebraic equations. The intersection of the
lines represents the solution.

x 1
� x 2

� 1

x2 x2 x2

x1 x1 x1

x 1
� x 2

� �x 1
� 2x 2

� 2

(a) (b) (c)

1
2� x 1

� x 2
� 1.1

x 1
� x 2

� 1

1
2�

x 1
� x 2

� 1

1
2�

2.3
5�

1
2�

1
2

FIGURE 9.2
Graphical depiction of singular and ill-conditioned systems: (a) no solution, (b) infinite solutions, and
(c) ill-conditioned system where the slopes are so close that the point of intersection is difficult to detect visually.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 231

232 GAUSS ELIMINATION

Determinants. The determinant can be illustrated for a set of three equations:

[A]{x} = {b}
where [A] is the coefficient matrix

[A] =
[a11 a12 a13

a21 a22 a23

a31 a32 a33

]

The determinant of this system is formed from the coefficients of [A] and is represented as

D =
∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣
Although the determinant D and the coefficient matrix [A] are composed of the same

elements, they are completely different mathematical concepts. That is why they are dis-
tinguished visually by using brackets to enclose the matrix and straight lines to enclose the
determinant. In contrast to a matrix, the determinant is a single number. For example, the
value of the determinant for two simultaneous equations

D =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
is calculated by

D = a11a22 − a12a21

For the third-order case, the determinant can be computed as

D = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ (9.1)

where the 2 × 2 determinants are called minors.

EXAMPLE 9.1 Determinants

Problem Statement. Compute values for the determinants of the systems represented in
Figs. 9.1 and 9.2.

Solution. For Fig. 9.1:

D =
∣∣∣∣ 3 2
−1 2

∣∣∣∣ = 3(2) − 2(−1) = 8

For Fig. 9.2a:

D =
∣∣∣∣∣−

1
2 1

− 1
2 1

∣∣∣∣∣ = −1

2
(1) − 1

(−1

2

)
= 0

For Fig. 9.2b:

D =
∣∣∣∣− 1

2 1
−1 2

∣∣∣∣ = −1

2
(2) − 1(−1) = 0

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 232

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 233

For Fig. 9.2c:

D =
∣∣∣∣∣ − 1

2 1

− 2.3
5 1

∣∣∣∣∣ = −1

2
(1) − 1

(−2.3

5

)
= −0.04

In the foregoing example, the singular systems had zero determinants. Additionally,
the results suggest that the system that is almost singular (Fig. 9.2c) has a determinant
that is close to zero. These ideas will be pursued further in our subsequent discussion of
ill-conditioning in Chap. 11.

Cramer’s Rule. This rule states that each unknown in a system of linear algebraic equa-
tions may be expressed as a fraction of two determinants with denominator D and with the
numerator obtained from D by replacing the column of coefficients of the unknown in
question by the constants b1, b2, . . . , bn . For example, for three equations, x1 would be
computed as

x1 =

∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣
D

EXAMPLE 9.2 Cramer’s Rule

Problem Statement. Use Cramer’s rule to solve

0.3x1 + 0.52x2 + x3 = −0.01

0.5x1 + x2 + 1.9x3 = 0.67

0.1x1 + 0.3 x2 + 0.5x3 = −0.44

Solution. The determinant D can be evaluated as [Eq. (9.1)]:

D = 0.3

∣∣∣∣ 1 1.9
0.3 0.5

∣∣∣∣ − 0.52

∣∣∣∣ 0.5 1.9
0.1 0.5

∣∣∣∣ + 1

∣∣∣∣ 0.5 1
0.1 0.3

∣∣∣∣ = −0.0022

The solution can be calculated as

x1 =

∣∣∣∣∣
−0.01 0.52 1
0.67 1 1.9

−0.44 0.3 0.5

∣∣∣∣∣
−0.0022

= 0.03278

−0.0022
= −14.9

x2 =

∣∣∣∣∣
0.3 −0.01 1
0.5 0.67 1.9
0.1 −0.44 0.5

∣∣∣∣∣
−0.0022

= 0.0649

−0.0022
= −29.5

x3 =

∣∣∣∣∣
0.3 0.52 −0.01
0.5 1 0.67
0.1 0.3 −0.44

∣∣∣∣∣
−0.0022

= −0.04356

−0.0022
= 19.8

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 233

234 GAUSS ELIMINATION

The det Function. The determinant can be computed directly in MATLAB with the det
function. For example, using the system from the previous example:

>> A=[0.3 0.52 1;0.5 1 1.9;0.1 0.3 0.5];
>> D=det(A)

D =
-0.0022

Cramer’s rule can be applied to compute x1 as in

>> A(:,1)=[-0.01;0.67;-0.44]

A =
-0.0100 0.5200 1.0000
0.6700 1.0000 1.9000
-0.4400 0.3000 0.5000

>> x1=det(A)/D

x1 =
-14.9000

For more than three equations, Cramer’s rule becomes impractical because, as the
number of equations increases, the determinants are time consuming to evaluate by hand
(or by computer). Consequently, more efficient alternatives are used. Some of these alter-
natives are based on the last noncomputer solution technique covered in Section 9.1.3—the
elimination of unknowns.

9.1.3 Elimination of Unknowns

The elimination of unknowns by combining equations is an algebraic approach that can be
illustrated for a set of two equations:

a11x1 + a12x2 = b1 (9.2)

a21x1 + a22x2 = b2 (9.3)

The basic strategy is to multiply the equations by constants so that one of the unknowns
will be eliminated when the two equations are combined. The result is a single equation
that can be solved for the remaining unknown. This value can then be substituted into either
of the original equations to compute the other variable.

For example, Eq. (9.2) might be multiplied by a21 and Eq. (9.3) by a11 to give

a21a11x1 + a21a12x2 = a21b1 (9.4)

a11a21x1 + a11a22x2 = a11b2 (9.5)

Subtracting Eq. (9.4) from Eq. (9.5) will, therefore, eliminate the x1 term from the
equations to yield

a11a22x2 − a21a12x2 = a11b2 − a21b1

which can be solved for

x2 = a11b2 − a21b1

a11a22 − a21a12
(9.6)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 234

9.2 NAIVE GAUSS ELIMINATION 235

Equation (9.6) can then be substituted into Eq. (9.2), which can be solved for

x1 = a22b1 − a12b2

a11a22 − a21a12
(9.7)

Notice that Eqs. (9.6) and (9.7) follow directly from Cramer’s rule:

x1 =

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
= a22b1 − a12b2

a11a22 − a21a12

x2 =

∣∣∣∣ a11 b1

a21 b2

∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
= a11b2 − a21b1

a11a22 − a21a12

The elimination of unknowns can be extended to systems with more than two or three
equations. However, the numerous calculations that are required for larger systems make
the method extremely tedious to implement by hand. However, as described in Section 9.2,
the technique can be formalized and readily programmed for the computer.

9.2 NAIVE GAUSS ELIMINATION

In Section 9.1.3, the elimination of unknowns was used to solve a pair of simultaneous
equations. The procedure consisted of two steps (Fig. 9.3):

1. The equations were manipulated to eliminate one of the unknowns from the equations.
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the result back-substituted into
one of the original equations to solve for the remaining unknown.

This basic approach can be extended to large sets of equations by developing a system-
atic scheme or algorithm to eliminate unknowns and to back-substitute. Gauss elimination
is the most basic of these schemes.

This section includes the systematic techniques for forward elimination and back sub-
stitution that comprise Gauss elimination. Although these techniques are ideally suited for
implementation on computers, some modifications will be required to obtain a reliable
algorithm. In particular, the computer program must avoid division by zero. The follow-
ing method is called “naive” Gauss elimination because it does not avoid this problem.
Section 9.3 will deal with the additional features required for an effective computer
program.

The approach is designed to solve a general set of n equations:

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1 (9.8a)

a21x1 + a22x2 + a23x3 + · · · + a2n xn = b2 (9.8b)

...
...

an1x1 + an2x2 + an3x3 + · · · + ann xn = bn (9.8c)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 235

236 GAUSS ELIMINATION

As was the case with the solution of two equations, the technique for n equations consists
of two phases: elimination of unknowns and solution through back substitution.

Forward Elimination of Unknowns. The first phase is designed to reduce the set of
equations to an upper triangular system (Fig. 9.3a). The initial step will be to eliminate the
first unknown x1 from the second through the nth equations. To do this, multiply Eq. (9.8a)
by a21/a11 to give

a21x1 + a21

a11
a12x2 + a21

a11
a13x3 + · · · + a21

a11
a1n xn = a21

a11
b1 (9.9)

This equation can be subtracted from Eq. (9.8b) to give(
a22 − a21

a11
a12

)
x2 + · · · +

(
a2n − a21

a11
a1n

)
xn = b2 − a21

a11
b1

or

a′
22x2 + · · · + a′

2n xn = b′
2

where the prime indicates that the elements have been changed from their original values.
The procedure is then repeated for the remaining equations. For instance, Eq. (9.8a)

can be multiplied by a31/a11 and the result subtracted from the third equation. Repeating
the procedure for the remaining equations results in the following modified system:

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1 (9.10a)

a′
22x2 + a′

23x3 + · · · + a′
2n xn = b′

2 (9.10b)

(a) Forward
elimination

(b) Back
substitution

a11

a21

a31

a13a12

a23a22

a33a32

b1

b2

b3

a11 a13a12

a�23a�22

a��33

x3 � b��3�a��33

x2 � (b�2 � a�23x3)�a�22

x1 � (b1 � a13x3 � a12x2)�a11

b1

b�2

b��3

FIGURE 9.3
The two phases of Gauss elimination: (a) forward elimination and (b) back substitution.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 236

9.2 NAIVE GAUSS ELIMINATION 237

a′
32x2 + a′

33x3 + · · · + a′
3n xn = b′

3 (9.10c)
...

...

a′
n2x2 + a′

n3x3 + · · · + a′
nn xn = b′

n (9.10d)

For the foregoing steps, Eq. (9.8a) is called the pivot equation and a11 is called the
pivot element. Note that the process of multiplying the first row by a21/a11 is equivalent to
dividing it by a11 and multiplying it by a21. Sometimes the division operation is referred to
as normalization. We make this distinction because a zero pivot element can interfere with
normalization by causing a division by zero. We will return to this important issue after we
complete our description of naive Gauss elimination.

The next step is to eliminate x2 from Eq. (9.10c) through (9.10d). To do this, multi-
ply Eq. (9.10b) by a′

32/a′
22 and subtract the result from Eq. (9.10c). Perform a similar

elimination for the remaining equations to yield

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1

a′
22x2 + a′

23x3 + · · · + a′
2n xn = b′

2

a′′
33x3 + · · · + a′′

3n xn = b′′
3

...
...

a′′
n3x3 + · · · + a′′

nn xn = b′′
n

where the double prime indicates that the elements have been modified twice.
The procedure can be continued using the remaining pivot equations. The final

manipulation in the sequence is to use the (n − 1)th equation to eliminate the xn−1 term
from the nth equation. At this point, the system will have been transformed to an upper
triangular system:

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1 (9.11a)

a′
22x2 + a′

23x3 + · · · + a′
2n xn = b′

2 (9.11b)

a′′
33x3 + · · · + a′′

3n xn = b′′
3 (9.11c)

. . .
...

a(n−1)
nn xn = b(n−1)

n (9.11d)

Back Substitution. Equation (9.11d) can now be solved for xn :

xn = b(n−1)
n

a(n−1)
nn

(9.12)

This result can be back-substituted into the (n − 1)th equation to solve for xn−1. The pro-
cedure, which is repeated to evaluate the remaining x’s, can be represented by the
following formula:

xi =
b(i−1)

i −
n∑

j=i+1

a(i−1)
i j xj

a(i−1)
i i

for i = n − 1, n − 2, . . . , 1 (9.13)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 237

238 GAUSS ELIMINATION

EXAMPLE 9.3 Naive Gauss Elimination

Problem Statement. Use Gauss elimination to solve

3x1 − 0.1x2 − 0.2x3 = 7.85 (E9.3.1)

0.1x1 + 7x2 − 0.3x3 = −19.3 (E9.3.2)

0.3x1 − 0.2x2 + 10x3 = 71.4 (E9.3.3)

Solution. The first part of the procedure is forward elimination. Multiply Eq. (E9.3.1)
by 0.1/3 and subtract the result from Eq. (E9.3.2) to give

7.00333x2 − 0.293333x3 = −19.5617

Then multiply Eq. (E9.3.1) by 0.3/3 and subtract it from Eq. (E9.3.3). After these opera-
tions, the set of equations is

3x1 − 0.1x2 − 0.2x3 = 7.85 (E9.3.4)

7.00333x2 − 0.293333x3 = −19.5617 (E9.3.5)

− 0.190000x2 + 10.0200x3 = 70.6150 (E9.3.6)

To complete the forward elimination, x2 must be removed from Eq. (E9.3.6). To accom-
plish this, multiply Eq. (E9.3.5) by −0.190000/7.00333 and subtract the result from
Eq. (E9.3.6). This eliminates x2 from the third equation and reduces the system to an upper
triangular form, as in

3x1 − 0.1x2 − 0.2x3 = 7.85 (E9.3.7)

7.00333x2 − 0.293333x3 = −19.5617 (E9.3.8)

10.0120x3 = 70.0843 (E9.3.9)

We can now solve these equations by back substitution. First, Eq. (E9.3.9) can be
solved for

x3 = 70.0843

10.0120
= 7.00003

This result can be back-substituted into Eq. (E9.3.8), which can then be solved for

x2 = −19.5617 + 0.293333(7.00003)

7.00333
= −2.50000

Finally, x3 = 7.00003 and x2 = −2.50000 can be substituted back into Eq. (E9.3.7), which
can be solved for

x1 = 7.85 + 0.1(−2.50000) + 0.2(7.00003)

3
= 3.00000

Although there is a slight round-off error, the results are very close to the exact solution of
x1 = 3, x2 = −2.5, and x3 = 7. This can be verified by substituting the results into the
original equation set:

3(3) − 0.1(−2.5) − 0.2(7.00003) = 7.84999 ∼= 7.85

0.1(3) + 7(−2.5) − 0.3(7.00003) = −19.30000 = −19.3

0.3(3) − 0.2(−2.5) + 10(7.00003) = 71.4003 ∼= 71.4

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 238

9.2 NAIVE GAUSS ELIMINATION 239

9.2.1 MATLAB M-file: GaussNaive

An M-file that implements naive Gauss elimination is listed in Fig. 9.4. Notice that the
coefficient matrix A and the right-hand-side vector b are combined in the augmented ma-
trix Aug. Thus, the operations are performed on Aug rather than separately on A and b.

Two nested loops provide a concise representation of the forward elimination step. An
outer loop moves down the matrix from one pivot row to the next. The inner loop moves
below the pivot row to each of the subsequent rows where elimination is to take place.
Finally, the actual elimination is represented by a single line that takes advantage of
MATLAB’s ability to perform matrix operations.

The back-substitution step follows directly from Eqs. (9.12) and (9.13). Again,
MATLAB’s ability to perform matrix operations allows Eq. (9.13) to be programmed as a
single line.

9.2.2 Operation Counting

The execution time of Gauss elimination depends on the amount of floating-point operations
(or flops) involved in the algorithm. On modern computers using math coprocessors, the time
consumed to perform addition/subtraction and multiplication/division is about the same.

function x = GaussNaive(A,b)
% GaussNaive: naive Gauss elimination
% x = GaussNaive(A,b): Gauss elimination without pivoting.
% input:
% A = coefficient matrix
% b = right hand side vector
% output:
% x = solution vector

[m,n] = size(A);
if m~=n, error('Matrix A must be square'); end
nb = n+1;
Aug = [A b];
% forward elimination
for k = 1:n-1

for i = k+1:n
factor = Aug(i,k)/Aug(k,k);
Aug(i,k:nb) = Aug(i,k:nb)-factor*Aug(k,k:nb);

end
end
% back substitution
x = zeros(n,1);
x(n) = Aug(n,nb)/Aug(n,n);
for i = n-1:-1:1

x(i) = (Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
end

FIGURE 9.4
An M-file to implement naive Gauss elimination.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 239

240 GAUSS ELIMINATION

Therefore, totaling up these operations provides insight into which parts of the algorithm are
most time consuming and how computation time increases as the system gets larger.

Before analyzing naive Gauss elimination, we will first define some quantities that
facilitate operation counting:

m∑
i=1

c f (i) = c
m∑

i=1

f (i)
m∑

i=1

f (i) + g(i) =
m∑

i=1

f (i) +
m∑

i=1

g(i) (9.14a,b)

m∑
i=1

1 = 1 + 1 + 1 + · · · + 1 = m
m∑

i=k

1 = m − k + 1 (9.14c,d)

m∑
i=1

i = 1 + 2 + 3 + · · · + m = m(m + 1)

2
= m2

2
+ O(m) (9.14e)

m∑
i=1

i2 = 12 + 22 + 32 + · · · + m2 = m(m + 1)(2m + 1)

6
= m3

3
+ O(m2) (9.14f)

where O(mn) means “terms of order mn and lower.”
Now let us examine the naive Gauss elimination algorithm (Fig. 9.4) in detail. We will

first count the flops in the elimination stage. On the first pass through the outer loop, k = 1.
Therefore, the limits on the inner loop are from i = 2 to n. According to Eq. (9.14d), this
means that the number of iterations of the inner loop will be

n∑
i=2

1 = n − 2 + 1 = n − 1 (9.15)

For every one of these iterations, there is one division to calculate the factor. The next line
then performs a multiplication and a subtraction for each column element from 2 to nb.
Because nb = n + 1, going from 2 to nb results in n multiplications and n subtractions.
Together with the single division, this amounts to n + 1 multiplications/divisions and
n addition/subtractions for every iteration of the inner loop. The total for the first pass
through the outer loop is therefore (n − 1)(n + 1) multiplication/divisions and (n − 1)(n)
addition/subtractions.

Similar reasoning can be used to estimate the flops for the subsequent iterations of the
outer loop. These can be summarized as

Outer Loop Inner Loop Addition/Subtraction Multiplication/Division
k i Flops Flops

1 2, n (n − 1)(n) (n − 1)(n + 1)
2 3, n (n − 2)(n − 1) (n − 2)(n)
.
.
.

.

.

.

k k + 1, n (n − k)(n + 1 − k) (n − k)(n + 2 − k)
.
.
.

.

.

.

n − 1 n, n (1)(2) (1)(3)

Therefore, the total addition/subtraction flops for elimination can be computed as
n−1∑
k=1

(n − k)(n + 1 − k) =
n−1∑
k=1

[n(n + 1) − k(2n + 1) + k2] (9.16)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 240

9.2 NAIVE GAUSS ELIMINATION 241

or

n(n + 1)

n−1∑
k=1

1 − (2n + 1)

n−1∑
k=1

k +
n−1∑
k=1

k2 (9.17)

Applying some of the relationships from Eq. (9.14) yields

[n3 + O(n)] − [n3 + O(n2)] +
[

1

3
n3 + O(n2)

]
= n3

3
+ O(n) (9.18)

A similar analysis for the multiplication/division flops yields

[n3 + O(n2)] − [n3 + O(n)] +
[

1

3
n3 + O(n2)

]
= n3

3
+ O(n2) (9.19)

Summing these results gives

2n3

3
+ O(n2) (9.20)

Thus, the total number of flops is equal to 2n3/3 plus an additional component pro-
portional to terms of order n2 and lower. The result is written in this way because as n gets
large, the O(n2) and lower terms become negligible. We are therefore justified in conclud-
ing that for large n, the effort involved in forward elimination converges on 2n3/3.

Because only a single loop is used, back substitution is much simpler to evaluate. The
number of addition/subtraction flops is equal to n(n − 1)/2. Because of the extra division
prior to the loop, the number of multiplication/division flops is n(n + 1)/2. These can be
added to arrive at a total of

n2 + O(n) (9.21)

Thus, the total effort in naive Gauss elimination can be represented as

2n3

3
+ O(n2)︸ ︷︷ ︸

Forward
elimination

+ n2 + O(n)︸ ︷︷ ︸
Back

substitution

as n increases−−−−−−−→ 2n3

3
+ O(n2) (9.22)

Two useful general conclusions can be drawn from this analysis:

1. As the system gets larger, the computation time increases greatly. As in Table 9.1, the
amount of flops increases nearly three orders of magnitude for every order of magni-
tude increase in the number of equations.

TABLE 9.1 Number of flops for naive Gauss elimination.

Back Total Percent Due
n Elimination Substitution Flops 2n3/3 to Elimination

10 705 100 805 667 87.58%
100 671550 10000 681550 666667 98.53%

1000 6.67 × 108 1 × 106 6.68 × 108 6.67 × 108 99.85%

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 241

242 GAUSS ELIMINATION

2. Most of the effort is incurred in the elimination step. Thus, efforts to make the method
more efficient should probably focus on this step.

9.3 PIVOTING

The primary reason that the foregoing technique is called “naive” is that during both the
elimination and the back-substitution phases, it is possible that a division by zero can
occur. For example, if we use naive Gauss elimination to solve

2x2 + 3x3 = 8

4x1 + 6x2 + 7x3 = −3

2x1 − 3x2 + 6x3 = 5

the normalization of the first row would involve division by a11 = 0. Problems may also
arise when the pivot element is close, rather than exactly equal, to zero because if the mag-
nitude of the pivot element is small compared to the other elements, then round-off errors
can be introduced.

Therefore, before each row is normalized, it is advantageous to determine the coefficient
with the largest absolute value in the column below the pivot element. The rows can then be
switched so that the largest element is the pivot element. This is called partial pivoting.

If columns as well as rows are searched for the largest element and then switched, the
procedure is called complete pivoting. Complete pivoting is rarely used because most of
the improvement comes from partial pivoting. In addition, switching columns changes the
order of the x’s and, consequently, adds significant and usually unjustified complexity to
the computer program.

The following example illustrates the advantages of partial pivoting. Aside from
avoiding division by zero, pivoting also minimizes round-off error. As such, it also serves
as a partial remedy for ill-conditioning.

EXAMPLE 9.4 Partial Pivoting

Problem Statement. Use Gauss elimination to solve

0.0003x1 + 3.0000x2 = 2.0001

1.0000x1 + 1.0000x2 = 1.0000

Note that in this form the first pivot element, a11 = 0.0003, is very close to zero. Then re-
peat the computation, but partial pivot by reversing the order of the equations. The exact
solution is x1 = 1/3 and x2 = 2/3.

Solution. Multiplying the first equation by 1/(0.0003) yields

x1 + 10,000x2 = 6667

which can be used to eliminate x1 from the second equation:

−9999x2 = −6666

which can be solved for x2 = 2/3. This result can be substituted back into the first equation
to evaluate x1:

x1 = 2.0001 − 3(2/3)

0.0003
(E9.4.1)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 242

9.3 PIVOTING 243

Due to subtractive cancellation, the result is very sensitive to the number of significant
figures carried in the computation:

Absolute Value of
Significant Percent Relative

Figures x2 x1 Error for x1

3 0.667 −3.33 1099
4 0.6667 0.0000 100
5 0.66667 0.30000 10
6 0.666667 0.330000 1
7 0.6666667 0.3330000 0.1

Note how the solution for x1 is highly dependent on the number of significant figures. This
is because in Eq. (E9.4.1), we are subtracting two almost-equal numbers.

On the other hand, if the equations are solved in reverse order, the row with the larger
pivot element is normalized. The equations are

1.0000x1 + 1.0000x2 = 1.0000

0.0003x1 + 3.0000x2 = 2.0001

Elimination and substitution again yields x2 = 2/3. For different numbers of significant
figures, x1 can be computed from the first equation, as in

x1 = 1 − (2/3)

1
This case is much less sensitive to the number of significant figures in the computation:

Absolute Value of
Significant Percent Relative

Figures x2 x1 Error for x1

3 0.667 0.333 0.1
4 0.6667 0.3333 0.01
5 0.66667 0.33333 0.001
6 0.666667 0.333333 0.0001
7 0.6666667 0.3333333 0.0000

Thus, a pivot strategy is much more satisfactory.

9.3.1 MATLAB M-file: GaussPivot

An M-file that implements Gauss elimination with partial pivoting is listed in Fig. 9.5. It
is identical to the M-file for naive Gauss elimination presented previously in Section 9.2.1
with the exception of the bold portion that implements partial pivoting.

Notice how the built-in MATLAB function max is used to determine the largest avail-
able coefficient in the column below the pivot element. The max function has the syntax

[y,i] = max(x)

where y is the largest element in the vector x, and i is the index corresponding to that
element.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 243

244 GAUSS ELIMINATION

function x = GaussPivot(A,b)
% GaussPivot: Gauss elimination pivoting
% x = GaussPivot(A,b): Gauss elimination with pivoting.
% input:
% A = coefficient matrix
% b = right hand side vector
% output:
% x = solution vector

[m,n]=size(A);
if m~=n, error('Matrix A must be square'); end
nb=n+1;
Aug=[A b];
% forward elimination
for k = 1:n-1

% partial pivoting
[big,i]=max(abs(Aug(k:n,k)));
ipr=i+k-1;
if ipr~=k

Aug([k,ipr],:)=Aug([ipr,k],:);
end
for i = k+1:n

factor=Aug(i,k)/Aug(k,k);
Aug(i,k:nb)=Aug(i,k:nb)-factor*Aug(k,k:nb);

end
end
% back substitution
x=zeros(n,1);
x(n)=Aug(n,nb)/Aug(n,n);
for i = n-1:-1:1

x(i)=(Aug(i,nb)-Aug(i,i+1:n)*x(i+1:n))/Aug(i,i);
end

FIGURE 9.5
An M-file to implement Gauss elimination with partial pivoting.

9.3.2 Determinant Evaluation with Gauss Elimination

At the end of Sec. 9.1.2, we suggested that determinant evaluation by expansion of minors
was impractical for large sets of equations. However, because the determinant has value in
assessing system condition, it would be useful to have a practical method for computing
this quantity.

Fortunately, Gauss elimination provides a simple way to do this. The method is based
on the fact that the determinant of a triangular matrix can be simply computed as the product
of its diagonal elements:

D = a11a22a33 · · · ann

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 244

9.4 TRIDIAGONAL SYSTEMS 245

The validity of this formulation can be illustrated for a 3 × 3 system:

D =
∣∣∣∣∣
a11 a12 a13

0 a22 a23

0 0 a33

∣∣∣∣∣
where the determinant can be evaluated as [recall Eq. (9.1)]:

D = a11

∣∣∣∣ a22 a23

0 a33

∣∣∣∣ − a12

∣∣∣∣ 0 a23

0 a33

∣∣∣∣ + a13

∣∣∣∣ 0 a22

0 0

∣∣∣∣
or, by evaluating the minors:

D = a11a22a33 − a12(0) + a13(0) = a11a22a33

Recall that the forward-elimination step of Gauss elimination results in an upper tri-
angular system. Because the value of the determinant is not changed by the forward-
elimination process, the determinant can be simply evaluated at the end of this step via

D = a11a′
22a′′

33 · · · a(n−1)
nn

where the superscripts signify the number of times that the elements have been modified
by the elimination process. Thus, we can capitalize on the effort that has already been
expended in reducing the system to triangular form and, in the bargain, come up with a
simple estimate of the determinant.

There is a slight modification to the above approach when the program employs par-
tial pivoting. For such cases, the determinant changes sign every time a row is switched.
One way to represent this is by modifying the determinant calculation as in

D = a11a′
22a′′

33 · · · a(n−1)
nn (−1)p

where p represents the number of times that rows are pivoted. This modification can be in-
corporated simply into a program by merely keeping track of the number of pivots that take
place during the course of the computation.

9.4 TRIDIAGONAL SYSTEMS

Certain matrices have a particular structure that can be exploited to develop efficient solu-
tion schemes. For example, a banded matrix is a square matrix that has all elements equal
to zero, with the exception of a band centered on the main diagonal.

A tridiagonal system has a bandwidth of 3 and can be expressed generally as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 g1

e2 f2 g2

e3 f3 g3

· · ·
· · ·

· · ·
en−1 fn−1 gn−1

en fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

·
·
·

xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1

r2

r3

·
·
·

rn−1

rn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.23)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 245

246 GAUSS ELIMINATION

Notice that we have changed our notation for the coefficients from a’s and b’s to e’s, f ’s,
g’s, and r’s. This was done to avoid storing large numbers of useless zeros in the square
matrix of a’s. This space-saving modification is advantageous because the resulting algo-
rithm requires less computer memory.

An algorithm to solve such systems can be directly patterned after Gauss elimination—
that is, using forward elimination and back substitution. However, because most of the
matrix elements are already zero, much less effort is expended than for a full matrix. This
efficiency is illustrated in the following example.

EXAMPLE 9.5 Solution of a Tridiagonal System

Problem Statement. Solve the following tridiagonal system:⎡
⎢⎣

2.04 −1
−1 2.04 −1

−1 2.04 −1
−1 2.04

⎤
⎥⎦

⎧⎪⎨
⎪⎩

x1

x2

x3

x4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

40.8
0.8
0.8

200.8

⎫⎪⎬
⎪⎭

Solution. As with Gauss elimination, the first step involves transforming the matrix to
upper triangular form. This is done by multiplying the first equation by the factor e2/ f1 and
subtracting the result from the second equation. This creates a zero in place of e2 and trans-
forms the other coefficients to new values,

f2 = f2 − e2

f1
g1 = 2.04 − −1

2.04
(−1) = 1.550

r2 = r2 − e2

f1
r1 = 0.8 − −1

2.04
(40.8) = 20.8

Notice that g2 is unmodified because the element above it in the first row is zero.
After performing a similar calculation for the third and fourth rows, the system is trans-

formed to the upper triangular form⎡
⎢⎣

2.04 −1
1.550 −1

1.395 −1
1.323

⎤
⎥⎦

⎧⎪⎨
⎪⎩

x1

x2

x3

x4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

40.8
20.8

14.221
210.996

⎫⎪⎬
⎪⎭

Now back substitution can be applied to generate the final solution:

x4 = r4

f4
= 210.996

1.323
= 159.480

x3 = r3 − g3x4

f3
= 14.221 − (−1)159.480

1.395
= 124.538

x2 = r2 − g2x3

f2
= 20.800 − (−1)124.538

1.550
= 93.778

x1 = r1 − g1x2

f1
= 40.800 − (−1)93.778

2.040
= 65.970

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 246

9.5 CASE STUDY 247

9.4.1 MATLAB M-file: Tridiag

An M-file that solves a tridiagonal system of equations is listed in Fig. 9.6. Note that the
algorithm does not include partial pivoting. Although pivoting is sometimes required, most
tridiagonal systems routinely solved in engineering and science do not require pivoting.

Recall that the computational effort for Gauss elimination was proportional to n3.
Because of its sparseness, the effort involved in solving tridiagonal systems is proportional
to n. Consequently, the algorithm in Fig. 9.6 executes much, much faster than Gauss elim-
ination, particularly for large systems.

function x = Tridiag(e,f,g,r)
% Tridiag: Tridiagonal equation solver banded system
% x = Tridiag(e,f,g,r): Tridiagonal system solver.
% input:
% e = subdiagonal vector
% f = diagonal vector
% g = superdiagonal vector
% r = right hand side vector
% output:
% x = solution vector
n=length(f);
% forward elimination
for k = 2:n

factor = e(k)/f(k-1);
f(k) = f(k) - factor*g(k-1);
r(k) = r(k) - factor*r(k-1);

end
% back substitution
x(n) = r(n)/f(n);
for k = n-1:-1:1

x(k) = (r(k)-g(k)*x(k+1))/f(k);
end

FIGURE 9.6
An M-file to solve a tridiagonal system.

9.5 CASE STUDY MODEL OF A HEATED ROD

Background. Linear algebraic equations can arise when modeling distributed sys-
tems. For example, Fig. 9.7 shows a long, thin rod positioned between two walls that are
held at constant temperatures. Heat flows through the rod as well as between the rod and
the surrounding air. For the steady-state case, a differential equation based on heat conser-
vation can be written for such a system as

d2T

dx2
+ h′(Ta − T) = 0 (9.24)

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 247

248 GAUSS ELIMINATION

9.5 CASE STUDY continued

x = 10

T0 = 40

Ta = 20

Ta = 20

T5 = 200

Δx

x = 0

54310 2

FIGURE 9.7
A noninsulated uniform rod positioned between two walls of constant but different temperature.
The finite-difference representation employs four interior nodes.

where T = temperature (◦C), x = distance along the rod (m), h′ = a heat transfer coefficient
between the rod and the surrounding air (m−2), and Ta = the air temperature (◦C).

Given values for the parameters, forcing functions, and boundary conditions, calculus
can be used to develop an analytical solution. For example, if h′ = 0.01, Ta = 20, T(0) =
40, and T(10) = 200, the solution is

T = 73.4523e0.1x − 53.4523e−0.1x + 20 (9.25)

Although it provided a solution here, calculus does not work for all such problems. In
such instances, numerical methods provide a valuable alternative. In this case study, we
will use finite differences to transform this differential equation into a tridiagonal system
of linear algebraic equations which can be readily solved using the numerical methods de-
scribed in this chapter.

Solution. Equation (9.24) can be transformed into a set of linear algebraic equations by
conceptualizing the rod as consisting of a series of nodes. For example, the rod in Fig. 9.7
is divided into six equispaced nodes. Since the rod has a length of 10, the spacing between
nodes is �x = 2.

Calculus was necessary to solve Eq. (9.24) because it includes a second derivative.
As we learned in Sec. 4.3.4, finite-difference approximations provide a means to transform
derivatives into algebraic form. For example, the second derivative at each node can be
approximated as

d2T

dx2
= Ti+1 − 2Ti + Ti−1

�x2

where Ti designates the temperature at node i. This approximation can be substituted into
Eq. (9.24) to give

Ti+1 − 2Ti + Ti−1

�x2
+ h′(Ta − Ti) = 0

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 248

9.5 CASE STUDY 249

9.5 CASE STUDY continued

Collecting terms and substituting the parameters gives

−Ti−1 + 2.04Ti − Ti+1 = 0.8 (9.26)

Thus, Eq. (9.24) has been transformed from a differential equation into an algebraic equa-
tion. Equation (9.26) can now be applied to each of the interior nodes:

− T0 + 2.04T1 − T2 = 0.8

− T1 + 2.04T2 − T3 = 0.8

− T2 + 2.04T3 − T4 = 0.8

− T3 + 2.04T4 − T5 = 0.8

(9.27)

The values of the fixed end temperatures, T0 = 40 and T5 = 200, can be substituted and
moved to the right-hand side. The results are four equations with four unknowns expressed
in matrix form as

⎡
⎢⎣

2.04 −1 0 0
−1 2.04 −1 0
0 −1 2.04 −1
0 0 −1 2.04

⎤
⎥⎦

⎧⎪⎨
⎪⎩

T1

T2

T3

T4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

40.8
0.8
0.8

200.8

⎫⎪⎬
⎪⎭ (9.28)

So our original differential equation has been converted into an equivalent system of
linear algebraic equations. Consequently, we can use the techniques described in this chap-
ter to solve for the temperatures. For example, using MATLAB

>> A=[2.04 -1 0 0
-1 2.04 -1 0
0 -1 2.04 -1
0 0 -1 2.04];
>> b=[40.8 0.8 0.8 200.8]';
>> T=(A\b)'

T =
65.9698 93.7785 124.5382 159.4795

A plot can also be developed comparing these results with the analytical solution obtained
with Eq. (9.25),

>> T=[40 T 200];
>> x=[0:2:10];
>> xanal=[0:10];
>> TT=@(x) 73.4523*exp(0.1*x)-53.4523* ...

exp(-0.1*x)+20;
>> Tanal=TT(xanal);
>> plot(x,T,'o',xanal,Tanal)

As in Fig. 9.8, the numerical results are quite close to those obtained with calculus.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 249

250 GAUSS ELIMINATION

In addition to being a linear system, notice that Eq. (9.28) is also tridiagonal. We can
use an efficient solution scheme like the M-file in Fig. 9.6 to obtain the solution:

>> e=[0 -1 -1 -1];
>> f=[2.04 2.04 2.04 2.04];
>> g=[-1 -1 -1 0];
>> r=[40.8 0.8 0.8 200.8];
>> Tridiag(e,f,g,r)

ans =
65.9698 93.7785 124.5382 159.4795

The system is tridiagonal because each node depends only on its adjacent nodes.
Because we numbered the nodes sequentially, the resulting equations are tridiagonal. Such
cases often occur when solving differential equations based on conservation laws.

9.5 CASE STUDY continued

220
Analytical (line) and numerical (points) solutions

200

180

160

140

120

100

80

60

40

20
0 1 2 3 4 5 6 7 8 9 10

T

x

FIGURE 9.8
A plot of temperature versus distance along a heated rod. Both analytical (line) and numerical
(points) solutions are displayed.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 250

PROBLEMS 251

2

Q33 � 120
Q13 � 40
Q12 � 90
Q23 � 60
Q21 � 30

Q12c1
Q21c2

Q23c2

Q33c3Q13c1

200
mg/s

500 mg/s

31

FIGURE P9.9
Three reactors linked by pipes. The rate of mass transfer
through each pipe is equal to the product of flow Q and
concentration c of the reactor from which the flow originates.

PROBLEMS

9.7 Given the equations

2x1 − 6x2 − x3 = −38

−3x1 − x2 + 7x3 = −34

−8x1 + x2 − 2x3 = −20

(a) Solve by Gauss elimination with partial pivoting. As part
of the computation, use the diagonal elements to calcu-
late the determinant. Show all steps of the computation.

(b) Substitute your results into the original equations to
check your answers.

9.8 Perform the same calculations as in Example 9.5, but for
the tridiagonal system:⎡

⎣ 0.8 −0.4
−0.4 0.8 −0.4

−0.4 0.8

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

41
25
105

⎫⎬
⎭

9.9 Figure P9.9 shows three reactors linked by pipes. As
indicated, the rate of transfer of chemicals through each
pipe is equal to a flow rate (Q, with units of cubic meters
per second) multiplied by the concentration of the reactor
from which the flow originates (c, with units of milligrams
per cubic meter). If the system is at a steady state, the trans-
fer into each reactor will balance the transfer out. Develop
mass-balance equations for the reactors and solve the
three simultaneous linear algebraic equations for their
concentrations.
9.10 A civil engineer involved in construction requires
4800, 5800, and 5700 m3 of sand, fine gravel, and coarse
gravel, respectively, for a building project. There are three

9.1 Determine the number of total flops as a function of the
number of equations n for the tridiagonal algorithm (Fig. 9.6).
9.2 Use the graphical method to solve

2x1 − 6x2 = −18

−x1 + 8x2 = 40

Check your results by substituting them back into the
equations.
9.3 Given the system of equations

0.77x1 + x2 = 14.25

1.2x1 + 1.7x2 = 20
(a) Solve graphically and check your results by substituting

them back into the equations.
(b) On the basis of the graphical solution, what do you expect

regarding the condition of the system?
(c) Compute the determinant.
9.4 Given the system of equations

2x2 + 5x3 = 1

2x1 + x2 + x3 = 1

3x1 + x2 = 2

(a) Compute the determinant.
(b) Use Cramer’s rule to solve for the x’s.
(c) Use Gauss elimination with partial pivoting to solve for

the x’s. As part of the computation, calculate the deter-
minant in order to verify the value computed in (a)

(d) Substitute your results back into the original equations
to check your solution.

9.5 Given the equations

0.5x1 − x2 = − 9.5

1.02x1 − 2x2 = −18.8

(a) Solve graphically.
(b) Compute the determinant.
(c) On the basis of (a) and (b), what would you expect

regarding the system’s condition?
(d) Solve by the elimination of unknowns.
(e) Solve again, but with a11 modified slightly to 0.52.

Interpret your results.
9.6 Given the equations

10x1 + 2x2 − x3 = 27

− 3x1 − 5x2 + 2x3 = −61.5

x1 + x2 + 6x3 = −21.5

(a) Solve by naive Gauss elimination. Show all steps of the
computation.

(b) Substitute your results into the original equations to
check your answers.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 251

252 GAUSS ELIMINATION

where c = concentration, t = time, x = distance, D = diffusion
coefficient, U = fluid velocity, and k = a first-order decay
rate. Convert this differential equation to an equivalent
system of simultaneous algebraic equations. Given D = 2,
U = 1, k = 0.2, c(0) = 80 and c(10) = 10, solve these equa-
tions from x = 0 to 10 and develop a plot of concentration
versus distance.
9.13 A stage extraction process is depicted in Fig. P9.13. In
such systems, a stream containing a weight fraction yin of a
chemical enters from the left at a mass flow rate of F1.
Simultaneously, a solvent carrying a weight fraction xin of
the same chemical enters from the right at a flow rate of F2.
Thus, for stage i, a mass balance can be represented as

F1 yi−1 + F2xi+1 = F1 yi + F2xi (P9.13a)

At each stage, an equilibrium is assumed to be established
between yi and xi as in

K = xi

yi
(P9.13b)

where K is called a distribution coefficient. Equation (P9.13b)
can be solved for xi and substituted into Eq. (P9.13a) to yield

yi−1 −
(

1 + F2

F1
K

)
yi +

(
F2

F1
K

)
yi+1 = 0 (P9.13c)

If F1 = 400 kg/h, yin = 0.1, F2 = 800 kg/h, xin = 0, and
K = 5, determine the values of yout and xout if a five-stage
reactor is used. Note that Eq. (P9.13c) must be modified to
account for the inflow weight fractions when applied to the
first and last stages.
9.14 A peristaltic pump delivers a unit flow (Q1) of a highly
viscous fluid. The network is depicted in Fig. P9.14. Every
pipe section has the same length and diameter. The mass and
mechanical energy balance can be simplified to obtain the

pits from which these materials can be obtained. The com-
position of these pits is

Sand Fine Gravel Coarse Gravel
% % %

Pit1 52 30 18
Pit2 20 50 30
Pit3 25 20 55

How many cubic meters must be hauled from each pit in
order to meet the engineer’s needs?
9.11 An electrical engineer supervises the production of three
types of electrical components. Three kinds of material—
metal, plastic, and rubber—are required for production. The
amounts needed to produce each component are

Metal (g/ Plastic (g/ Rubber (g/
Component component) component) component)

1 15 0.25 1.0
2 17 0.33 1.2
3 19 0.42 1.6

If totals of 2.12, 0.0434, and 0.164 kg of metal, plastic, and
rubber, respectively, are available each day, how many com-
ponents can be produced per day?
9.12 As described in Sec. 9.4, linear algebraic equations can
arise in the solution of differential equations. For example,
the following differential equation results from a steady-state
mass balance for a chemical in a one-dimensional canal:

0 = D
d2c

dx2
− U

dc

dx
− kc

Flow = F1

Flow = F2

x2xout x3 xi xi � 1 xn � 1 xn xin

y1yin y2 yi � 1 yi yn � 2 yn � 1 yout

1 02 0n0i n � 1••• •••

FIGURE P9.13
A stage extraction process.

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 252

flows in every pipe. Solve the following system of equations
to obtain the flow in every stream.

Q3 + 2Q4 − 2Q2 = 0

Q5 + 2Q6 − 2Q4 = 0

3Q7 − 2Q6 = 0

9.15 A truss is loaded as shown in Fig. P9.15. Using the
following set of equations, solve for the 10 unknowns, AB,
BC, AD, BD, CD, DE, CE, Ax, Ay, and Ey.

Ax + AD = 0 −24 − C D − (4/5)C E = 0

Ay + AB = 0 −AD + DE − (3/5)B D = 0

74 + BC + (3/5)B D = 0 C D + (4/5)B D = 0

−AB − (4/5)B D = 0 −DE − (3/5)C E = 0

−BC + (3/5)C E = 0 Ey + (4/5)C E = 0

PROBLEMS 253

Q1 Q3 Q5

Q2 Q4 Q6 Q7

FIGURE P9.14

3 m 3 m

4 m

D
A E

CB
74 kN

24 kN

FIGURE P9.15

9.16 A pentadiagonal system with a bandwidth of five can
be expressed generally as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 g1 h1

e2 f2 g2 h2

d3 e3 f3 g3 h3

· · ·
· · ·

· · ·
dn−1 en−1 fn−1 gn−1

dn en fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

·
·
·

xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1

r2

r3

·
·
·

rn−1

rn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Develop an M-file to efficiently solve such systems without
pivoting in a similar fashion to the algorithm used for tridiag-
onal matrices in Sec. 9.4.1. Test it for the following case:

⎡
⎢⎢⎢⎢⎣

8 −2 −1 0 0
−2 9 −4 −1 0
−1 −3 7 −1 −2
0 −4 −2 12 −5
0 0 −7 −3 15

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1

x2

x3

x4

x5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5
2
1
1
5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

9.17 Develop an M-file function based on Fig. 9.5 to im-
plement Gauss elimination with partial pivoting. Modify the
function so that it computes and returns the determinant
(with the correct sign), and detects whether the system is sin-
gular based on a near-zero determinant. For the latter, define
“near-zero” as being when the absolute value of the determi-
nant is below a tolerance. When this occurs, design the func-
tion so that an error message is displayed and the function
terminates. Here is the functions first line:

function [x, D] = GaussPivotNew(A, b, tol)

where D = the determinant and tol = the tolerance. Test
your program for Prob. 9.5 with tol = 1 × 10−5.

Q1 = Q2 + Q3

Q3 = Q4 + Q5

Q5 = Q6 + Q7

cha01102_ch09_229-253.qxd 12/17/10 8:08 AM Page 253

254

LU Factorization

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with LU factorization.1

Specific objectives and topics covered are

• Understanding that LU factorization involves decomposing the coefficient matrix
into two triangular matrices that can then be used to efficiently evaluate different
right-hand-side vectors.

• Knowing how to express Gauss elimination as an LU factorization.
• Given an LU factorization, knowing how to evaluate multiple right-hand-side

vectors.
• Recognizing that Cholesky’s method provides an efficient way to decompose a

symmetric matrix and that the resulting triangular matrix and its transpose can be
used to evaluate right-hand-side vectors efficiently.

• Understanding in general terms what happens when MATLAB’s backslash
operator is used to solve linear systems.

A s described in Chap. 9, Gauss elimination is designed to solve systems of linear
algebraic equations:

[A]{x} = {b} (10.1)

Although it certainly represents a sound way to solve such systems, it becomes inefficient
when solving equations with the same coefficients [A], but with different right-hand-side
constants {b}.
1 In the parlance of numerical methods, the terms “factorization” and “decomposition” are synonymous. To be
consistent with the MATLAB documentation, we have chosen to employ the terminology LU factorization for
the subject of this chapter. Note that LU decomposition is very commonly used to describe the same approach.

10

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 254

Recall that Gauss elimination involves two steps: forward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large systems of equations.

LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.

Interestingly, Gauss elimination itself can be expressed as an LU factorization.
Before showing how this can be done, let us first provide a mathematical overview of the
factorization strategy.

10.1 OVERVIEW OF LU FACTORIZATION

Just as was the case with Gauss elimination, LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[A]{x} − {b} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a 3 × 3 system:[u11 u12 u13

0 u22 u23

0 0 u33

]{ x1

x2

x3

}
=

{ d1

d2

d3

}
(10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{x} − {d} = 0 (10.4)

Now assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] =
[1 0 0

l21 1 0
l31 l32 1

]
(10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result.
That is,

[L]{[U]{x} − {d}} = [A]{x} − {b} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L][U] = [A] (10.7)

and

[L]{d} = {b} (10.8)

10.1 OVERVIEW OF LU FACTORIZATION 255

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 255

A two-step strategy (see Fig. 10.1) for obtaining solutions can be based on Eqs. (10.3),
(10.7), and (10.8):

1. LU factorization step. [A] is factored or “decomposed” into lower [L] and upper [U]
triangular matrices.

2. Substitution step. [L] and [U] are used to determine a solution {x} for a right-hand side
{b}. This step itself consists of two steps. First, Eq. (10.8) is used to generate an inter-
mediate vector {d} by forward substitution. Then, the result is substituted into Eq. (10.3)
which can be solved by back substitution for {x}.

Now let us show how Gauss elimination can be implemented in this way.

10.2 GAUSS ELIMINATION AS LU FACTORIZATION

Although it might appear at face value to be unrelated to LU factorization, Gauss elimina-
tion can be used to decompose [A] into [L] and [U]. This can be easily seen for [U], which
is a direct product of the forward elimination. Recall that the forward-elimination step is
intended to reduce the original coefficient matrix [A] to the form

[U] =
⎡
⎣ a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33

⎤
⎦ (10.9)

which is in the desired upper triangular format.

256 LU FACTORIZATION

[A] {x} � {b}

[L] {d } � {b}

{d}

[U] [L]

{x}

(a) Factorization

(b) Forward

(c) Back

Substitution

[U] {x} � {d}

FIGURE 10.1
The steps in LU factorization.

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 256

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,[a11 a12 a13

a21 a22 a23

a31 a32 a33

]{ x1

x2

x3

}
=

{ b1

b2

b3

}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

f21 = a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multi-
plied by

f31 = a31

a11

and the result subtracted from the third row to eliminate a31. The final step is to multiply
the modified second row by

f32 = a′
32

a′
22

and subtract the result from the third row to eliminate a′
32.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f ’s and manipulate {b} later.

Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in a31,
and f32 in a32. After elimination, the [A] matrix can therefore be written as⎡

⎣ a11 a12 a13

f21 a′
22 a′

23

f31 f32 a′′
33

⎤
⎦ (10.10)

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

[A] → [L][U] (10.11)

where

[U] =
⎡
⎣ a11 a12 a13

0 a′
22 a′

23

0 0 a′′
33

⎤
⎦ (10.12)

and

[L] =
[1 0 0

f21 1 0
f31 f32 1

]
(10.13)

The following example confirms that [A] = [L][U].

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 257

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 257

EXAMPLE 10.1 LU Factorization with Gauss Elimination

Problem Statement. Derive an LU factorization based on the Gauss elimination per-
formed previously in Example 9.3.

Solution. In Example 9.3, we used Gauss elimination to solve a set of linear algebraic
equations that had the following coefficient matrix:

[A] =
[3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10

]

After forward elimination, the following upper triangular matrix was obtained:

[U] =
[3 −0.1 −0.2

0 7.00333 −0.293333
0 0 10.0120

]

The factors employed to obtain the upper triangular matrix can be assembled into a lower
triangular matrix. The elements a21 and a31 were eliminated by using the factors

f21 = 0.1

3
= 0.0333333 f31 = 0.3

3
= 0.1000000

and the element a32 was eliminated by using the factor

f32 = −0.19

7.00333
= −0.0271300

Thus, the lower triangular matrix is

[L] =
[1 0 0

0.0333333 1 0
0.100000 −0.0271300 1

]

Consequently, the LU factorization is

[A] = [L][U] =
[1 0 0

0.0333333 1 0
0.100000 −0.0271300 1

] [3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120

]

This result can be verified by performing the multiplication of [L][U] to give

[L][U] =
[3 −0.1 −0.2

0.0999999 7 −0.3
0.3 −0.2 9.99996

]

where the minor discrepancies are due to roundoff.

After the matrix is decomposed, a solution can be generated for a particular right-hand-
side vector {b}. This is done in two steps. First, a forward-substitution step is executed by
solving Eq. (10.8) for {d}. It is important to recognize that this merely amounts to perform-
ing the elimination manipulations on {b}. Thus, at the end of this step, the right-hand side

258 LU FACTORIZATION

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 258

will be in the same state that it would have been had we performed forward manipulation
on [A] and {b} simultaneously.

The forward-substitution step can be represented concisely as

di = bi −
i−1∑
j=1

li j dj for i = 1, 2, . . . , n

The second step then merely amounts to implementing back substitution to solve
Eq. (10.3). Again, it is important to recognize that this is identical to the back-substitution
phase of conventional Gauss elimination [compare with Eqs. (9.12) and (9.13)]:

xn = dn/unn

xi =
di −

n∑
j=i+1

ui j xj

uii
for i = n − 1, n − 2, . . . , 1

EXAMPLE 10.2 The Substitution Steps

Problem Statement. Complete the problem initiated in Example 10.1 by generating the
final solution with forward and back substitution.

Solution. As just stated, the intent of forward substitution is to impose the elimination
manipulations that we had formerly applied to [A] on the right-hand-side vector {b}. Recall
that the system being solved is[3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10

]{ x1

x2

x3

}
=

{ 7.85
−19.3
71.4

}

and that the forward-elimination phase of conventional Gauss elimination resulted in[3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120

]{ x1

x2

x3

}
=

{ 7.85
−19.5617
70.0843

}

The forward-substitution phase is implemented by applying Eq. (10.8):[1 0 0
0.0333333 1 0
0.100000 −0.0271300 1

]{ d1

d2

d3

}
=

{ 7.85
−19.3
71.4

}

or multiplying out the left-hand side:

d1 = 7.85

0.0333333d1 + d2 = −19.3

0.100000d1 − 0.0271300d2 + d3 = 71.4

We can solve the first equation for d1 = 7.85, which can be substituted into the second
equation to solve for

d2 = −19.3 − 0.0333333(7.85) = −19.5617

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 259

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 259

Both d1 and d2 can be substituted into the third equation to give

d3 = 71.4 − 0.1(7.85) + 0.02713(−19.5617) = 70.0843

Thus,

{d} =
{ 7.85

−19.5617
70.0843

}

This result can then be substituted into Eq. (10.3), [U]{x} = {d}:
[3 −0.1 −0.2

0 7.00333 −0.293333
0 0 10.0120

]{ x1

x2

x3

}
=

{ 7.85
−19.5617
70.0843

}

which can be solved by back substitution (see Example 9.3 for details) for the final solution:

{x} =
{ 3

−2.5
7.00003

}

10.2.1 LU Factorization with Pivoting

Just as for standard Gauss elimination, partial pivoting is necessary to obtain reliable solu-
tions with LU factorization. One way to do this involves using a permutation matrix (recall
Sec. 8.1.2). The approach consists of the following steps:

1. Elimination. The LU factorization with pivoting of a matrix [A] can be represented in
matrix form as

[P][A] = [L][U]

The upper triangular matrix, [U], is generated by elimination with partial pivoting,
while storing the multiplier factors in [L] and employing the permutation matrix, [P],
to keep track of the row switches.

2. Forward substitution. The matrices [L] and [P] are used to perform the elimination
step with pivoting on {b} in order to generate the intermediate right-hand-side vector, {d}.
This step can be represented concisely as the solution of the following matrix
formulation:

[L]{d} = [P]{b}
3. Back substitution. The final solution is generated in the same fashion as done previ-

ously for Gauss elimination. This step can also be represented concisely as the solution
of the matrix formulation:

[U]{x} = {d}
The approach is illustrated in the following example.

260 LU FACTORIZATION

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 260

EXAMPLE 10.3 LU Factorization with Pivoting

Problem Statement. Compute the LU factorization and find the solution for the same
system analyzed in Example 9.4[

0.0003 3.0000
1.0000 1.0000

]{
x1

x2

}
=

{
2.0001
1.0000

}

Solution. Before elimination, we set up the initial permutation matrix:

[P] =
[

1.0000 0.0000
0.0000 1.0000

]
We immediately see that pivoting is necessary, so prior to elimination we switch the rows:

[A] =
[

1.0000 1.0000
0.0003 3.0000

]
At the same time, we keep track of the pivot by switching the rows of the permutation
matrix:

[P] =
[

0.0000 1.0000
1.0000 0.0000

]
We then eliminate a21 by subtracting the factor l21 � a21�a11 � 0.0003�1 � 0.0003 from the
second row of A. In so doing, we compute that the new value of a′

22 � 3 � 0.0003(1) �
2.9997. Thus, the elimination step is complete with the result:

[U] =
[

1 1
0 2.9997

]
[L] =

[
1 0

0.0003 1

]
Before implementing forward substitution, the permutation matrix is used to reorder

the right-hand-side vector to reflect the pivots as in

[P]{b} =
[

0.0000 1.0000
1.0000 0.0000

]{
2.0001

1

}
=

{
1

2.0001

}
Then, forward substitution is applied as in[

1 0
0.0003 1

]{
d1

d2

}
=

{
1

2.0001

}
which can be solved for d1 = 1 and d2 = 2.0001 − 0.0003(1) = 1.9998. At this point, the
system is[

1 1
0 2.9997

]{
x1

x2

}
=

{
1

1.9998

}

Applying back substitution gives the final result:

x2 = 1.9998

2.9997
= 0.66667

x1 = 1 − 1(0.66667)

1
= 0.33333

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 261

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 261

The LU factorization algorithm requires the same total flops as for Gauss elimination.
The only difference is that a little less effort is expended in the factorization phase since the
operations are not applied to the right-hand side. Conversely, the substitution phase takes a
little more effort.

10.2.2 MATLAB Function: lu

MATLAB has a built-in function lu that generates the LU factorization. It has the general
syntax:

[L,U] = lu(X)

where L and U are the lower triangular and upper triangular matrices, respectively, derived
from the LU factorization of the matrix X. Note that this function uses partial pivoting to
avoid division by zero. The following example shows how it can be employed to generate
both the factorization and a solution for the same problem that was solved in Exam-
ples 10.1 and 10.2.

EXAMPLE 10.4 LU Factorization with MATLAB

Problem Statement. Use MATLAB to compute the LU factorization and find the
solution for the same linear system analyzed in Examples 10.1 and 10.2:[3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10

]{ x1

x2

x3

}
=

{ 7.85
−19.3
71.4

}

Solution. The coefficient matrix and the right-hand-side vector can be entered in stan-
dard fashion as

>> A = [3 -.1 -.2;.1 7 -.3;.3 -.2 10];
>> b = [7.85; -19.3; 71.4];

Next, the LU factorization can be computed with

>> [L,U] = lu(A)

L =
1.0000 0 0
0.0333 1.0000 0
0.1000 -0.0271 1.0000

U =
3.0000 -0.1000 -0.2000

0 7.0033 -0.2933
0 0 10.0120

This is the same result that we obtained by hand in Example 10.1. We can test that it is cor-
rect by computing the original matrix as

>> L*U

262 LU FACTORIZATION

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 262

ans =

3.0000 -0.1000 -0.2000
0.1000 7.0000 -0.3000
0.3000 -0.2000 10.0000

To generate the solution, we first compute

>> d = L\b

d =
7.8500

-19.5617
70.0843

And then use this result to compute the solution

>> x = U\d

x =

3.0000
-2.5000
7.0000

These results conform to those obtained by hand in Example 10.2.

10.3 CHOLESKY FACTORIZATION

Recall from Chap. 8 that a symmetric matrix is one where ai j = aji for all i and j. In other
words, [A] = [A]T. Such systems occur commonly in both mathematical and engineering/
science problem contexts.

Special solution techniques are available for such systems. They offer computational
advantages because only half the storage is needed and only half the computation time is
required for their solution.

One of the most popular approaches involves Cholesky factorization (also called
Cholesky decomposition). This algorithm is based on the fact that a symmetric matrix can
be decomposed, as in

[A] = [U]T [U] (10.14)

That is, the resulting triangular factors are the transpose of each other.
The terms of Eq. (10.14) can be multiplied out and set equal to each other. The factor-

ization can be generated efficiently by recurrence relations. For the ith row:

uii =
√√√√aii −

i−1∑
k=1

u2
ki (10.15)

ui j =
ai j −

i−1∑
k=1

uki uk j

uii
for j = i + 1, . . . , n (10.16)

10.3 CHOLESKY FACTORIZATION 263

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 263

EXAMPLE 10.5 Cholesky Factorization

Problem Statement. Compute the Cholesky factorization for the symmetric matrix

[A] =
[6 15 55

15 55 225
55 225 979

]

Solution. For the first row (i = 1), Eq. (10.15) is employed to compute

u11 = √
a11 =

√
6 = 2.44949

Then, Eq. (10.16) can be used to determine

u12 = a12

u11
= 15

2.44949
= 6.123724

u13 = a13

u11
= 55

2.44949
= 22.45366

For the second row (i = 2):

u22 =
√

a22 − u2
12 =

√
55 − (6.123724)2 = 4.1833

u23 = a23 − u12u13

u22
= 225 − 6.123724(22.45366)

4.1833
= 20.9165

For the third row (i = 3):

u33 =
√

a33 − u2
13 − u2

23 =
√

979 − (22.45366)2 − (20.9165)2 = 6.110101

Thus, the Cholesky factorization yields

[U] =
[2.44949 6.123724 22.45366

4.1833 20.9165
6.110101

]

The validity of this factorization can be verified by substituting it and its transpose
into Eq. (10.14) to see if their product yields the original matrix [A]. This is left for an
exercise.

After obtaining the factorization, it can be used to determine a solution for a right-
hand-side vector {b} in a manner similar to LU factorization. First, an intermediate vector
{d} is created by solving

[U]T {d} = {b} (10.17)

Then, the final solution can be obtained by solving

[U]{x} = {d} (10.18)

264 LU FACTORIZATION

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 264

10.3.1 MATLAB Function: chol

MATLAB has a built-in function chol that generates the Cholesky factorization. It has the
general syntax,

U = chol(X)

where U is an upper triangular matrix so that U'*U = X. The following example shows how
it can be employed to generate both the factorization and a solution for the same matrix that
we looked at in the previous example.

EXAMPLE 10.6 Cholesky Factorization with MATLAB

Problem Statement. Use MATLAB to compute the Cholesky factorization for the same
matrix we analyzed in Example 10.5.

[A] =
[6 15 55

15 55 225
55 225 979

]

Also obtain a solution for a right-hand-side vector that is the sum of the rows of [A]. Note
that for this case, the answer will be a vector of ones.

Solution. The matrix is entered in standard fashion as

>> A = [6 15 55; 15 55 225; 55 225 979];

A right-hand-side vector that is the sum of the rows of [A] can be generated as

>> b = [sum(A(1,:)); sum(A(2,:)); sum(A(3,:))]

b =
76
295
1259

Next, the Cholesky factorization can be computed with

>> U = chol(A)

U =
2.4495 6.1237 22.4537

0 4.1833 20.9165
0 0 6.1101

We can test that this is correct by computing the original matrix as

>> U'*U

ans =
6.0000 15.0000 55.0000

15.0000 55.0000 225.0000
55.0000 225.0000 979.0000

10.3 CHOLESKY FACTORIZATION 265

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 265

To generate the solution, we first compute

>> d = U'\b

d =
31.0269
25.0998
6.1101

And then use this result to compute the solution

>> x = U\d

x =
1.0000
1.0000
1.0000

10.4 MATLAB LEFT DIVISION

We previously introduced left division without any explanation of how it works. Now that
we have some background on matrix solution techniques, we can provide a simplified
description of its operation.

When we implement left division with the backslash operator, MATLAB invokes a
highly sophisticated algorithm to obtain a solution. In essence, MATLAB examines the
structure of the coefficient matrix and then implements an optimal method to obtain the
solution. Although the details of the algorithm are beyond our scope, a simplified overview
can be outlined.

First, MATLAB checks to see whether [A] is in a format where a solution can be
obtained without full Gauss elimination. These include systems that are (a) sparse and
banded, (b) triangular (or easily transformed into triangular form), or (c) symmetric. If any
of these cases are detected, the solution is obtained with the efficient techniques that are
available for such systems. Some of the techniques include banded solvers, back and for-
ward substitution, and Cholesky factorization.

If none of these simplified solutions are possible and the matrix is square,2 a general
triangular factorization is computed by Gauss elimination with partial pivoting and the
solution obtained with substitution.

266 LU FACTORIZATION

2 It should be noted that in the event that [A] is not square, a least-squares solution is obtained with an approach
called QR factorization.

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 266

PROBLEMS 267

PROBLEMS

10.1 Determine the total flops as a function of the number
of equations n for the (a) factorization, (b) forward substitu-
tion, and (c) back substitution phases of the LU factorization
version of Gauss elimination.
10.2 Use the rules of matrix multiplication to prove that
Eqs. (10.7) and (10.8) follow from Eq. (10.6).
10.3 Use naive Gauss elimination to factor the following
system according to the description in Section 10.2:

7x1 + 2x2 − 3x3 = −12
2x1 + 5x2 − 3x3 = −20

x1 − x2 − 6x3 = −26

Then, multiply the resulting [L] and [U] matrices to deter-
mine that [A] is produced.
10.4 (a) Use LU factorization to solve the system of equations
in Prob. 10.3. Show all the steps in the computation. (b) Also
solve the system for an alternative right-hand-side vector

{b}T = �12 18 − 6�
10.5 Solve the following system of equations using LU
factorization with partial pivoting:

2x1 − 6x2 − x3 = −38
−3x1 − x2 + 6x3 = −34
−8x1 + x2 − 2x3 = −40

10.6 Develop your own M-file to determine the LU factoriza-
tion of a square matrix without partial pivoting. That is, de-
velop a function that is passed the square matrix and returns
the triangular matrices [L] and [U]. Test your function by
using it to solve the system in Prob. 10.3. Confirm that your
function is working properly by verifying that [L][U] = [A]
and by using the built-in function lu.
10.7 Confirm the validity of the Cholesky factorization of
Example 10.5 by substituting the results into Eq. (10.14) to
verify that the product of [U]T and [U] yields [A].
10.8 (a) Perform a Cholesky factorization of the following
symmetric system by hand:⎡

⎣ 8 20 16
20 80 50
16 50 60

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

100
250
100

⎫⎬
⎭

(b) Verify your hand calculation with the built-in chol
function. (c) Employ the results of the factorization [U] to
determine the solution for the right-hand-side vector.
10.9 Develop your own M-file to determine the Cholesky
factorization of a symmetric matrix without pivoting. That

is, develop a function that is passed the symmetric matrix
and returns the matrix [U]. Test your function by using it to
solve the system in Prob. 10.8 and use the built-in function
chol to confirm that your function is working properly.
10.10 Solve the following set of equations with LU factor-
ization with pivoting:

3x1 − 2x2 + x3 = −10

2x1 + 6x2 − 4x3 = 44

−8x1 − 2x2 + 5x3 = −26

10.11 (a) Determine the LU factorization without pivoting
by hand for the following matrix and check your results by
validating that [L][U] = [A].

⎡
⎣ 8 5 1

3 7 4
2 3 9

⎤
⎦

(b) Employ the result of (a) to compute the determinant.
(c) Repeat (a) and (b) using MATLAB.
10.12 Use the following LU factorization to (a) compute
the determinant and (b) solve [A]{x} = {b} with {b}T =
�−10 50 −26�.

[A] = [L][U] =
⎡
⎣ 1

0.6667 1
−0.3333 −0.3636 1

⎤
⎦

×
⎡
⎣ 3 −2 1

7.3333 −4.6667
3.6364

⎤
⎦

10.13 Use Cholesky factorization to determine [U] so that

[A] = [U]T [U] =
⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦

10.14 Compute the Cholesky factorization of

[A] =
⎡
⎣ 9 0 0

0 25 0
0 0 16

⎤
⎦

Do your results make sense in terms of Eqs. (10.15) and
(10.16)?

cha01102_ch10_254-267.qxd 12/17/10 8:09 AM Page 267

268

11
Matrix Inverse and Condition

11.1 THE MATRIX INVERSE

In our discussion of matrix operations (Section 8.1.2), we introduced the notion that if a
matrix [A] is square, there is another matrix [A]−1, called the inverse of [A], for which

[A][A]−1 = [A]−1[A] = [I] (11.1)

Now we will focus on how the inverse can be computed numerically. Then we will explore
how it can be used for engineering analysis.

11.1.1 Calculating the Inverse

The inverse can be computed in a column-by-column fashion by generating solutions with
unit vectors as the right-hand-side constants. For example, if the right-hand-side constant

CHAPTER OBJECTIVES
The primary objective of this chapter is to show how to compute the matrix inverse
and to illustrate how it can be used to analyze complex linear systems that occur in
engineering and science. In addition, a method to assess a matrix solution’s sensitivity
to roundoff error is described. Specific objectives and topics covered are

• Knowing how to determine the matrix inverse in an efficient manner based on LU
factorization.

• Understanding how the matrix inverse can be used to assess stimulus-response
characteristics of engineering systems.

• Understanding the meaning of matrix and vector norms and how they are computed.
• Knowing how to use norms to compute the matrix condition number.
• Understanding how the magnitude of the condition number can be used to

estimate the precision of solutions of linear algebraic equations.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 268

11.1 THE MATRIX INVERSE 269

has a 1 in the first position and zeros elsewhere,

{b} =
{ 1

0
0

}
(11.2)

the resulting solution will be the first column of the matrix inverse. Similarly, if a unit vec-
tor with a 1 at the second row is used

{b} =
{ 0

1
0

}
(11.3)

the result will be the second column of the matrix inverse.
The best way to implement such a calculation is with LU factorization. Recall that one

of the great strengths of LU factorization is that it provides a very efficient means to evalu-
ate multiple right-hand-side vectors. Thus, it is ideal for evaluating the multiple unit vectors
needed to compute the inverse.

EXAMPLE 11.1 Matrix Inversion

Problem Statement. Employ LU factorization to determine the matrix inverse for the
system from Example 10.1:

[A] =
⎡
⎣ 3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10

⎤
⎦

Recall that the factorization resulted in the following lower and upper triangular matrices:

[U] =
⎡
⎣ 3 −0.1 −0.2

0 7.00333 −0.293333
0 0 10.0120

⎤
⎦ [L] =

⎡
⎣ 1 0 0

0.0333333 1 0
0.100000 −0.0271300 1

⎤
⎦

Solution. The first column of the matrix inverse can be determined by performing the
forward-substitution solution procedure with a unit vector (with 1 in the first row) as the
right-hand-side vector. Thus, the lower triangular system can be set up as (recall Eq. [10.8])⎡

⎣ 1 0 0
0.0333333 1 0
0.100000 −0.0271300 1

⎤
⎦

⎧⎨
⎩

d1

d2

d3

⎫⎬
⎭ =

⎧⎨
⎩

1
0
0

⎫⎬
⎭

and solved with forward substitution for {d}T = �1 −0.03333 −0.1009� . This vector
can then be used as the right-hand side of the upper triangular system (recall Eq. [10.3]):⎡

⎣ 3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

1
−0.03333
−0.1009

⎫⎬
⎭

which can be solved by back substitution for {x}T = �0.33249 −0.00518 −0.01008�,
which is the first column of the matrix inverse:

[A]−1 =
⎡
⎣ 0.33249 0 0

−0.00518 0 0
−0.01008 0 0

⎤
⎦

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 269

270 MATRIX INVERSE AND CONDITION

To determine the second column, Eq. (10.8) is formulated as⎡
⎣ 1 0 0

0.0333333 1 0
0.100000 −0.0271300 1

⎤
⎦

⎧⎨
⎩

d1

d2

d3

⎫⎬
⎭ =

⎧⎨
⎩

0
1
0

⎫⎬
⎭

This can be solved for {d}, and the results are used with Eq. (10.3) to determine {x}T =
�0.004944 0.142903 0.00271�,which is the second column of the matrix inverse:

[A]−1 =
⎡
⎣ 0.33249 0.004944 0

−0.00518 0.142903 0
−0.01008 0.002710 0

⎤
⎦

Finally, the same procedures can be implemented with {b}T = �0 0 1� to solve for
{x}T = �0.006798 0.004183 0.09988�, which is the final column of the matrix inverse:

[A]−1 =
⎡
⎣ 0.33249 0.004944 0.006798

−0.00518 0.142903 0.004183
−0.01008 0.002710 0.099880

⎤
⎦

The validity of this result can be checked by verifying that [A][A]−1 = [I].

11.1.2 Stimulus-Response Computations

As discussed in PT 3.1, many of the linear systems of equations arising in engineering and
science are derived from conservation laws. The mathematical expression of these laws
is some form of balance equation to ensure that a particular property—mass, force, heat,
momentum, electrostatic potential—is conserved. For a force balance on a structure, the
properties might be horizontal or vertical components of the forces acting on each node of
the structure. For a mass balance, the properties might be the mass in each reactor of a
chemical process. Other fields of engineering and science would yield similar examples.

A single balance equation can be written for each part of the system, resulting in a set
of equations defining the behavior of the property for the entire system. These equations
are interrelated, or coupled, in that each equation may include one or more of the variables
from the other equations. For many cases, these systems are linear and, therefore, of the
exact form dealt with in this chapter:

[A]{x} = {b} (11.4)

Now, for balance equations, the terms of Eq. (11.4) have a definite physical interpre-
tation. For example, the elements of {x} are the levels of the property being balanced for
each part of the system. In a force balance of a structure, they represent the horizontal and
vertical forces in each member. For the mass balance, they are the mass of chemical in each
reactor. In either case, they represent the system’s state or response, which we are trying to
determine.

The right-hand-side vector {b} contains those elements of the balance that are inde-
pendent of behavior of the system—that is, they are constants. In many problems, they
represent the forcing functions or external stimuli that drive the system.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 270

11.1 THE MATRIX INVERSE 271

Finally, the matrix of coefficients [A] usually contains the parameters that express
how the parts of the system interact or are coupled. Consequently, Eq. (11.4) might be
reexpressed as

[Interactions]{response} = {stimuli}
As we know from previous chapters, there are a variety of ways to solve Eq. (11.4).

However, using the matrix inverse yields a particularly interesting result. The formal solu-
tion can be expressed as

{x} = [A]−1{b}
or (recalling our definition of matrix multiplication from Section 8.1.2)

x1 = a−1
11 b1 + a−1

12 b2 + a−1
13 b3

x2 = a−1
21 b1 + a−1

22 b2 + a−1
23 b3

x3 = a−1
31 b1 + a−1

32 b2 + a−1
33 b3

Thus, we find that the inverted matrix itself, aside from providing a solution, has ex-
tremely useful properties. That is, each of its elements represents the response of a single
part of the system to a unit stimulus of any other part of the system.

Notice that these formulations are linear and, therefore, superposition and proportion-
ality hold. Superposition means that if a system is subject to several different stimuli (the
b’s), the responses can be computed individually and the results summed to obtain a total
response. Proportionality means that multiplying the stimuli by a quantity results in the re-
sponse to those stimuli being multiplied by the same quantity. Thus, the coefficient a−1

11 is
a proportionality constant that gives the value of x1 due to a unit level of b1. This result is
independent of the effects of b2 and b3 on x1, which are reflected in the coefficients
a−1

12 and a−1
13 , respectively. Therefore, we can draw the general conclusion that the element

a−1
i j of the inverted matrix represents the value of xi due to a unit quantity of bj.

Using the example of the structure, element a−1
i j of the matrix inverse would represent

the force in member i due to a unit external force at node j. Even for small systems, such
behavior of individual stimulus-response interactions would not be intuitively obvious. As
such, the matrix inverse provides a powerful technique for understanding the interrelation-
ships of component parts of complicated systems.

EXAMPLE 11.2 Analyzing the Bungee Jumper Problem

Problem Statement. At the beginning of Chap. 8, we set up a problem involving three
individuals suspended vertically connected by bungee cords. We derived a system of linear
algebraic equations based on force balances for each jumper,⎡

⎣ 150 −100 0
−100 150 −50

0 −50 50

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

588.6
686.7
784.8

⎫⎬
⎭

In Example 8.2, we used MATLAB to solve this system for the vertical positions of the
jumpers (the x’s). In the present example, use MATLAB to compute the matrix inverse and
interpret what it means.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 271

272 MATRIX INVERSE AND CONDITION

Solution. Start up MATLAB and enter the coefficient matrix:

>> K = [150 -100 0;-100 150 -50;0 -50 50];

The inverse can then be computed as

>> KI = inv(K)

KI =
0.0200 0.0200 0.0200
0.0200 0.0300 0.0300
0.0200 0.0300 0.0500

Each element of the inverse, k−1
i j of the inverted matrix represents the vertical change in

position (in meters) of jumper i due to a unit change in force (in Newtons) applied to
jumper j.

First, observe that the numbers in the first column (j = 1) indicate that the position of
all three jumpers would increase by 0.02 m if the force on the first jumper was increased
by 1 N. This makes sense, because the additional force would only elongate the first cord
by that amount.

In contrast, the numbers in the second column (j = 2) indicate that applying a force
of 1 N to the second jumper would move the first jumper down by 0.02 m, but the second
and third by 0.03 m. The 0.02-m elongation of the first jumper makes sense because the
first cord is subject to an extra 1 N regardless of whether the force is applied to the first or
second jumper. However, for the second jumper the elongation is now 0.03 m because
along with the first cord, the second cord also elongates due to the additional force. And of
course, the third jumper shows the identical translation as the second jumper as there is no
additional force on the third cord that connects them.

As expected, the third column (j = 3) indicates that applying a force of 1 N to the
third jumper results in the first and second jumpers moving the same distances as occurred
when the force was applied to the second jumper. However, now because of the additional
elongation of the third cord, the third jumper is moved farther downward.

Superposition and proportionality can be demonstrated by using the inverse to deter-
mine how much farther the third jumper would move downward if additional forces of 10,
50, and 20 N were applied to the first, second, and third jumpers, respectively. This can be
done simply by using the appropriate elements of the third row of the inverse to compute,

�x3 = k−1
31 �F1 + k−1

32 �F2 + k−1
33 �F3 = 0.02(10) + 0.03(50) + 0.05(20) = 2.7 m

11.2 ERROR ANALYSIS AND SYSTEM CONDITION

Aside from its engineering and scientific applications, the inverse also provides a means to
discern whether systems are ill-conditioned. Three direct methods can be devised for this
purpose:

1. Scale the matrix of coefficients [A] so that the largest element in each row is 1. Invert
the scaled matrix and if there are elements of [A]−1 that are several orders of magni-
tude greater than one, it is likely that the system is ill-conditioned.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 272

11.2 ERROR ANALYSIS AND SYSTEM CONDITION 273

2. Multiply the inverse by the original coefficient matrix and assess whether the result is
close to the identity matrix. If not, it indicates ill-conditioning.

3. Invert the inverted matrix and assess whether the result is sufficiently close to the orig-
inal coefficient matrix. If not, it again indicates that the system is ill-conditioned.

Although these methods can indicate ill-conditioning, it would be preferable to obtain
a single number that could serve as an indicator of the problem. Attempts to formulate such
a matrix condition number are based on the mathematical concept of the norm.

11.2.1 Vector and Matrix Norms

A norm is a real-valued function that provides a measure of the size or “length” of multi-
component mathematical entities such as vectors and matrices.

A simple example is a vector in three-dimensional Euclidean space (Fig. 11.1) that can
be represented as

�F� = � a b c �
where a, b, and c are the distances along the x, y, and z axes, respectively. The length of
this vector—that is, the distance from the coordinate (0, 0, 0) to (a, b, c)—can be simply
computed as

‖F‖e =
√

a2 + b2 + c2

where the nomenclature ‖F‖e indicates that this length is referred to as the Euclidean norm
of [F].

Similarly, for an n-dimensional vector �X� = �x1 x2 · · · xn�, a Euclidean norm
would be computed as

‖X‖e =
√√√√ n∑

i=1

x2
i

y

x

b

z

c

a

�F
� e

�

a
2 �

 b
2 �

 c
2

FIGURE 11.1
Graphical depiction of a vector in Euclidean space.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 273

274 MATRIX INVERSE AND CONDITION

The concept can be extended further to a matrix [A], as in

‖A‖ f =
√√√√ n∑

i=1

n∑
j=1

a2
i, j (11.5)

which is given a special name—the Frobenius norm. As with the other vector norms, it
provides a single value to quantify the “size” of [A].

It should be noted that there are alternatives to the Euclidean and Frobenius norms. For
vectors, there are alternatives called p norms that can be represented generally by

‖X‖p =
(

n∑
i=1

|xi |p

)1/p

We can see that the Euclidean norm and the 2 norm, ‖X‖2 , are identical for vectors.
Other important examples are (p = 1)

‖X‖1 =
n∑

i=1

|xi |

which represents the norm as the sum of the absolute values of the elements. Another is the
maximum-magnitude or uniform-vector norm (p = ∞),

‖X‖∞ = max
1≤i≤n

|xi |
which defines the norm as the element with the largest absolute value.

Using a similar approach, norms can be developed for matrices. For example,

‖A‖1 = max
1≤ j≤n

n∑
i=1

|ai j |

That is, a summation of the absolute values of the coefficients is performed for each col-
umn, and the largest of these summations is taken as the norm. This is called the column-
sum norm.

A similar determination can be made for the rows, resulting in a uniform-matrix or
row-sum norm:

‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai j |

It should be noted that, in contrast to vectors, the 2 norm and the Frobenius norm for
a matrix are not the same. Whereas the Frobenius norm ‖A‖ f can be easily determined by
Eq. (11.5), the matrix 2 norm ‖A‖2 is calculated as

‖A‖2 = (μmax)
1/2

where μmax is the largest eigenvalue of [A]T[A]. In Chap. 13, we will learn more about
eigenvalues. For the time being, the important point is that the ‖A‖2, or spectral norm, is
the minimum norm and, therefore, provides the tightest measure of size (Ortega, 1972).

11.2.2 Matrix Condition Number

Now that we have introduced the concept of the norm, we can use it to define

Cond[A] = ‖A‖ · ‖A−1‖

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 274

11.2 ERROR ANALYSIS AND SYSTEM CONDITION 275

where Cond[A] is called the matrix condition number. Note that for a matrix [A], this
number will be greater than or equal to 1. It can be shown (Ralston and Rabinowitz, 1978;
Gerald and Wheatley, 1989) that

‖�X‖
‖X‖ ≤ Cond[A]

‖�A‖
‖A‖

That is, the relative error of the norm of the computed solution can be as large as the rela-
tive error of the norm of the coefficients of [A] multiplied by the condition number. For ex-
ample, if the coefficients of [A] are known to t-digit precision (i.e., rounding errors are on
the order of 10−t) and Cond[A] = 10c, the solution [X] may be valid to only t − c digits
(rounding errors ≈ 10c−t).

EXAMPLE 11.3 Matrix Condition Evaluation

Problem Statement. The Hilbert matrix, which is notoriously ill-conditioned, can be repre-
sented generally as⎡

⎢⎢⎢⎢⎢⎣
1 1

2
1
3 · · · 1

n
1
2

1
3

1
4 · · · 1

n+1
...

...
...

...
1
n

1
n+1

1
n+2 · · · 1

2n−1

⎤
⎥⎥⎥⎥⎥⎦

Use the row-sum norm to estimate the matrix condition number for the 3×3 Hilbert matrix:

[A] =

⎡
⎢⎢⎣

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎤
⎥⎥⎦

Solution. First, the matrix can be normalized so that the maximum element in each row is 1:

[A] =

⎡
⎢⎢⎣

1 1
2

1
3

1 2
3

1
2

1 3
4

3
5

⎤
⎥⎥⎦

Summing each of the rows gives 1.833, 2.1667, and 2.35. Thus, the third row has the
largest sum and the row-sum norm is

‖A‖∞ = 1 + 3

4
+ 3

5
= 2.35

The inverse of the scaled matrix can be computed as

[A]−1 =
⎡
⎣ 9 −18 10

−36 96 −60
30 −90 60

⎤
⎦

Note that the elements of this matrix are larger than the original matrix. This is also re-
flected in its row-sum norm, which is computed as

‖A−1‖∞ = |−36| + |96| + |−60| = 192

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 275

276 MATRIX INVERSE AND CONDITION

Thus, the condition number can be calculated as

Cond[A] = 2.35(192) = 451.2

The fact that the condition number is much greater than unity suggests that the sys-
tem is ill-conditioned. The extent of the ill-conditioning can be quantified by calculating
c = log 451.2 = 2.65. Hence, the last three significant digits of the solution could exhibit
rounding errors. Note that such estimates almost always overpredict the actual error. However,
they are useful in alerting you to the possibility that roundoff errors may be significant.

11.2.3 Norms and Condition Number in MATLAB

MATLAB has built-in functions to compute both norms and condition numbers:

>> norm(X,p)

and

>> cond(X,p)

where X is the vector or matrix and p designates the type of norm or condition number (1, 2,
inf, or 'fro'). Note that the cond function is equivalent to

>> norm(X,p) * norm(inv(X),p)

Also, note that if p is omitted, it is automatically set to 2.

EXAMPLE 11.4 Matrix Condition Evaluation with MATLAB

Problem Statement. Use MATLAB to evaluate both the norms and condition numbers
for the scaled Hilbert matrix previously analyzed in Example 11.3:

[A] =

⎡
⎢⎢⎣

1 1
2

1
3

1 2
3

1
2

1 3
4

3
5

⎤
⎥⎥⎦

(a) As in Example 11.3, first compute the row-sum versions (p = inf). (b) Also compute
the Frobenius (p = 'fro') and the spectral (p = 2) condition numbers.

Solution: (a) First, enter the matrix:

>> A = [1 1/2 1/3;1 2/3 1/2;1 3/4 3/5];

Then, the row-sum norm and condition number can be computed as

>> norm(A,inf)

ans =
2.3500

>> cond(A,inf)

ans =
451.2000

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 276

11.3 CASE STUDY 277

11.3 CASE STUDY INDOOR AIR POLLUTION

Background. As the name implies, indoor air pollution deals with air contamination
in enclosed spaces such as homes, offices, and work areas. Suppose that you are studying
the ventilation system for Bubba’s Gas ’N Guzzle, a truck-stop restaurant located adjacent
to an eight-lane freeway.

As depicted in Fig. 11.2, the restaurant serving area consists of two rooms for smokers
and kids and one elongated room. Room 1 and section 3 have sources of carbon monoxide
from smokers and a faulty grill, respectively. In addition, rooms 1 and 2 gain carbon
monoxide from air intakes that unfortunately are positioned alongside the freeway.

Qc � 150 m3/hr

2
(Kids’ section)

1
(Smoking section)

Grill load
(2000 mg/hr)

Smoker load
(1000 mg/hr)

4

25 m3/hr

25 m3/hr

3

Qb � 50 m3/hr

cb � 2 mg/m3

Qa � 200 m3/hr

ca � 2 mg/m3

Qd � 100 m3/hr

50
 m

3 /
h

r

FIGURE 11.2
Overhead view of rooms in a restaurant. The one-way arrows represent volumetric airflows,
whereas the two-way arrows represent diffusive mixing. The smoker and grill loads add carbon
monoxide mass to the system but negligible airflow.

These results correspond to those that were calculated by hand in Example 11.3.

(b) The condition numbers based on the Frobenius and spectral norms are

>> cond(A,'fro')

ans =
368.0866

>> cond(A)

ans =
366.3503

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 277

278 MATRIX INVERSE AND CONDITION

11.3 CASE STUDY continued

Write steady-state mass balances for each room and solve the resulting linear alge-
braic equations for the concentration of carbon monoxide in each room. In addition, gen-
erate the matrix inverse and use it to analyze how the various sources affect the kids’
room. For example, determine what percent of the carbon monoxide in the kids’ section is
due to (1) the smokers, (2) the grill, and (3) the intake vents. In addition, compute the im-
provement in the kids’ section concentration if the carbon monoxide load is decreased by
banning smoking and fixing the grill. Finally, analyze how the concentration in the kids’
area would change if a screen is constructed so that the mixing between areas 2 and 4 is
decreased to 5 m3/hr.

Solution. Steady-state mass balances can be written for each room. For example, the
balance for the smoking section (room 1) is

0 = Wsmoker + Qaca − Qac1 + E13(c3 − c1)

(Load) + (In o w) − (Out o w) + (Mixing)

Similar balances can be written for the other rooms:

0 = Qbcb + (Qa − Qd)c4 − Qcc2 + E24(c4 − c2)

0 = Wgrill + Qac1 + E13(c1 − c3) + E34(c4 − c3) − Qac3

0 = Qac3 + E34(c3 − c4) + E24(c2 − c4) − Qac4

Substituting the parameters yields the final system of equation:

⎡
⎢⎣

225 0 −25 0
0 175 0 −125

−225 0 275 −50
0 −25 −250 275

⎤
⎥⎦

⎧⎪⎨
⎪⎩

c1

c2

c3

c4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

1400
100
2000

0

⎫⎪⎬
⎪⎭

MATLAB can be used to generate the solution. First, we can compute the inverse.
Note that we use the “short g” format in order to obtain five significant digits of precision:

>> format short g
>> A=[225 0 -25 0
0 175 0 -125
-225 0 275 -50
0 -25 -250 275];
>> AI=inv(A)

AI =
0.0049962 1.5326e-005 0.00055172 0.00010728
0.0034483 0.0062069 0.0034483 0.0034483
0.0049655 0.00013793 0.0049655 0.00096552
0.0048276 0.00068966 0.0048276 0.0048276

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 278

11.3 CASE STUDY 279

11.3 CASE STUDY continued

The solution can then be generated as

>> b=[1400 100 2000 0]';
>> c=AI*b

c =
8.0996
12.345
16.897
16.483

Thus, we get the surprising result that the smoking section has the lowest carbon
monoxide levels! The highest concentrations occur in rooms 3 and 4 with section 2 having
an intermediate level. These results take place because (a) carbon monoxide is conserva-
tive and (b) the only air exhausts are out of sections 2 and 4 (Qc and Qd). Room 3 is so bad
because not only does it get the load from the faulty grill, but it also receives the effluent
from room 1.

Although the foregoing is interesting, the real power of linear systems comes from
using the elements of the matrix inverse to understand how the parts of the system interact.
For example, the elements of the matrix inverse can be used to determine the percent of the
carbon monoxide in the kids’ section due to each source:

The smokers:

c2,smokers = a−1
21 Wsmokers = 0.0034483(1000) = 3.4483

%smokers = 3.4483

12.345
× 100% = 27.93%

The grill:

c2,grill = a−1
23 Wgrill = 0.0034483(2000) = 6.897

%grill = 6.897

12.345
× 100% = 55.87%

The intakes:

c2,intakes = a−1
21 Qaca + a−1

22 Qbcb = 0.0034483(200)2 + 0.0062069(50)2

= 1.37931 + 0.62069 = 2

%grill = 2

12.345
× 100% = 16.20%

The faulty grill is clearly the most significant source.
The inverse can also be employed to determine the impact of proposed remedies such

as banning smoking and fixing the grill. Because the model is linear, superposition holds
and the results can be determined individually and summed:

�c2 = a−1
21 �Wsmoker + a−1

23 �Wgrill = 0.0034483(−1000) + 0.0034483(−2000)

= −3.4483 − 6.8966 = −10.345

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 279

280 MATRIX INVERSE AND CONDITION

PROBLEMS

11.1 Determine the matrix inverse for the following system:

10x1 + 2x2 − x3 = 27
−3x1 − 6x2 + 2x3 = −61.5

x1 + x2 + 5x3 = −21.5

Check your results by verifying that [A][A]−1 = [I]. Do not
use a pivoting strategy.

11.2 Determine the matrix inverse for the following system:

−8x1 + x2 − 2x3 = −20
2x1 − 6x2 − x3 = −38

−3x1 − x2 + 7x3 = −34

11.3 The following system of equations is designed to
determine concentrations (the c’s in g/m3) in a series of

11.3 CASE STUDY continued

Note that the same computation would be made in MATLAB as

>> AI(2,1)*(-1000)+AI(2,3)*(-2000)

ans =
-10.345

Implementing both remedies would reduce the concentration by 10.345 mg/m3. The result
would bring the kids’ room concentration to 12.345 − 10.345 = 2 mg/m3. This makes
sense, because in the absence of the smoker and grill loads, the only sources are the air in-
takes which are at 2 mg/m3.

Because all the foregoing calculations involved changing the forcing functions, it was
not necessary to recompute the solution. However, if the mixing between the kids’ area and
zone 4 is decreased, the matrix is changed

⎡
⎢⎣

225 0 −25 0
0 155 0 −105

−225 0 275 −50
0 −5 −250 255

⎤
⎥⎦

⎧⎪⎨
⎪⎩

c1

c2

c3

c4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

1400
100
2000

0

⎫⎪⎬
⎪⎭

The results for this case involve a new solution. Using MATLAB, the result is

⎧⎪⎨
⎪⎩

c1

c2

c3

c4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

8.1084
12.0800
16.9760
16.8800

⎫⎪⎬
⎪⎭

Therefore, this remedy would only improve the kids’ area concentration by a paltry
0.265 mg/m3.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 280

PROBLEMS 281

coupled reactors as a function of the amount of mass input to
each reactor (the right-hand sides in g/day):

15c1 − 3c2 − c3 = 4000
−3c1 + 18c2 − 6c3 = 1500
−4c1 − c2 + 12c3 = 2400

(a) Determine the matrix inverse.
(b) Use the inverse to determine the solution.
(c) Determine how much the rate of mass input to reactor 3

must be increased to induce a 10 g/m3 rise in the con-
centration of reactor 1.

(d) How much will the concentration in reactor 3 be re-
duced if the rate of mass input to reactors 1 and 2 is
reduced by 500 and 250 g/day, respectively?

11.4 Determine the matrix inverse for the system described
in Prob. 8.9. Use the matrix inverse to determine the
concentration in reactor 5 if the inflow concentrations are
changed to c01 = 10 and c03 = 20.

11.5 Determine the matrix inverse for the system described
in Prob. 8.10. Use the matrix inverse to determine the force
in the three members (F1, F2 and F3) if the vertical load at
node 1 is doubled to F1,v = −4000 N and a horizontal load
of F3,h = −1000 N is applied to node 3.
11.6 Determine ‖A‖ f , ‖A‖1, and ‖A‖∞ for

[A] =
⎡
⎣ 8 2 −10

−9 1 3
15 −1 6

⎤
⎦

Before determining the norms, scale the matrix by making
the maximum element in each row equal to one.
11.7 Determine the Frobenius and row-sum norms for the
systems in Probs. 11.2 and 11.3.
11.8 Use MATLAB to determine the spectral condition num-
ber for the following system. Do not normalize the system:⎡

⎢⎢⎢⎢⎢⎣

1 4 9 16 25
4 9 16 25 36
9 16 25 36 49
16 25 36 49 64
25 36 49 64 81

⎤
⎥⎥⎥⎥⎥⎦

Compute the condition number based on the row-sum norm.
11.9 Besides the Hilbert matrix, there are other matrices
that are inherently ill-conditioned. One such case is the
Vandermonde matrix, which has the following form:⎡

⎢⎢⎣
x2

1 x1 1

x2
2 x2 1

x2
3 x3 1

⎤
⎥⎥⎦

(a) Determine the condition number based on the row-sum
norm for the case where x1 = 4, x2 = 2, and x3 = 7.

(b) Use MATLAB to compute the spectral and Frobenius
condition numbers.

11.10 Use MATLAB to determine the spectral condition
number for a 10-dimensional Hilbert matrix. How many dig-
its of precision are expected to be lost due to ill-conditioning?
Determine the solution for this system for the case where each
element of the right-hand-side vector {b} consists of the sum-
mation of the coefficients in its row. In other words, solve for
the case where all the unknowns should be exactly one. Com-
pare the resulting errors with those expected based on the
condition number.
11.11 Repeat Prob. 11.10, but for the case of a six-
dimensional Vandermonde matrix (see Prob. 11.9) where
x1 = 4, x2 = 2, x3 = 7, x4 = 10, x5 = 3, and x6 = 5.
11.12 The Lower Colorado River consists of a series of four
reservoirs as shown in Fig. P11.12.

Mass balances can be written for each reservoir, and
the following set of simultaneous linear algebraic equations
results:

⎡
⎢⎢⎣

13.422 0 0 0
−13.422 12.252 0 0

0 −12.252 12.377 0
0 0 −12.377 11.797

⎤
⎥⎥⎦

×

⎧⎪⎪⎨
⎪⎪⎩

c1

c2

c3

c4

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

750.5
300
102
30

⎫⎪⎪⎬
⎪⎪⎭

where the right-hand-side vector consists of the loadings of
chloride to each of the four lakes and c1, c2, c3, and c4 = the
resulting chloride concentrations for Lakes Powell, Mead,
Mohave, and Havasu, respectively.
(a) Use the matrix inverse to solve for the concentrations in

each of the four lakes.
(b) How much must the loading to Lake Powell be reduced

for the chloride concentration of Lake Havasu to be 75?
(c) Using the column-sum norm, compute the condition

number and how many suspect digits would be gener-
ated by solving this system.

11.13 (a) Determine the matrix inverse and condition num-
ber for the following matrix:⎡

⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦

(b) Repeat (a) but change a33 slightly to 9.1.

cha01102_ch11_268-283.qxd 12/18/10 1:26 PM Page 281

282 MATRIX INVERSE AND CONDITION

c1

c2

c3

c4

Upper
Colorado

River

Lake
Mead

Lake
Mohave

Lake
Havasu

Lake
Powell

FIGURE P11.12
The Lower Colorado River.

FIGURE P11.15

11.14 Polynomial interpolation consists of determining the
unique (n – 1)th-order polynomial that fits n data points.
Such polynomials have the general form,

f (x) = p1xn−1 + p2xn−2 + · · · + pn−1x + pn (P11.14)

where the p’s are constant coefficients. A straightforward
way for computing the coefficients is to generate n linear
algebraic equations that we can solve simultaneously for
the coefficients. Suppose that we want to determine the
coefficients of the fourth-order polynomial f (x) = p1x

4 +
p2x

3 + p3x
2 + p4x + p5 that passes through the following five

points: (200, 0.746), (250, 0.675), (300, 0.616), (400, 0.525),
and (500, 0.457). Each of these pairs can be substituted into
Eq. (P11.14) to yield a system of five equations with five
unknowns (the p’s). Use this approach to solve for the coef-
ficients. In addition, determine and interpret the condition
number.
11.15 A chemical constituent flows between three reactors
as depicted in Fig. P11.15. Steady-state mass balances can
be written for a substance that reacts with first-order kinet-
ics. For example, the mass balance for reactor 1 is

Q1,inc1,in − Q1,2c1 − Q1,3c1 + Q2,1c2 − kV1c1 = 0
(P11.15)

where Q1,in = the volumetric inflow to reactor 1 (m3/min),
c1,in = the inflow concentration to reactor 1 (g/m3), Qi,j = the
flow from reactor i to reactor j (m3/min), ci = the concentra-
tion of reactor i (g/m3), k = a first-order decay rate (/min),
and Vi = the volume of reactor i (m3).

(a) Write the mass balances for reactors 2 and 3.
(b) If k = 0.1/min, write the mass balances for all three

reactors as a system of linear algebraic equations.
(c) Compute the LU decomposition for this system.
(d) Use the LU decomposition to compute the matrix inverse.
(e) Use the matrix inverse to answer the following ques-

tions: (i) What are the steady-state concentrations for
the three reactors? (ii) If the inflow concentration to the
second reactor is set to zero, what is the resulting
reduction in concentration of reactor 1? (iii) If the in-
flow concentration to reactor 1 is doubled, and the

V2 � 50

Q2,in � 10

c2,in � 200

Q1,in � 100 Q1,3 � 117

Q3,2 � 7
Q1,2 � 5

Q2,1 � 22

Q3,out � 110

c1,in � 10

V1 � 100 V3 � 150

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 282

PROBLEMS 283

inflow concentration to reactor 2 is halved, what is the
concentration of reactor 3?

11.16 As described in Examples 8.2 and 11.2, use the matrix
inverse to answer the following:
(a) Determine the change in position of the first jumper, if

the mass of the third jumper is increased to 100 kg.
(b) What force must be applied to the third jumper so that

the final position of the third jumper is 140 m?
11.17 Determine the matrix inverse for the electric circuit
formulated in Sec. 8.3. Use the inverse to determine the new

FIGURE P11.18

Q � 50 m3/hr

50 m3/hr

50 m3/hr

90 m3/hr

Load �
5000 mg/hr

R
oom

 4

R
oom

 3

Room 2

Room 1

Q � 50 m3/hr

c � 40 mg/m3

Q � 150 m3/hr

c � 1 mg/m3

Q � 50 m3/hr

current between nodes 2 and 5 (i52), if a voltage of 200 V is
applied at node 6 and the voltage at node 1 is halved.
11.18 (a) Using the same approach as described in Sec. 11.3,
develop steady-state mass balances for the room configura-
tion depicted in Fig. P11.18.
(b) Determine the matrix inverse and use it to calculate the

resulting concentrations in the rooms.
(c) Use the matrix inverse to determine how much the room

4 load must be reduced to maintain a concentration of
20 mg/m3 in room 2.

cha01102_ch11_268-283.qxd 12/17/10 8:10 AM Page 283

Iterative Methods

284

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with iterative methods for
solving simultaneous equations. Specific objectives and topics covered are

• Understanding the difference between the Gauss-Seidel and Jacobi methods.
• Knowing how to assess diagonal dominance and knowing what it means.
• Recognizing how relaxation can be used to improve the convergence of iterative

methods.
• Understanding how to solve systems of nonlinear equations with successive

substitution and Newton-Raphson.

I terative or approximate methods provide an alternative to the elimination methods
described to this point. Such approaches are similar to the techniques we developed to
obtain the roots of a single equation in Chaps. 5 and 6. Those approaches consisted of

guessing a value and then using a systematic method to obtain a refined estimate of the
root. Because the present part of the book deals with a similar problem—obtaining the val-
ues that simultaneously satisfy a set of equations—we might suspect that such approximate
methods could be useful in this context. In this chapter, we will present approaches for
solving both linear and nonlinear simultaneous equations.

12.1 LINEAR SYSTEMS: GAUSS-SEIDEL

The Gauss-Seidel method is the most commonly used iterative method for solving linear
algebraic equations. Assume that we are given a set of n equations:

[A]{x} = {b}
Suppose that for conciseness we limit ourselves to a 3 × 3 set of equations. If the diagonal
elements are all nonzero, the first equation can be solved for x1, the second for x2, and the

12

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 284

third for x3 to yield

x j
1 = b1 − a12x j−1

2 − a13x j−1
3

a11
(12.1a)

x j
2 = b2 − a21x j

1 − a23x j−1
3

a22
(12.1b)

x j
3 = b3 − a31x j

1 − a32x j
2

a33
(12.1c)

where j and j − 1 are the present and previous iterations.
To start the solution process, initial guesses must be made for the x’s. A simple ap-

proach is to assume that they are all zero. These zeros can be substituted into Eq. (12.1a),
which can be used to calculate a new value for x1 = b1/a11. Then we substitute this new
value of x1 along with the previous guess of zero for x3 into Eq. (12.1b) to compute a new
value for x2. The process is repeated for Eq. (12.1c) to calculate a new estimate for x3. Then
we return to the first equation and repeat the entire procedure until our solution converges
closely enough to the true values. Convergence can be checked using the criterion that for
all i,

εa,i =
∣∣∣∣∣ x j

i − x j−1
i

x j
i

∣∣∣∣∣ × 100% ≤ εs (12.2)

EXAMPLE 12.1 Gauss-Seidel Method

Problem Statement. Use the Gauss-Seidel method to obtain the solution for

3x1 − 0.1x2 − 0.2x3 = 7.85

0.1x1 + 7x2 − 0.3x3 = −19.3

0.3x1 − 0.2x2 + 10x3 = 71.4

Note that the solution is x1 = 3, x2 = −2.5, and x3 = 7.

Solution. First, solve each of the equations for its unknown on the diagonal:

x1 = 7.85 + 0.1x2 + 0.2x3

3
(E12.1.1)

x2 = −19.3 − 0.1x1 + 0.3x3

7
(E12.1.2)

x3 = 71.4 − 0.3x1 + 0.2x2

10
(E12.1.3)

By assuming that x2 and x3 are zero, Eq. (E12.1.1) can be used to compute

x1 = 7.85 + 0.1(0) + 0.2(0)

3
= 2.616667

12.1 LINEAR SYSTEMS: GAUSS-SEIDEL 285

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 285

This value, along with the assumed value of x3 = 0, can be substituted into Eq. (E12.1.2)
to calculate

x2 = −19.3 − 0.1(2.616667) + 0.3(0)

7
= −2.794524

The first iteration is completed by substituting the calculated values for x1 and x2 into
Eq. (E12.1.3) to yield

x3 = 71.4 − 0.3(2.616667) + 0.2(−2.794524)

10
= 7.005610

For the second iteration, the same process is repeated to compute

x1 = 7.85 + 0.1(−2.794524) + 0.2(7.005610)

3
= 2.990557

x2 = −19.3 − 0.1(2.990557) + 0.3(7.005610)

7
= −2.499625

x3 = 71.4 − 0.3(2.990557) + 0.2(−2.499625)

10
= 7.000291

The method is, therefore, converging on the true solution. Additional iterations could be
applied to improve the answers. However, in an actual problem, we would not know the
true answer a priori. Consequently, Eq. (12.2) provides a means to estimate the error. For
example, for x1:

εa,1 =
∣∣∣∣2.990557 − 2.616667

2.990557

∣∣∣∣ × 100% = 12.5%

For x2 and x3, the error estimates are εa,2 = 11.8% and εa,3 = 0.076%. Note that, as was
the case when determining roots of a single equation, formulations such as Eq. (12.2) usu-
ally provide a conservative appraisal of convergence. Thus, when they are met, they ensure
that the result is known to at least the tolerance specified by εs .

As each new x value is computed for the Gauss-Seidel method, it is immediately used
in the next equation to determine another x value. Thus, if the solution is converging, the
best available estimates will be employed. An alternative approach, called Jacobi iteration,
utilizes a somewhat different tactic. Rather than using the latest available x’s, this tech-
nique uses Eq. (12.1) to compute a set of new x’s on the basis of a set of old x’s. Thus, as
new values are generated, they are not immediately used but rather are retained for the next
iteration.

The difference between the Gauss-Seidel method and Jacobi iteration is depicted in
Fig. 12.1.Although there are certain cases where the Jacobi method is useful, Gauss-Seidel’s
utilization of the best available estimates usually makes it the method of preference.

286 ITERATIVE METHODS

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 286

12.1.1 Convergence and Diagonal Dominance

Note that the Gauss-Seidel method is similar in spirit to the technique of simple fixed-point
iteration that was used in Section 6.1 to solve for the roots of a single equation. Recall that
simple fixed-point iteration was sometimes nonconvergent. That is, as the iterations pro-
gressed, the answer moved farther and farther from the correct result.

Although the Gauss-Seidel method can also diverge, because it is designed for linear
systems, its ability to converge is much more predictable than for fixed-point iteration of
nonlinear equations. It can be shown that if the following condition holds, Gauss-Seidel
will converge:

|aii | >

n∑
j=1
j �=i

∣∣ai j

∣∣ (12.3)

That is, the absolute value of the diagonal coefficient in each of the equations must be
larger than the sum of the absolute values of the other coefficients in the equation. Such
systems are said to be diagonally dominant. This criterion is sufficient but not necessary
for convergence. That is, although the method may sometimes work if Eq. (12.3) is not
met, convergence is guaranteed if the condition is satisfied. Fortunately, many engineer-
ing and scientific problems of practical importance fulfill this requirement. Therefore,
Gauss-Seidel represents a feasible approach to solve many problems in engineering and
science.

12.1 LINEAR SYSTEMS: GAUSS-SEIDEL 287

x1 � (b1 � a12x2 � a13x3)�a11

x1 � (b1 � a12x2 � a13x3)�a11

x1 � (b1 � a12x2 � a13x3)�a11

x2 � (b2 � a21x1 � a23x3)�a22

x2 � (b2 � a21x1 � a23x3)�a22

x3 � (b3 � a31x1 � a32x2)�a33

x3 � (b3 � a31x1 � a32x2)�a33

x1 � (b1 � a12x2 � a13x3)�a11

x2 � (b2 � a21x1 � a23x3)�a22

x3 � (b3 � a31x1 � a32x2)�a33

x3 � (b3 � a31x1 � a32x2)�a33

x2 � (b2 � a21x1 � a23x3)�a22

First iteration

Second iteration

(a) (b)

FIGURE 12.1
Graphical depiction of the difference between (a) the Gauss-Seidel and (b) the Jacobi iterative
methods for solving simultaneous linear algebraic equations.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 287

12.1.2 MATLAB M-file: GaussSeidel

Before developing an algorithm, let us first recast Gauss-Seidel in a form that is com-
patible with MATLAB’s ability to perform matrix operations. This is done by expressing
Eq. (12.1) as

xnew
1 = b1

a11
− a12

a11
xold

2 − a13

a11
xold

3

xnew
2 = b2

a22
− a21

a22
xnew

1 − a23

a22
xold

3

xnew
3 = b3

a33
− a31

a33
xnew

1 − a32

a33
xnew

2

Notice that the solution can be expressed concisely in matrix form as

{x} = {d} − [C]{x} (12.4)

where

{d} =
{ b1/a11

b2/a22

b3/a33

}

and

[C] =
[0 a12/a11 a13/a11

a21/a22 0 a23/a22

a31/a33 a32/a33 0

]

An M-file to implement Eq. (12.4) is listed in Fig. 12.2.

12.1.3 Relaxation

Relaxation represents a slight modification of the Gauss-Seidel method that is designed to
enhance convergence. After each new value of x is computed using Eq. (12.1), that value is
modified by a weighted average of the results of the previous and the present iterations:

xnew
i = λxnew

i + (1 − λ)xold
i (12.5)

where λ is a weighting factor that is assigned a value between 0 and 2.
If λ = 1, (1 − λ) is equal to 0 and the result is unmodified. However, if λ is set at a

value between 0 and 1, the result is a weighted average of the present and the previous re-
sults. This type of modification is called underrelaxation. It is typically employed to make
a nonconvergent system converge or to hasten convergence by dampening out oscillations.

For values of λ from 1 to 2, extra weight is placed on the present value. In this in-
stance, there is an implicit assumption that the new value is moving in the correct direction
toward the true solution but at too slow a rate. Thus, the added weight of λ is intended to
improve the estimate by pushing it closer to the truth. Hence, this type of modification,
which is called overrelaxation, is designed to accelerate the convergence of an already con-
vergent system. The approach is also called successive overrelaxation, or SOR.

288 ITERATIVE METHODS

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 288

The choice of a proper value for λ is highly problem-specific and is often determined
empirically. For a single solution of a set of equations it is often unnecessary. However, if
the system under study is to be solved repeatedly, the efficiency introduced by a wise
choice of λ can be extremely important. Good examples are the very large systems of linear
algebraic equations that can occur when solving partial differential equations in a variety of
engineering and scientific problem contexts.

12.1 LINEAR SYSTEMS: GAUSS-SEIDEL 289

function x = GaussSeidel(A,b,es,maxit)
% GaussSeidel: Gauss Seidel method
% x = GaussSeidel(A,b): Gauss Seidel without relaxation
% input:
% A = coefficient matrix
% b = right hand side vector
% es = stop criterion (default = 0.00001%)
% maxit = max iterations (default = 50)
% output:
% x = solution vector

if nargin<2,error('at least 2 input arguments required'),end
if nargin<4|isempty(maxit),maxit=50;end
if nargin<3|isempty(es),es=0.00001;end
[m,n] = size(A);
if m~=n, error('Matrix A must be square'); end
C = A;
for i = 1:n

C(i,i) = 0;
x(i) = 0;

end
x = x';
for i = 1:n

C(i,1:n) = C(i,1:n)/A(i,i);
end
for i = 1:n

d(i) = b(i)/A(i,i);
end
iter = 0;
while (1)

xold = x;
for i = 1:n

x(i) = d(i)-C(i,:)*x;
if x(i) ~= 0

ea(i) = abs((x(i) - xold(i))/x(i)) * 100;
end

end
iter = iter+1;
if max(ea)<=es | iter >= maxit, break, end

end

FIGURE 12.2
MATLAB M-file to implement Gauss-Seidel.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 289

290 ITERATIVE METHODS

EXAMPLE 12.2 Gauss-Seidel Method with Relaxation

Problem Statement. Solve the following system with Gauss-Seidel using overrelaxation
(λ = 1.2) and a stopping criterion of εs = 10%:

−3x1 + 12x2 = 9

10x1 − 2x2 = 8

Solution. First rearrange the equations so that they are diagonally dominant and solve the
first equation for x1 and the second for x2:

x1 = 8 + 2x2

10
= 0.8 + 0.2x2

x2 = 9 + 3x1

12
= 0.75 + 0.25x1

First iteration: Using initial guesses of x1 = x2 = 0, we can solve for x1:

x1 = 0.8 + 0.2(0) = 0.8

Before solving for x2, we first apply relaxation to our result for x1:

x1,r = 1.2(0.8) − 0.2(0) = 0.96

We use the subscript r to indicate that this is the “relaxed” value. This result is then used to
compute x2:

x2 = 0.75 + 0.25(0.96) = 0.99

We then apply relaxation to this result to give

x2,r = 1.2(0.99) − 0.2(0) = 1.188

At this point, we could compute estimated errors with Eq. (12.2). However, since we
started with assumed values of zero, the errors for both variables will be 100%.

Second iteration: Using the same procedure as for the first iteration, the second iteration
yields

x1 = 0.8 + 0.2(1.188) = 1.0376
x1,r = 1.2(1.0376) − 0.2(0.96) = 1.05312

εa,1 =
∣∣∣∣1.05312 − 0.96

1.05312

∣∣∣∣ × 100% = 8.84%

x2 = 0.75 + 0.25(1.05312) = 1.01328
x2,r = 1.2(1.01328) − 0.2(1.188) = 0.978336

εa,2 =
∣∣∣∣0.978336 − 1.188

0.978336

∣∣∣∣ × 100% = 21.43%

Because we have now have nonzero values from the first iteration, we can compute ap-
proximate error estimates as each new value is computed. At this point, although the error
estimate for the first unknown has fallen below the 10% stopping criterion, the second has
not. Hence, we must implement another iteration.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 290

12.2 NONLINEAR SYSTEMS 291

Third iteration:

x1 = 0.8 + 0.2(0.978336) = 0.995667

x1,r = 1.2(0.995667) − 0.2(1.05312) = 0.984177

εa,1 =
∣∣∣∣0.984177 − 1.05312

0.984177

∣∣∣∣ × 100% = 7.01%

x2 = 0.75 + 0.25(0.984177) = 0.996044

x2,r = 1.2(0.996044) − 0.2(0.978336) = 0.999586

εa,2 =
∣∣∣∣0.999586 − 0.978336

0.999586

∣∣∣∣ × 100% = 2.13%

At this point, we can terminate the computation because both error estimates have fallen
below the 10% stopping criterion. The results at this juncture, x1 = 0.984177 and
x2 = 0.999586, are converging on the exact solution of x1 = x2 = 1.

12.2 NONLINEAR SYSTEMS

The following is a set of two simultaneous nonlinear equations with two unknowns:

x2
1 + x1x2 = 10 (12.6a)

x2 + 3x1x2
2 = 57 (12.6b)

In contrast to linear systems which plot as straight lines (recall Fig. 9.1), these equations
plot as curves on an x2 versus x1 graph. As in Fig. 12.3, the solution is the intersection of
the curves.

0
0

2

4

6

8

1 2 3 x1

x2

x2 � 3x1x2
2 � 57

x1
2 � x1x2 � 10

Solution
x1 � 2, x2 � 3

FIGURE 12.3
Graphical depiction of the solution of two simultaneous nonlinear equations.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 291

292 ITERATIVE METHODS

Just as we did when we determined roots for single nonlinear equations, such systems
of equations can be expressed generally as

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0
...

fn(x1, x2, . . . , xn) = 0

(12.7)

Therefore, the solution are the values of the x’s that make the equations equal to zero.

12.2.1 Successive Substitution

A simple approach for solving Eq. (12.7) is to use the same strategy that was employed for
fixed-point iteration and the Gauss-Seidel method. That is, each one of the nonlinear equa-
tions can be solved for one of the unknowns. These equations can then be implemented
iteratively to compute new values which (hopefully) will converge on the solutions. This
approach, which is called successive substitution, is illustrated in the following example.

EXAMPLE 12.3 Successive Substitution for a Nonlinear System

Problem Statement. Use successive substitution to determine the roots of Eq. (12.6).
Note that a correct pair of roots is x1 = 2 and x2 = 3. Initiate the computation with guesses
of x1 = 1.5 and x2 = 3.5.

Solution. Equation (12.6a) can be solved for

x1 = 10 − x2
1

x2
(E12.3.1)

and Eq. (12.6b) can be solved for

x2 = 57 − 3x1x2
2 (E12.3.2)

On the basis of the initial guesses, Eq. (E12.3.1) can be used to determine a new value
of x1:

x1 = 10 − (1.5)2

3.5
= 2.21429

This result and the initial value of x2 = 3.5 can be substituted into Eq. (E12.3.2) to deter-
mine a new value of x2:

x2 = 57 − 3(2.21429)(3.5)2 = −24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on the
second iteration:

x1 = 10 − (2.21429)2

−24.37516
= −0.20910

x2 = 57 − 3(−0.20910)(−24.37516)2 = 429.709

Obviously, the approach is deteriorating.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 292

12.2 NONLINEAR SYSTEMS 293

Now we will repeat the computation but with the original equations set up in a differ-
ent format. For example, an alternative solution of Eq. (12.6a) is

x1 =
√

10 − x1x2

and of Eq. (12.6b) is

x2 =
√

57 − x2

3x1

Now the results are more satisfactory:

x1 =
√

10 − 1.5(3.5) = 2.17945

x2 =
√

57 − 3.5

3(2.17945)
= 2.86051

x1 =
√

10 − 2.17945(2.86051) = 1.94053

x2 =
√

57 − 2.86051

3(1.94053)
= 3.04955

Thus, the approach is converging on the true values of x1 = 2 and x2 = 3.

The previous example illustrates the most serious shortcoming of successive
substitution—that is, convergence often depends on the manner in which the equations are
formulated. Additionally, even in those instances where convergence is possible, diver-
gence can occur if the initial guesses are insufficiently close to the true solution. These
criteria are so restrictive that fixed-point iteration has limited utility for solving nonlinear
systems.

12.2.2 Newton-Raphson

Just as fixed-point iteration can be used to solve systems of nonlinear equations, other open
root location methods such as the Newton-Raphson method can be used for the same pur-
pose. Recall that the Newton-Raphson method was predicated on employing the derivative
(i.e., the slope) of a function to estimate its intercept with the axis of the independent
variable—that is, the root. In Chap. 6, we used a graphical derivation to compute this esti-
mate. An alternative is to derive it from a first-order Taylor series expansion:

f (xi+1) = f (xi) + (xi+1 − xi) f ′(xi) (12.8)

where xi is the initial guess at the root and xi+1 is the point at which the slope intercepts the x axis.
At this intercept, f (xi+1) by definition equals zero and Eq. (12.8) can be rearranged to yield

xi+1 = xi − f (xi)

f ′(xi)
(12.9)

which is the single-equation form of the Newton-Raphson method.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 293

294 ITERATIVE METHODS

The multiequation form is derived in an identical fashion. However, a multivariable
Taylor series must be used to account for the fact that more than one independent variable
contributes to the determination of the root. For the two-variable case, a first-order Taylor
series can be written for each nonlinear equation as

f1,i+1 = f1,i + (x1,i+1 − x1,i)
∂ f1,i

∂x1
+ (x2,i+1 − x2,i)

∂ f1,i

∂x2
(12.10a)

f2,i+1 = f2,i + (x1,i+1 − x1,i)
∂ f2,i

∂x1
+ (x2,i+1 − x2,i)

∂ f2,i

∂x2
(12.10b)

Just as for the single-equation version, the root estimate corresponds to the values of x1 and
x2, where f1,i+1 and f2,i+1 equal zero. For this situation, Eq. (12.10) can be rearranged to give

∂ f1,i

∂x1
x1,i+1 + ∂ f1,i

∂x2
x2,i+1 = − f1,i + x1,i

∂ f1,i

∂x1
+ x2,i

∂ f1,i

∂x2
(12.11a)

∂ f2,i

∂x1
x1,i+1 + ∂ f2,i

∂x2
x2,i+1 = − f2,i + x1,i

∂ f2,i

∂x1
+ x2,i

∂ f2,i

∂x2
(12.11b)

Because all values subscripted with i’s are known (they correspond to the latest guess or
approximation), the only unknowns are x1,i+1 and x2,i+1. Thus, Eq. (12.11) is a set of
two linear equations with two unknowns. Consequently, algebraic manipulations (e.g.,
Cramer’s rule) can be employed to solve for

x1,i+1 = x1,i −
f1,i

∂ f2,i

∂x2
− f2,i

∂ f1,i

∂x2

∂ f1,i

∂x1

∂ f2,i

∂x2
− ∂ f1,i

∂x2

∂ f2,i

∂x1

(12.12a)

x2,i+1 = x2,i −
f2,i

∂ f1,i

∂x1
− f1,i

∂ f2,i

∂x1

∂ f1,i

∂x1

∂ f2,i

∂x2
− ∂ f1,i

∂x2

∂ f2,i

∂x1

(12.12b)

The denominator of each of these equations is formally referred to as the determinant of the
Jacobian of the system.

Equation (12.12) is the two-equation version of the Newton-Raphson method. As in
the following example, it can be employed iteratively to home in on the roots of two simul-
taneous equations.

EXAMPLE 12.4 Newton-Raphson for a Nonlinear System

Problem Statement. Use the multiple-equation Newton-Raphson method to determine
roots of Eq. (12.6). Initiate the computation with guesses of x1 = 1.5 and x2 = 3.5.

Solution. First compute the partial derivatives and evaluate them at the initial guesses of
x and y:

∂ f1,0

∂x1
= 2x1 + x2 = 2(1.5) + 3.5 = 6.5

∂ f1,0

∂x2
= x1 = 1.5

∂ f2,0

∂x1
= 3x2

2 = 3(3.5)2 = 36.75
∂ f2,0

∂x2
= 1 + 6x1x2 = 1 + 6(1.5)(3.5) = 32.5

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 294

12.2 NONLINEAR SYSTEMS 295

Thus, the determinant of the Jacobian for the first iteration is

6.5(32.5) − 1.5(36.75) = 156.125

The values of the functions can be evaluated at the initial guesses as

f1,0 = (1.5)2 + 1.5(3.5) − 10 = −2.5

f2,0 = 3.5 + 3(1.5)(3.5)2 − 57 = 1.625

These values can be substituted into Eq. (12.12) to give

x1 = 1.5 − −2.5(32.5) − 1.625(1.5)

156.125
= 2.03603

x2 = 3.5 − 1.625(6.5) − (−2.5)(36.75)

156.125
= 2.84388

Thus, the results are converging to the true values of x1 = 2 and x2 = 3. The computation
can be repeated until an acceptable accuracy is obtained.

When the multiequation Newton-Raphson works, it exhibits the same speedy quadratic
convergence as the single-equation version. However, just as with successive substitution,
it can diverge if the initial guesses are not sufficiently close to the true roots. Whereas
graphical methods could be employed to derive good guesses for the single-equation case,
no such simple procedure is available for the multiequation version. Although there are
some advanced approaches for obtaining acceptable first estimates, often the initial guesses
must be obtained on the basis of trial and error and knowledge of the physical system being
modeled.

The two-equation Newton-Raphson approach can be generalized to solve n simulta-
neous equations. To do this, Eq. (12.11) can be written for the kth equation as

∂ fk,i

∂x1
x1,i+1 + ∂ fk,i

∂x2
x2,i+1 + · · · + ∂ fk,i

∂xn
xn,i+1 = − fk,i + x1,i

∂ fk,i

∂x1
+ x2,i

∂ fk,i

∂x2

+ · · · + xn,i
∂ fk,i

∂xn
(12.13)

where the first subscript k represents the equation or unknown and the second subscript de-
notes whether the value or function in question is at the present value (i) or at the next value
(i + 1). Notice that the only unknowns in Eq. (12.13) are the xk,i+1 terms on the left-hand
side. All other quantities are located at the present value (i) and, thus, are known at any
iteration. Consequently, the set of equations generally represented by Eq. (12.13) (i.e., with
k = 1, 2, . . . , n) constitutes a set of linear simultaneous equations that can be solved
numerically by the elimination methods elaborated in previous chapters.

Matrix notation can be employed to express Eq. (12.13) concisely as

[J]{xi+1} = −{ f } + [J]{xi } (12.14)

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 295

296 ITERATIVE METHODS

where the partial derivatives evaluated at i are written as the Jacobian matrix consisting of
the partial derivatives:

[J] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1,i

∂x1

∂ f1,i

∂x2
· · · ∂ f1,i

∂xn

∂ f2,i

∂x1

∂ f2,i

∂x2
· · · ∂ f2,i

∂xn
...

...
...

∂ fn,i

∂x1

∂ fn,i

∂x2
· · · ∂ fn,i

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.15)

The initial and final values are expressed in vector form as

{xi }T = � x1,i x2,i · · · xn,i �
and

{xi+1}T = � x1,i+1 x2,i+1 · · · xn,i+1 �
Finally, the function values at i can be expressed as

{ f }T = � f1,i f2,i · · · fn,i �
Equation (12.14) can be solved using a technique such as Gauss elimination. This

process can be repeated iteratively to obtain refined estimates in a fashion similar to the
two-equation case in Example 12.4.

Insight into the solution can be obtained by solving Eq. (12.14) with matrix inversion.
Recall that the single-equation version of the Newton-Raphson method is

xi+1 = xi − f (xi)

f ′(xi)
(12.16)

If Eq. (12.14) is solved by multiplying it by the inverse of the Jacobian, the result is

{xi+1} = {xi } − [J]−1{ f } (12.17)

Comparison of Eqs. (12.16) and (12.17) clearly illustrates the parallels between the
two equations. In essence, the Jacobian is analogous to the derivative of a multivariate
function.

Such matrix calculations can be implemented very efficiently in MATLAB. We can
illustrate this by using MATLAB to duplicate the calculations from Example 12.4. After
defining the initial guesses, we can compute the Jacobian and the function values as

>> x=[1.5;3.5];
>> J=[2*x(1)+x(2) x(1);3*x(2)^2 1+6*x(1)*x(2)]

J =
6.5000 1.5000
36.7500 32.5000

>> f=[x(1)^2+x(1)*x(2)-10;x(2)+3*x(1)*x(2)^2-57]

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 296

12.2 NONLINEAR SYSTEMS 297

f =
-2.5000
1.6250

Then, we can implement Eq. (12.17) to yield the improved estimates

>> x=x-J\f

x =
2.0360
2.8439

Although we could continue the iterations in the command mode, a nicer alternative is
to express the algorithm as an M-file. As in Fig. 12.4, this routine is passed an M-file that
computes the function values and the Jacobian at a given value of x. It then calls this func-
tion and implements Eq. (12.17) in an iterative fashion. The routine iterates until an upper
limit of iterations (maxit) or a specified percent relative error (es) is reached.

function [x,f,ea,iter]=newtmult(func,x0,es,maxit,varargin)
% newtmult: Newton-Raphson root zeroes nonlinear systems
% [x,f,ea,iter]=newtmult(func,x0,es,maxit,p1,p2,...):
% uses the Newton-Raphson method to find the roots of
% a system of nonlinear equations
% input:
% func = name of function that returns f and J
% x0 = initial guess
% es = desired percent relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by function
% output:
% x = vector of roots
% f = vector of functions evaluated at roots
% ea = approximate percent relative error (%)
% iter = number of iterations

if nargin<2,error('at least 2 input arguments required'),end
if nargin<3|isempty(es),es=0.0001;end
if nargin<4|isempty(maxit),maxit=50;end
iter = 0;
x=x0;
while (1)

[J,f]=func(x,varargin{:});
dx=J\f;
x=x-dx;
iter = iter + 1;
ea=100*max(abs(dx./x));
if iter>=maxit|ea<=es, break, end

end

FIGURE 12.4
MATLAB M-file to implement Newton-Raphson method for nonlinear systems of equations.

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 297

298 ITERATIVE METHODS

Background. Nonlinear systems of equations occur frequently in the characterization
of chemical reactions. For example, the following chemical reactions take place in a closed
system:

2A + B
→
← C (12.18)

A + D
→
← C (12.19)

We should note that there are two shortcomings to the foregoing approach. First,
Eq. (12.15) is sometimes inconvenient to evaluate. Therefore, variations of the Newton-
Raphson approach have been developed to circumvent this dilemma. As might be ex-
pected, most are based on using finite-difference approximations for the partial derivatives
that comprise [J]. The second shortcoming of the multiequation Newton-Raphson method
is that excellent initial guesses are usually required to ensure convergence. Because these
are sometimes difficult or inconvenient to obtain, alternative approaches that are slower
than Newton-Raphson but which have better convergence behavior have been developed.
One approach is to reformulate the nonlinear system as a single function:

F(x) =
n∑

i=1

[fi (x1, x2, . . . , xn)]
2

where fi (x1, x2, . . . , xn) is the ith member of the original system of Eq. (12.7). The values
of x that minimize this function also represent the solution of the nonlinear system. There-
fore, nonlinear optimization techniques can be employed to obtain solutions.

12.3 CASE STUDY CHEMICAL REACTIONS

At equilibrium, they can be characterized by

K1 = cc

c2
acb

(12.20)

K2 = cc

cacd
(12.21)

where the nomenclature ci represents the concentration of constituent i. If x1 and x2 are the
number of moles of C that are produced due to the first and second reactions, respectively,
formulate the equilibrium relationships as a pair of two simultaneous nonlinear equations.
If K1 = 4 × 10−4, K2 = 3.7 × 10−2, ca,0 = 50, cb,0 = 20, cc,0 = 5, and cd,0 = 10, employ the
Newton-Raphson method to solve these equations.

Solution. Using the stoichiometry of Eqs. (12.18) and (12.19), the concentrations of
each constituent can be represented in terms of x1 and x2 as

ca = ca,0 − 2x1 − x2 (12.22)

cb = cb,0 − x1 (12.23)

cc = cc,0 + x1 + x2 (12.24)

cd = cd,0 − x2 (12.25)

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 298

12.3 CASE STUDY continued

12.3 CASE STUDY 299

where the subscript 0 designates the initial concentration of each constituent. These values
can be substituted into Eqs. (12.20) and (12.21) to give

K1 = (cc,0 + x1 + x2)

(ca,0 − 2x1 − x2)2(cb,0 − x1)

K2 = (cc,0 + x1 + x2)

(ca,0 − 2x1 − x2)(cd,0 − x2)

Given the parameter values, these are two nonlinear equations with two unknowns. Thus,
the solution to this problem involves determining the roots of

f1(x1, x2) = 5 + x1 + x2

(50 − 2x1 − x2)2(20 − x1)
− 4 × 10−4 (12.26)

f2(x1, x2) = (5 + x1 + x2)

(50 − 2x1 − x2)(10 − x2)
− 3.7 × 10−2 (12.27)

In order to use Newton-Raphson, we must determine the Jacobian by taking the partial
derivatives of Eqs. (12.26) and (12.27). Although this is certainly possible, evaluating the
derivatives is time consuming. An alternative is to represent them by finite differences in a
fashion similar to the approach used for the modified secant method in Sec. 6.3. For exam-
ple, the partial derivatives comprising the Jacobian can be evaluated as

∂ f1

∂x1
= f1(x1 + δx1, x2) − f1(x1, x2)

δx1

∂ f1

∂x2
= f1(x1, x2 + δx2) − f1(x1, x2)

δx2

∂ f2

∂x1
= f2(x1 + δx1, x2) − f2(x1, x2)

δx1

∂ f2

∂x2
= f2(x1, x2 + δx2) − f2(x1, x2)

δx2

These relationships can then be expressed as an M-file to compute both the function
values and the Jacobian as

function [J,f]=jfreact(x,varargin)
del=0.000001;
df1dx1=(u(x(1)+del*x(1),x(2))-u(x(1),x(2)))/(del*x(1));
df1dx2=(u(x(1),x(2)+del*x(2))-u(x(1),x(2)))/(del*x(2));
df2dx1=(v(x(1)+del*x(1),x(2))-v(x(1),x(2)))/(del*x(1));
df2dx2=(v(x(1),x(2)+del*x(2))-v(x(1),x(2)))/(del*x(2));
J=[df1dx1 df1dx2;df2dx1 df2dx2];
f1=u(x(1),x(2));
f2=v(x(1),x(2));
f=[f1;f2];

function f=u(x,y)
f = (5 + x + y) / (50 - 2 * x - y) ^ 2 / (20 - x) - 0.0004;

function f=v(x,y)
f = (5 + x + y) / (50 - 2 * x - y) / (10 - y) - 0.037;

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 299

300 ITERATIVE METHODS

The function newtmult (Fig. 12.4) can then be employed to determine the roots given ini-
tial guesses of x1 = x2 = 3:

>> format short e
>> [x,f,ea,iter]=newtmult(@jfreact,x0)

x =
3.3366e+000
2.6772e+000

f =
-7.1286e-017
8.5973e-014

ea =
5.2237e-010

iter =
4

After four iterations, a solution of x1 = 3.3366 and x2 = 2.6772 is obtained. These values
can then be substituted into Eq. (12.22) through (12.25) to compute the equilibrium con-
centrations of the four constituents:

ca = 50 − 2(3.3366) − 2.6772 = 40.6496

cb = 20 − 3.3366 = 16.6634

cc = 5 + 3.3366 + 2.6772 = 11.0138

cd = 10 − 2.6772 = 7.3228

PROBLEMS

12.3 Use the Gauss-Seidel method to solve the following
system until the percent relative error falls below εs = 5%:

10x1 + 2x2 − x3 = 27
−3x1 − 6x2 + 2x3 = −61.5

x1 + x2 + 5x3 = −21.5

12.4 Repeat Prob. 12.3 but use Jacobi iteration.
12.5 The following system of equations is designed to de-
termine concentrations (the c’s in g/m3) in a series of coupled
reactors as a function of the amount of mass input to each
reactor (the right-hand sides in g/day):

15c1 − 3c2 − c3 = 3800
−3c1 + 18c2 − 6c3 = 1200
−4c1 − c2 + 12c3 = 2350

12.1 Solve the following system using three iterations with
Gauss-Seidel using overrelaxation (λ = 1.25). If necessary,
rearrange the equations and show all the steps in your solu-
tion including your error estimates. At the end of the compu-
tation, compute the true error of your final results.

3x1 + 8x2 = 11
6x1 − x2 = 5

12.2 (a) Use the Gauss-Seidel method to solve the following
system until the percent relative error falls below εs = 5%:⎡

⎣ 0.8 −0.4
−0.4 0.8 −0.4

−0.4 0.8

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

41
25
105

⎫⎬
⎭

(b) Repeat (a) but use overrelaxation with λ = 1.2.

12.3 CASE STUDY continued

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 300

PROBLEMS 301

Solve this problem with the Gauss-Seidel method to
εs = 5%.
12.6 Use the Gauss-Seidel method (a) without relaxation
and (b) with relaxation (λ = 1.2) to solve the following sys-
tem to a tolerance of εs = 5%. If necessary, rearrange the
equations to achieve convergence.

2x1 − 6x2 − x3 = −38
−3x1 − x2 + 7x3 = −34
−8x1 + x2 − 2x3 = −20

12.7 Of the following three sets of linear equations, identify
the set(s) that you could not solve using an iterative method
such as Gauss-Seidel. Show using any number of iterations
that is necessary that your solution does not converge.
Clearly state your convergence criteria (how you know it is
not converging).

Set One Set Two Set Three

8x + 3y + z = 12 x + y + 5z = 7 −x + 3y + 5z = 7
−6x + 7z = 1 x + 4y − z = 4 −2x + 4y − 5z = −3

2x + 4y −z = 5 3x + y − z = 3 2y −z = 1

12.8 Determine the solution of the simultaneous nonlinear
equations

y = −x2 + x + 0.5

y + 5xy = x2

Use the Newton-Raphson method and employ initial guesses
of x = y = 1.2.

12.9 Determine the solution of the simultaneous nonlinear
equations:

x2 = 5 − y2

y + 1 = x2

(a) Graphically.
(b) Successive substitution using initial guesses of x =

y = 1.5.
(c) Newton-Raphson using initial guesses of x = y = 1.5.
12.10 Figure P12.10 depicts a chemical exchange process
consisting of a series of reactors in which a gas flowing
from left to right is passed over a liquid flowing from right
to left. The transfer of a chemical from the gas into the
liquid occurs at a rate that is proportional to the difference
between the gas and liquid concentrations in each reactor.
At steady state, a mass balance for the first reactor can be
written for the gas as

QGcG0 − QGcG1 + D(cL1 − cG1) = 0

and for the liquid as

QL cL2 − QL cL1 + D(cG1 − cL1) = 0

where QG and QL are the gas and liquid flow rates, respec-
tively, and D = the gas-liquid exchange rate. Similar balances
can be written for the other reactors. Use Gauss-Seidel with-
out relaxation to solve for the concentrations given the fol-
lowing values: QG = 2, QL = 1, D = 0.8, cG0 = 100,
cL6 = 10.

12.11 The steady-state distribution of temperature on a
heated plate can be modeled by the Laplace equation:

0 = ∂2T

∂x2
+ ∂2T

∂y2

If the plate is represented by a series of nodes (Fig. P12.11),
centered finite differences can be substituted for the second
derivatives, which result in a system of linear algebraic
equations. Use the Gauss-Seidel method to solve for the
temperatures of the nodes in Fig. P12.11.
12.12 Develop your own M-file function for the Gauss-
Seidel method without relaxation based on Fig. 12.2, but

cG1cG0 cG2 cG3 cG4

QGQG

QL

cG5

QL

D

cL1 cL2 cL3 cL4 cL5 cL6

FIGURE P12.10

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 301

302 ITERATIVE METHODS

change the first line so that it returns the approximate error
and the number of iterations:

function [x,ea,iter] = ...
GaussSeidel(A,b,es, maxit)

Test it by duplicating Example 12.1 and then use it to solve
Prob. 12.2a.
12.13 Develop your own M-file function for Gauss-Seidel
with relaxation. Here is the function’s first line:

function [x,ea,iter] = ...
GaussSeidelR(A,b,lambda,es,maxit)

In the event that the user does not enter a value for λ, set the
default value as λ = 1.Test it by duplicating Example 12.2
and then use it to solve Prob. 12.2b.
12.14 Develop your own M-file function for the Newton-
Raphson method for nonlinear systems of equations based
on Fig. 12.4. Test it by solving Example 12.4 and then use it
to solve Prob. 12.8.

T12

T11

T22

T21

100�C

100�C

0�C

0�C

75�C 75�C

25�C 25�C

FIGURE P12.11

cha01102_ch12_284-302.qxd 12/17/10 8:11 AM Page 302

CHAPTER OBJECTIVES
Knowledge and understanding are prerequisites for the effective implementation of
any tool.

No matter how impressive your tool chest, you will be hard-pressed to repair a car
if you do not understand how it works.

• This is the first chapter objectives entry.
• Second chapter objective entry, the entries use ic/lc per manuscript, the first and

last entry have space above or below, middle entries do not.
• Third chapter entry copy goes here.

16

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to eigenvalues. Specific
objectives and topics covered are

• Understanding the mathematical definition of eigenvalues and eigenvectors.
• Understanding the physical interpretation of eigenvalues and eigenvectors within

the context of engineering systems that vibrate or oscillate.
• Knowing how to implement the polynomial method.
• Knowing how to implement the power method to evaluate the largest and smallest

eigenvalues and their respective eigenvectors.
• Knowing how to use and interpret MATLAB’s eig function.

Eigenvalues
13

YOU’VE GOT A PROBLEM

A t the beginning of Chap. 8, we used Newton’s second law and force balances to pre-
dict the equilibrium positions of three bungee jumpers connected by cords. Because
we assumed that the cords behaved like ideal springs (i.e., followed Hooke’s law),

the steady-state solution reduced to solving a system of linear algebraic equations (recall
Eq. 8.1 and Example 8.2). In mechanics, this is referred to as a statics problem.

Now let’s look at a dynamics problem involving the same system. That is, we’ll study the
jumpers’ motion as a function of time. To do this, their initial conditions (i.e., their initial po-
sitions and velocities) must be prescribed. For example, we can set the jumpers’ initial posi-
tions at the equilibrium values computed in Example 8.2. If we then set their initial velocities
to zero, nothing would happen because the system would be at equilibrium.

Because we are now interested in examining the system’s dynamics, we must set the
initial conditions to values that induce motion. Although we set the jumpers’ initial posi-
tions to the equilibrium values and the middle jumper’s initial velocity to zero, we set the
upper and bottom jumper’s initial velocities to some admittedly extreme values. That is, we

303

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 303

impose a downward velocity of 200 m/s on jumper 1 and an upward velocity of 100 m/s on
jumper 3. (Safety tip: Don’t try this at home!) We then used MATLAB to solve the differential
equations (Eq. 8.1) to generate the resulting positions and velocities as a function of time.1

As displayed in Fig. 13.1, the outcome is that the jumpers oscillate wildly. Because
there are no friction forces (e.g., no air drag or spring dampening), they lurch up and down
around their equilibrium positions in a persistent manner that at least visually borders on
the chaotic. Closer inspection of the individual trajectories suggests that there may be some
pattern to the oscillations. For example, the distances between peaks and troughs might be
constant. But when viewed as a time series, it is difficult to perceive whether there is any-
thing systematic and predictable going on.

In this chapter, we deal with one approach for extracting something fundamental out
of such seemingly chaotic behavior. This entails determining the eigenvalues, or charac-
teristic values, for such systems. As we will see, this involves formulating and solving sys-
tems of linear algebraic equations in a fashion that differs from what we’ve done to this
point. To do this, let’s first describe exactly what is meant by eigenvalues from a mathe-
matical standpoint.

304 EIGENVALUES

FIGURE 13.1
The (a) positions and (b) velocities versus time for the system of three interconnected bungee
jumpers from Example 8.2.

1 We will show how this is done when we cover ordinary differential equations in Part Six.

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 304

13.1 MATHEMATICAL BACKGROUND

Chapters 8 through 12 have dealt with methods for solving sets of linear algebraic equa-
tions of the general form

[A]{x} = {b} (13.1)

Such systems are called nonhomogeneous because of the presence of the vector {b} on the
right-hand side of the equality. If the equations comprising such a system are linearly
independent (i.e., have a nonzero determinant), they will have a unique solution. In other
words, there is one set of x values that will make the equations balance. As we’ve already
seen in Sec. 9.1.1, for two equations with two unknowns, the solution can be visualized as
the intersection of two straight lines represented by the equations (recall Fig. 9.1).

In contrast, a homogeneous linear algebraic system has a right-hand side equal to zero:

[A]{x} = 0 (13.2)

At face value, this equation suggests that the only possible solution would be the trivial
case for which all x’s = 0. Graphically this would correspond to two straight lines that in-
tersected at zero.

Although this is certainly true, eigenvalue problems associated with engineering are
typically of the general form

[[A] − λ[I]] {x} = 0 (13.3)

where the parameter λ is the eigenvalue. Thus, rather than setting the x’s to zero, we can
determine the value of λ that drives the left-hand side to zero! One way to accomplish this
is based on the fact that, for nontrivial solutions to be possible, the determinant of the ma-
trix must equal zero:

|[A] − λ[I]| = 0 (13.4)

Expanding the determinant yields a polynomial in λ, which is called the characteristic
polynomial. The roots of this polynomial are the solutions for the eigenvalues.

In order to better understand these concepts, it is useful to examine the two-equation
case,

(a11 − λ)x1 + a12x2 = 0

a21x1 + (a22 − λ)x2 = 0
(13.5)

Expanding the determinant of the coefficient matrix gives∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = λ2 − (a11 + a22)λ − a12a21 (13.6)

which is the characteristic polynomial. The quadratic formula can then be used to solve for
the two eigenvalues:

λ1

λ2
= (a11 − a22)

2 ±
√

(a11 − a22)2 − 4a12a21

2
(13.7)

These are the values that solve Eq. (13.5). Before proceeding, let’s convince ourselves that
this approach (which, by the way, is called the polynomial method) is correct.

13.1 MATHEMATICAL BACKGROUND 305

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 305

EXAMPLE 13.1 The Polynomial Method

Problem Statement. Use the polynomial method to solve for the eigenvalues of the fol-
lowing homogeneous system:

(10 − λ)x1 − 5x2 = 0

−5x1 + (10 − λ)x2 = 0

Solution. Before determining the correct solution, let’s first investigate the case where
we have an incorrect eigenvalue. For example, if λ = 3, the equations become

7x1 − 5x2 = 0

−5x1 + 7x2 = 0 �

Plotting these equations yields two straight lines that intersect at the origin (Fig. 13.2a).
Thus, the only solution is the trivial case where x1 = x2 = 0.

To determine the correct eigenvalues, we can expand the determinant to give the char-
acteristic polynomial:∣∣∣∣ 10 − λ −5

−5 10 − λ

∣∣∣∣ = λ2 − 20λ + 75

which can be solved for

λ1

λ2
= 20 ±

√
202 − 4(1)75

2
= 15, 5

Therefore, the eigenvalues for this system are 15 and 5.
We can now substitute either of these values back into the system and examine the re-

sult. For λ1 = 15, we obtain

−5x1 − 5x2 = 0

−5x1 − 5x2 = 0

Thus, a correct eigenvalue makes the two equations identical (Fig. 13.2b). In essence as we
move towards a correct eigenvalue the two lines rotate until they lie on top of each other.
Mathematically, this means that there are an infinite number of solutions. But solving
either of the equations yields the interesting result that all the solutions have the property
that x1 = –x2. Although at first glance this might appear trivial, it’s actually quite interesting
as it tells us that the ratio of the unknowns is a constant. This result can be expressed in vec-
tor form as

{x} =
{−1

1

}

which is referred to as the eigenvector corresponding to the eigenvalue λ = 15.
In a similar fashion, substituting the second eigenvalue, λ2 = 5, gives

5x1 − 5x2 = 0

−5x1 + 5x2 = 0

306 EIGENVALUES

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 306

Again, the eigenvalue makes the two equations identical (Fig. 13.2b) and we can see that
the solution for this case corresponds to x1 = x2, and the eigenvector is

{x} =
{

1
1

}

We should recognize that MATLAB has built-in functions to facilitate the polynomial
method. For Example 13.1, the poly function can be used to generate the characteristic
polynomial as in

>> A = [10 -5;-5 10];
>> p = poly(A)

p =
1 -20 75

Then, the roots function can be employed to compute the eigenvalues:

>> d = roots(p)

d =
15
5

The previous example yields the useful mathematical insight that the solution of n
homogeneous equations of the form of Eq. 13.3 consists of a set of n eigenvalues and their
associated eigenvectors. Further, it showed that the eigenvectors provide the ratios of the
unknowns representing the solution.

13.1 MATHEMATICAL BACKGROUND 307

2

1

(a) Incorrect eigenvalue (b) Correct eigenvalues

1 2

Eqs. 1 & 2
(l � 5)

Eqs. 1 & 2
(l � 15)

�2 �1

�1

�2

x2

x1

2

1

1 2

Eq. 2
(l � 3)

Eq. 1
(l � 3)

�2

�1

�2

x2

x1

�1

FIGURE 13.2
Plots of a system of two homogeneous linear equations from Example 13.1. (a) An incorrect
eigenvalue (λ = 3) means that the two equations, which are labeled as Eq. 1 and 2 in the
figure, plot as separate lines and the only solution is the trivial case (x1 = x2 = 0). (b) In contrast,
the cases with correct eigenvalues (λ = 5 and 15), the equations fall on top of each other.

cha01102_ch13_303-320.qxd 12/20/10 2:52 PM Page 307

In the next section, we will show how such information has utility in engineering and
science by turning back to our physical problem setting of oscillating objects. However,
before doing so, we’d like to make two more mathematical points.

First, inspection of Fig. 13.2b indicates that the straight lines representing each eigen-
value solution are at right angles to each other. That is, they are orthogonal. This property
is true for symmetric matrices with distinct eigenvalues.

Second, multiplying out Eq. 13.3 and separating terms gives

[A]{x} = λ{x}
When viewed in this way, we can see that solving for the eigenvalues and eigenvectors
amounts to translating the information content of a matrix [A] into a scalar λ. This might
not seem significant for the 2 × 2 system we have been examining, but it is pretty remark-
able when we consider that the size of [A] can potentially be much larger.

13.2 PHYSICAL BACKGROUND

The mass-spring system in Fig. 13.3a is a simple context to illustrate how eigenvalues occur
in physical problem settings. It will also help to demonstrate some of the mathematical
concepts introduced in the previous section.

To simplify the analysis, assume that each mass has no external or damping forces
acting on it. In addition, assume that each spring has the same natural length l and the same
spring constant k. Finally, assume that the displacement of each spring is measured relative
to its own local coordinate system with an origin at the spring’s equilibrium position
(Fig. 13.3a). Under these assumptions, Newton’s second law can be employed to develop
a force balance for each mass:

m1
d2x1

dt2
= −kx1 + k(x2 − x1) (13.8a)

308 EIGENVALUES

(a)
0

0

0 x1 0 x2

x

x

(b)

m1 m2

m1 m2

FIGURE 13.3
A two mass–three spring system with frictionless rollers vibrating between two fixed walls.
The position of the masses can be referenced to local coordinates with origins at their respective
equilibrium positions (a). As in (b), positioning the masses away from equilibrium creates forces
in the springs that on release lead to oscillations of the masses.

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 308

m2
d2x2

dt2
= −k(x2 − x1) − kx2 (13.8b)

where xi is the displacement of mass i away from its equilibrium position (Fig. 13.3b).
From vibration theory, it is known that solutions to Eq. (13.8) can take the form

xi = Xi sin(ωt) (13.9)

where Xi = the amplitude of the oscillation of mass i (m) and ω = the angular frequency
of the oscillation (radians/time), which is equal to

ω = 2π

Tp
(13.10)

where Tp = the period (time/cycle). Note that the inverse of the period is called the ordi-
nary frequency f (cycles/time). If time is measured in seconds, the unit for f is the cycles/s,
which is referred to as a Hertz (Hz).

Equation (13.9) can be differentiated twice and substituted into Eq. (13.8). After col-
lection of terms, the result is(

2k

m1
− ω2

)
X1 − k

m1
X2 = 0 (13.11a)

− k

m2
X1 +

(
2k

m2
− ω2

)
X2 = 0 (13.11b)

Comparison of Eq. (13.11) with Eq. (13.3) indicates that at this point, the solution has
been reduced to an eigenvalue problem—where, for this case, the eigenvalue is the square
of the frequency. For a two-degree-of-freedom system such as Fig. 13.3, there will be two
such values along with their eigenvectors. As shown in the following example, the latter
establish the unique relationship between the unknowns.

EXAMPLE 13.2 Physical Interpretation of Eigenvalues and Eigenvectors

Problem Statement. If m1 = m2 = 40 kg and k = 200 N/m, Eq. (13.11) is

(10 − λ)x1 − 5x2 = 0

−5x1 + (10 − λ)x2 = 0

Mathematically, this is the same system we already solved with the polynomial methods in
Example 13.2. Thus, the two eigenvalues are ω2 = 15 and 5 s–2 and the corresponding
eigenvectors are X1 = X2 and X1 = −X2. Interpret these results as they relate to the mass-
spring system of Fig. 13.3.

Solution. This example provides valuable information regarding the behavior of the sys-
tem in Fig. 13.3. First, it tells us that the system has two primary modes of oscillation with
angular frequencies of ω = 3.873 and 2.36 radians s–1, respectively. These values can be
also expressed as periods (1.62 and 2.81 s, respectively) or ordinary frequencies (0.6164
and 0.3559 Hz, respectively).

As stated in Section 13.1, a unique set of values cannot be obtained for the unknown
amplitudes X. However, their ratios are specified by the eigenvectors. Thus, if the system

13.2 PHYSICAL BACKGROUND 309

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 309

is vibrating in the first mode, the first eigenvector tells us that the amplitude of the second
mass will be equal but of opposite sign to the amplitude of the first. As in Fig. 13.4a, the
masses vibrate apart and then together indefinitely (like two hands clapping every 1.62 s).

In the second mode, the eigenvector specifies that the two masses have equal
amplitudes at all times. Thus, as in Fig. 13.4b, they vibrate back and forth in unison every
2.81 s. We should note that the configuration of the amplitudes provides guidance on how
to set their initial values to attain pure motion in either of the two modes. Any other con-
figuration will lead to superposition of the modes. It is this superposition that leads to the
apparently chaotic behavior of systems like the bungee jumpers in Fig. 13.1. But as this ex-
ample should make clear, there is an underlying systematic behavior that is embodied by
the eigenvalues.

13.3 THE POWER METHOD

The power method is an iterative approach that can be employed to determine the largest
or dominant eigenvalue. With slight modification, it can also be employed to determine the
smallest value. It has the additional benefit that the corresponding eigenvector is obtained
as a by-product of the method. To implement the power method, the system being analyzed
is expressed in the form

[A]{x} = λ{x} (13.12)

310 EIGENVALUES

TF �
1.62

t

TF �
2.81

(a) First mode (b) Second mode

FIGURE 13.4
The principal modes of vibration of two equal masses connected by three identical springs
between fixed walls.

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 310

As illustrated by the following example, Eq. (13.12) forms the basis for an iterative
solution technique that eventually yields the highest eigenvalue and its associated
eigenvector.

EXAMPLE 13.3 Power Method for Highest Eigenvalue

Problem Statement. Using the same approach as in Section 13.2, we can derive the fol-
lowing homogeneous set of equations for a three mass–four spring system between two
fixed walls:

(
2k

m1
− ω2

)
X1 − k

m1
X2 = 0

− k

m2
X1 +

(
2k

m2
− ω2

)
X2 − k

m2
X3 = 0

− k

m3
X2 +

(
k

m3
− ω2

)
X3 = 0

If all the masses m = 1 kg and all the spring constants k = 20 N/m, the system can be
expressed in the matrix format of Eq. (13.4) as[40 −20 0

−20 40 −20
0 −20 40

]
− λ[I] = 0

where the eigenvalue λ is the square of the angular frequency ω2. Employ the power
method to determine the highest eigenvalue and its associated eigenvector.

Solution. The system is first written in the form of Eq. (13.12):

40X1 − 20X2 = λX1

−20X1 + 40X2 − 20X3 = λX2

−20X2 + 40X3 = λX3

At this point, we can specify initial values of the X’s and use the left-hand side to compute
an eigenvalue and eigenvector. A good first choice is to assume that all the X’s on the left-
hand side of the equation are equal to one:

40(1) − 20(1) = 20

−20(1) + 40(1) − 20(1) = 0

− 20(1) + 40(1) = 20

Next, the right-hand side is normalized by 20 to make the largest element equal to one:

{ 20
0
20

}
= 20

{ 1
0
1

}

13.3 THE POWER METHOD 311

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 311

Thus, the normalization factor is our first estimate of the eigenvalue (20) and the corre-
sponding eigenvector is {1 0 1}T. This iteration can be expressed concisely in matrix form as[40 −20 0

−20 40 −20
0 −20 40

]{ 1
1
1

}
=

{ 20
0
20

}
= 20

{ 1
0
1

}

The next iteration consists of multiplying the matrix by the eigenvector from the last itera-
tion, {1 0 1}T to give[40 −20 0

−20 40 −20
0 −20 40

]{ 1
0
1

}
=

{ 40
−40
40

}
= 40

{ 1
−1
1

}

Therefore, the eigenvalue estimate for the second iteration is 40, which can be employed to
determine an error estimate:

|εa| =
∣∣∣∣40 − 20

40

∣∣∣∣ × 100% = 50%

The process can then be repeated.

Third iteration:[40 −20 0
−20 40 −20

0 −20 40

]{ 1
−1
1

}
=

{ 60
−80
60

}
= −80

{−0.75
1

−0.75

}

where |εa| = 150% (which is high because of the sign change).

Fourth iteration:[40 −20 0
−20 40 −20

0 −20 40

]{−0.75
1

−0.75

}
=

{−50
70

−50

}
= 70

{−0.71429
1

−0.71429

}

where |εa| = 214% (another sign change).

Fifth iteration:[40 −20 0
−20 40 −20

0 −20 40

]{−0.71429
1

−0.71429

}
=

{−48.51714
68.51714

−48.51714

}
= 68.51714

{−0.70833
1

−0.70833

}

where |εa| = 2.08%.
Thus, the eigenvalue is converging. After several more iterations, it stabilizes on a

value of 68.28427 with a corresponding eigenvector of {−0.707107 1 −0.707107}T.

Note that there are some instances where the power method will converge to the second-
largest eigenvalue instead of to the largest. James, Smith, and Wolford (1985) provide an
illustration of such a case. Other special cases are discussed in Fadeev and Fadeeva (1963).

In addition, there are sometimes cases where we are interested in determining the
smallest eigenvalue. This can be done by applying the power method to the matrix inverse
of [A]. For this case, the power method will converge on the largest value of 1/λ—in other

312 EIGENVALUES

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 312

words, the smallest value of λ. An application to find the smallest eigenvalue will be left as
a problem exercise.

Finally, after finding the largest eigenvalue, it is possible to determine the next highest
by replacing the original matrix by one that includes only the remaining eigenvalues. The
process of removing the largest known eigenvalue is called deflation.

We should mention that although the power method can be used to locate intermediate
values, better methods are available for cases where we need to determine all the eigen-
values as described in the next section. Thus, the power method is primarily used when we
want to locate the largest or the smallest eigenvalue.

13.4 MATLAB FUNCTION: eig

As might be expected, MATLAB has powerful and robust capabilities for evaluating eigen-
values and eigenvectors. The function eig, which is used for this purpose, can be employed
to generate a vector of the eigenvalues as in

>> e = eig(A)

where e is a vector containing the eigenvalues of a square matrix A. Alternatively, it can be
invoked as

>> [V,D] = eig(A)

where D is a diagonal matrix of the eigenvalues and V is a full matrix whose columns are
the corresponding eigenvectors.

It should be noted that MATLAB scales the eigenvectors by dividing them by their
Euclidean distance. Thus, as shown in the following example, although their magnitude
may be different from values computed with say the polynomial method, the ratio of their
elements will be identical.

EXAMPLE 13.4 Eigenvalues and Eigenvectors with MATLAB

Problem Statement. Use MATLAB to determine all the eigenvalues and eigenvectors
for the system described in Example 13.3.

Solution. Recall that the matrix to be analyzed is[40 −20 0
−20 40 −20

0 −20 40

]

The matrix can be entered as

>> A = [40 -20 0;-20 40 -20;0 -20 40];

If we just desire the eigenvalues, we can enter

>> e = eig(A)

e =
11.7157
40.0000
68.2843

Notice that the highest eigenvalue (68.2843) is consistent with the value previously deter-
mined with the power method in Example 13.3.

13.4 MATLAB FUNCTION: eig 313

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 313

If we want both the eigenvalues and eigenvectors, we can enter

>> [v,d] = eig(A)

v =
0.5000 -0.7071 -0.5000
0.7071 -0.0000 0.7071
0.5000 0.7071 -0.5000

d =
11.7157 0 0

0 40.0000 0
0 0 8.2843

Although the results are scaled differently, the eigenvector corresponding to the high-
est eigenvalue {−0.5 0.7071 −0.5}T is consistent with the value previously determined
with the power method in Example 13.3: {−0.707107 1 −0.707107}T. The can be demon-
strated by dividing the eigenvector from the power method by its Euclidean norm:

>> vpower = [-0.7071 1 -0.7071]';
>> vMATLAB = vpower/norm(vpower)

vMATLAB =
-0.5000
0.7071
-0.5000

Thus, although the magnitudes of the elements differ, their ratios are identical.

314 EIGENVALUES

13.5 CASE STUDY EIGENVALUES AND EARTHQUAKES

Background. Engineers and scientists use mass-spring models to gain insight into
the dynamics of structures under the influence of disturbances such as earthquakes. Fig-
ure 13.5 shows such a model for a three-story building. Each floor mass is represented by
mi, and each floor stiffness is represented by ki for i = 1 to 3.

m3 � 8,000 kg

k3 � 1,800 kN/m

k2 � 2,400 kN/m

k1 � 3,000 kN/m

m2 � 10,000 kg

m1 � 12,000 kg

FIGURE 13.5
A three-story building modeled as a mass-spring system.

cha01102_ch13_303-320.qxd 12/18/10 2:00 PM Page 314

13.5 CASE STUDY 315

13.5 CASE STUDY continued

For this case, the analysis is limited to horizontal motion of the structure as it is subjected
to horizontal base motion due to earthquakes. Using the same approach as developed in
Section 13.2, dynamic force balances can be developed for this system as

(
k1 + k2

m1
− ω2

n

)
X1 − k2

m1
X2 = 0

− k2

m2
X1 +

(
k2 + k3

m2
− ω2

n

)
X2 − k3

m2
X3 = 0

− k3

m3
X2 +

(
k3

m3
− ω2

n

)
X3 = 0

where Xi represent horizontal floor translations (m), and ωn is the natural, or resonant, fre-
quency (radians/s). The resonant frequency can be expressed in Hertz (cycles/s) by divid-
ing it by 2π radians/cycle.

Use MATLAB to determine the eigenvalues and eigenvectors for this system. Graph-
ically represent the modes of vibration for the structure by displaying the amplitudes ver-
sus height for each of the eigenvectors. Normalize the amplitudes so that the translation of
the third floor is one.

Solution. The parameters can be substituted into the force balances to give

(
450 − ω2

n

)
X1 − 200X2 = 0

− 240X1 + (
420 − ω2

n

)
X2 − 180X3 = 0

−225X2 + (
225 − ω2

n

)
X3 = 0

A MATLAB session can be conducted to evaluate the eigenvalues and eigenvectors as

>> A=[450 -200 0;-240 420 -180;0 -225 225];
>> [v,d]=eig(A)

v =
-0.5879 -0.6344 0.2913
0.7307 -0.3506 0.5725
-0.3471 0.6890 0.7664

d =
698.5982 0 0

0 339.4779 0
0 0 56.9239

Therefore, the eigenvalues are 698.6, 339.5, and 56.92 and the resonant frequencies in
Hz are

>> wn=sqrt(diag(d))'/2/pi
wn =

4.2066 2.9324 1.2008

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 315

316 EIGENVALUES

13.5 CASE STUDY continued

The corresponding eigenvectors are (normalizing so that the amplitude for the third floor is one)

{ 1.6934
−2.1049

1

} {−0.9207
−0.5088

1

} { 0.3801
0.7470

1

}

A graph can be made showing the three modes (Fig. 13.6). Note that we have ordered
them from the lowest to the highest natural frequency as is customary in structural
engineering.

Natural frequencies and mode shapes are characteristics of structures in terms of their
tendencies to resonate at these frequencies. The frequency content of an earthquake
typically has the most energy between 0 to 20 Hz and is influenced by the earthquake mag-
nitude, the epicentral distance, and other factors. Rather than a single frequency, they
contain a spectrum of all frequencies with varying amplitudes. Buildings are more receptive
to vibration at their lower modes of vibrations due to their simpler deformed shapes and
requiring less strain energy to deform in the lower modes. When these amplitudes coincide
with the natural frequencies of buildings, large dynamic responses are induced, creating
large stresses and strains in the structure’s beams, columns, and foundations. Based on
analyses like the one in this case study, structural engineers can more wisely design build-
ings to withstand earthquakes with a good factor of safety.

0

Mode 1
(wn � 1.2008 Hz)

Mode 2
(wn � 2.9324 Hz)

Mode 3
(wn � 4.2066 Hz)

1 0 01 1 2�1 �2 �1

FIGURE 13.6
The three primary modes of oscillation of the three-story building.

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 316

PROBLEMS

PROBLEMS 317

13.1 Repeat Example 13.1 but for three masses with the m’s =
40 kg and the k’s = 240 N/m. Produce a plot like Fig. 13.4 to
identify the principle modes of vibration.
13.2 Use the power method to determine the highest eigen-
value and corresponding eigenvector for⎡

⎣ 2 − λ 8 10
8 4 − λ 5
10 5 7 − λ

⎤
⎦

13.3 Use the power method to determine the lowest eigen-
value and corresponding eigenvector for the system from
Prob. 13.2.
13.4 Derive the set of differential equations for a three
mass–four spring system (Fig. P13.4) that describes their time
motion. Write the three differential equations in matrix form

{Acceleration vector} + [k/m matrix]
{displacement vector x} = 0

Note each equation has been divided by the mass. Solve for
the eigenvalues and natural frequencies for the following
values of mass and spring constants: k1 = k4 = 15 N/m,
k2 = k3 = 35 N/m, and m1 = m2 = m3 = 1.5 kg.
13.5 Consider the mass-spring system in Fig. P13.5. The fre-
quencies for the mass vibrations can be determined by solving
for the eigenvalues and by applying Mẍ + kx = 0, which
yields⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦

⎧⎨
⎩

ẍ1

ẍ2

ẍ3

⎫⎬
⎭+

⎧⎨
⎩

2k −k −k
−k 2k −k
−k −k 2k

⎫⎬
⎭

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭=

⎧⎨
⎩

0
0
0

⎫⎬
⎭

Applying the guess x = x0eiωt as a solution, we get the fol-
lowing matrix:⎡
⎣2k − m1ω

2 −k −k
−k 2k − m2ω

2 −k
−k −k 2k − m3ω

2

⎤
⎦

⎧⎨
⎩

x01

x02

x03

⎫⎬
⎭ eiωt =

⎧⎨
⎩

0
0
0

⎫⎬
⎭

Use MATLAB’s eig command to solve for the eigenvalues
of the k − mω2 matrix above. Then use these eigenvalues to
solve for the frequencies (ω). Let m1 = m2 = m3 = 1 kg, and
k = 2 N/m.
13.6 As displayed in Fig. P13.6, an LC circuit can be mod-
eled by the following system of differential equations:

L1
d2i1

dt2
+ 1

C1
(i1 − i2) = 0

L2
d2i2

dt2
+ 1

C2
(i2 − i3) − 1

C1
(i1 − i2) = 0

L3
d2i3

dt2
+ 1

C3
i3 − 1

C2
(i2 − i3) = 0

where L = inductance (H), t = time (s), i = current (A), and
C = capacitance (F). Assuming that a solution is of the form
ij = Ij sin (ωt), determine the eigenvalues and eigenvectors for
this system with L = 1 H and C = 0.25C. Draw the network,
illustrating how the currents oscillate in their primary modes.
13.7 Repeat Prob. 13.6 but with only two loops. That is,
omit the i3 loop. Draw the network, illustrating how the cur-
rents oscillate in their primary modes.
13.8 Repeat the problem in Sec. 13.5 but leave off the third
floor.
13.9 Repeat the problem in Sec. 13.5 but add a fourth floor
with m4 = 6,000 and k4 = 1,200 kN/m.

x1

k1 k2 k3 k4

x2 x3

m1 m2 m3

FIGURE P13.4

k

k

k

x1 x2 x3

m1 m2 m3

FIGURE P13.5

L1

C1 C2 C3

L2 L3

�

�

i1 i2 i3

FIGURE P13.6

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 317

⎡
⎢⎢⎣

(2 − �x2 p2) −1 0 0
−1 (2 − �x2 p2) −1 0
0 −1 (2 − �x2 p2) −1
0 0 −1 (2 − �x2 p2)

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

y1

y2

y3

y4

⎫⎪⎪⎬
⎪⎪⎭ = 0

13.10 The curvature of a slender column subject to an axial
load P (Fig. P13.10) can be modeled by

d2 y

dx2
+ p2 y = 0

where

p2 = P

E I

where E = the modulus of elasticity, and I = the moment of
inertia of the cross section about its neutral axis.

This model can be converted into an eigenvalue problem
by substituting a centered finite-difference approximation
for the second derivative to give

yi+1 − 2yi + yi−1

�x2
+ p2 yi = 0

where i = a node located at a position along the rod’s inte-
rior, and �x = the spacing between nodes. This equation can
be expressed as

yi−1 − (2 − �x2 p2)yi + yi+1 = 0

Writing this equation for a series of interior nodes along the
axis of the column yields a homogeneous system of equa-
tions. For example, if the column is divided into five seg-
ments (i.e., four interior nodes), the result is

318 EIGENVALUES

An axially loaded wooden column has the following charac-
teristics: E = 10 × 109 Pa, I = 1.25 × 10�5 m4, and L = 3 m.
For the five-segment, four-node representation:
(a) Implement the polynomial method with MATLAB to

determine the eigenvalues for this system.
(b) Use the MATLAB eig function to determine the eigen-

values and eigenvectors.
(c) Use the power method to determine the largest eigen-

value and its corresponding eigenvector.
13.11 A system of two homogeneous linear ordinary differ-
ential equations with constant coefficients can be written as

d y1

dt
= −5y1 + 3y2, y1(0) = 50

d y2

dt
= 100y1 − 301y2, y2(0) = 100

If you have taken a course in differential equations, you
know that the solutions for such equations have the form

yi = ceλt

where c and λ are constants to be determined. Substituting
this solution and its derivative into the original equations
converts the system into an eigenvalue problem. The result-
ing eigenvalues and eigenvectors can then be used to derive
the general solution to the differential equations. For exam-
ple, for the two-equation case, the general solution can be
written in terms of vectors as

{y} = c1{v1}eλ1t + c2{v2}eλ2t

where {vi } = the eigenvector corresponding to the ith eigen-
value (λi) and the c’s are unknown coefficients that can be
determined with the initial conditions.
(a) Convert the system into an eigenvalue problem.
(b) Use MATLAB to solve for the eigenvalues and eigen-

vectors.
(c) Employ the results of (b) and the initial conditions to

determine the general solution.
(d) Develop a MATLAB plot of the solution for t = 0

to 1.
13.12 Water flows between the North American Great
Lakes as depicted in Fig. P13.12. Based on mass balances,
the following differential equations can be written for the
concentrations in each of the lakes for a pollutant that decays
with first-order kinetics:

(a) (b)

x

y

y

x

P�

P

(0, 0)

(L, 0)

P�

M

P

FIGURE P13.10
(a) A slender rod. (b) A freebody diagram of a rod.

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 318

PROBLEMS 319

Superior
(1)

Michigan
(2)

Huron
(3)

Erie
(4)

Ontario
(5)

dc1

dt
= −(0.0056 + k)c1

dc2

dt
= −(0.01 + k)c2

dc3

dt
= 0.01902c1 + 0.01387c2 − (0.047 + k)c3

dc4

dt
= 0.33597c3 − (0.376 + k)c4

dc5

dt
= 0.11364c4 − (0.133 + k)c5

where k = the first-order decay rate (/yr), which is equal to
0.69315/(half-life). Note that the constants in each of the

equations account for the flow between the lakes. Due to the
testing of nuclear weapons in the atmosphere, the concentra-
tions of strontium-90 (90Sr) in the five lakes in 1963 were
approximately {c} = {17.7 30.5 43.9 136.3 30.1}T in units
of Bq/m3. Assuming that no additional 90Sr entered the sys-
tem thereafter, use MATLAB and the approach outlined in
Prob. 13.11 to compute the concentrations in each of the
lakes from 1963 through 2010. Note that 90Sr has a half-life
of 28.8 years.
13.13 Develop an M-file function to determine the largest
eigenvalue and its associated eigenvector with the power
method. Test the program by duplicating Example 13.3 and
then use it to solve Prob. 13.2.

FIGURE P13.12
The North American Great Lakes. The arrows indicate how water
flows between the lakes.

cha01102_ch13_303-320.qxd 12/17/10 8:12 AM Page 319

This page intentionally left blank

321

PART FOUR

Curve Fitting

4.1 OVERVIEW

What Is Curve Fitting?

Data are often given for discrete values along a continuum. However, you may require esti-
mates at points between the discrete values. Chapters 14 through 18 describe techniques to
fit curves to such data to obtain intermediate estimates. In addition, you may require a sim-
plified version of a complicated function. One way to do this is to compute values of the
function at a number of discrete values along the range of interest. Then, a simpler function
may be derived to fit these values. Both of these applications are known as curve fitting.

There are two general approaches for curve fitting that are distinguished from each
other on the basis of the amount of error associated with the data. First, where the data
exhibit a significant degree of error or “scatter,” the strategy is to derive a single curve that
represents the general trend of the data. Because any individual data point may be incor-
rect, we make no effort to intersect every point. Rather, the curve is designed to follow the
pattern of the points taken as a group. One approach of this nature is called least-squares
regression (Fig. PT4.1a).

Second, where the data are known to be very precise, the basic approach is to fit a
curve or a series of curves that pass di-
rectly through each of the points. Such
data usually originate from tables. Exam-
ples are values for the density of water
or for the heat capacity of gases as a
function of temperature. The estimation
of values between well-known discrete
points is called interpolation (Fig.
PT4.1b and c).

Curve Fitting and Engineering and
Science. Your first exposure to curve
fitting may have been to determine in-
termediate values from tabulated data—
for instance, from interest tables for
engineering economics or from steam

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 321

tables for thermodynamics. Throughout the remainder of your career, you will have fre-
quent occasion to estimate intermediate values from such tables.

Although many of the widely used engineering and scientific properties have been tab-
ulated, there are a great many more that are not available in this convenient form. Special
cases and new problem contexts often require that you measure your own data and develop
your own predictive relationships. Two types of applications are generally encountered
when fitting experimental data: trend analysis and hypothesis testing.

Trend analysis represents the process of using the pattern of the data to make predic-
tions. For cases where the data are measured with high precision, you might utilize inter-
polating polynomials. Imprecise data are often analyzed with least-squares regression.

Trend analysis may be used to predict or forecast values of the dependent variable. This
can involve extrapolation beyond the limits of the observed data or interpolation within the
range of the data. All fields of engineering and science involve problems of this type.

A second application of experimental curve fitting is hypothesis testing. Here, an
existing mathematical model is compared with measured data. If the model coefficients are

322 PART 4 CURVE FITTING

FIGURE PT4.1
Three attempts to fit a “best” curve through five data points: (a) least-squares regression, (b) linear
interpolation, and (c) curvilinear interpolation.

f (x)

x

(a)

(b)

(c)

f (x)

x

f (x)

x

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 322

unknown, it may be necessary to determine values that best fit the observed data. On the
other hand, if estimates of the model coefficients are already available, it may be appropri-
ate to compare predicted values of the model with observed values to test the adequacy of
the model. Often, alternative models are compared and the “best” one is selected on the
basis of empirical observations.

In addition to the foregoing engineering and scientific applications, curve fitting is im-
portant in other numerical methods such as integration and the approximate solution of dif-
ferential equations. Finally, curve-fitting techniques can be used to derive simple functions
to approximate complicated functions.

4.2 PART ORGANIZATION

After a brief review of statistics, Chap. 14 focuses on linear regression; that is, how to deter-
mine the “best” straight line through a set of uncertain data points. Besides discussing how to
calculate the slope and intercept of this straight line, we also present quantitative and visual
methods for evaluating the validity of the results. In addition, we describe random number
generation as well as several approaches for the linearization of nonlinear equations.

Chapter 15 begins with brief discussions of polynomial and multiple linear regression.
Polynomial regression deals with developing a best fit of parabolas, cubics, or higher-order
polynomials. This is followed by a description of multiple linear regression, which is de-
signed for the case where the dependent variable y is a linear function of two or more
independent variables x1, x2, . . . , xm. This approach has special utility for evaluating ex-
perimental data where the variable of interest is dependent on a number of different factors.

After multiple regression, we illustrate how polynomial and multiple regression are
both subsets of a general linear least-squares model. Among other things, this will allow
us to introduce a concise matrix representation of regression and discuss its general statis-
tical properties. Finally, the last sections of Chap. 15 are devoted to nonlinear regression.
This approach is designed to compute a least-squares fit of a nonlinear equation to data.

Chapter 16 deals with Fourier analysis which involves fitting periodic functions to
data. Our emphasis will be on the fast Fourier transform or FFT. This method, which is
readily implemented with MATLAB, has many engineering applications, ranging from
vibration analysis of structures to signal processing.

In Chap. 17, the alternative curve-fitting technique called interpolation is described.
As discussed previously, interpolation is used for estimating intermediate values between
precise data points. In Chap. 17, polynomials are derived for this purpose. We introduce the
basic concept of polynomial interpolation by using straight lines and parabolas to connect
points. Then, we develop a generalized procedure for fitting an nth-order polynomial. Two
formats are presented for expressing these polynomials in equation form. The first, called
Newton’s interpolating polynomial, is preferable when the appropriate order of the polyno-
mial is unknown. The second, called the Lagrange interpolating polynomial, has advan-
tages when the proper order is known beforehand.

Finally, Chap. 18 presents an alternative technique for fitting precise data points. This
technique, called spline interpolation, fits polynomials to data but in a piecewise fashion.
As such, it is particularly well suited for fitting data that are generally smooth but exhibit
abrupt local changes. The chapter ends with an overview of how piecewise interpolation is
implemented in MATLAB.

4.2 PART ORGANIZATION 323

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 323

324

Linear Regression

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to how least-squares
regression can be used to fit a straight line to measured data. Specific objectives and
topics covered are

• Familiarizing yourself with some basic descriptive statistics and the normal
distribution.

• Knowing how to compute the slope and intercept of a best-fit straight line with
linear regression.

• Knowing how to generate random numbers with MATLAB and how they can be
employed for Monte Carlo simulations.

• Knowing how to compute and understand the meaning of the coefficient of
determination and the standard error of the estimate.

• Understanding how to use transformations to linearize nonlinear equations so that
they can be fit with linear regression.

• Knowing how to implement linear regression with MATLAB.

14

YOU’VE GOT A PROBLEM

I n Chap. 1, we noted that a free-falling object such as a bungee jumper is subject to the
upward force of air resistance. As a first approximation, we assumed that this force was
proportional to the square of velocity as in

FU = cdv
2 (14.1)

where FU = the upward force of air resistance [N = kg m/s2], cd = a drag coefficient
(kg/m), and v = velocity [m/s].

Expressions such as Eq. (14.1) come from the field of fluid mechanics. Although such
relationships derive in part from theory, experiments play a critical role in their formula-
tion. One such experiment is depicted in Fig. 14.1. An individual is suspended in a wind

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 324

tunnel (any volunteers?) and the force measured for various levels of wind velocity. The
result might be as listed in Table 14.1.

The relationship can be visualized by plotting force versus velocity. As in Fig. 14.2,
several features of the relationship bear mention. First, the points indicate that the force
increases as velocity increases. Second, the points do not increase smoothly, but exhibit
rather significant scatter, particularly at the higher velocities. Finally, although it may not
be obvious, the relationship between force and velocity may not be linear. This conclusion
becomes more apparent if we assume that force is zero for zero velocity.

LINEAR REGRESSION 325

FIGURE 14.1
Wind tunnel experiment to measure how the force of air resistance depends on velocity.

FIGURE 14.2
Plot of force versus wind velocity for an object suspended in a wind tunnel.

1600

1200

800

400

0
0 20 40 60 80

v, m/s

F
, N

TABLE 14.1 Experimental data for force (N) and velocity (m/s) from a wind tunnel
experiment.

v, m/s 10 20 30 40 50 60 70 80
F, N 25 70 380 550 610 1220 830 1450

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 325

In Chaps. 14 and 15, we will explore how to fit a “best” line or curve to such data. In
so doing, we will illustrate how relationships like Eq. (14.1) arise from experimental data.

14.1 STATISTICS REVIEW

Before describing least-squares regression, we will first review some basic concepts
from the field of statistics. These include the mean, standard deviation, residual sum of
the squares, and the normal distribution. In addition, we describe how simple descriptive
statistics and distributions can be generated in MATLAB. If you are familiar with these
subjects, feel free to skip the following pages and proceed directly to Section 14.2. If you
are unfamiliar with these concepts or are in need of a review, the following material is
designed as a brief introduction.

14.1.1 Descriptive Statistics

Suppose that in the course of an engineering study, several measurements were made of a
particular quantity. For example, Table 14.2 contains 24 readings of the coefficient of ther-
mal expansion of a structural steel. Taken at face value, the data provide a limited amount
of information—that is, that the values range from a minimum of 6.395 to a maximum of
6.775. Additional insight can be gained by summarizing the data in one or more well-
chosen statistics that convey as much information as possible about specific characteristics of
the data set. These descriptive statistics are most often selected to represent (1) the location
of the center of the distribution of the data and (2) the degree of spread of the data set.

Measure of Location. The most common measure of central tendency is the arithmetic
mean. The arithmetic mean (ȳ) of a sample is defined as the sum of the individual data
points (yi) divided by the number of points (n), or

ȳ =
∑

yi

n
(14.2)

where the summation (and all the succeeding summations in this section) is from i = 1
through n.

There are several alternatives to the arithmetic mean. The median is the midpoint of a
group of data. It is calculated by first putting the data in ascending order. If the number of
measurements is odd, the median is the middle value. If the number is even, it is the arith-
metic mean of the two middle values. The median is sometimes called the 50th percentile.

The mode is the value that occurs most frequently. The concept usually has direct util-
ity only when dealing with discrete or coarsely rounded data. For continuous variables such
as the data in Table 14.2, the concept is not very practical. For example, there are actually

326 LINEAR REGRESSION

TABLE 14.2 Measurements of the coefficient of thermal expansion of structural steel.

6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 326

four modes for these data: 6.555, 6.625, 6.655, and 6.715, which all occur twice. If the num-
bers had not been rounded to 3 decimal digits, it would be unlikely that any of the values
would even have repeated twice. However, if continuous data are grouped into equispaced
intervals, it can be an informative statistic. We will return to the mode when we describe his-
tograms later in this section.

Measures of Spread. The simplest measure of spread is the range, the difference be-
tween the largest and the smallest value. Although it is certainly easy to determine, it is not
considered a very reliable measure because it is highly sensitive to the sample size and is
very sensitive to extreme values.

The most common measure of spread for a sample is the standard deviation (sy) about
the mean:

sy =
√

St

n − 1
(14.3)

where St is the total sum of the squares of the residuals between the data points and the
mean, or

St = ∑
(yi − ȳ)2 (14.4)

Thus, if the individual measurements are spread out widely around the mean, St (and, con-
sequently, sy) will be large. If they are grouped tightly, the standard deviation will be small.
The spread can also be represented by the square of the standard deviation, which is called
the variance:

s2
y =

∑
(yi − ȳ)2

n − 1
(14.5)

Note that the denominator in both Eqs. (14.3) and (14.5) is n − 1. The quantity n − 1
is referred to as the degrees of freedom. Hence St and sy are said to be based on n − 1 de-
grees of freedom. This nomenclature derives from the fact that the sum of the quantities
upon which St is based (i.e., ȳ − y1, ȳ − y2, . . . , ȳ − yn) is zero. Consequently, if ȳ is
known and n − 1 of the values are specified, the remaining value is fixed. Thus, only n − 1
of the values are said to be freely determined. Another justification for dividing by n − 1 is
the fact that there is no such thing as the spread of a single data point. For the case where
n = 1, Eqs. (14.3) and (14.5) yield a meaningless result of infinity.

We should note that an alternative, more convenient formula is available to compute
the variance:

s2
y =

∑
y2

i − (∑
yi

)2
/n

n − 1
(14.6)

This version does not require precomputation of ȳ and yields an identical result as Eq. (14.5).
A final statistic that has utility in quantifying the spread of data is the coefficient of

variation (c.v.). This statistic is the ratio of the standard deviation to the mean. As such, it
provides a normalized measure of the spread. It is often multiplied by 100 so that it can be
expressed in the form of a percent:

c.v. = sy

ȳ
× 100% (14.7)

14.1 STATISTICS REVIEW 327

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 327

EXAMPLE 14.1 Simple Statistics of a Sample

Problem Statement. Compute the mean, median, variance, standard deviation, and coeffi-
cient of variation for the data in Table 14.2.

Solution. The data can be assembled in tabular form and the necessary sums computed
as in Table 14.3.

The mean can be computed as [Eq. (14.2)],

ȳ = 158.4

24
= 6.6

Because there are an even number of values, the median is computed as the arithmetic
mean of the middle two values: (6.605 + 6.615)/2 = 6.61.

As in Table 14.3, the sum of the squares of the residuals is 0.217000, which can be
used to compute the standard deviation [Eq. (14.3)]:

sy =
√

0.217000

24 − 1
= 0.097133

328 LINEAR REGRESSION

TABLE 14.3 Data and summations for computing simple descriptive statistics for the
coefficients of thermal expansion from Table 14.2.

i yi (yi − y–)2 y2
i

1 6.395 0.04203 40.896
2 6.435 0.02723 41.409
3 6.485 0.01323 42.055
4 6.495 0.01103 42.185
5 6.505 0.00903 42.315
6 6.515 0.00723 42.445
7 6.555 0.00203 42.968
8 6.555 0.00203 42.968
9 6.565 0.00123 43.099

10 6.575 0.00063 43.231
11 6.595 0.00003 43.494
12 6.605 0.00002 43.626
13 6.615 0.00022 43.758
14 6.625 0.00062 43.891
15 6.625 0.00062 43.891
16 6.635 0.00122 44.023
17 6.655 0.00302 44.289
18 6.655 0.00302 44.289
19 6.665 0.00422 44.422
20 6.685 0.00722 44.689
21 6.715 0.01322 45.091
22 6.715 0.01322 45.091
23 6.755 0.02402 45.630
24 6.775 0.03062 45.901∑

158.400 0.21700 1045.657

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 328

the variance [Eq. (14.5)]:

s2
y = (0.097133)2 = 0.009435

and the coefficient of variation [Eq. (14.7)]:

c.v. = 0.097133

6.6
× 100% = 1.47%

The validity of Eq. (14.6) can also be verified by computing

s2
y = 1045.657 − (158.400)2/24

24 − 1
= 0.009435

14.1.2 The Normal Distribution

Another characteristic that bears on the present discussion is the data distribution—that is,
the shape with which the data are spread around the mean. A histogram provides a simple
visual representation of the distribution. A histogram is constructed by sorting the mea-
surements into intervals, or bins. The units of measurement are plotted on the abscissa and
the frequency of occurrence of each interval is plotted on the ordinate.

As an example, a histogram can be created for the data from Table 14.2. The result
(Fig. 14.3) suggests that most of the data are grouped close to the mean value of 6.6.
Notice also, that now that we have grouped the data, we can see that the bin with the most
values is from 6.6 to 6.64. Although we could say that the mode is the midpoint of this bin,
6.62, it is more common to report the most frequent range as the modal class interval.

If we have a very large set of data, the histogram often can be approximated by a
smooth curve. The symmetric, bell-shaped curve superimposed on Fig. 14.3 is one such
characteristic shape—the normal distribution. Given enough additional measurements, the
histogram for this particular case could eventually approach the normal distribution.

14.1 STATISTICS REVIEW 329

5

4

Fr
eq

u
en

cy

3

2

1

6.4 6.6 6.8
0

FIGURE 14.3
A histogram used to depict the distribution of data. As the number of data points increases, the
histogram often approaches the smooth, bell-shaped curve called the normal distribution.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 329

The concepts of the mean, standard deviation, residual sum of the squares, and nor-
mal distribution all have great relevance to engineering and science. A very simple exam-
ple is their use to quantify the confidence that can be ascribed to a particular measurement.
If a quantity is normally distributed, the range defined by ȳ − sy to ȳ + sy will encompass
approximately 68% of the total measurements. Similarly, the range defined by ȳ − 2sy to
ȳ + 2sy will encompass approximately 95%.

For example, for the data in Table 14.2, we calculated in Example 14.1 that ȳ = 6.6
and sy = 0.097133. Based on our analysis, we can tentatively make the statement that
approximately 95% of the readings should fall between 6.405734 and 6.794266. Because it
is so far outside these bounds, if someone told us that they had measured a value of 7.35, we
would suspect that the measurement might be erroneous.

14.1.3 Descriptive Statistics in MATLAB

Standard MATLAB has several functions to compute descriptive statistics.1 For example,
the arithmetic mean is computed as mean(x). If x is a vector, the function returns the mean
of the vector’s values. If it is a matrix, it returns a row vector containing the arithmetic
mean of each column of x. The following is the result of using mean and the other statisti-
cal functions to analyze a column vector s that holds the data from Table 14.2:

>> format short g
>> mean(s),median(s),mode(s)

ans =
6.6

ans =
6.61

ans =
6.555

>> min(s),max(s)

ans =
6.395

ans =
6.775

>> range=max(s)-min(s)

range =
0.38

>> var(s),std(s)

ans =
0.0094348

ans =
0.097133

These results are consistent with those obtained previously in Example 14.1. Note that
although there are four values that occur twice, the mode function only returns the first of
the values: 6.555.

330 LINEAR REGRESSION

1 MATLAB also offers a Statistics Toolbox that provides a wide range of common statistical tasks, from random
number generation, to curve fitting, to design of experiments and statistical process control.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 330

14.2 RANDOM NUMBERS AND SIMULATION 331

5

4.5

4

3

3.5

2.5

2

1.5

1

0.5

0
6.35 6.4 6.45 6.5 6.55 6.656.6 6.7 6.86.75 6.85

FIGURE 14.4
Histogram generated with the MATLAB hist function.

MATLAB can also be used to generate a histogram based on the hist function. The
hist function has the syntax

[n, x] = hist(y, x)

where n = the number of elements in each bin, x = a vector specifying the midpoint of
each bin, and y is the vector being analyzed. For the data from Table 14.2, the result is

>> [n,x] =hist(s)

n =
1 1 3 1 4 3 5 2 2 2

x =
6.414 6.452 6.49 6.528 6.566 6.604 6.642 6.68 6.718 6.756

The resulting histogram depicted in Fig. 14.4 is similar to the one we generated by hand in
Fig. 14.3. Note that all the arguments and outputs with the exception of y are optional. For
example, hist(y) without output arguments just produces a histogram bar plot with
10 bins determined automatically based on the range of values in y.

14.2 RANDOM NUMBERS AND SIMULATION

In this section, we will describe two MATLAB functions that can be used to produce a
sequence of random numbers. The first (rand) generates numbers that are uniformly
distributed, and the second (randn) generates numbers that have a normal distribution.

cha01102_ch14_321-360.qxd 12/20/10 8:07 AM Page 331

14.2.1 MATLAB Function: rand

This function generates a sequence of numbers that are uniformly distributed between 0
and 1. A simple representation of its syntax is

r = rand(m, n)

where r = an m-by-n matrix of random numbers. The following formula can then be used
to generate a uniform distribution on another interval:

runiform = low + (up – low) * rand(m, n)

where low = the lower bound and up = the upper bound.

EXAMPLE 14.2 Generating Uniform Random Values of Drag

Problem Statement. If the initial velocity is zero, the downward velocity of the free-falling
bungee jumper can be predicted with the following analytical solution (Eq. 1.9):

v =
√

gm

cd
tanh

(√
gcd

m
t

)

Suppose that g = 9.81m/s2, and m = 68.1 kg, but cd is not known precisely. For example,
you might know that it varies uniformly between 0.225 and 0.275 (i.e., ±10% around a
mean value of 0.25 kg/m). Use the rand function to generate 1000 random uniformly
distributed values of cd and then employ these values along with the analytical solution to
compute the resulting distribution of velocities at t = 4 s.

Solution. Before generating the random numbers, we can first compute the mean velocity:

vmean =
√

9.81(68.1)

0.25
tanh

(√
9.81(0.25)

68.1
4

)
= 33.1118

m

s

We can also generate the range:

vlow =
√

9.81(68.1)

0.275
tanh

(√
9.81(0.275)

68.1
4

)
= 32.6223

m

s

vhigh =
√

9.81(68.1)

0.225
tanh

(√
9.81(0.225)

68.1
4

)
= 33.6198

m

s
6

Thus, we can see that the velocity varies by

�v = 33.6198 − 32.6223

2(33.1118)
×100% = 1.5063%

The following script generates the random values for cd , along with their mean, standard
deviation, percent variation, and a histogram:

clc,format short g
n=1000;t=4;m=68.1;g=9.81;
cd=0.25;cdmin=cd-0.025,cdmax=cd+0.025
r=rand(n,1);

332 LINEAR REGRESSION

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 332

cdrand=cdmin+(cdmax-cdmin)*r;
meancd=mean(cdrand),stdcd=std(cdrand)
Deltacd=(max(cdrand)-min(cdrand))/meancd/2*100.
subplot(2,1,1)
hist(cdrand),title('(a) Distribution of drag')
xlabel('cd (kg/m)')

The results are

meancd =
0.25018

stdcd =
0.014528

Deltacd =
9.9762

These results, as well as the histogram (Fig. 14.5a) indicate that rand has yielded 1000
uniformly distributed values with the desired mean value and range. The values can then be
employed along with the analytical solution to compute the resulting distribution of veloc-
ities at t = 4 s.

vrand=sqrt(g*m./cdrand).*tanh(sqrt(g*cdrand/m)*t);
meanv=mean(vrand)
Deltav=(max(vrand)-min(vrand))/meanv/2*100.
subplot(2,1,2)
hist(vrand),title('(b) Distribution of velocity')
xlabel('v (m/s)')

14.2 RANDOM NUMBERS AND SIMULATION 333

(b) Distribution of velocity

(a) Distribution of drag

cd (kg/m)

v (m/s)

50

100

150

0
0.23 0.24 0.25 0.26 0.27 0.280.22

50

100

150

0
32.6 32.8 33 33.2 33.4 33.6 33.832.4

FIGURE 14.5
Histograms of (a) uniformly distributed drag coefficients and (b) the resulting distribution of velocity.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 333

334 LINEAR REGRESSION

The results are

meanv =
33.1151

Deltav =
1.5048

These results, as well as the histogram (Fig. 14.5b), closely conform to our hand cal-
culations.

The foregoing example is formally referred to as a Monte Carlo simulation. The term,
which is a reference to Monaco’s Monte Carlo casino, was first used by physicists working
on nuclear weapons projects in the 1940s. Although it yields intuitive results for this simple
example, there are instances where such computer simulations yield surprising outcomes
and provide insights that would otherwise be impossible to determine. The approach is fea-
sible only because of the computer’s ability to implement tedious, repetitive computations
in an efficient manner.

14.2.2 MATLAB Function: randn

This function generates a sequence of numbers that are normally distributed with a mean
of 0 and a standard deviation of 1. A simple representation of its syntax is

r = randn(m, n)

where r = an m-by-n matrix of random numbers. The following formula can then be used
to generate a normal distribution with a different mean (mn) and standard deviation (s),

rnormal = mn + s * randn(m, n)

EXAMPLE 14.3 Generating Normally-Distributed Random Values of Drag

Problem Statement. Analyze the same case as in Example 14.2, but rather than employ-
ing a uniform distribution, generate normally-distributed drag coefficients with a mean of
0.25 and a standard deviation of 0.01443.

Solution. The following script generates the random values for cd, along with their mean,
standard deviation, coefficient of variation (expressed as a %), and a histogram:

clc,format short g
n=1000;t=4;m=68.1;g=9.81;
cd=0.25;
stdev=0.01443;
r=randn(n,1);
cdrand=cd+stdev*r;
meancd=mean(cdrand),stdevcd=std(cdrand)
cvcd=stdevcd/meancd*100.
subplot(2,1,1)
hist(cdrand),title('(a) Distribution of drag')
xlabel('cd (kg/m)')

The results are

meancd =
0.24988

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 334

14.2 RANDOM NUMBERS AND SIMULATION 335

(a) Distribution of drag

cd (kg/m)

100

200

300

0
0.2 0.22 0.24 0.26 0.28 0.30.18

(b) Distribution of velocity

v (m/s)

100

200

300

0
32.5 33 33.5 34 34.532

FIGURE 14.6
Histograms of (a) normally-distributed drag coefficients and (b) the resulting distribution of velocity.

stdevcd =
0.014465

cvcd =
5.7887

These results, as well as the histogram (Fig. 14.6a) indicate that randn has yielded 1000
uniformly distributed values with the desired mean, standard deviation, and coefficient
of variation. The values can then be employed along with the analytical solution to com-
pute the resulting distribution of velocities at t � 4 s.

vrand=sqrt(g*m./cdrand).*tanh(sqrt(g*cdrand/m)*t);
meanv=mean(vrand),stdevv=std(vrand)
cvv=stdevv/meanv*100.
subplot(2,1,2)
hist(vrand),title('(b) Distribution of velocity')
xlabel('v (m/s)')

The results are

meanv =
33.117

stdevv =
0.28839

cvv =
0.8708

These results, as well as the histogram (Fig. 14.6b), indicate that the velocities are also nor-
mally distributed with a mean that is close to the value that would be computed using the
mean and the analytical solution. In addition, we compute the associated standard deviation
which corresponds to a coefficient of variation of ±0.8708%.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 335

Although simple, the foregoing examples illustrate how random numbers can be easily gen-
erated within MATLAB. We will explore additional applications in the end-of-chapter problems.

14.3 LINEAR LEAST-SQUARES REGRESSION

Where substantial error is associated with data, the best curve-fitting strategy is to derive
an approximating function that fits the shape or general trend of the data without neces-
sarily matching the individual points. One approach to do this is to visually inspect the
plotted data and then sketch a “best” line through the points. Although such “eyeball”
approaches have commonsense appeal and are valid for “back-of-the-envelope” calcula-
tions, they are deficient because they are arbitrary. That is, unless the points define a perfect
straight line (in which case, interpolation would be appropriate), different analysts would
draw different lines.

To remove this subjectivity, some criterion must be devised to establish a basis for the
fit. One way to do this is to derive a curve that minimizes the discrepancy between the data
points and the curve. To do this, we must first quantify the discrepancy. The simplest exam-
ple is fitting a straight line to a set of paired observations: (x1, y1), (x2, y2), . . . , (xn, yn).
The mathematical expression for the straight line is

y = a0 + a1x + e (14.8)

where a0 and a1 are coefficients representing the intercept and the slope, respectively, and
e is the error, or residual, between the model and the observations, which can be repre-
sented by rearranging Eq. (14.8) as

e = y − a0 − a1x (14.9)

Thus, the residual is the discrepancy between the true value of y and the approximate value,
a0 + a1x , predicted by the linear equation.

14.3.1 Criteria for a “Best” Fit

One strategy for fitting a “best” line through the data would be to minimize the sum of the
residual errors for all the available data, as in

n∑
i=1

ei =
n∑

i=1

(yi − a0 − a1xi) (14.10)

where n = total number of points. However, this is an inadequate criterion, as illustrated by
Fig. 14.7a, which depicts the fit of a straight line to two points. Obviously, the best fit is the
line connecting the points. However, any straight line passing through the midpoint of the
connecting line (except a perfectly vertical line) results in a minimum value of Eq. (14.10)
equal to zero because positive and negative errors cancel.

One way to remove the effect of the signs might be to minimize the sum of the ab-
solute values of the discrepancies, as in

n∑
i=1

|ei | =
n∑

i=1

|yi − a0 − a1xi | (14.11)

Figure 14.7b demonstrates why this criterion is also inadequate. For the four points shown,
any straight line falling within the dashed lines will minimize the sum of the absolute val-
ues of the residuals. Thus, this criterion also does not yield a unique best fit.

336 LINEAR REGRESSION

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 336

A third strategy for fitting a best line is the minimax criterion. In this technique, the line
is chosen that minimizes the maximum distance that an individual point falls from the line.
As depicted in Fig. 14.7c, this strategy is ill-suited for regression because it gives undue
influence to an outlier—that is, a single point with a large error. It should be noted that
the minimax principle is sometimes well-suited for fitting a simple function to a compli-
cated function (Carnahan, Luther, and Wilkes, 1969).

A strategy that overcomes the shortcomings of the aforementioned approaches is to
minimize the sum of the squares of the residuals:

Sr =
n∑

i=1

e2
i =

n∑
i=1

(yi − a0 − a1xi)
2 (14.12)

14.3 LINEAR LEAST-SQUARES REGRESSION 337

y

Midpoint

Outlier

x

x

x

(a)

(b)

(c)

y

y

FIGURE 14.7
Examples of some criteria for “best fit” that are inadequate for regression: (a) minimizes the sum
of the residuals, (b) minimizes the sum of the absolute values of the residuals, and (c) minimizes
the maximum error of any individual point.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 337

This criterion, which is called least squares, has a number of advantages, including that it
yields a unique line for a given set of data. Before discussing these properties, we will pre-
sent a technique for determining the values of a0 and a1 that minimize Eq. (14.12).

14.3.2 Least-Squares Fit of a Straight Line

To determine values for a0 and a1, Eq. (14.12) is differentiated with respect to each
unknown coefficient:

∂Sr

∂a0
= −2

∑
(yi − a0 − a1xi)

∂Sr

∂a1
= −2

∑
[(yi − a0 − a1xi)xi]

Note that we have simplified the summation symbols; unless otherwise indicated, all sum-
mations are from i = 1 to n. Setting these derivatives equal to zero will result in a minimum
Sr . If this is done, the equations can be expressed as

0 =
∑

yi −
∑

a0 −
∑

a1xi

0 =
∑

xi yi −
∑

a0xi −
∑

a1x2
i

Now, realizing that
∑

a0 = na0, we can express the equations as a set of two simultaneous
linear equations with two unknowns (a0 and a1):

n a0 +
(∑

xi

)
a1 =

∑
yi (14.13)(∑

xi

)
a0 +

(∑
x2

i

)
a1 =

∑
xi yi (14.14)

These are called the normal equations. They can be solved simultaneously for

a1 = n
∑

xi yi − ∑
xi

∑
yi

n
∑

x2
i − (∑

xi
)2 (14.15)

This result can then be used in conjunction with Eq. (14.13) to solve for

a0 = ȳ − a1 x̄ (14.16)

where ȳ and x̄ are the means of y and x, respectively.

EXAMPLE 14.4 Linear Regression

Problem Statement. Fit a straight line to the values in Table 14.1.

Solution. In this application, force is the dependent variable (y) and velocity is the
independent variable (x). The data can be set up in tabular form and the necessary sums
computed as in Table 14.4.

338 LINEAR REGRESSION

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 338

1600

1200

800

400

�400

0
20 40 60 80

F
, N

v, m/s

The means can be computed as

x̄ = 360

8
= 45 ȳ = 5,135

8
= 641.875

The slope and the intercept can then be calculated with Eqs. (14.15) and (14.16) as

a1 = 8(312,850) − 360(5,135)

8(20,400) − (360)2
= 19.47024

a0 = 641.875 − 19.47024(45) = −234.2857

Using force and velocity in place of y and x, the least-squares fit is

F = −234.2857 + 19.47024v

The line, along with the data, is shown in Fig. 14.8.

14.3 LINEAR LEAST-SQUARES REGRESSION 339

TABLE 14.4 Data and summations needed to compute the best-fit line for the data
from Table 14.1.

i xi yi x2
i xi yi

1 10 25 100 250
2 20 70 400 1,400
3 30 380 900 11,400
4 40 550 1,600 22,000
5 50 610 2,500 30,500
6 60 1,220 3,600 73,200
7 70 830 4,900 58,100
8 80 1,450 6,400 116,000∑

360 5,135 20,400 312,850

FIGURE 14.8
Least-squares fit of a straight line to the data from Table 14.1

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 339

y

yi

xi x

a0 � a1xi

Measurement

yi � a0 � a1xi

Regressi
on lin

e

Notice that although the line fits the data well, the zero intercept means that the equa-
tion predicts physically unrealistic negative forces at low velocities. In Section 14.4, we
will show how transformations can be employed to derive an alternative best-fit line that is
more physically realistic.

14.3.3 Quantification of Error of Linear Regression

Any line other than the one computed in Example 14.4 results in a larger sum of the squares
of the residuals. Thus, the line is unique and in terms of our chosen criterion is a “best” line
through the points. A number of additional properties of this fit can be elucidated by
examining more closely the way in which residuals were computed. Recall that the sum of
the squares is defined as [Eq. (14.12)]

Sr =
n∑

i=1

(yi − a0 − a1xi)
2 (14.17)

Notice the similarity between this equation and Eq. (14.4)

St =
∑

(yi − ȳ)2 (14.18)

In Eq. (14.18), the square of the residual represented the square of the discrepancy between
the data and a single estimate of the measure of central tendency—the mean. In Eq. (14.17),
the square of the residual represents the square of the vertical distance between the data and
another measure of central tendency—the straight line (Fig. 14.9).

The analogy can be extended further for cases where (1) the spread of the points
around the line is of similar magnitude along the entire range of the data and (2) the distri-
bution of these points about the line is normal. It can be demonstrated that if these criteria

340 LINEAR REGRESSION

FIGURE 14.9
The residual in linear regression represents the vertical distance between a data point and the
straight line.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 340

are met, least-squares regression will provide the best (i.e., the most likely) estimates of a0

and a1 (Draper and Smith, 1981). This is called the maximum likelihood principle in statis-
tics. In addition, if these criteria are met, a “standard deviation” for the regression line can
be determined as [compare with Eq. (14.3)]

sy/x =
√

Sr

n − 2
(14.19)

where sy/x is called the standard error of the estimate. The subscript notation “y/x” desig-
nates that the error is for a predicted value of y corresponding to a particular value of x.
Also, notice that we now divide by n − 2 because two data-derived estimates—a0 and a1—
were used to compute Sr ; thus, we have lost two degrees of freedom. As with our discus-
sion of the standard deviation, another justification for dividing by n − 2 is that there is no
such thing as the “spread of data” around a straight line connecting two points. Thus, for
the case where n = 2, Eq. (14.19) yields a meaningless result of infinity.

Just as was the case with the standard deviation, the standard error of the estimate
quantifies the spread of the data. However, sy/x quantifies the spread around the regression
line as shown in Fig. 14.10b in contrast to the standard deviation sy that quantified the
spread around the mean (Fig. 14.10a).

These concepts can be used to quantify the “goodness” of our fit. This is particularly
useful for comparison of several regressions (Fig. 14.11). To do this, we return to the orig-
inal data and determine the total sum of the squares around the mean for the dependent
variable (in our case, y). As was the case for Eq. (14.18), this quantity is designated St . This
is the magnitude of the residual error associated with the dependent variable prior to
regression. After performing the regression, we can compute Sr , the sum of the squares of
the residuals around the regression line with Eq. (14.17). This characterizes the residual

14.3 LINEAR LEAST-SQUARES REGRESSION 341

(a) (b)

FIGURE 14.10
Regression data showing (a) the spread of the data around the mean of the dependent variable
and (b) the spread of the data around the best-fit line. The reduction in the spread in going from
(a) to (b), as indicated by the bell-shaped curves at the right, represents the improvement due to
linear regression.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 341

error that remains after the regression. It is, therefore, sometimes called the unexplained
sum of the squares. The difference between the two quantities, St − Sr , quantifies the im-
provement or error reduction due to describing the data in terms of a straight line rather
than as an average value. Because the magnitude of this quantity is scale-dependent, the
difference is normalized to St to yield

r2 = St − Sr

St
(14.20)

where r2 is called the coefficient of determination and r is the correlation coefficient
(=

√
r2) . For a perfect fit, Sr = 0 and r2 = 1, signifying that the line explains 100% of the

variability of the data. For r2 = 0, Sr = St and the fit represents no improvement. An
alternative formulation for r that is more convenient for computer implementation is

r = n
∑

(xi yi) − (∑
xi

) (∑
yi

)
√

n
∑

x2
i − (∑

xi
)2

√
n

∑
y2

i − (∑
yi

)2
(14.21)

EXAMPLE 14.5 Estimation of Errors for the Linear Least-Squares Fit

Problem Statement. Compute the total standard deviation, the standard error of the esti-
mate, and the correlation coefficient for the fit in Example 14.4.

Solution. The data can be set up in tabular form and the necessary sums computed as in
Table 14.5.

342 LINEAR REGRESSION

y

x

(a)

(b)

y

x

FIGURE 14.11
Examples of linear regression with (a) small and (b) large residual errors.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 342

The standard deviation is [Eq. (14.3)]

sy =
√

1,808,297

8 − 1
= 508.26

and the standard error of the estimate is [Eq. (14.19)]

sy/x =
√

216,118

8 − 2
= 189.79

Thus, because sy/x < sy , the linear regression model has merit. The extent of the improve-
ment is quantified by [Eq. (14.20)]

r2 = 1,808,297 − 216,118

1,808,297
= 0.8805

or r =
√

0.8805 = 0.9383. These results indicate that 88.05% of the original uncertainty
has been explained by the linear model.

Before proceeding, a word of caution is in order. Although the coefficient of determi-
nation provides a handy measure of goodness-of-fit, you should be careful not to ascribe
more meaning to it than is warranted. Just because r2 is “close” to 1 does not mean that the
fit is necessarily “good.” For example, it is possible to obtain a relatively high value of r2

when the underlying relationship between y and x is not even linear. Draper and Smith
(1981) provide guidance and additional material regarding assessment of results for linear
regression. In addition, at the minimum, you should always inspect a plot of the data along
with your regression curve.

A nice example was developed by Anscombe (1973). As in Fig. 14.12, he came up with
four data sets consisting of 11 data points each. Although their graphs are very different, all
have the same best-fit equation, y = 3 + 0.5x , and the same coefficient of determination,
r2 = 0.67! This example dramatically illustrates why developing plots is so valuable.

14.3 LINEAR LEAST-SQUARES REGRESSION 343

TABLE 14.5 Data and summations needed to compute the goodness-of-fit statistics
for the data from Table 14.1.

i xi yi a0 + a1xi (yi − ȳ)2 (yi − a0 − a1xi)
2

1 10 25 −39.58 380,535 4,171
2 20 70 155.12 327,041 7,245
3 30 380 349.82 68,579 911
4 40 550 544.52 8,441 30
5 50 610 739.23 1,016 16,699
6 60 1,220 933.93 334,229 81,837
7 70 830 1,128.63 35,391 89,180
8 80 1,450 1,323.33 653,066 16,044∑

360 5,135 1,808,297 216,118

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 343

14.4 LINEARIZATION OF NONLINEAR RELATIONSHIPS

Linear regression provides a powerful technique for fitting a best line to data. However, it
is predicated on the fact that the relationship between the dependent and independent vari-
ables is linear. This is not always the case, and the first step in any regression analysis
should be to plot and visually inspect the data to ascertain whether a linear model applies.
In some cases, techniques such as polynomial regression, which is described in Chap. 15,
are appropriate. For others, transformations can be used to express the data in a form that
is compatible with linear regression.

One example is the exponential model:

y = α1eβ1x (14.22)

where α1 and β1 are constants. This model is used in many fields of engineering and sci-
ence to characterize quantities that increase (positive β1) or decrease (negative β1) at a rate
that is directly proportional to their own magnitude. For example, population growth or
radioactive decay can exhibit such behavior. As depicted in Fig. 14.13a, the equation rep-
resents a nonlinear relationship (for β1 �= 0) between y and x.

Another example of a nonlinear model is the simple power equation:

y = α2xβ2 (14.23)

where α2 and β2 are constant coefficients. This model has wide applicability in all fields of
engineering and science. It is very frequently used to fit experimental data when the
underlying model is not known. As depicted in Fig. 14.13b, the equation (for β2 �= 0) is
nonlinear.

344 LINEAR REGRESSION

15

10

5

0
0 5 10 15 20

15

10

5

0
0 5 10 15 20

15

10

5

0
0 5 10 15 20

15

10

5

0
0 5 10 15 20

FIGURE 14.12
Anscombe’s four data sets along with the best-fit line, y = 3 + 0.5x.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 344

A third example of a nonlinear model is the saturation-growth-rate equation:

y = α3
x

β3 + x
(14.24)

where α3 and β3 are constant coefficients. This model, which is particularly well-suited
for characterizing population growth rate under limiting conditions, also represents a
nonlinear relationship between y and x (Fig. 14.13c) that levels off, or “saturates,” as x
increases. It has many applications, particularly in biologically related areas of both engi-
neering and science.

Nonlinear regression techniques are available to fit these equations to experimental
data directly. However, a simpler alternative is to use mathematical manipulations to trans-
form the equations into a linear form. Then linear regression can be employed to fit the
equations to data.

14.4 LINEARIZATION OF NONLINEAR RELATIONSHIPS 345

y

y � �1e
�1x

Li
n

ea
ri

za
ti

o
n

y

y � �2x�2

Li
n

ea
ri

za
ti

o
n

y

xxx

Li
n

ea
ri

za
ti

o
n

ln y

x

Slope � �1

Intercept � In �1

log y

log x

1�y

1�x

Intercept � log �2

Intercept � 1��3

Slope � �2
Slope � �3��3

(d) (e) (f)

(a) (b) (c)

y � �3 �3 � x
x

FIGURE 14.13
(a) The exponential equation, (b) the power equation, and (c) the saturation-growth-rate equation. Parts (d), (e), and
(f) are linearized versions of these equations that result from simple transformations.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 345

For example, Eq. (14.22) can be linearized by taking its natural logarithm to yield

ln y = ln α1 + β1x (14.25)

Thus, a plot of ln y versus x will yield a straight line with a slope of β1 and an intercept of
ln α1 (Fig. 14.13d).

Equation (14.23) is linearized by taking its base-10 logarithm to give

log y = log α2 + β2 log x (14.26)

Thus, a plot of log y versus log x will yield a straight line with a slope of β2 and an inter-
cept of log α2 (Fig. 14.13e). Note that any base logarithm can be used to linearize this
model. However, as done here, the base-10 logarithm is most commonly employed.

Equation (14.24) is linearized by inverting it to give

1

y
= 1

α3
+ β3

α3

1

x
(14.27)

Thus, a plot of 1/y versus 1/x will be linear, with a slope of β3/α3 and an intercept of 1/α3

(Fig. 14.13f).
In their transformed forms, these models can be fit with linear regression to evaluate

the constant coefficients. They can then be transformed back to their original state and used
for predictive purposes. The following illustrates this procedure for the power model.

EXAMPLE 14.6 Fitting Data with the Power Equation

Problem Statement. Fit Eq. (14.23) to the data in Table 14.1 using a logarithmic trans-
formation.

Solution. The data can be set up in tabular form and the necessary sums computed as in
Table 14.6.

The means can be computed as

x̄ = 12.606

8
= 1.5757 ȳ = 20.515

8
= 2.5644

346 LINEAR REGRESSION

TABLE 14.6 Data and summations needed to fit the power model to the data from
Table 14.1

i xi yi log xi log yi (log xi)
2 log xi log yi

1 10 25 1.000 1.398 1.000 1.398
2 20 70 1.301 1.845 1.693 2.401
3 30 380 1.477 2.580 2.182 3.811
4 40 550 1.602 2.740 2.567 4.390
5 50 610 1.699 2.785 2.886 4.732
6 60 1220 1.778 3.086 3.162 5.488
7 70 830 1.845 2.919 3.404 5.386
8 80 1450 1.903 3.161 3.622 6.016∑

12.606 20.515 20.516 33.622

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 346

The slope and the intercept can then be calculated with Eqs. (14.15) and (14.16) as

a1 = 8(33.622) − 12.606(20.515)

8(20.516) − (12.606)2
= 1.9842

a0 = 2.5644 − 1.9842(1.5757) = −0.5620

The least-squares fit is

log y = −0.5620 + 1.9842 log x

The fit, along with the data, is shown in Fig. 14.14a.

14.4 LINEARIZATION OF NONLINEAR RELATIONSHIPS 347

1000

log x

log y

y

100

10
10 50 100

(a)

(b)

1600

1200

800

400

0
0 20 40 60 80 x

FIGURE 14.14
Least-squares fit of a power model to the data from Table 14.1. (a) The fit of the transformed data.
(b) The power equation fit along with the data.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 347

We can also display the fit using the untransformed coordinates. To do this, the coeffi-
cients of the power model are determined as α2 = 10−0.5620 = 0.2741 and β2 = 1.9842.
Using force and velocity in place of y and x, the least-squares fit is

F = 0.2741v1.9842

This equation, along with the data, is shown in Fig. 14.14b.

The fits in Example 14.6 (Fig. 14.14) should be compared with the one obtained
previously in Example 14.4 (Fig. 14.8) using linear regression on the untransformed data.
Although both results would appear to be acceptable, the transformed result has the advan-
tage that it does not yield negative force predictions at low velocities. Further, it is known
from the discipline of fluid mechanics that the drag force on an object moving through a
fluid is often well described by a model with velocity squared. Thus, knowledge from the
field you are studying often has a large bearing on the choice of the appropriate model
equation you use for curve fitting.

14.4.1 General Comments on Linear Regression

Before proceeding to curvilinear and multiple linear regression, we must emphasize the in-
troductory nature of the foregoing material on linear regression. We have focused on the
simple derivation and practical use of equations to fit data. You should be cognizant of the
fact that there are theoretical aspects of regression that are of practical importance but are
beyond the scope of this book. For example, some statistical assumptions that are inherent
in the linear least-squares procedures are

1. Each x has a fixed value; it is not random and is known without error.
2. The y values are independent random variables and all have the same variance.
3. The y values for a given x must be normally distributed.

Such assumptions are relevant to the proper derivation and use of regression. For
example, the first assumption means that (1) the x values must be error-free and (2) the
regression of y versus x is not the same as x versus y. You are urged to consult other refer-
ences such as Draper and Smith (1981) to appreciate aspects and nuances of regression that
are beyond the scope of this book.

14.5 COMPUTER APPLICATIONS

Linear regression is so commonplace that it can be implemented on most pocket calcula-
tors. In this section, we will show how a simple M-file can be developed to determine the
slope and intercept as well as to create a plot of the data and the best-fit line. We will also
show how linear regression can be implemented with the built-in polyfit function.

348 LINEAR REGRESSION

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 348

14.5.1 MATLAB M-file: linregr

An algorithm for linear regression can be easily developed (Fig. 14.15). The required
summations are readily computed with MATLAB’s sum function. These are then used to
compute the slope and the intercept with Eqs. (14.15) and (14.16). The routine displays the
intercept and slope, the coefficient of determination, and a plot of the best-fit line along
with the measurements.

A simple example of the use of this M-file would be to fit the force-velocity data analyzed
in Example 14.4:

>> x = [10 20 30 40 50 60 70 80];
>> y = [25 70 380 550 610 1220 830 1450];
>> linregr(x,y)

r2 =
0.8805

ans =
19.4702 -234.2857

It can just as easily be used to fit the power model (Example 14.6) by applying the
log10 function to the data as in

>> linregr(log10(x),log10(y))

r2 =
0.9481

ans =
1.9842 -0.5620

10
�200

0

200

400

600

800

1000

1200

1400

1600

20 30 40 50 60 70 80

14.5 COMPUTER APPLICATIONS 349

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 349

1
1

1.5

2

2.5

3

3.5

1.2 1.4 1.6 1.8 2

350 LINEAR REGRESSION

FIGURE 14.15
An M-file to implement linear regression.

function [a, r2] = linregr(x,y)
% linregr: linear regression curve fitting
% [a, r2] = linregr(x,y): Least squares fit of straight
% line to data by solving the normal equations

% input:
% x = independent variable
% y = dependent variable
% output:
% a = vector of slope, a(1), and intercept, a(2)
% r2 = coefficient of determination

n = length(x);
if length(y)~=n, error('x and y must be same length'); end
x = x(:); y = y(:); % convert to column vectors
sx = sum(x); sy = sum(y);
sx2 = sum(x.*x); sxy = sum(x.*y); sy2 = sum(y.*y);
a(1) = (n*sxy—sx*sy)/(n*sx2—sx^2);
a(2) = sy/n—a(1)*sx/n;
r2 = ((n*sxy—sx*sy)/sqrt(n*sx2—sx^2)/sqrt(n*sy2—sy^2))^2;
% create plot of data and best fit line
xp = linspace(min(x),max(x),2);
yp = a(1)*xp+a(2);
plot(x,y,'o',xp,yp)
grid on

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 350

14.5.2 MATLAB Functions: polyfit and polyval

MATLAB has a built-in function polyfit that fits a least-squares nth-order polynomial to
data. It can be applied as in

>> p = polyfit(x, y, n)

where x and y are the vectors of the independent and the dependent variables, respectively,
and n = the order of the polynomial. The function returns a vector p containing the poly-
nomial’s coefficients. We should note that it represents the polynomial using decreasing
powers of x as in the following representation:

f (x) = p1xn + p2xn−1 + · · · + pn x + pn+1

Because a straight line is a first-order polynomial, polyfit(x,y,1) will return the
slope and the intercept of the best-fit straight line.

>> x = [10 20 30 40 50 60 70 80];
>> y = [25 70 380 550 610 1220 830 1450];
>> a = polyfit(x,y,1)

a =
19.4702 -234.2857

Thus, the slope is 19.4702 and the intercept is −234.2857.
Another function, polyval, can then be used to compute a value using the coeffi-

cients. It has the general format:

>> y = polyval(p, x)

where p = the polynomial coefficients, and y = the best-fit value at x. For example,

>> y = polyval(a,45)

y =
641.8750

14.6 CASE STUDY 351

14.6 CASE STUDY ENZYME KINETICS

Background. Enzymes act as catalysts to speed up the rate of chemical reactions in
living cells. In most cases, they convert one chemical, the substrate, into another, the prod-
uct. The Michaelis-Menten equation is commonly used to describe such reactions:

v = vm[S]

ks + [S]
(14.28)

where v = the initial reaction velocity, vm = the maximum initial reaction velocity, [S] =
substrate concentration, and ks = a half-saturation constant. As in Fig. 14.16, the equation
describes a saturating relationship which levels off with increasing [S]. The graph also
illustrates that the half-saturation constant corresponds to the substrate concentration at
which the velocity is half the maximum.

cha01102_ch14_321-360.qxd 12/18/10 1:59 PM Page 351

14.6 CASE STUDY continued

352 LINEAR REGRESSION

FIGURE 14.16
Two versions of the Michaelis-Menten model of enzyme kinetics.

v

vm

0.5vm

ks [S]

Second-order
Michaelis-Menten

model

Michaelis-Menten
model

Although the Michaelis-Menten model provides a nice starting point, it has been re-
fined and extended to incorporate additional features of enzyme kinetics. One simple
extension involves so-called allosteric enzymes, where the binding of a substrate molecule
at one site leads to enhanced binding of subsequent molecules at other sites. For cases with
two interacting bonding sites, the following second-order version often results in a better
fit:

v = vm[S]2

k2
s + [S]2

(14.29)

This model also describes a saturating curve but, as depicted in Fig. 14.16, the squared
concentrations tend to make the shape more sigmoid, or S-shaped.

Suppose that you are provided with the following data:

[S] 1.3 1.8 3 4.5 6 8 9
v 0.07 0.13 0.22 0.275 0.335 0.35 0.36

Employ linear regression to fit these data with linearized versions of Eqs. (14.28) and
(14.29). Aside from estimating the model parameters, assess the validity of the fits with
both statistical measures and graphs.

Solution. Equation (14.28), which is in the format of the saturation-growth-rate model
(Eq. 14.24), can be linearized by inverting it to give (recall Eq. 14.27)

1

v
= 1

vm
+ ks

vm

1

[S]

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 352

The linregr function from Fig. 14.15 can then be used to determine the least-squares fit:

>> S=[1.3 1.8 3 4.5 6 8 9];
>> v=[0.07 0.13 0.22 0.275 0.335 0.35 0.36];
>> [a,r2]=linregr(1./S,1./v)

a =
16.4022 0.1902

r2 =
0.9344

The model coefficients can then be calculated as

>> vm=1/a(2)

vm =
5.2570

>> ks=vm*a(1)

ks =
86.2260

Thus, the best-fit model is

v = 5.2570[S]

86.2260 + [S]

Although the high value of r2 might lead you to believe that this result is acceptable,
inspection of the coefficients might raise doubts. For example, the maximum velocity
(5.2570) is much greater than the highest observed velocity (0.36). In addition, the half-
saturation rate (86.2260) is much bigger than the maximum substrate concentration (9).

The problem is underscored when the fit is plotted along with the data. Figure 14.17a
shows the transformed version. Although the straight line follows the upward trend, the
data clearly appear to be curved. When the original equation is plotted along with the data
in the untransformed version (Fig. 14.17b), the fit is obviously unacceptable. The data are
clearly leveling off at about 0.36 or 0.37. If this is correct, an eyeball estimate would
suggest that vm should be about 0.36, and ks should be in the range of 2 to 3.

Beyond the visual evidence, the poorness of the fit is also reflected by statistics like the
coefficient of determination. For the untransformed case, a much less acceptable result of
r2 = 0.6406 is obtained.

The foregoing analysis can be repeated for the second-order model. Equation (14.28)
can also be linearized by inverting it to give

1

v
= 1

vm
+ k2

s

vm

1

[S]2

The linregr function from Fig. 14.15 can again be used to determine the least-squares fit:

>> [a,r2]=linregr(1./S.^2,1./v)

a =
19.3760 2.4492

r2 =
0.9929

14.6 CASE STUDY 353

14.6 CASE STUDY continued

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 353

14.6 CASE STUDY continued

The model coefficients can then be calculated as

>> vm=1/a(2)

vm =
0.4083

>> ks=sqrt(vm*a(1))

ks =
2.8127

Substituting these values into Eq. (14.29) gives

v = 0.4083[S]2

7.911 + [S]2

Although we know that a high r2 does not guarantee of a good fit, the fact that it is very
high (0.9929) is promising. In addition, the parameters values also seem consistent with the
trends in the data; that is, the km is slightly greater than the highest observed velocity and
the half-saturation rate is lower than the maximum substrate concentration (9).

354 LINEAR REGRESSION

15

0.8

0.6

0.4

0.2

0
0 1 2 3 4

(a) Transformed model

(b) Original model

5 6 7 8 9

10

5

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1/
v

v

[S]

1/[S]

FIGURE 14.17
Plots of least-squares fit (line) of the Michaelis-Menten model along with data (points). The plot in
(a) shows the transformed fit, and (b) shows how the fit looks when viewed in the untransformed,
original form.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 354

14.6 CASE STUDY 355

FIGURE 14.18
Plots of least-squares fit (line) of the second-order Michaelis-Menten model along with data
(points). The plot in (a) shows the transformed fit, and (b) shows the untransformed, original form.

14.6 CASE STUDY continued

15

0.4

0.3

0.2

0.1

0
0 1 2 3 4

(a) Transformed model

(b) Original model

5 6 7 8 9

10

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1/
v

v

[S]

1/[S]2

The adequacy of the fit can be assessed graphically. As in Fig. 14.18a, the transformed
results appear linear. When the original equation is plotted along with the data in the
untransformed version (Fig. 14.18b), the fit nicely follows the trend in the measurements.
Beyond the graphs, the goodness of the fit is also reflected by the fact that the coefficient
of determination for the untransformed case can be computed as r2 = 0.9896.

Based on our analysis, we can conclude that the second-order model provides a good
fit of this data set. This might suggest that we are dealing with an allosteric enzyme.

Beyond this specific result, there are a few other general conclusions that can be drawn
from this case study. First, we should never solely rely on statistics such as r2 as the sole
basis of assessing goodness of fit. Second, regression equations should always be assessed
graphically. And for cases where transformations are employed, a graph of the untrans-
formed model and data should always be inspected.

Finally, although transformations may yield a decent fit of the transformed data, this
does not always translate into an acceptable fit in the original format. The reason that this
might occur is that minimizing squared residuals of transformed data is not the same as for
the untransformed data. Linear regression assumes that the scatter of points around the

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 355

356 LINEAR REGRESSION

14.1 Given the data
0.90 1.42 1.30 1.55 1.63
1.32 1.35 1.47 1.95 1.66
1.96 1.47 1.92 1.35 1.05
1.85 1.74 1.65 1.78 1.71
2.29 1.82 2.06 2.14 1.27

Determine (a) the mean, (b) median, (c) mode, (d) range,
(e) standard deviation, (f) variance, and (g) coefficient of
variation.
14.2 Construct a histogram from the data from Prob. 14.1.
Use a range from 0.8 to 2.4 with intervals of 0.2.
14.3 Given the data

29.65 28.55 28.65 30.15 29.35 29.75 29.25
30.65 28.15 29.85 29.05 30.25 30.85 28.75
29.65 30.45 29.15 30.45 33.65 29.35 29.75
31.25 29.45 30.15 29.65 30.55 29.65 29.25

Determine (a) the mean, (b) median, (c) mode, (d) range,
(e) standard deviation, (f) variance, and (g) coefficient of
variation.
(h) Construct a histogram. Use a range from 28 to 34 with

increments of 0.4.
(i) Assuming that the distribution is normal, and that your

estimate of the standard deviation is valid, compute the
range (i.e., the lower and the upper values) that encom-
passes 68% of the readings. Determine whether this is a
valid estimate for the data in this problem.

14.4 Using the same approach as was employed to derive
Eqs. (14.15) and (14.16), derive the least-squares fit of the
following model:

y = a1x + e

That is, determine the slope that results in the least-
squares fit for a straight line with a zero intercept. Fit the
following data with this model and display the result
graphically.

x 2 4 6 7 10 11 14 17 20
y 4 5 6 5 8 8 6 9 12

14.5 Use least-squares regression to fit a straight line to

x 0 2 4 6 9 11 12 15 17 19
y 5 6 7 6 9 8 8 10 12 12

Along with the slope and intercept, compute the standard
error of the estimate and the correlation coefficient. Plot the
data and the regression line. Then repeat the problem, but
regress x versus y—that is, switch the variables. Interpret
your results.
14.6 Fit a power model to the data from Table 14.1, but use
natural logarithms to perform the transformations.
14.7 The following data were gathered to determine the
relationship between pressure and temperature of a fixed
volume of 1 kg of nitrogen. The volume is 10 m3.

T, °C −40 0 40 80 120 160
p, N/m2 6900 8100 9350 10,500 11,700 12,800

Employ the ideal gas law pV = nRT to determine R on the
basis of these data. Note that for the law, T must be expressed
in kelvins.

14.6 CASE STUDY continued

best-fit line follows a Gaussian distribution, and that the standard deviation is the same at
every value of the dependent variable. These assumptions are rarely true after transforming
data.

As a consequence of the last conclusion, some analysts suggest that rather than using
linear transformations, nonlinear regression should be employed to fit curvilinear data. In
this approach, a best-fit curve is developed that directly minimizes the untransformed
residuals. We will describe how this is done in Chap. 15.

PROBLEMS

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 356

14.8 Beyond the examples in Fig. 14.13, there are other
models that can be linearized using transformations. For
example,

y = α4xeβ4 x

Linearize this model and use it to estimate α4 and β4 based
on the following data. Develop a plot of your fit along with
the data.

x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7 1.8
y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18

14.9 The concentration of E. coli bacteria in a swimming
area is monitored after a storm:

t (hr) 4 8 12 16 20 24
c (CFU/100 mL) 1600 1320 1000 890 650 560

The time is measured in hours following the end of the storm
and the unit CFU is a “colony forming unit.” Use this data to
estimate (a) the concentration at the end of the storm (t = 0)
and (b) the time at which the concentration will reach
200 CFU/100 mL. Note that your choice of model should
be consistent with the fact that negative concentrations are
impossible and that the bacteria concentration always de-
creases with time.
14.10 Rather than using the base-e exponential model
(Eq. 14.22), a common alternative is to employ a base-10
model:

y = α510β5 x

When used for curve fitting, this equation yields identical
results to the base-e version, but the value of the exponent
parameter (β5) will differ from that estimated with Eq.14.22
(β1). Use the base-10 version to solve Prob. 14.9. In addi-
tion, develop a formulation to relate β1 to β5.
14.11 Determine an equation to predict metabolism rate as a
function of mass based on the following data. Use it to pre-
dict the metabolism rate of a 200-kg tiger.

Animal Mass (kg) Metabolism (watts)

Cow 400 270
Human 70 82
Sheep 45 50
Hen 2 4.8
Rat 0.3 1.45
Dove 0.16 0.97

PROBLEMS 357

14.12 On average, the surface area A of human beings is
related to weight W and height H. Measurements on a num-
ber of individuals of height 180 cm and different weights
(kg) give values of A (m2) in the following table:

W (kg) 70 75 77 80 82 84 87 90

A (m2) 2.10 2.12 2.15 2.20 2.22 2.23 2.26 2.30

Show that a power law A = aWb fits these data reasonably
well. Evaluate the constants a and b, and predict what the
surface area is for a 95-kg person.
14.13 Fit an exponential model to

x 0.4 0.8 1.2 1.6 2 2.3
y 800 985 1490 1950 2850 3600

Plot the data and the equation on both standard and semi-
logarithmic graphs with the MATLAB subplot function.
14.14 An investigator has reported the data tabulated below
for an experiment to determine the growth rate of bacteria
k (per d) as a function of oxygen concentration c (mg/L). It
is known that such data can be modeled by the following
equation:

k = kmaxc2

cs + c2

where cs and kmax are parameters. Use a transformation to
linearize this equation. Then use linear regression to esti-
mate cs and kmax and predict the growth rate at c = 2 mg/L.

c 0.5 0.8 1.5 2.5 4
k 1.1 2.5 5.3 7.6 8.9

14.15 Develop an M-file function to compute descriptive
statistics for a vector of values. Have the function determine
and display number of values, mean, median, mode, range,
standard deviation, variance, and coefficient of variation. In
addition, have it generate a histogram. Test it with the data
from Prob. 14.3.
14.16 Modify the linregr function in Fig. 14.15 so that it
(a) computes and returns the standard error of the estimate,
and (b) uses the subplot function to also display a plot of
the residuals (the predicted minus the measured y) versus x.
14.17 Develop an M-file function to fit a power model.
Have the function return the best-fit coefficient α2 and
power β2 along with the r 2 for the untransformed model. In
addition, use the subplot function to display graphs of both
the transformed and untransformed equations along with the
data. Test it with the data from Prob. 14.11.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 357

14.18 The following data show the relationship between the
viscosity of SAE 70 oil and temperature. After taking the log
of the data, use linear regression to find the equation of the
line that best fits the data and the r 2 value.

Temperature, °C 26.67 93.33 148.89 315.56
Viscosity, μ, N·s/m2 1.35 0.085 0.012 0.00075

14.19 You perform experiments and determine the follow-
ing values of heat capacity c at various temperatures T for a
gas:

T −50 −30 0 60 90 110
c 1250 1280 1350 1480 1580 1700

Use regression to determine a model to predict c as a func-
tion of T.
14.20 It is known that the tensile strength of a plastic in-
creases as a function of the time it is heat treated. The fol-
lowing data are collected:

Time 10 15 20 25 40 50 55 60 75
Tensile Strength 5 20 18 40 33 54 70 60 78

(a) Fit a straight line to these data and use the equation to
determine the tensile strength at a time of 32 min.

(b) Repeat the analysis but for a straight line with a zero
intercept.

14.21 The following data were taken from a stirred tank re-
actor for the reaction A → B. Use the data to determine the
best possible estimates for k01 and E1 for the following
kinetic model:

−d A

dt
= k01e−E1/RT A

where R is the gas constant and equals 0.00198 kcal/mol/K.

−dA/dt (moles/L/s) 460 960 2485 1600 1245
A (moles/L) 200 150 50 20 10
T (K) 280 320 450 500 550

14.22 Concentration data were collected at 15 time points
for the polymerization reaction:

x A + y B → Ax By

We assume the reaction occurs via a complex mechanism
consisting of many steps. Several models have been hypoth-
esized, and the sum of the squares of the residuals had been
calculated for the fits of the models of the data. The results

358 LINEAR REGRESSION

are shown below. Which model best describes the data (sta-
tistically)? Explain your choice.

Model A Model B Model C

Sr 135 105 100
Number of Model

Parameters Fit 2 3 5

14.23 Below are data taken from a batch reactor of bacterial
growth (after lag phase was over). The bacteria are allowed
to grow as fast as possible for the first 2.5 hours, and then
they are induced to produce a recombinant protein, the pro-
duction of which slows the bacterial growth significantly.
The theoretical growth of bacteria can be described by

d X

dt
= μX

where X is the number of bacteria, and μ is the specific
growth rate of the bacteria during exponential growth. Based
on the data, estimate the specific growth rate of the bacteria
during the first 2 hours of growth and during the next 4 hours
of growth.

Time,
h 0 1 2 3 4 5 6

[Cells],
g/L 0.100 0.335 1.102 1.655 2.453 3.702 5.460

14.24 A transportation engineering study was conducted to
determine the proper design of bike lanes. Data were gath-
ered on bike-lane widths and average distance between bikes
and passing cars. The data from 9 streets are

Distance, m 2.4 1.5 2.4 1.8 1.8 2.9 1.2 3 1.2
Lane Width, m 2.9 2.1 2.3 2.1 1.8 2.7 1.5 2.9 1.5

(a) Plot the data.
(b) Fit a straight line to the data with linear regression. Add

this line to the plot.
(c) If the minimum safe average distance between bikes and

passing cars is considered to be 1.8 m, determine the
corresponding minimum lane width.

14.25 In water-resources engineering, the sizing of reser-
voirs depends on accurate estimates of water flow in the
river that is being impounded. For some rivers, long-term
historical records of such flow data are difficult to obtain. In
contrast, meteorological data on precipitation are often
available for many years past. Therefore, it is often useful to

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 358

determine a relationship between flow and precipitation.
This relationship can then be used to estimate flows for
years when only precipitation measurements were made.
The following data are available for a river that is to be
dammed:

Precip.,
cm/yr 88.9 108.5 104.1 139.7 127 94 116.8 99.1

Flow,
m3/s 14.6 16.7 15.3 23.2 19.5 16.1 18.1 16.6

(a) Plot the data.
(b) Fit a straight line to the data with linear regression.

Superimpose this line on your plot.
(c) Use the best-fit line to predict the annual water flow if

the precipitation is 120 cm.
(d) If the drainage area is 1100 km2, estimate what fraction

of the precipitation is lost via processes such as evapo-
ration, deep groundwater infiltration, and consumptive
use.

14.26 The mast of a sailboat has a cross-sectional area of
10.65 cm2 and is constructed of an experimental aluminum
alloy. Tests were performed to define the relationship be-
tween stress and strain. The test results are

Strain,
cm/cm 0.0032 0.0045 0.0055 0.0016 0.0085 0.0005

Stress,
N/cm2 4970 5170 5500 3590 6900 1240

The stress caused by wind can be computed as F/Ac where F =
force in the mast and Ac = mast’s cross-sectional area. This
value can then be substituted into Hooke’s law to determine
the mast’s deflection, �L = strain × L, where L = the
mast’s length. If the wind force is 25,000 N, use the data to
estimate the deflection of a 9-m mast.
14.27 The following data were taken from an experiment
that measured the current in a wire for various imposed
voltages:

V, V 2 3 4 5 7 10
i, A 5.2 7.8 10.7 13 19.3 27.5

(a) On the basis of a linear regression of this data, determine
current for a voltage of 3.5 V. Plot the line and the data
and evaluate the fit.

(b) Redo the regression and force the intercept to be zero.

PROBLEMS 359

14.28 An experiment is performed to determine the % elon-
gation of electrical conducting material as a function of tem-
perature. The resulting data are listed below. Predict the %
elongation for a temperature of 400 °C.

Temperature, °C 200 250 300 375 425 475 600
% Elongation 7.5 8.6 8.7 10 11.3 12.7 15.3

14.29 The population p of a small community on the out-
skirts of a city grows rapidly over a 20-year period:

t 0 5 10 15 20
p 100 200 450 950 2000

As an engineer working for a utility company, you must
forecast the population 5 years into the future in order to an-
ticipate the demand for power. Employ an exponential
model and linear regression to make this prediction.
14.30 The velocity u of air flowing past a flat surface is
measured at several distances y away from the surface. Fit a
curve to this data assuming that the velocity is zero at the
surface (y = 0). Use your result to determine the shear stress
(du/dy) at the surface.

y, m 0.002 0.006 0.012 0.018 0.024
u, m/s 0.287 0.899 1.915 3.048 4.299

14.31 Andrade’s equation has been proposed as a model of
the effect of temperature on viscosity:

μ = DeB/Ta

where μ = dynamic viscosity of water (10–3 N·s/m2), Ta =
absolute temperature (K), and D and B are parameters. Fit
this model to the following data for water:

T 0 5 10 20 30 40
μ 1.787 1.519 1.307 1.002 0.7975 0.6529

14.32 Perform the same computation as in Example 14.2,
but in addition to the drag coefficient, also vary the mass
uniformly by ±10%.
14.33 Perform the same computation as in Example 14.3,
but in addition to the drag coefficient, also vary the mass
normally around its mean value with a coefficient of varia-
tion of 5.7887%.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 359

14.34 Manning’s formula for a rectangular channel can be
written as

Q = 1

nm

(B H)5/3

(B + 2H)2/3

√
S

where Q = flow (m3/s), nm = a roughness coefficient, B =
width (m), H = depth (m), and S = slope. You are applying
this formula to a stream where you know that the width = 20 m
and the depth = 0.3 m. Unfortunately, you know the rough-
ness and the slope to only a ±10% precision. That is, you
know that the roughness is about 0.03 with a range from 0.027
to 0.033 and the slope is 0.0003 with a range from 0.00027
to 0.00033. Assuming uniform distributions, use a Monte
Carlo analysis with n = 10,000 to estimate the distribution
of flow.

360 LINEAR REGRESSION

14.35 A Monte Carlo analysis can be used for optimization.
For example, the trajectory of a ball can be computed with

y = (tanθ0)x − g

2v2
0 cos2θ0

x2 + y0 (P14.35)

where y = the height (m), θ0 = the initial angle (radians),
v0 = the initial velocity (m/s), g = the gravitational constant =
9.81 m/s2, and y0 = the initial height (m). Given y0 = 1 m,
v0 = 25 m/s, and θ0 = 50o, determine the maximum height
and the corresponding x distance (a) analytically with calcu-
lus and (b) numerically with Monte Carlo simulation. For
the latter, develop a script that generates a vector of 10,000
uniformly-distributed values of x between 0 and 60 m. Use
this vector and Eq. P14.35 to generate a vector of heights.
Then, employ the max function to determine the maximum
height and the associated x distance.

cha01102_ch14_321-360.qxd 12/17/10 8:13 AM Page 360

361

15

15.1 POLYNOMIAL REGRESSION

In Chap.14, a procedure was developed to derive the equation of a straight line using the
least-squares criterion. Some data, although exhibiting a marked pattern such as seen in
Fig. 15.1, are poorly represented by a straight line. For these cases, a curve would be bet-
ter suited to fit the data. As discussed in Chap. 14, one method to accomplish this objective
is to use transformations. Another alternative is to fit polynomials to the data using poly-
nomial regression.

The least-squares procedure can be readily extended to fit the data to a higher-order
polynomial. For example, suppose that we fit a second-order polynomial or quadratic:

y = a0 + a1x + a2x2 + e (15.1)

General Linear Least-Squares and
Nonlinear Regression

CHAPTER OBJECTIVES
This chapter takes the concept of fitting a straight line and extends it to (a) fitting a
polynomial and (b) fitting a variable that is a linear function of two or more independent
variables. We will then show how such applications can be generalized and applied to a
broader group of problems. Finally, we will illustrate how optimization techniques can be
used to implement nonlinear regression. Specific objectives and topics covered are

• Knowing how to implement polynomial regression.
• Knowing how to implement multiple linear regression.
• Understanding the formulation of the general linear least-squares model.
• Understanding how the general linear least-squares model can be solved with

MATLAB using either the normal equations or left division.
• Understanding how to implement nonlinear regression with optimization

techniques.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 361

362 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

For this case the sum of the squares of the residuals is

Sr =
n∑

i=1

(
yi − a0 − a1xi − a2x2

i

)2
(15.2)

To generate the least-squares fit, we take the derivative of Eq. (15.2) with respect to
each of the unknown coefficients of the polynomial, as in

∂Sr

∂a0
= −2

∑(
yi − a0 − a1xi − a2x2

i

)
∂Sr

∂a1
= −2

∑
xi

(
yi − a0 − a1xi − a2x2

i

)
∂Sr

∂a2
= −2

∑
x2

i

(
yi − a0 − a1xi − a2x2

i

)
These equations can be set equal to zero and rearranged to develop the following set of
normal equations:

(n)a0 + (∑
xi

)
a1 + (∑

x2
i

)
a2 = ∑

yi(∑
xi

)
a0 + (∑

x2
i

)
a1 + (∑

x3
i

)
a2 = ∑

xi yi(∑
x2

i

)
a0 + (∑

x3
i

)
a1 + (∑

x4
i

)
a2 = ∑

x2
i yi

y

x

(a)

y

x

(b)

FIGURE 15.1
(a) Data that are ill-suited for linear least-squares regression. (b) Indication that a parabola is
preferable.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 362

15.1 POLYNOMIAL REGRESSION 363

where all summations are from i = 1 through n. Note that the preceding three equations are
linear and have three unknowns: a0, a1, and a2. The coefficients of the unknowns can be
calculated directly from the observed data.

For this case, we see that the problem of determining a least-squares second-order
polynomial is equivalent to solving a system of three simultaneous linear equations. The
two-dimensional case can be easily extended to an mth-order polynomial as in

y = a0 + a1x + a2x2 + · · · + am xm + e

The foregoing analysis can be easily extended to this more general case. Thus, we can
recognize that determining the coefficients of an mth-order polynomial is equivalent to
solving a system of m + 1 simultaneous linear equations. For this case, the standard error
is formulated as

sy/x =
√

Sr

n − (m + 1)
(15.3)

This quantity is divided by n − (m + 1) because (m + 1) data-derived coefficients—
a0, a1, . . . , am —were used to compute Sr; thus, we have lost m + 1 degrees of freedom.
In addition to the standard error, a coefficient of determination can also be computed for
polynomial regression with Eq. (14.20).

EXAMPLE 15.1 Polynomial Regression

Problem Statement. Fit a second-order polynomial to the data in the first two columns
of Table 15.1.

TABLE 15.1 Computations for an error analysis of the quadratic least-squares fit.

xi yi (yi − y–)2 (yi− a0− a1xi−a2x2
i)2

0 2.1 544.44 0.14332
1 7.7 314.47 1.00286
2 13.6 140.03 1.08160
3 27.2 3.12 0.80487
4 40.9 239.22 0.61959
5 61.1 1272.11 0.09434∑

152.6 2513.39 3.74657

Solution. The following can be computed from the data:

m = 2
∑

xi = 15
∑

x4
i = 979

n = 6
∑

yi = 152.6
∑

xi yi = 585.6

x̄ = 2.5
∑

x2
i = 55

∑
x2

i yi = 2488.8

ȳ = 25.433
∑

x3
i = 225

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 363

364 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

Therefore, the simultaneous linear equations are[6 15 55
15 55 225
55 225 979

]{ a0

a1

a2

}
=

{ 152.6
585.6
2488.8

}

These equations can be solved to evaluate the coefficients. For example, using MATLAB:

>> N = [6 15 55;15 55 225;55 225 979];
>> r = [152.6 585.6 2488.8];
>> a = N\r

a =
2.4786
2.3593
1.8607

Therefore, the least-squares quadratic equation for this case is

y = 2.4786 + 2.3593x + 1.8607x2

The standard error of the estimate based on the regression polynomial is [Eq. (15.3)]

sy/x =
√

3.74657

6 − (2 + 1)
= 1.1175

The coefficient of determination is

r2 = 2513.39 − 3.74657

2513.39
= 0.99851

and the correlation coefficient is r = 0.99925.

y

x50

50
Least-squares

parabola

FIGURE 15.2
Fit of a second-order polynomial.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 364

15.2 MULTIPLE LINEAR REGRESSION 365

These results indicate that 99.851 percent of the original uncertainty has been ex-
plained by the model. This result supports the conclusion that the quadratic equation
represents an excellent fit, as is also evident from Fig. 15.2.

15.2 MULTIPLE LINEAR REGRESSION

Another useful extension of linear regression is the case where y is a linear function of two
or more independent variables. For example, y might be a linear function of x1 and x2, as in

y = a0 + a1x1 + a2x2 + e

Such an equation is particularly useful when fitting experimental data where the variable
being studied is often a function of two other variables. For this two-dimensional case, the
regression “line” becomes a “plane” (Fig. 15.3).

As with the previous cases, the “best” values of the coefficients are determined by
formulating the sum of the squares of the residuals:

Sr =
n∑

i=1

(yi − a0 − a1x1,i − a2x2,i)
2 (15.4)

and differentiating with respect to each of the unknown coefficients:

∂Sr

∂a0
= −2

∑
(yi − a0 − a1x1,i − a2x2,i)

∂Sr

∂a1
= −2

∑
x1,i (yi − a0 − a1x1,i − a2x2,i)

∂Sr

∂a2
= −2

∑
x2,i (yi − a0 − a1x1,i − a2x2,i)

y

x1

x2

FIGURE 15.3
Graphical depiction of multiple linear regression where y is a linear function of x1 and x2.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 365

366 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

The coefficients yielding the minimum sum of the squares of the residuals are obtained by
setting the partial derivatives equal to zero and expressing the result in matrix form as⎡

⎣ n
∑

x1,i
∑

x2,i∑
x1,i

∑
x2

1,i

∑
x1,i x2,i∑

x2,i
∑

x1,i x2,i
∑

x2
2,i

⎤
⎦{ a0

a1

a2

}
=

{ ∑
yi∑

x1,i yi∑
x2,i yi

}
(15.5)

EXAMPLE 15.2 Multiple Linear Regression

Problem Statement. The following data were created from the equation y = 5 +
4x1 − 3x2:

x1 x2 y

0 0 5
2 1 10
2.5 2 9
1 3 0
4 6 3
7 2 27

Use multiple linear regression to fit this data.

Solution. The summations required to develop Eq. (15.5) are computed in Table 15.2.
Substituting them into Eq. (15.5) gives[6 16.5 14

16.5 76.25 48
14 48 54

]{ a0

a1

a2

}
=

{ 54
243.5
100

}
(15.6)

which can be solved for

a0 = 5 a1 = 4 a2 = −3

which is consistent with the original equation from which the data were derived.

The foregoing two-dimensional case can be easily extended to m dimensions, as in

y = a0 + a1x1 + a2x2 + · · · + am xm + e

TABLE 15.2 Computations required to develop the normal equations for Example 15.2.

y x1 x2 x2
1 x2

2 x1x2 x1y x2y

5 0 0 0 0 0 0 0
10 2 1 4 1 2 20 10

9 2.5 2 6.25 4 5 22.5 18
0 1 3 1 9 3 0 0
3 4 6 16 36 24 12 18

27 7 2 49 4 14 189 54
54 16.5 14 76.25 54 48 243.5 100

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 366

15.3 GENERAL LINEAR LEAST SQUARES 367

where the standard error is formulated as

sy/x =
√

Sr

n − (m + 1)

and the coefficient of determination is computed with Eq. (14.20).
Although there may be certain cases where a variable is linearly related to two or more

other variables, multiple linear regression has additional utility in the derivation of power
equations of the general form

y = a0xa1
1 xa2

2 · · · xam
m

Such equations are extremely useful when fitting experimental data. To use multiple linear
regression, the equation is transformed by taking its logarithm to yield

log y = log a0 + a1 log x1 + a2 log x2 + · · · + am log xm

15.3 GENERAL LINEAR LEAST SQUARES

In the preceding pages, we have introduced three types of regression: simple linear,
polynomial, and multiple linear. In fact, all three belong to the following general linear
least-squares model:

y = a0z0 + a1z1 + a2z2 + · · · + am zm + e (15.7)

where z0, z1, . . . , zm are m + 1 basis functions. It can easily be seen how simple linear
and multiple linear regression fall within this model—that is, z0 = 1, z1 = x1, z2 =
x2, . . . , zm = xm . Further, polynomial regression is also included if the basis functions are
simple monomials as in z0 = 1, z1 = x, z2 = x2, . . . , zm = xm .

Note that the terminology “linear” refers only to the model’s dependence on its
parameters—that is, the a’s. As in the case of polynomial regression, the functions them-
selves can be highly nonlinear. For example, the z’s can be sinusoids, as in

y = a0 + a1 cos(ωx) + a2 sin(ωx)

Such a format is the basis of Fourier analysis.
On the other hand, a simple-looking model such as

y = a0(1 − e−a1x)

is truly nonlinear because it cannot be manipulated into the format of Eq. (15.7).
Equation (15.7) can be expressed in matrix notation as

{y} = [Z]{a} + {e} (15.8)

where [Z] is a matrix of the calculated values of the basis functions at the measured values
of the independent variables:

[Z] =

⎡
⎢⎢⎣

z01 z11 · · · zm1

z02 z12 · · · zm2
...

...
...

z0n z1n · · · zmn

⎤
⎥⎥⎦

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 367

368 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

where m is the number of variables in the model and n is the number of data points.
Because n ≥ m + 1, you should recognize that most of the time, [Z] is not a square matrix.

The column vector {y} contains the observed values of the dependent variable:

{y}T = � y1 y2 · · · yn �
The column vector {a} contains the unknown coefficients:

{a}T = � a0 a1 · · · am �
and the column vector {e} contains the residuals:

{e}T = � e1 e2 · · · en �
The sum of the squares of the residuals for this model can be defined as

Sr =
n∑

i=1

(
yi −

m∑
j=0

aj zji

)2

(15.9)

This quantity can be minimized by taking its partial derivative with respect to each of the
coefficients and setting the resulting equation equal to zero. The outcome of this process is
the normal equations that can be expressed concisely in matrix form as

[[Z]T [Z]]{a} = {[Z]T {y}} (15.10)

It can be shown that Eq. (15.10) is, in fact, equivalent to the normal equations developed
previously for simple linear, polynomial, and multiple linear regression.

The coefficient of determination and the standard error can also be formulated in terms
of matrix algebra. Recall that r2 is defined as

r2 = St − Sr

St
= 1 − Sr

St

Substituting the definitions of Sr and St gives

r2 = 1 −
∑

(yi − ŷi)
2∑

(yi − ȳi)2

where ŷ = the prediction of the least-squares fit. The residuals between the best-fit curve
and the data, yi − ŷ, can be expressed in vector form as

{y} − [Z]{a}
Matrix algebra can then be used to manipulate this vector to compute both the coefficient of
determination and the standard error of the estimate as illustrated in the following example.

EXAMPLE 15.3 Polynomial Regression with MATLAB

Problem Statement. Repeat Example 15.1, but use matrix operations as described in this
section.

Solution. First, enter the data to be fit

>> x = [0 1 2 3 4 5]';
>> y = [2.1 7.7 13.6 27.2 40.9 61.1]';

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 368

15.3 GENERAL LINEAR LEAST SQUARES 369

Next, create the [Z] matrix:

>> Z = [ones(size(x)) x x.^2]

Z =
1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

We can verify that [Z]T [Z] results in the coefficient matrix for the normal equations:

>> Z'*Z

ans =
6 15 55

15 55 225
55 225 979

This is the same result we obtained with summations in Example 15.1. We can solve for the
coefficients of the least-squares quadratic by implementing Eq. (15.10):

>> a = (Z'*Z)\(Z'*y)

ans =
2.4786
2.3593
1.8607

In order to compute r2 and sy/x , first compute the sum of the squares of the residuals:

>> Sr = sum((y-Z*a).^2)

Sr =
3.7466

Then r2 can be computed as

>> r2 = 1-Sr/sum((y-mean(y)).^2)

r2 =
0.9985

and sy/x can be computed as

>> syx = sqrt(Sr/(length(x)-length(a)))

syx =
1.1175

Our primary motivation for the foregoing has been to illustrate the unity among the
three approaches and to show how they can all be expressed simply in the same matrix no-
tation. It also sets the stage for the next section where we will gain some insights into the
preferred strategies for solving Eq. (15.10). The matrix notation will also have relevance
when we turn to nonlinear regression in Section 15.5.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 369

370 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

15.4 QR FACTORIZATION AND THE BACKSLASH OPERATOR

Generating a best fit by solving the normal equations is widely used and certainly adequate
for many curve-fitting applications in engineering and science. It must be mentioned, how-
ever, that the normal equations can be ill-conditioned and hence sensitive to roundoff errors.

Two more advanced methods, QR factorization and singular value decomposition, are
more robust in this regard. Although the description of these methods is beyond the scope
of this text, we mention them here because they can be implemented with MATLAB.

Further, QR factorization is automatically used in two simple ways within MATLAB.
First, for cases where you want to fit a polynomial, the built-in polyfit function auto-
matically uses QR factorization to obtain its results.

Second, the general linear least-squares problem can be directly solved with the back-
slash operator. Recall that the general model is formulated as Eq. (15.8)

{y} = [Z]{a} (15.11)

In Section 10.4, we used left division with the backslash operator to solve systems of linear al-
gebraic equations where the number of equations equals the number of unknowns (n = m).

For Eq. (15.8) as derived from general least squares, the number of equations is greater than
the number of unknowns (n > m). Such systems are said to be overdetermined. When
MATLAB senses that you want to solve such systems with left division, it automatically uses
QR factorization to obtain the solution. The following example illustrates how this is done.

EXAMPLE 15.4 Implementing Polynomial Regression with polyfit and Left Division

Problem Statement. Repeat Example 15.3, but use the built-in polyfit function and
left division to calculate the coefficients.

Solution. As in Example 15.3, the data can be entered and used to create the [Z] matrix
as in

>> x = [0 1 2 3 4 5]';
>> y = [2.1 7.7 13.6 27.2 40.9 61.1]';
>> Z = [ones(size(x)) x x.^2];

The polyfit function can be used to compute the coefficients:

>> a = polyfit(x,y,2)

a =
1.8607 2.3593 2.4786

The same result can also be calculated using the backslash:

>> a = Z\y

a =
2.4786
2.3593
1.8607

As just stated, both these results are obtained automatically with QR factorization.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 370

15.5 NONLINEAR REGRESSION 371

15.5 NONLINEAR REGRESSION

There are many cases in engineering and science where nonlinear models must be fit to
data. In the present context, these models are defined as those that have a nonlinear depen-
dence on their parameters. For example,

y = a0(1 − e−a1x) + e (15.12)

This equation cannot be manipulated so that it conforms to the general form of Eq. (15.7).
As with linear least squares, nonlinear regression is based on determining the values

of the parameters that minimize the sum of the squares of the residuals. However, for the
nonlinear case, the solution must proceed in an iterative fashion.

There are techniques expressly designed for nonlinear regression. For example, the
Gauss-Newton method uses a Taylor series expansion to express the original nonlinear
equation in an approximate, linear form. Then least-squares theory can be used to obtain
new estimates of the parameters that move in the direction of minimizing the residual.
Details on this approach are provided elsewhere (Chapra and Canale, 2010).

An alternative is to use optimization techniques to directly determine the least-squares
fit. For example, Eq. (15.12) can be expressed as an objective function to compute the sum
of the squares:

f (a0, a1) =
n∑

i=1

[yi − a0(1 − e−a1xi)]2 (15.13)

An optimization routine can then be used to determine the values of a0 and a1 that mini-
mize the function.

As described previously in Section 7.3.1, MATLAB’s fminsearch function can be
used for this purpose. It has the general syntax

[x, fval] = fminsearch(fun,x0,options,p1,p2,...)

where x= a vector of the values of the parameters that minimize the function fun, fval=
the value of the function at the minimum, x0 = a vector of the initial guesses for the para-
meters, options= a structure containing values of the optimization parameters as created
with the optimset function (recall Sec. 6.5), and p1, p2, etc. = additional arguments that
are passed to the objective function. Note that if options is omitted, MATLAB uses
default values that are reasonable for most problems. If you would like to pass additional
arguments (p1, p2, . . .), but do not want to set the options, use empty brackets [] as a
place holder.

EXAMPLE 15.5 Nonlinear Regression with MATLAB

Problem Statement. Recall that in Example 14.6, we fit the power model to data from
Table 14.1 by linearization using logarithms. This yielded the model:

F = 0.2741v1.9842

Repeat this exercise, but use nonlinear regression. Employ initial guesses of 1 for the
coefficients.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 371

372 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

Solution. First, an M-file function must be created to compute the sum of the squares.
The following file, called fSSR.m, is set up for the power equation:

function f = fSSR(a,xm,ym)
yp = a(1)*xm.^a(2);
f = sum((ym-yp).^2);

In command mode, the data can be entered as

>> x = [10 20 30 40 50 60 70 80];
>> y = [25 70 380 550 610 1220 830 1450];

The minimization of the function is then implemented by

>> fminsearch(@fSSR, [1, 1], [], x, y)

ans =
2.5384 1.4359

The best-fit model is therefore

F = 2.5384v1.4359

Both the original transformed fit and the present version are displayed in Fig. 15.4.
Note that although the model coefficients are very different, it is difficult to judge which fit
is superior based on inspection of the plot.

This example illustrates how different best-fit equations result when fitting the same
model using nonlinear regression versus linear regression employing transformations. This
is because the former minimizes the residuals of the original data whereas the latter mini-
mizes the residuals of the transformed data.

1600

F
, N

1200

800

400

0
0 20 40 60 80

v, m/s

Transformed
Untransformed

FIGURE 15.4
Comparison of transformed and untransformed model fits for force versus velocity data from
Table 14.1.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 372

15.6 CASE STUDY 373

15.6 CASE STUDY FITTING EXPERIMENTAL DATA

Background. As mentioned at the end of Section 15.2, although there are many cases
where a variable is linearly related to two or more other variables, multiple linear regres-
sion has additional utility in the derivation of multivariable power equations of the general
form

y = a0xa1
1 xa2

2 · · · xam
m (15.14)

Such equations are extremely useful when fitting experimental data. To do this, the equa-
tion is transformed by taking its logarithm to yield

log y = log a0 + a1 log x1 + a2 log x2 · · · +am log xm (15.15)

Thus, the logarithm of the dependent variable is linearly dependent on the logarithms of the
independent variables.

A simple example relates to gas transfer in natural waters such as rivers, lakes, and
estuaries. In particular, it has been found that the mass-transfer coefficient of dissolved
oxygen KL (m/d) is related to a river’s mean water velocity U (m/s) and depth H (m) by

KL = a0U a1 Ha2 (15.16)

Taking the common logarithm yields

log KL = log a0 + a1 log U + a2 log H (15.17)

The following data were collected in a laboratory flume at a constant temperature
of 20oC:

U 0.5 2 10 0.5 2 10 0.5 2 10
H 0.15 0.15 0.15 0.3 0.3 0.3 0.5 0.5 0.5
KL 0.48 3.9 57 0.85 5 77 0.8 9 92

Use these data and general linear least squares to evaluate the constants in Eq. (15.16).

Solution. In a similar fashion to Example 15.3, we can develop a script to assign the
data, create the [Z] matrix, and compute the coefficients for the least-squares fit:

% Compute best fit of transformed values
clc; format short g
U=[0.5 2 10 0.5 2 10 0.5 2 10]';
H=[0.15 0.15 0.15 0.3 0.3 0.3 0.5 0.5 0.5]';
KL=[0.48 3.9 57 0.85 5 77 0.8 9 92]';
logU=log10(U);logH=log10(H);logKL=log10(KL);
Z=[ones(size(logKL)) logU logH];
a=(Z'*Z)\(Z'*logKL)

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 373

374 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

with the result:

a =
0.57627
1.562
0.50742

Therefore, the best-fit model is

log KL = 0.57627 + 1.562 log U + 0.50742 log H

or in the untransformed form (note, a0 = 100.57627 = 3.7694),

KL = 3.7694U 1.5620 H 0.5074

The statistics can also be determined by adding the following lines to the script:

% Compute fit statistics
Sr=sum((logKL-Z*a).^2)
r2=1-Sr/sum((logKL-mean(logKL)).^2)
syx=sqrt(Sr/(length(logKL)-length(a)))

Sr =
0.024171

r2 =
0.99619

syx =
0.063471

Finally, plots of the fit can be developed. The following statements display the model
predictions versus the measured values for KL. Subplots are employed to do this for both
the transformed and untransformed versions.

%Generate plots
clf
KLpred=10^a(1)*U.^a(2).*H.^a(3);
KLmin=min(KL);KLmax=max(KL);
dKL=(KLmax-KLmin)/100;
KLmod=[KLmin:dKL:KLmax];
subplot(1,2,1)
loglog(KLpred,KL,'ko',KLmod,KLmod,'k-')
axis square,title('(a) log-log plot')
legend('model prediction','1:1
line','Location','NorthWest')
xlabel('log(K_L) measured'),ylabel('log(K_L) predicted')
subplot(1,2,2)
plot(KLpred,KL,'ko',KLmod,KLmod,'k-')
axis square,title('(b) untransformed plot')
legend('model prediction','1:1
line','Location','NorthWest')
xlabel('K_L measured'),ylabel('K_L predicted')

15.6 CASE STUDY continued

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 374

15.6 CASE STUDY 375

15.6 CASE STUDY continued

lo
g

 (
K

L)
 p

re
d

ic
te

d

log (KL) measured

10�1

10�1

100

100 101 102

101

102

model prediction
1:1 line

model prediction
1:1 line

(a) log-log plot (b) untransformed plot

K
L

p
re

d
ic

te
d

KL measured

0

20

0 20

40

40 60 80 100

60

100

80

FIGURE 15.5
Plots of predicted versus measured values of the oxygen mass-transfer coefficient as computed
with multiple regression. Results are shown for (a) log transformed and (b) untransformed cases.
The 1:1 line, which indicates a perfect correlation, is superimposed on both plots.

The result is shown in Fig. 15.5.

PROBLEMS

15.1 Fit a parabola to the data from Table 14.1. Determine
the r2 for the fit and comment on the efficacy of the result.
15.2 Using the same approach as was employed to derive
Eqs. (14.15) and (14.16), derive the least-squares fit of the
following model:

y = a1x + a2x2 + e

That is, determine the coefficients that result in the least-
squares fit for a second-order polynomial with a zero inter-
cept. Test the approach by using it to fit the data from
Table 14.1.
15.3 Fit a cubic polynomial to the following data:

x 3 4 5 7 8 9 11 12
y 1.6 3.6 4.4 3.4 2.2 2.8 3.8 4.6

Along with the coefficients, determine r2 and sy/x .

15.4 Develop an M-file to implement polynomial regres-
sion. Pass the M-file two vectors holding the x and y
values along with the desired order m. Test it by solving
Prob. 15.3.
15.5 For the data from Table P15.5, use polynomial
regression to derive a predictive equation for dissolved
oxygen concentration as a function of temperature for the
case where the chloride concentration is equal to zero.
Employ a polynomial that is of sufficiently high order that
the predictions match the number of significant digits dis-
played in the table.
15.6 Use multiple linear regression to derive a predictive
equation for dissolved oxygen concentration as a function of
temperature and chloride based on the data from Table P15.5.
Use the equation to estimate the concentration of dissolved
oxygen for a chloride concentration of 15 g/L at T = 12 °C.
Note that the true value is 9.09 mg/L. Compute the percent

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 375

376 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

relative error for your prediction. Explain possible causes for
the discrepancy.
15.7 As compared with the models from Probs. 15.5 and
15.6, a somewhat more sophisticated model that accounts
for the effect of both temperature and chloride on dis-
solved oxygen saturation can be hypothesized as being of
the form

o = f3(T) + f1(c)

That is, a third-order polynomial in temperature and a linear
relationship in chloride is assumed to yield superior results.
Use the general linear least-squares approach to fit this
model to the data in Table P15.5. Use the resulting equation
to estimate the dissolved oxygen concentration for a chloride
concentration of 15 g/L at T = 12 ◦C. Note that the true
value is 9.09 mg/L. Compute the percent relative error for
your prediction.
15.8 Use multiple linear regression to fit

x1 0 1 1 2 2 3 3 4 4
x2 0 1 2 1 2 1 2 1 2
y 15.1 17.9 12.7 25.6 20.5 35.1 29.7 45.4 40.2

Compute the coefficients, the standard error of the estimate,
and the correlation coefficient.
15.9 The following data were collected for the steady flow
of water in a concrete circular pipe:

Experiment Diameter, m Slope, m/m Flow, m3/s

1 0.3 0.001 0.04
2 0.6 0.001 0.24
3 0.9 0.001 0.69
4 0.3 0.01 0.13
5 0.6 0.01 0.82
6 0.9 0.01 2.38
7 0.3 0.05 0.31
8 0.6 0.05 1.95
9 0.9 0.05 5.66

Use multiple linear regression to fit the following model to
this data:

Q = α0 Dα1 Sα2

where Q = flow, D = diameter, and S = slope.
15.10 Three disease-carrying organisms decay exponen-
tially in seawater according to the following model:

p(t) = Ae−1.5t + Be−0.3t + Ce−0.05t

Estimate the initial concentration of each organism (A, B,
and C) given the following measurements:

t 0.5 1 2 3 4 5 6 7 9
p(t) 6 4.4 3.2 2.7 2 1.9 1.7 1.4 1.1

15.11 The following model is used to represent the effect of
solar radiation on the photosynthesis rate of aquatic plants:

P = Pm
I

Isat
e− I

Isat
+1

where P = the photosynthesis rate (mg m−3d−1),Pm = the
maximum photosynthesis rate (mg m−3d−1), I = solar
radiation (μE m−2s−1), and Isat = optimal solar radiation
(μE m−2s−1). Use nonlinear regression to evaluate Pm and
Isat based on the following data:

I 50 80 130 200 250 350 450 550 700
P 99 177 202 248 229 219 173 142 72

15.12 The following data are provided

x 1 2 3 4 5
y 2.2 2.8 3.6 4.5 5.5

TABLE P15.5 Dissolved oxygen concentration in
water as a function of temperature
(◦C) and chloride concentration (g/L).

Dissolved Oxygen (mg/L) for
Temperature (◦C) and Concentration

of Chloride (g/L)

T, °C c = 0 g/L c = 10 g/L c = 20 g/L

0 14.6 12.9 11.4
5 12.8 11.3 10.3

10 11.3 10.1 8.96
15 10.1 9.03 8.08
20 9.09 8.17 7.35
25 8.26 7.46 6.73
30 7.56 6.85 6.20

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 376

PROBLEMS 377

Fit the following model to this data using MATLAB and the
general linear least-squares model

y = a + bx + c

x

15.13 In Prob. 14.8 we used transformations to linearize
and fit the following model:

y = α4xeβ4x

Use nonlinear regression to estimate α4 and β4 based on the
following data. Develop a plot of your fit along with the data.

x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7 1.8
y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18

15.14 Enzymatic reactions are used extensively to charac-
terize biologically mediated reactions. The following is an
example of a model that is used to fit such reactions:

v0 = km[S]3

K + [S]3

where v0 = the initial rate of the reaction (M/s), [S] = the
substrate concentration (M), and km and K are parameters.
The following data can be fit with this model:

[S], M v0, M/s

0.01 6.078 × 10−11

0.05 7.595 × 10−9

0.1 6.063 × 10−8

0.5 5.788 × 10−6

1 1.737 × 10−5

5 2.423 × 10−5

10 2.430 × 10−5

50 2.431 × 10−5

100 2.431 × 10−5

(a) Use a transformation to linearize the model and evaluate
the parameters. Display the data and the model fit on a
graph.

(b) Perform the same evaluation as in (a) but use nonlinear
regression.

15.15 Given the data

x 5 10 15 20 25 30 35 40 45 50
y 17 24 31 33 37 37 40 40 42 41

use least-squares regression to fit (a) a straight line, (b) a
power equation, (c) a saturation-growth-rate equation, and
(d) a parabola. For (b) and (c), employ transformations to
linearize the data. Plot the data along with all the curves. Is
any one of the curves superior? If so, justify.
15.16 The following data represent the bacterial growth in a
liquid culture over of number of days:

Day 0 4 8 12 16 20
Amount ×

106 67.38 74.67 82.74 91.69 101.60 112.58

Find a best-fit equation to the data trend. Try several
possibilities—linear, quadratic, and exponential. Determine
the best equation to predict the amount of bacteria after
30 days.
15.17 Dynamic viscosity of water μ(10–3 N · s/m2) is re-
lated to temperature T (◦C) in the following manner:

T 0 5 10 20 30 40
μ 1.787 1.519 1.307 1.002 0.7975 0.6529

(a) Plot this data.
(b) Use linear interpolation to predict μ at T = 7.5 °C.
(c) Use polynomial regression to fit a parabola to the data in

order to make the same prediction.
15.18 Use the following set of pressure-volume data to find
the best possible virial constants (A1 and A2) for the follow-
ing equation of state. R = 82.05 mL atm/gmol K, and T =
303 K.

PV

RT
= 1 + A1

V
+ A2

V 2

P (atm) 0.985 1.108 1.363 1.631
V (mL) 25,000 22,200 18,000 15,000

15.19 Environmental scientists and engineers dealing with
the impacts of acid rain must determine the value of the
ion product of water Kw as a function of temperature. Scien-
tists have suggested the following equation to model this
relationship:

− log10 Kw = a

Ta
+ b log10 Ta + cTa + d

where Ta = absolute temperature (K), and a, b, c, and d are
parameters. Employ the following data and regression to

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 377

378 GENERAL LINEAR LEAST-SQUARES AND NONLINEAR REGRESSION

estimate the parameters with MATLAB. Also, generate a
plot of predicted Kw versus the data.

T (°C) Kw

0 1.164 × 10−15

10 2.950 × 10−15

20 6.846 × 10−15

30 1.467 × 10−14

40 2.929 × 10−14

15.20 The distance required to stop an automobile consists
of both thinking and braking components, each of which is a
function of its speed. The following experimental data were
collected to quantify this relationship. Develop best-fit equa-
tions for both the thinking and braking components. Use
these equations to estimate the total stopping distance for a
car traveling at 110 km/h.

Speed, km/h 30 45 60 75 90 120
Thinking, m 5.6 8.5 11.1 14.5 16.7 22.4
Braking, m 5.0 12.3 21.0 32.9 47.6 84.7

15.21 An investigator has reported the data tabulated below.
It is known that such data can be modeled by the following
equation

x = e(y−b)/a

where a and b are parameters. Use nonlinear regression to
determine a and b. Based on your analysis predict y at x = 2.6.

x 1 2 3 4 5
y 0.5 2 2.9 3.5 4

15.22 It is known that the data tabulated below can be mod-
eled by the following equation

y =
(

a + √
x

b
√

x

)2

Use nonlinear regression to determine the parameters a and b.
Based on your analysis predict y at x = 1.6.

x 0.5 1 2 3 4
y 10.4 5.8 3.3 2.4 2

15.23 An investigator has reported the data tabulated below
for an experiment to determine the growth rate of bacteria k
(per d), as a function of oxygen concentration c (mg/L). It is
known that such data can be modeled by the following
equation:

k = kmaxc2

cs + c2

Use nonlinear regression to estimate cs and kmax and predict
the growth rate at c = 2 mg/L.

c 0.5 0.8 1.5 2.5 4
k 1.1 2.4 5.3 7.6 8.9

15.24 A material is tested for cyclic fatigue failure whereby
a stress, in MPa, is applied to the material and the number of
cycles needed to cause failure is measured. The results are in
the table below. Use nonlinear regression to fit a power
model to this data.

N, cycles 1 10 100 1000 10,000 100,000 1,000,000
Stress,
MPa 1100 1000 925 800 625 550 420

15.25 The following data shows the relationship between
the viscosity of SAE 70 oil and temperature. Use nonlinear
regression to fit a power equation to this data.

Temperature, T, °C 26.67 93.33 148.89 315.56
Viscosity, μ, N·s/m2 1.35 0.085 0.012 0.00075

15.26 The concentration of E. coli bacteria in a swimming
area is monitored after a storm:

t (hr) 4 8 12 16 20 24
c(CFU/100 mL) 1590 1320 1000 900 650 560

The time is measured in hours following the end of the storm
and the unit CFU is a “colony forming unit.” Employ non-
linear regression to fit an exponential model (Eq. 14.22) to
this data. Use the model to estimate (a) the concentration at
the end of the storm (t = 0) and (b) the time at which the
concentration will reach 200 CFU/100 mL.

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 378

PROBLEMS 379

15.27 Use the following set of pressure-volume data to
find the best possible virial constants (A1 and A2) for the
equation of state shown below. R = 82.05 mL atm/gmol K
and T = 303 K.

PV

RT
= 1 + A1

V
+ A2

V 2

P (atm) 0.985 1.108 1.363 1.631
V (mL) 25,000 22,200 18,000 15,000

15.28 Three disease-carrying organisms decay exponentially
in lake water according to the following model:

p(t) = Ae−1.5t + Ae−0.3t + Ae−0.05t

Estimate the initial population of each organism (A, B,
and C) given the following measurements:

t, hr 0.5 1 2 3 4 5 6 7 9
p(t) 6.0 4.4 3.2 2.7 2.2 1.9 1.7 1.4 1.1

cha01102_ch15_361-379.qxd 12/17/10 8:16 AM Page 379

380

16
Fourier Analysis

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to Fourier analysis. The
subject, which is named after Joseph Fourier, involves identifying cycles or patterns
within a time series of data. Specific objectives and topics covered in this chapter are

• Understanding sinusoids and how they can be used for curve fitting.
• Knowing how to use least-squares regression to fit a sinusoid to data.
• Knowing how to fit a Fourier series to a periodic function.
• Understanding the relationship between sinusoids and complex exponentials

based on Euler’s formula.
• Recognizing the benefits of analyzing mathematical function or signals in the

frequency domain (i.e., as a function of frequency).
• Understanding how the Fourier integral and transform extend Fourier analysis to

aperiodic functions.
• Understanding how the discrete Fourier transform (DFT) extends Fourier analysis

to discrete signals.
• Recognizing how discrete sampling affects the ability of the DFT to distinguish

frequencies. In particular, know how to compute and interpret the Nyquist
frequency.

• Recognizing how the fast Fourier transform (FFT) provides a highly efficient
means to compute the DFT for cases where the data record length is a power of 2.

• Knowing how to use the MATLAB function fft to compute a DFT and
understand how to interpret the results.

• Knowing how to compute and interpret a power spectrum.

YOU’VE GOT A PROBLEM

At the beginning of Chap. 8, we used Newton’s second law and force balances to
predict the equilibrium positions of three bungee jumpers connected by cords.
Then, in Chap. 13, we determined the same system’s eigenvalues and eigenvectors

in order to identify its resonant frequencies and principal modes of vibration. Although this

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 380

16.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS 381

analysis certainly provided useful results, it required detailed system information including
knowledge of the underlying model and parameters (i.e., the jumpers’ masses and the
cords’ spring constants).

So suppose that you have measurements of the jumpers’ positions or velocities at dis-
crete, equally spaced times (recall Fig. 13.1). Such information is referred to as a time
series. However, suppose further that you do not know the underlying model or the para-
meters needed to compute the eigenvalues. For such cases, is there any way to use the time
series to learn something fundamental about the system’s dynamics?

In this chapter, we describe such an approach, Fourier analysis, which provides a way
to accomplish this objective. The approach is based on the premise that more complicated
functions (e.g., a time series) can be represented by the sum of simpler trigonometric func-
tions. As a prelude to outlining how this is done, it is useful to explore how data can be fit
with sinusoidal functions.

16.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS

A periodic function f(t) is one for which

f (t) = f (t + T) (16.1)

where T is a constant called the period that is the smallest value of time for which
Eq. (16.1) holds. Common examples include both artificial and natural signals (Fig. 16.1a).

The most fundamental are sinusoidal functions. In this discussion, we will use the term
sinusoid to represent any waveform that can be described as a sine or cosine. There is no

T

(a)

(b)

T

T T

FIGURE 16.1
Aside from trigonometric functions such as sines and cosines, periodic functions include
idealized waveforms like the square wave depicted in (a). Beyond such artificial forms, periodic
signals in nature can be contaminated by noise like the air temperatures shown in (b).

cha01102_ch16_380-404.qxd 12/18/10 2:11 PM Page 381

clear-cut convention for choosing either function, and in any case, the results will be iden-
tical because the two functions are simply offset in time by π/2 radians. For this chapter,
we will use the cosine, which can be expressed generally as

f (t) = A0 + C1cos(ω0t + θ) (16.2)

Inspection of Eq. (16.2) indicates that four parameters serve to uniquely characterize the
sinusoid (Fig. 16.2a):

• The mean value A0 sets the average height above the abscissa.
• The amplitude C1 specifies the height of the oscillation.
• The angular frequency ω0 characterizes how often the cycles occur.
• The phase angle (or phase shift) θ parameterizes the extent to which the sinusoid is

shifted horizontally.

382 FOURIER ANALYSIS

y(t)

θ

C1

t, s

ωt, rad

1

1

0 π 2π 3π

2

2

A0

B1 sin (ω0t)

A1 cos (ω0t)

A0

T

(a)

(b)

1

0

�1

2

FIGURE 16.2
(a) A plot of the sinusoidal function y(t) = A0 + C1 cos(�0t + �). For this case, A0 = 1.7,
C1 = 1, �0 = 2�/T = 2�/(1.5 s), and � = �/3 radians = 1.0472 (= 0.25 s). Other
parameters used to describe the curve are the frequency f = �0/(2�), which for this case is
1 cycle/(1.5 s) = 0.6667 Hz and the period T = 1.5 s. (b) An alternative expression of the
same curve is y(t) = A0 + A1 cos(�0t) + B1 sin(�0t). The three components of this function
are depicted in (b), where A1 = 0.5 and B1 = –0.866. The summation of the three curves in
(b) yields the single curve in (a).

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 382

Note that the angular frequency (in radians/time) is related to the ordinary frequency
f (in cycles/time)1 by

ω0 = 2π f (16.3)

and the ordinary frequency in turn is related to the period T by

f = 1

T
(16.4)

In addition, the phase angle represents the distance in radians from t = 0 to the point
at which the cosine function begins a new cycle. As depicted in Fig. 16.3a, a negative
value is referred to as a lagging phase angle because the curve cos(ω0t − θ) begins a new
cycle � radians after cos(ω0t). Thus, cos(ω0t − θ) is said to lag cos(ω0t). Conversely, as
in Fig. 16.3b, a positive value is referred to as a leading phase angle.

Although Eq. (16.2) is an adequate mathematical characterization of a sinusoid, it is
awkward to work with from the standpoint of curve fitting because the phase shift is
included in the argument of the cosine function. This deficiency can be overcome by
invoking the trigonometric identity:

C1cos(ω0t + θ) = C1[cos(ω0t + θ)cos(θ) − sin(ω0t + θ)sin(θ)] (16.5)

16.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS 383

cos (ω0t)

cos (ω0t)

t

(a)

(b)

t

θ

cos ω0t π
2�

cos ω0t
π
2�

FIGURE 16.3
Graphical depictions of (a) a lagging phase angle and (b) a leading phase angle. Note that the
lagging curve in (a) can be alternatively described as cos(�0t + 3�/2). In other words, if a
curve lags by an angle of �, it can also be represented as leading by 2� – �.

1 When the time unit is seconds, the unit for the ordinary frequency is a cycle/s or Hertz (Hz).

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 383

Substituting Eq. (16.5) into Eq. (16.2) and collecting terms gives (Fig. 16.2b)

f (t) = A0 + A1cos(ω0t) + B1sin(ω0t) (16.6)

where

A1 = C1cos(θ) B1 = −C1sin(θ) (16.7)

Dividing the two parts of Eq. (16.7) gives

θ = arctan
(

− B1

A1

)
(16.8)

where, if A1 � 0, add � to �. Squaring and summing Eq. (16.7) leads to

C1 =
√

A2
1 + B2

1 (16.9)

Thus, Eq. (16.6) represents an alternative formulation of Eq. (16.2) that still requires four pa-
rameters but that is cast in the format of a general linear model [recall Eq. (15.7)]. As we will
discuss in the next section, it can be simply applied as the basis for a least-squares fit.

Before proceeding to the next section, however, we should stress that we could have
employed a sine rather than a cosine as our fundamental model of Eq. (16.2). For example,

f (t) = A0 + C1sin(ω0t + δ)

could have been used. Simple relationships can be applied to convert between the two forms:

sin(ω0t + δ) = cos
(
ω0t + δ − π

2

)
and

cos(ω0t + δ) = sin
(
ω0t + δ + π

2

)
(16.10)

In other words, � = � � ��2. The only important consideration is that one or the other format
should be used consistently. Thus, we will use the cosine version throughout our discussion.

16.1.1 Least-Squares Fit of a Sinusoid

Equation (16.6) can be thought of as a linear least-squares model:

y = A0 + A1cos(ω0t) + B1sin(ω0t) + e (16.11)

which is just another example of the general model [recall Eq. (15.7)]

y = a0z0 + a1z1 + a2z2 + · · · + am zm + e

where z0 = 1, z1 = cos(ω0t), z2 = sin(ω0t), and all other z’s = 0. Thus, our goal is to
determine coefficient values that minimize

Sr =
N∑

i=1

{yi − [A0 + A1cos(ω0t) + B1sin(ω0t)]}2

384 FOURIER ANALYSIS

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 384

The normal equations to accomplish this minimization can be expressed in matrix form as
[recall Eq. (15.10)][N �cos(ω0t) �sin(ω0t)

�cos(ω0t) �cos2(ω0t) �cos(ω0t)sin(ω0t)
�sin(ω0t) �cos(ω0t)sin(ω0t) �sin2(ω0t)

]{ A0

B1

B1

}
=

{
�y

�ycos(ω0t)
�ysin(ω0t)

}

(16.12)

These equations can be employed to solve for the unknown coefficients. However,
rather than do this, we can examine the special case where there are N observations equi-
spaced at intervals of �t and with a total record length of T = (N − 1)�t . For this situa-
tion, the following average values can be determined (see Prob. 16.3):

� sin(ω0t)

N
= 0

�cos(ω0t)

N
= 0

� sin2(ω0t)

N
= 1

2

�cos2(ω0t)

N
= 1

2
�cos(ω0t) sin(ω0t)

N
= 0

(16.13)

Thus, for equispaced points the normal equations become[N 0 0
0 N/2 0
0 0 N/2

]{ A0

B1

B2

}
=

{
�y

�y cos(ω0t)
�y sin(ω0t)

}

The inverse of a diagonal matrix is merely another diagonal matrix whose elements are the
reciprocals of the original. Thus, the coefficients can be determined as{ A0

B1

B2

}
=

[1/N 0 0
0 2/N 0
0 0 2/N

]{
�y

�y cos(ω0t)
�y sin(ω0t)

}

or

A0 = �y

N
(16.14)

A1 = 2

N
�y cos(ω0t) (16.15)

B1 = 2

N
�y sin(ω0t) (16.16)

Notice that the first coefficient represents the function’s average value.

EXAMPLE 16.1 Least-Squares Fit of a Sinusoid

Problem Statement. The curve in Fig. 16.2a is described by y = 1.7 + cos(4.189t +
1.0472). Generate 10 discrete values for this curve at intervals of �t = 0.15 for the range
t = 0 to 1.35. Use this information to evaluate the coefficients of Eq. (16.11) by a least-
squares fit.

16.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS 385

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 385

Solution. The data required to evaluate the coefficients with ω = 4.189 are

t y y cos(ω0t) y sin(ω0t)

0 2.200 2.200 0.000
0.15 1.595 1.291 0.938
0.30 1.031 0.319 0.980
0.45 0.722 �0.223 0.687
0.60 0.786 �0.636 0.462
0.75 1.200 �1.200 0.000
0.90 1.805 �1.460 �1.061
1.05 2.369 �0.732 �2.253
1.20 2.678 0.829 �2.547
1.35 2.614 2.114 �1.536

� = 17.000 2.502 �4.330

These results can be used to determine [Eqs. (16.14) through (16.16)]

A0 = 17.000

10
= 1.7 A1 = 2

10
2.502 = 0.500 B1 = 2

10
(−4.330) = −0.866

Thus, the least-squares fit is

y = 1.7 + 0.500 cos(ω0t) − 0.866 sin(ω0t)

The model can also be expressed in the format of Eq. (16.2) by calculating [Eq. (16.8)]

θ = arctan
(−0.866

0.500

)
= 1.0472

and [Eq. (16.9)]

C1 =
√

0.52 + (−0.866)2 = 1.00

to give

y = 1.7 + cos(ω0t + 1.0472)

or alternatively, as a sine by using [Eq. (16.10)]

y = 1.7 + sin(ω0t + 2.618)

The foregoing analysis can be extended to the general model

f (t) = A0 + A1cos(ω0t) + B1sin(ω0t) + A2cos(2ω0t) + B2sin(2ω0t)
+ · · · + Amcos(mω0t) + Bmsin(mω0t)

where, for equally spaced data, the coefficients can be evaluated by

A0 = �y

N

Aj = 2

N
�y cos(jω0)t

Bj = 2

N
�y sin(jω0t)

⎫⎪⎬
⎪⎭ j = 1, 2, . . . , m

386 FOURIER ANALYSIS

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 386

Although these relationships can be used to fit data in the regression sense (i.e., N �
2m + 1), an alternative application is to employ them for interpolation or collocation—that
is, to use them for the case where the number of unknowns 2m + 1 is equal to the number
of data points N. This is the approach used in the continuous Fourier series, as described
next.

16.2 CONTINUOUS FOURIER SERIES

In the course of studying heat-flow problems, Fourier showed that an arbitrary periodic
function can be represented by an infinite series of sinusoids of harmonically related
frequencies. For a function with period T, a continuous Fourier series can be written

f (t) = a0 + a1cos(ω0t) + b1sin(ω0t) + a2cos(2ω0t) + b2sin(2ω0t) + · · ·
or more concisely,

f (t) = a0 +
∞∑

k=1

[akcos(kω0t) + bksin(kω0t)] (16.17)

where the angular frequency of the first mode (ω0 = 2π/T) is called the fundamental
frequency and its constant multiples 2ω0, 3ω0, etc., are called harmonics. Thus, Eq. (16.17)
expresses f(t) as a linear combination of the basis functions: 1, cos(ω0t), sin(ω0t), cos(2ω0t),
sin(2ω0t),

The coefficients of Eq. (16.17) can be computed via

ak = 2

T

∫ T

0
f (t)cos(kω0t) dt (16.18)

and

bk = 2

T

∫ T

0
f (t)sin(kω0t) dt (16.19)

for k = 1, 2, . . . and

a0 = 1

T

∫ T

0
f (t) dt (16.20)

EXAMPLE 16.2 Continuous Fourier Series Approximation

Problem Statement. Use the continuous Fourier series to approximate the square or rec-
tangular wave function (Fig. 16.1a) with a height of 2 and a period T = 2π/ω0:

f (t) =
{−1 −T/2 < t <

1 −T/4 < t <

−1 T/4 < t <

−T/4
T/4
T/2

16.2 CONTINUOUS FOURIER SERIES 387

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 387

Solution. Because the average height of the wave is zero, a value of a0 = 0 can be
obtained directly. The remaining coefficients can be evaluated as [Eq. (16.18)]

ak = 2

T

∫ T/2

−T/2
f (t) cos(kω0t) dt

= 2

T

[
−

∫ −T/4

−T/2
cos(kω0t) dt +

∫ T/4

−T/4
cos(kω0t) dt −

∫ T/2

T/4
cos(kω0t) dt

]

The integrals can be evaluated to give

ak =
{ 4/(kπ) for k = 1, 5, 9, ...

−4/(kπ) for k = 3, 7, 11, ...

0 for k = even integers

388 FOURIER ANALYSIS

cos (ω0t)
4
π

cos (3ω0t)
4

3π

cos (5ω0t)
4

5π

�

�

�

(a)

(b)

(c)

FIGURE 16.4
The Fourier series approximation of a square wave. The series of plots shows the summation up
to and including the (a) first, (b) second, and (c) third terms. The individual terms that were
added or subtracted at each stage are also shown.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 388

16.2 CONTINUOUS FOURIER SERIES 389

FIGURE 16.5
Graphical depiction of Euler’s formula. The rotating vector is called a phasor.

Real
cos θ

eiθ � cos θ � i sin θ

0 1

sin θ

Imaginary

i

θ

Similarly, it can be determined that all the b’s = 0. Therefore, the Fourier series approxi-
mation is

f (t) = 4

π
cos(ω0t) − 4

3π
cos(3ω0t) + 4

5π
cos(5ω0t) − 4

7π
cos(7ω0t) + · · ·

The results up to the first three terms are shown in Fig. 16.4.

Before proceeding, the Fourier series can also be expressed in a more compact form
using complex notation. This is based on Euler’s formula (Fig. 16.5):

e±i x = cos x ± isin x (16.21)

where i = √−1, and x is in radians. Equation (16.21) can be used to express the Fourier
series concisely as (Chapra and Canale, 2010)

f (t) =
∞∑

k=−∞
c̃keikω0t (16.22)

where the coefficients are

c̃k = 1

T

∫ T/2

−T/2
f (t)e−ikω0t dt (16.23)

Note that the tildes ~ are included to stress that the coefficients are complex numbers.
Because it is more concise, we will primarily use the complex form in the rest of the
chapter. Just remember, that it is identical to the sinusoidal representation.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 389

16.3 FREQUENCY AND TIME DOMAINS

To this point, our discussion of Fourier analysis has been limited to the time domain. We
have done this because most of us are fairly comfortable conceptualizing a function’s
behavior in this dimension. Although it is not as familiar, the frequency domain provides an
alternative perspective for characterizing the behavior of oscillating functions.

Just as amplitude can be plotted versus time, it can also be plotted versus frequency.
Both types of expression are depicted in Fig. 16.6a, where we have drawn a three-
dimensional graph of a sinusoidal function:

f (t) = C1cos
(

t + π

2

)

390 FOURIER ANALYSIS

f(t)

f(t)

f
t

C1

C1

T

t

f1/T

A
m

pl
itu

de

0
0

(b)

(a)

(c) (d)

π

�π

f1/T

1/T

Ph
as

e

0

Frequen
cy

T
i m

e

FIGURE 16.6
(a) A depiction of how a sinusoid can be portrayed in the time and the frequency domains. The
time projection is reproduced in (b), whereas the amplitude-frequency projection is reproduced in
(c). The phase-frequency projection is shown in (d).

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 390

In this plot, the magnitude or amplitude of the curve f(t) is the dependent variable, and time t
and frequency f = ω0/2π are the independent variables. Thus, the amplitude and the time
axes form a time plane, and the amplitude and the frequency axes form a frequency plane.
The sinusoid can, therefore, be conceived of as existing a distance 1/T out along the fre-
quency axis and running parallel to the time axes. Consequently, when we speak about the
behavior of the sinusoid in the time domain, we mean the projection of the curve onto the
time plane (Fig. 16.6b). Similarly, the behavior in the frequency domain is merely its pro-
jection onto the frequency plane.

As in Fig. 16.6c, this projection is a measure of the sinusoid’s maximum positive
amplitude C1. The full peak-to-peak swing is unnecessary because of the symmetry.
Together with the location 1/T along the frequency axis, Fig. 16.6c now defines the
amplitude and frequency of the sinusoid. This is enough information to reproduce the
shape and size of the curve in the time domain. However, one more parameter—namely,
the phase angle—is required to position the curve relative to t = 0. Consequently, a
phase diagram, as shown in Fig. 16.6d, must also be included. The phase angle is deter-
mined as the distance (in radians) from zero to the point at which the positive peak
occurs. If the peak occurs after zero, it is said to be delayed (recall our discussion of lags
and leads in Sec. 16.1), and by convention, the phase angle is given a negative sign.
Conversely, a peak before zero is said to be advanced and the phase angle is positive.
Thus, for Fig. 16.6, the peak leads zero and the phase angle is plotted as +π/2. Fig-
ure 16.7 depicts some other possibilities.

We can now see that Fig. 16.6c and d provide an alternative way to present or summa-
rize the pertinent features of the sinusoid in Fig. 16.6a. They are referred to as line spectra.
Admittedly, for a single sinusoid they are not very interesting. However, when applied to a
more complicated situation—say, a Fourier series—their true power and value is revealed.
For example, Fig. 16.8 shows the amplitude and phase line spectra for the square-wave
function from Example 16.2.

Such spectra provide information that would not be apparent from the time domain.
This can be seen by contrasting Fig. 16.4 and Fig. 16.8. Figure 16.4 presents two alter-
native time domain perspectives. The first, the original square wave, tells us nothing
about the sinusoids that comprise it. The alternative is to display these sinusoids—that
is, (4/π) cos(ω0t),−(4/3π) cos(3ω0t), (4/5π) cos(5ω0t), etc. This alternative does
not provide an adequate visualization of the structure of these harmonics. In contrast,
Fig. 16.8a and b provide a graphic display of this structure. As such, the line spectra
represent “fingerprints” that can help us to characterize and understand a complicated
waveform. They are particularly valuable for nonidealized cases where they sometimes
allow us to discern structure in otherwise obscure signals. In the next section, we will
describe the Fourier transform that will allow us to extend such analyses to nonperiodic
waveforms.

16.4 FOURIER INTEGRAL AND TRANSFORM

Although the Fourier series is a useful tool for investigating periodic functions, there are
many waveforms that do not repeat themselves regularly. For example, a lightning bolt
occurs only once (or at least it will be a long time until it occurs again), but it will cause

16.4 FOURIER INTEGRAL AND TRANSFORM 391

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 391

392 FOURIER ANALYSIS

FIGURE 16.7
Various phases of a sinusoid showing the associated phase line spectra.

p

�p

p

�p

p

�p

p

�p

p

�p

interference with receivers operating on a broad range of frequencies—for example, TVs,
radios, and shortwave receivers. Such evidence suggests that a nonrecurring signal such as
that produced by lightning exhibits a continuous frequency spectrum. Because such phe-
nomena are of great interest to engineers, an alternative to the Fourier series would be valu-
able for analyzing these aperiodic waveforms.

The Fourier integral is the primary tool available for this purpose. It can be derived
from the exponential form of the Fourier series [Eqs. (16.22) and (16.23)]. The transition
from a periodic to a nonperiodic function can be effected by allowing the period to ap-
proach infinity. In other words, as T becomes infinite, the function never repeats itself and
thus becomes aperiodic. If this is allowed to occur, it can be demonstrated (e.g., Van
Valkenburg, 1974; Hayt and Kemmerly, 1986) that the Fourier series reduces to

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω (16.24)

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 392

and the coefficients become a continuous function of the frequency variable ω, as in

F(ω) =
∫ ∞

−∞
f (t)e−iωt dt (16.25)

The function F(ω), as defined by Eq. (16.25), is called the Fourier integral of f(t). In
addition, Eqs. (16.24) and (16.25) are collectively referred to as the Fourier transform
pair. Thus, along with being called the Fourier integral, F(ω) is also called the Fourier
transform of f(t). In the same spirit, f(t), as defined by Eq. (16.24), is referred to as the
inverse Fourier transform of F(ω). Thus, the pair allows us to transform back and forth
between the time and the frequency domains for an aperiodic signal.

The distinction between the Fourier series and transform should now be quite clear.
The major difference is that each applies to a different class of functions—the series to pe-
riodic and the transform to nonperiodic waveforms. Beyond this major distinction, the two
approaches differ in how they move between the time and the frequency domains. The
Fourier series converts a continuous, periodic time-domain function to frequency-domain
magnitudes at discrete frequencies. In contrast, the Fourier transform converts a continu-
ous time-domain function to a continuous frequency-domain function. Thus, the discrete
frequency spectrum generated by the Fourier series is analogous to a continuous frequency
spectrum generated by the Fourier transform.

16.4 FOURIER INTEGRAL AND TRANSFORM 393

FIGURE 16.8
(a) Amplitude and (b) phase line spectra for the square wave from Fig. 16.4.

f

4/π

f0 3f0 5f0 7f0

(a)

(b)

2/π

f

π

f0 3f0 5f0 7f0

π/2

�π/2

�π

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 393

Now that we have introduced a way to analyze an aperiodic signal, we will take the
final step in our development. In the next section, we will acknowledge the fact that a
signal is rarely characterized as a continuous function of the sort needed to implement
Eq. (16.25). Rather, the data are invariably in a discrete form. Thus, we will now show how
to compute a Fourier transform for such discrete measurements.

16.5 DISCRETE FOURIER TRANSFORM (DFT)

In engineering, functions are often represented by a finite set of discrete values. Addition-
ally, data are often collected in or converted to such a discrete format. As depicted in
Fig. 16.9, an interval from 0 to T can be divided into n equispaced subintervals with widths
of �t = T/n. The subscript j is employed to designate the discrete times at which samples
are taken. Thus, fj designates a value of the continuous function f(t) taken at tj. Note that the
data points are specified at j = 0, 1, 2, . . . , n − 1. A value is not included at j = n. (See
Ramirez, 1985, for the rationale for excluding fn.)

For the system in Fig. 16.9, a discrete Fourier transform can be written as

Fk =
n−1∑
j=0

f j e
−ikω0 j for k = 0 to n − 1 (16.26)

and the inverse Fourier transform as

f j = 1

n

n−1∑
k=0

Fkeikω0 j for j = 0 to n − 1 (16.27)

where ω0 = 2π/n.

394 FOURIER ANALYSIS

FIGURE 16.9
The sampling points of the discrete Fourier series.

�t

f (t)

f0

t0 t 1 t 2

f 1

f 2
f 3

f n �1

t n �1 t n � T

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 394

Equations (16.26) and (16.27) represent the discrete analogs of Eqs. (16.25) and
(16.24), respectively. As such, they can be employed to compute both a direct and an in-
verse Fourier transform for discrete data. Note that the factor 1/n in Eq. (16.27) is merely
a scale factor that can be included in either Eq. (16.26) or (16.27), but not both. For exam-
ple, if it is shifted to Eq. (16.26), the first coefficient F0 (which is the analog of the constant
a0) is equal to the arithmetic mean of the samples.

Before proceeding, several other aspects of the DFT bear mentioning. The highest fre-
quency that can be measured in a signal, called the Nyquist frequency, is half the sampling
frequency. Periodic variations that occur more rapidly than the shortest sampled time in-
terval cannot be detected. The lowest frequency you can detect is the inverse of the total
sample length.

As an example, suppose that you take 100 samples of data (n = 100 samples) at a
sample frequency of fs = 1000 Hz (i.e., 1000 samples per second). This means that the
sample interval is

�t = 1

fs
= 1

1000 samples/s
= 0.001 s/sample

The total sample length is

tn = n

fs
= 100 samples

1000 samples/s
= 0.1 s

and the frequency increment is

� f = fs

n
= 1000 samples/s

100 samples
= 10 Hz

The Nyquist frequency is

fmax = 0.5 fs = 0.5(1000 Hz) = 500 Hz

and the lowest detectable frequency is

fmin = 1

0.1 s
= 10 Hz

Thus, for this example, the DFT could detect signals with periods from 1/500 = 0.002 s up
to 1/10 = 0.1 s.

16.5.1 Fast Fourier Transform (FFT)

Although an algorithm can be developed to compute the DFT based on Eq. (16.26), it is
computationally burdensome because n2 operations are required. Consequently, for data
samples of even moderate size, the direct determination of the DFT can be extremely time
consuming.

16.5 DISCRETE FOURIER TRANSFORM (DFT) 395

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 395

The fast Fourier transform, or FFT, is an algorithm that has been developed to com-
pute the DFT in an extremely economical fashion. Its speed stems from the fact that it
utilizes the results of previous computations to reduce the number of operations. In par-
ticular, it exploits the periodicity and symmetry of trigonometric functions to compute
the transform with approximately n log2n operations (Fig. 16.10). Thus, for n = 50 sam-
ples, the FFT is about 10 times faster than the standard DFT. For n = 1000, it is about
100 times faster.

The first FFT algorithm was developed by Gauss in the early nineteenth century
(Heideman et al., 1984). Other major contributions were made by Runge, Danielson,
Lanczos, and others in the early twentieth century. However, because discrete transforms
often took days to weeks to calculate by hand, they did not attract broad interest prior to the
development of the modern digital computer.

In 1965, J. W. Cooley and J. W. Tukey published a key paper in which they outlined an
algorithm for calculating the FFT. This scheme, which is similar to those of Gauss and
other earlier investigators, is called the Cooley-Tukey algorithm. Today, there are a host of
other approaches that are offshoots of this method. As described next, MATLAB offers a
function called fft that employs such efficient algorithms to compute the DFT.

16.5.2 MATLAB Function: fft

MATLAB’s fft function provides an efficient way to compute the DFT. A simple repre-
sentation of its syntax is

F = fft(f, n)

396 FOURIER ANALYSIS

FIGURE 16.10
Plot of number of operations vs. sample size for the standard DFT and the FFT.

FFT(�n log2n)

DFT(�n2)

Samples

40

2000

0

1000

O
p

er
at

io
n

s

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 396

where F = a vector containing the DFT, and f = a vector containing the signal. The
parameter n, which is optional, indicates that the user wants to implement an n-point FFT.
If f has less than n points, it is padded with zeros and truncated if it has more.

Note that the elements in F are sequenced in what is called reverse-wrap-around
order. The first half of the values are the positive frequencies (starting with the constant)
and the second half are the negative frequencies. Thus, if n = 8, the order is 0, 1, 2, 3, 4, �3,
�2, �1. The following example illustrates the function’s use to calculate the DFT of a
simple sinusoid.

EXAMPLE 16.3 Computing the DFT of a Simple Sinusoid with MATLAB

Problem Statement. Apply the MATLAB fft function to determine the discrete Fourier
transform for a simple sinusoid:

f (t) = 5 + cos(2π(12.5)t) + sin(2π(18.75)t)

Generate 8 equispaced points with �t = 0.02 s. Plot the result versus frequency.

Solution. Before generating the DFT, we can compute a number of quantities. The sam-
pling frequency is

fs = 1

�t
= 1

0.02 s
= 50 Hz

The total sample length is

tn = n

fs
= 8 samples

50 samples/s
= 0.16 s

The Nyquist frequency is

fmax = 0.5 fs = 0.5(50 Hz) = 25 Hz

and the lowest detectable frequency is

fmin = 1

0.16 s
= 6.25 Hz

Thus, the analysis can detect signals with periods from 1/25 = 0.04 s up to 1/6.25 = 0.16 s.
So we should be able to detect both the 12.5 and 18.75 Hz signals.

The following MATLAB statements can be used to generate and plot the sample
(Fig. 16.11a):

>> clc
>> n=8; dt=0.02; fs=1/dt; T = 0.16;
>> tspan=(0:n-1)/fs;
>> y=5+cos(2*pi*12.5*tspan)+sin(2*pi*31.25*tspan);

16.5 DISCRETE FOURIER TRANSFORM (DFT) 397

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 397

398 FOURIER ANALYSIS

>> subplot(3,1,1);
>> plot(tspan,y,'-ok','linewidth',2,'MarkerFaceColor','black');
>> title('(a) f(t) versus time (s)');

As was mentioned at the beginning of Sec. 16.5, notice that tspan omits the last point.
The fft function can be used to compute the DFT and display the results

>> Y=fft(y)/n;
>> Y'

We have divided the transform by n in order that the first coefficient is equal to the arith-
metic mean of the samples. When this code is executed, the results are displayed as

ans =
5.0000
0.0000 - 0.0000i
0.5000
-0.0000 + 0.5000i

0
-0.0000 - 0.5000i
0.5000
0.0000 + 0.0000i

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
2

4

6

(a) f (t) versus time (s)

6 8 10 12 14 16 18 20 22 24 26
�0.5

0

0.5

(b) Real component versus frequency

6 8 10 12 14 16 18 20 22 24 26
�0.5

0

0.5

(c) Imaginary component versus frequency

Frequency (Hz)

FIGURE 16.11
Results of computing a DFT with MATLAB’s fft function: (a) the sample; and plots of
the (b) real and (c) imaginary parts of the DFT versus frequency.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 398

16.6 THE POWER SPECTRUM 399

Notice that the first coefficient corresponds to the signal’s mean value. In addition, be-
cause of the reverse-wrap-around order, the results can be interpreted as in the following
table:

Index k Frequency Period Real Imaginary

1 0 constant 5 0
2 1 6.25 0.16 0 0
3 2 12.5 0.08 0.5 0
4 3 18.75 0.053333 0 0.5
5 4 25 0.04 0 0
6 �3 31.25 0.032 0 �0.5
7 �2 37.5 0.026667 0.5 0
8 �1 43.75 0.022857 0 0

Notice that the fft has detected the 12.5- and 18.75-Hz signals. In addition, we have high-
lighted the Nyquist frequency to indicate that the values below it in the table are redundant.
That is, they are merely reflections of the results below the Nyquist frequency.

If we remove the constant value, we can plot both the real and imaginary parts of the
DFT versus frequency

>> nyquist=fs/2;fmin=1/T;
>> f = linspace(fmin,nyquist,n/2);
>> Y(1)=[];YP=Y(1:n/2);
>> subplot(3,1,2)
>> stem(f,real(YP),'linewidth',2,'MarkerFaceColor','blue')
>> grid;title('(b) Real component versus frequency')
>> subplot(3,1,3)
>> stem(f,imag(YP),'linewidth',2,'MarkerFaceColor','blue')
>> grid;title('(b) Imaginary component versus frequency')
>> xlabel('frequency (Hz)')

As expected (recall Fig. 16.7), a positive peak occurs for the cosine at 12.5 Hz
(Fig. 16.11b), and a negative peak occurs for the sine at 18.75 Hz (Fig. 16.11c).

16.6 THE POWER SPECTRUM

Beyond amplitude and phase spectra, power spectra provide another useful way to discern
the underlying harmonics of seemingly random signals. As the name implies, it derives
from the analysis of the power output of electrical systems. In terms of the DFT, a power
spectrum consists of a plot of the power associated with each frequency component versus
frequency. The power can be computed by summing the squares of the Fourier coefficients:

Pk = |c̃k |2

where Pk is the power associated with each frequency kω0.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 399

EXAMPLE 16.4 Computing the Power Spectrum with MATLAB

Problem Statement. Compute the power spectrum for the simple sinusoid for which the
DFT was computed in Example 16.3.

Solution. The following script can be developed to compute the power spectrum:

% compute the DFT
clc;clf
n=8; dt=0.02;
fs=1/dt;tspan=(0:n-1)/fs;
y=5+cos(2*pi*12.5*tspan)+sin(2*pi*18.75*tspan);
Y=fft(y)/n;
f = (0:n-1)*fs/n;
Y(1)=[];f(1)=[];
% compute and display the power spectrum
nyquist=fs/2;
f = (1:n/2)/(n/2)*nyquist;
Pyy = abs(Y(1:n/2)).^2;
stem(f,Pyy,'linewidth',2,'MarkerFaceColor','blue')
title('Power spectrum')
xlabel('Frequency (Hz)');ylim([0 0.3])

As indicated, the first section merely computes the DFT with the pertinent statements from
Example 16.3. The second section then computes and displays the power spectrum. As in
Fig. 16.12, the resulting graph indicates that peaks occur at both 12.5 and 18.75 Hz as
expected.

400 FOURIER ANALYSIS

6 8 2610 12 14 16 18 20 22 24

0.05

0

0.1

0.15

0.2

0.25

Power spectrum

Frequency (Hz)

FIGURE 16.12
Power spectrum for a simple sinusoidal function with frequencies of 12.5 and 18.75 Hz.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 400

16.7 CASE STUDY 401

16.7 CASE STUDY SUNSPOTS

Background. In 1848, Johann Rudolph Wolf devised a method for quantifying solar
activity by counting the number of individual spots and groups of spots on the sun’s sur-
face. He computed a quantity, now called a Wolf sunspot number, by adding 10 times the
number of groups plus the total count of individual spots. As in Fig. 16.13, the data set for
the sunspot number extends back to 1700. On the basis of the early historical records, Wolf
determined the cycle’s length to be 11.1 years. Use a Fourier analysis to confirm this result
by applying an FFT to the data.

Solution. The data for year and sunspot number are contained in a MATLAB file,
sunspot.dat. The following statements load the file and assign the year and number in-
formation to vectors of the same name:

>> load sunspot.dat
>> year=sunspot(:,1);number=sunspot(:,2);

Before applying the Fourier analysis, it is noted that the data seem to exhibit an upward lin-
ear trend (Fig. 16.13). MATLAB can be used to remove this trend:

>> n=length(number);
>> a=polyfit(year,number,1);
>> lineartrend=polyval(a,year);
>> ft=number-lineartrend;

Next, the fft function is employed to generate the DFT

F=fft(ft);

The power spectrum can then be computed and plotted

fs=1;
f=(0:n/2)*fs/n;
pow=abs(F(1:n/2+1)).^2;

FIGURE 16.13
Plot of Wolf sunspot number versus year. The dashed line indicates a mild, upward linear trend.

1700 20001750 1800 1850 1900 1950
0

50

100

150

200

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 401

plot(f,pow)
xlabel('Frequency (cycles/year)'); ylabel('Power')
title('Power versus frequency')

The result, as shown in Fig. 16.14, indicates a peak at a frequency of about 0.0915 Hz. This
corresponds to a period of 1/0.0915 = 10.93 years. Thus, the Fourier analysis is consistent
with Wolf’s estimate of 11 years.

402 FOURIER ANALYSIS

16.7 CASE STUDY continued

FIGURE 16.14
Power spectrum for Wolf sunspot number versus year.

0 0.05 0.50.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2000

3000

4000

5000
Power spectrum

P
o

w
er

Cycles/year

1000

PROBLEMS

16.1 The pH in a reactor varies sinusoidally over the course
of a day. Use least-squares regression to fit Eq. (16.11) to
the following data. Use your fit to determine the mean,
amplitude, and time of maximum pH. Note that the period
is 24 hr

Time, hr 0 2 4 5 7 9
pH 7.6 7.2 7 6.5 7.5 7.2
Time, hr 12 15 20 22 24
pH 8.9 9.1 8.9 7.9 7

16.2 The solar radiation for Tucson, Arizona, has been tab-
ulated as

Time, mo J F M A M J
Radiation, W/m2 144 188 245 311 351 359

Time, mo J A S O N D
Radiation, W/m2 308 287 260 211 159 131

Assuming each month is 30 days long, fit a sinusoid to these
data. Use the resulting equation to predict the radiation in
mid-August.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 402

PROBLEMS 403

16.3 The average values of a function can be determined by

f̄ =
∫ t

0 f (t) dt

t
Use this relationship to verify the results of Eq. (16.13).
16.4 In electric circuits, it is common to see current
behavior in the form of a square wave as shown in Fig. P16.4
(notice that square wave differs from the one described in
Example 16.2). Solving for the Fourier series from

f (t) =
{

A0 0 ≤ t ≤ T/2
−A0 T/2 ≤ t ≤ T

the Fourier series can be represented as

f (t) =
∞∑

n=1

(
4A0

(2n − 1)π

)
sin

(
2π(2n − 1)t

T

)

Develop a MATLAB function to generate a plot of the first n
terms of the Fourier series individually, as well as the sum of
these six terms. Design your function so that it plots the
curves from t = 0 to 4T. Use thin dotted red lines for the in-
dividual terms and a bold black solid line for the summation
(i.e., 'k-','linewidth',2). The function’s first line
should be

function [t,f] = FourierSquare(A0,T,n)

Let A0 = 1 and T = 0.25 s.
16.5 Use a continuous Fourier series to approximate the
sawtooth wave in Fig. P16.5. Plot the first four terms along
with the summation. In addition, construct amplitude and
phase line spectra for the first four terms.
16.6 Use a continuous Fourier series to approximate the tri-
angular wave form in Fig. P16.6. Plot the first four terms
along with the summation. In addition, construct amplitude
and phase line spectra for the first four terms.

16.7 Use the Maclaurin series expansions for ex, cos x and
sin x to prove Euler’s formula (Eq. 16.21).
16.8 A half-wave rectifier can be characterized by

C1 =
[

1

π
+ 1

2
sin t − 2

3π
cos 2t − 2

15π
cos 4t

− 2

35π
cos 6t − · · ·

]

where C1 is the amplitude of the wave.
(a) Plot the first four terms along with the summation.
(b) Construct amplitude and phase line spectra for the first

four terms.
16.9 Duplicate Example 16.3, but for 64 points sampled at a
rate of �t = 0.01 s from the function

f (t) = cos[2π(12.5)t] + cos[2π(25)t]

Use fft to generate a DFT of these values and plot the
results.
16.10 Use MATLAB to generate 64 points from the function

f (t) = cos(10t) + sin(3t)

0 0.25 0.5 0.75 1

f (t)

t

�1

0

1

FIGURE P16.4

T�1

�1

1

t

FIGURE P16.5
A sawtooth wave.

2�2

1

t

FIGURE P16.6
A triangular wave.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 403

404 FOURIER ANALYSIS

from t = 0 to 2π . Add a random component to the signal with
the function randn. Use fft to generate a DFT of these
values and plot the results.
16.11 Use MATLAB to generate 32 points for the sinusoid
depicted in Fig. 16.2 from t = 0 to 6 s. Compute the DFT
and create subplots of (a) the original signal, (b) the real
part, and (c) the imaginary part of the DFT versus frequency.

16.12 Use the fft function to compute a DFT for the trian-
gular wave from Prob. 16.6. Sample the wave from t = 0
to 4T using 128 sample points.
16.13 Develop an M-file function that uses the fft func-
tion to generate a power spectrum plot. Use it to solve
Prob. 16.9.

cha01102_ch16_380-404.qxd 12/17/10 8:17 AM Page 404

405

17
Polynomial Interpolation

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to polynomial interpolation.
Specific objectives and topics covered are

• Recognizing that evaluating polynomial coefficients with simultaneous equations
is an ill-conditioned problem.

• Knowing how to evaluate polynomial coefficients and interpolate with
MATLAB’s polyfit and polyval functions.

• Knowing how to perform an interpolation with Newton’s polynomial.
• Knowing how to perform an interpolation with a Lagrange polynomial.
• Knowing how to solve an inverse interpolation problem by recasting it as a roots

problem.
• Appreciating the dangers of extrapolation.
• Recognizing that higher-order polynomials can manifest large oscillations.

YOU’VE GOT A PROBLEM

If we want to improve the velocity prediction for the free-falling bungee jumper, we might
expand our model to account for other factors beyond mass and the drag coefficient. As
was previously mentioned in Section 1.4, the drag coefficient can itself be formulated as

a function of other factors such as the area of the jumper and characteristics such as the
air’s density and viscosity.

Air density and viscosity are commonly presented in tabular form as a function of
temperature. For example, Table 17.1 is reprinted from a popular fluid mechanics textbook
(White, 1999).

Suppose that you desired the density at a temperature not included in the table. In such
a case, you would have to interpolate. That is, you would have to estimate the value at the

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 405

406 POLYNOMIAL INTERPOLATION

desired temperature based on the densities that bracket it. The simplest approach is to de-
termine the equation for the straight line connecting the two adjacent values and use this
equation to estimate the density at the desired intermediate temperature. Although such
linear interpolation is perfectly adequate in many cases, error can be introduced when the
data exhibit significant curvature. In this chapter, we will explore a number of different
approaches for obtaining adequate estimates for such situations.

17.1 INTRODUCTION TO INTERPOLATION

You will frequently have occasion to estimate intermediate values between precise data
points. The most common method used for this purpose is polynomial interpolation. The
general formula for an (n − 1)th-order polynomial can be written as

f (x) = a1 + a2x + a3x2 + · · · + an xn−1 (17.1)

For n data points, there is one and only one polynomial of order (n − 1) that passes through
all the points. For example, there is only one straight line (i.e., a first-order polynomial)
that connects two points (Fig. 17.1a). Similarly, only one parabola connects a set of three
points (Fig. 17.1b). Polynomial interpolation consists of determining the unique (n − 1)th-
order polynomial that fits n data points. This polynomial then provides a formula to
compute intermediate values.

Before proceeding, we should note that MATLAB represents polynomial coefficients
in a different manner than Eq. (17.1). Rather than using increasing powers of x, it uses de-
creasing powers as in

f (x) = p1xn−1 + p2xn−2 + · · · + pn−1x + pn (17.2)

To be consistent with MATLAB, we will adopt this scheme in the following section.

TABLE 17.1 Density (ρ), dynamic viscosity (μ), and kinematic viscosity (v) as a function of
temperature (T) at 1 atm as reported by White (1999).

T, °C ρ, kg/m3 μ, N · s/m2 v , m2/s

−40 1.52 1.51 × 10−5 0.99 × 10−5

0 1.29 1.71 × 10−5 1.33 × 10−5

20 1.20 1.80 × 10−5 1.50 × 10−5

50 1.09 1.95 × 10−5 1.79 × 10−5

100 0.946 2.17 × 10−5 2.30 × 10−5

150 0.835 2.38 × 10−5 2.85 × 10−5

200 0.746 2.57 × 10−5 3.45 × 10−5

250 0.675 2.75 × 10−5 4.08 × 10−5

300 0.616 2.93 × 10−5 4.75 × 10−5

400 0.525 3.25 × 10−5 6.20 × 10−5

500 0.457 3.55 × 10−5 7.77 × 10−5

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 406

17.1.1 Determining Polynomial Coefficients

A straightforward way for computing the coefficients of Eq. (17.2) is based on the fact that
n data points are required to determine the n coefficients. As in the following example, this
allows us to generate n linear algebraic equations that we can solve simultaneously for the
coefficients.

EXAMPLE 17.1 Determining Polynomial Coefficients with Simultaneous Equations

Problem Statement. Suppose that we want to determine the coefficients of the parabola,
f (x) = p1x2 + p2x + p3, that passes through the last three density values from Table 17.1:

x1 = 300 f (x1) = 0.616

x2 = 400 f (x2) = 0.525

x3 = 500 f (x3) = 0.457

Each of these pairs can be substituted into Eq. (17.2) to yield a system of three equations:

0.616 = p1(300)2 + p2(300) + p3

0.525 = p1(400)2 + p2(400) + p3

0.457 = p1(500)2 + p2(500) + p3

or in matrix form:⎡
⎣ 90,000 300 1

160,000 400 1
250,000 500 1

⎤
⎦

⎧⎨
⎩

p1

p2

p3

⎫⎬
⎭ =

⎧⎨
⎩

0.616
0.525
0.457

⎫⎬
⎭

Thus, the problem reduces to solving three simultaneous linear algebraic equations for
the three unknown coefficients. A simple MATLAB session can be used to obtain the

17.1 INTRODUCTION TO INTERPOLATION 407

(a) (b) (c)

FIGURE 17.1
Examples of interpolating polynomials: (a) first-order (linear) connecting two points,
(b) second-order (quadratic or parabolic) connecting three points, and (c) third-order (cubic)
connecting four points.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 407

solution:

>> format long
>> A = [90000 300 1;160000 400 1;250000 500 1];
>> b = [0.616 0.525 0.457]’;
>> p = A\b

p =
0.00000115000000
-0.00171500000000
1.02700000000000

Thus, the parabola that passes exactly through the three points is

f (x) = 0.00000115x2 − 0.001715x + 1.027

This polynomial then provides a means to determine intermediate points. For example, the
value of density at a temperature of 350 °C can be calculated as

f (350) = 0.00000115(350)2 − 0.001715(350) + 1.027 = 0.567625

Although the approach in Example 17.1 provides an easy way to perform interpola-
tion, it has a serious deficiency. To understand this flaw, notice that the coefficient matrix
in Example 17.1 has a decided structure. This can be seen clearly by expressing it in gen-
eral terms:

⎡
⎣ x2

1 x1 1
x2

2 x2 1
x2

3 x3 1

⎤
⎦{ p1

p2

p3

}
=

{ f (x1)

f (x2)

f (x3)

}
(17.3)

Coefficient matrices of this form are referred to as Vandermonde matrices. Such ma-
trices are very ill-conditioned. That is, their solutions are very sensitive to round-off errors.
This can be illustrated by using MATLAB to compute the condition number for the coeffi-
cient matrix from Example 17.1 as

>> cond(A)

ans =

5.8932e+006

This condition number, which is quite large for a 3 × 3 matrix, implies that about six digits
of the solution would be questionable. The ill-conditioning becomes even worse as the
number of simultaneous equations becomes larger.

As a consequence, there are alternative approaches that do not manifest this short-
coming. In this chapter, we will also describe two alternatives that are well-suited for
computer implementation: the Newton and the Lagrange polynomials. Before doing this,
however, we will first briefly review how the coefficients of the interpolating polynomial
can be estimated directly with MATLAB’s built-in functions.

408 POLYNOMIAL INTERPOLATION

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 408

17.1.2 MATLAB Functions: polyfit and polyval

Recall from Section 14.5.2, that the polyfit function can be used to perform polynomial
regression. In such applications, the number of data points is greater than the number of
coefficients being estimated. Consequently, the least-squares fit line does not necessarily
pass through any of the points, but rather follows the general trend of the data.

For the case where the number of data points equals the number of coefficients, poly-
fit performs interpolation. That is, it returns the coefficients of the polynomial that pass
directly through the data points. For example, it can be used to determine the coefficients
of the parabola that passes through the last three density values from Table 17.1:

>> format long
>> T = [300 400 500];
>> density = [0.616 0.525 0.457];
>> p = polyfit(T,density,2)

p =
0.00000115000000 -0.00171500000000 1.02700000000000

We can then use the polyval function to perform an interpolation as in

>> d = polyval(p,350)

d =
0.56762500000000

These results agree with those obtained previously in Example 17.1 with simultaneous equations.

17.2 NEWTON INTERPOLATING POLYNOMIAL

There are a variety of alternative forms for expressing an interpolating polynomial beyond
the familiar format of Eq. (17.2). Newton’s interpolating polynomial is among the most
popular and useful forms. Before presenting the general equation, we will introduce the
first- and second-order versions because of their simple visual interpretation.

17.2.1 Linear Interpolation

The simplest form of interpolation is to connect two data points with a straight line. This
technique, called linear interpolation, is depicted graphically in Fig. 17.2. Using similar
triangles,

f1(x) − f (x1)

x − x1
= f (x2) − f (x1)

x2 − x1
(17.4)

which can be rearranged to yield

f1(x) = f (x1) + f (x2) − f (x1)

x2 − x1
(x − x1) (17.5)

which is the Newton linear-interpolation formula. The notation f1(x) designates that this
is a first-order interpolating polynomial. Notice that besides representing the slope of the
line connecting the points, the term [f (x2) − f (x1)]/(x2 − x1) is a finite-difference

17.2 NEWTON INTERPOLATING POLYNOMIAL 409

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 409

approximation of the first derivative [recall Eq. (4.20)]. In general, the smaller the interval
between the data points, the better the approximation. This is due to the fact that, as the
interval decreases, a continuous function will be better approximated by a straight line.
This characteristic is demonstrated in the following example.

EXAMPLE 17.2 Linear Interpolation

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation. First,
perform the computation by interpolating between ln 1 = 0 and ln 6 = 1.791759. Then,
repeat the procedure, but use a smaller interval from ln 1 to ln 4 (1.386294). Note that the
true value of ln 2 is 0.6931472.

Solution. We use Eq. (17.5) from x1 = 1 to x2 = 6 to give

f1(2) = 0 + 1.791759 − 0

6 − 1
(2 − 1) = 0.3583519

which represents an error of εt = 48.3%. Using the smaller interval from x1 = 1 to x2 = 4
yields

f1(2) = 0 + 1.386294 − 0

4 − 1
(2 − 1) = 0.4620981

410 POLYNOMIAL INTERPOLATION

f (x2)

f1(x)

f (x)

f (x1)

x1 x2x x

FIGURE 17.2
Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used
to derive the Newton linear-interpolation formula [Eq. (17.5)].

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 410

Thus, using the shorter interval reduces the percent relative error to εt = 33.3%. Both
interpolations are shown in Fig. 17.3, along with the true function.

17.2.2 Quadratic Interpolation

The error in Example 17.2 resulted from approximating a curve with a straight line. Con-
sequently, a strategy for improving the estimate is to introduce some curvature into the line
connecting the points. If three data points are available, this can be accomplished with a
second-order polynomial (also called a quadratic polynomial or a parabola). A particularly
convenient form for this purpose is

f2(x) = b1 + b2(x − x1) + b3(x − x1)(x − x2) (17.6)

A simple procedure can be used to determine the values of the coefficients. For b1,
Eq. (17.6) with x = x1 can be used to compute

b1 = f (x1) (17.7)

Equation (17.7) can be substituted into Eq. (17.6), which can be evaluated at x = x2 for

b2 = f (x2) − f (x1)

x2 − x1
(17.8)

Finally, Eqs. (17.7) and (17.8) can be substituted into Eq. (17.6), which can be evaluated at
x = x3 and solved (after some algebraic manipulations) for

b3 =
f (x3) − f (x2)

x3 − x2
− f (x2) − f (x1)

x2 − x1

x3 − x1
(17.9)

17.2 NEWTON INTERPOLATING POLYNOMIAL 411

f (x)

f (x) � ln x

f1(x)
True
value

Linear estimates

x50

2

0

1

FIGURE 17.3
Two linear interpolations to estimate ln 2. Note how the smaller interval provides a better
estimate.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 411

Notice that, as was the case with linear interpolation, b2 still represents the slope of the
line connecting points x1 and x2. Thus, the first two terms of Eq. (17.6) are equivalent to
linear interpolation between x1 and x2, as specified previously in Eq. (17.5). The last term,
b3(x − x1)(x − x2), introduces the second-order curvature into the formula.

Before illustrating how to use Eq. (17.6), we should examine the form of the coeffi-
cient b3. It is very similar to the finite-difference approximation of the second derivative
introduced previously in Eq. (4.27). Thus, Eq. (17.6) is beginning to manifest a structure
that is very similar to the Taylor series expansion. That is, terms are added sequentially to
capture increasingly higher-order curvature.

EXAMPLE 17.3 Quadratic Interpolation

Problem Statement. Employ a second-order Newton polynomial to estimate ln 2 with
the same three points used in Example 17.2:

x1 = 1 f (x1) = 0

x2 = 4 f (x2) = 1.386294

x3 = 6 f (x3) = 1.791759

Solution. Applying Eq. (17.7) yields

b1 = 0

Equation (17.8) gives

b2 = 1.386294 − 0

4 − 1
= 0.4620981

412 POLYNOMIAL INTERPOLATION

f (x)

f(x) � ln x

f2(x)

True
value

Linear estimate

Quadratic estimate

x50

2

0

1

FIGURE 17.4
The use of quadratic interpolation to estimate ln 2. The linear interpolation from x = 1 to 4 is
also included for comparison.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 412

and Eq. (17.9) yields

b3 =
1.791759 − 1.386294

6 − 4
− 0.4620981

6 − 1
= −0.0518731

Substituting these values into Eq. (17.6) yields the quadratic formula

f2(x) = 0 + 0.4620981(x − 1) − 0.0518731(x − 1)(x − 4)

which can be evaluated at x = 2 for f2(2) = 0.5658444, which represents a relative
error of εt = 18.4%. Thus, the curvature introduced by the quadratic formula (Fig. 17.4)
improves the interpolation compared with the result obtained using straight lines in
Example 17.2 and Fig. 17.3.

17.2.3 General Form of Newton’s Interpolating Polynomials

The preceding analysis can be generalized to fit an (n − 1)th-order polynomial to n data
points. The (n − 1)th-order polynomial is

fn−1(x) = b1 + b2(x − x1) + · · · + bn(x − x1)(x − x2) · · · (x − xn−1) (17.10)

As was done previously with linear and quadratic interpolation, data points can be used to
evaluate the coefficients b1, b2, . . . , bn . For an (n − 1)th-order polynomial, n data points
are required: [x1, f (x1)], [x2, f (x2)], . . . , [xn, f (xn)]. We use these data points and the
following equations to evaluate the coefficients:

b1 = f (x1) (17.11)

b2 = f [x2, x1] (17.12)

b3 = f [x3, x2, x1] (17.13)
.
.
.

bn = f [xn, xn−1, . . . , x2, x1] (17.14)

where the bracketed function evaluations are finite divided differences. For example, the
first finite divided difference is represented generally as

f [xi , xj] = f (xi) − f (xj)

xi − xj
(17.15)

The second finite divided difference, which represents the difference of two first divided
differences, is expressed generally as

f [xi , xj , xk] = f [xi , xj] − f [xj , xk]

xi − xk
(17.16)

Similarly, the nth finite divided difference is

f [xn, xn−1, . . . , x2, x1] = f [xn, xn−1, . . . , x2] − f [xn−1, xn−2, . . . , x1]

xn − x1
(17.17)

17.2 NEWTON INTERPOLATING POLYNOMIAL 413

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 413

These differences can be used to evaluate the coefficients in Eqs. (17.11) through (17.14),
which can then be substituted into Eq. (17.10) to yield the general form of Newton’s inter-
polating polynomial:

fn−1(x) = f (x1) + (x − x1) f [x2, x1] + (x − x1)(x − x2) f [x3, x2, x1]

+ · · · + (x − x1)(x − x2) · · · (x − xn−1) f [xn, xn−1, . . . , x2, x1] (17.18)

We should note that it is not necessary that the data points used in Eq. (17.18) be
equally spaced or that the abscissa values necessarily be in ascending order, as illustrated
in the following example. However, the points should be ordered so that they are centered
around and as close as possible to the unknown. Also, notice how Eqs. (17.15) through
(17.17) are recursive—that is, higher-order differences are computed by taking differences
of lower-order differences (Fig. 17.5). This property will be exploited when we develop an
efficient M-file to implement the method.

EXAMPLE 17.4 Newton Interpolating Polynomial

Problem Statement. In Example 17.3, data points at x1 = 1, x2 = 4, and x3 = 6 were
used to estimate ln 2 with a parabola. Now, adding a fourth point [x4 = 5; f (x4) =
1.609438], estimate ln 2 with a third-order Newton’s interpolating polynomial.

Solution. The third-order polynomial, Eq. (17.10) with n = 4, is

f3(x) = b1 + b2(x − x1) + b3(x − x1)(x − x2) + b4(x − x1)(x − x2)(x − x3)

The first divided differences for the problem are [Eq. (17.15)]

f [x2, x1] = 1.386294 − 0

4 − 1
= 0.4620981

f [x3, x2] = 1.791759 − 1.386294

6 − 4
= 0.2027326

f [x4, x3] = 1.609438 − 1.791759

5 − 6
= 0.1823216

414 POLYNOMIAL INTERPOLATION

x1

x2

x3

x4

xi

f (x1)

f (x2)

f (x3)

f (x4)

f(xi)

f [x2, x1]

f [x3, x2]

f [x4, x3]

First

f [x3, x2, x1]

f [x4, x3, x2]

Second

f [x4, x3, x2, x1]

Third

FIGURE 17.5
Graphical depiction of the recursive nature of finite divided differences. This representation is
referred to as a divided difference table.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 414

The second divided differences are [Eq. (17.16)]

f [x3, x2, x1] = 0.2027326 − 0.4620981

6 − 1
= −0.05187311

f [x4, x3, x2] = 0.1823216 − 0.2027326

5 − 4
= −0.02041100

The third divided difference is [Eq. (17.17) with n = 4]

f [x4, x3, x2, x1] = −0.02041100 − (−0.05187311)

5 − 1
= 0.007865529

Thus, the divided difference table is

xi f(xi) First Second Third

1 0 0.4620981 −0.05187311 0.007865529
4 1.386294 0.2027326 −0.02041100
6 1.791759 0.1823216
5 1.609438

The results for f (x1), f [x2, x1], f [x3, x2, x1], and f [x4, x3, x2, x1] represent the
coefficients b1, b2, b3, and b4, respectively, of Eq. (17.10). Thus, the interpolating cubic is

f3(x) = 0 + 0.4620981(x − 1) − 0.05187311(x − 1)(x − 4)

+ 0.007865529(x − 1)(x − 4)(x − 6)

which can be used to evaluate f3(2) = 0.6287686, which represents a relative error of
εt = 9.3%. The complete cubic polynomial is shown in Fig. 17.6.

17.2 NEWTON INTERPOLATING POLYNOMIAL 415

f (x)

f (x) � ln x

f3(x)

True
value

Cubic
estimate

x50

2

0

1

FIGURE 17.6
The use of cubic interpolation to estimate ln 2.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 415

17.2.4 MATLAB M-file: Newtint

It is straightforward to develop an M-file to implement Newton interpolation.As in Fig. 17.7,
the first step is to compute the finite divided differences and store them in an array. The dif-
ferences are then used in conjunction with Eq. (17.18) to perform the interpolation.

An example of a session using the function would be to duplicate the calculation we
just performed in Example 17.3:

>> format long
>> x = [1 4 6 5]’;

416 POLYNOMIAL INTERPOLATION

function yint = Newtint(x,y,xx)
% Newtint: Newton interpolating polynomial
% yint = Newtint(x,y,xx): Uses an (n - 1)-order Newton
% interpolating polynomial based on n data points (x, y)
% to determine a value of the dependent variable (yint)
% at a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

% compute the finite divided differences in the form of a
% difference table
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
b = zeros(n,n);
% assign dependent variables to the first column of b.
b(:,1) = y(:); % the (:) ensures that y is a column vector.
for j = 2:n

for i = 1:n-j+1
b(i,j) = (b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));

end
end
% use the finite divided differences to interpolate
xt = 1;
yint = b(1,1);
for j = 1:n-1

xt = xt*(xx-x(j));
yint = yint+b(1,j+1)*xt;

end

FIGURE 17.7
An M-file to implement Newton interpolation.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 416

>> y = log(x);
>> Newtint(x,y,2)

ans =
0.62876857890841

17.3 LAGRANGE INTERPOLATING POLYNOMIAL

Suppose we formulate a linear interpolating polynomial as the weighted average of the two
values that we are connecting by a straight line:

f (x) = L1 f (x1) + L2 f (x2) (17.19)

where the L’s are the weighting coefficients. It is logical that the first weighting coefficient
is the straight line that is equal to 1 at x1 and 0 at x2:

L1 = x − x2

x1 − x2

Similarly, the second coefficient is the straight line that is equal to 1 at x2 and 0 at x1:

L2 = x − x1

x2 − x1

Substituting these coefficients into Eq. 17.19 yields the straight line that connects the
points (Fig. 17.8):

f1(x) = x − x2

x1 − x2
f (x1) + x − x1

x2 − x1
f (x2) (17.20)

where the nomenclature f1(x) designates that this is a first-order polynomial. Equa-
tion (17.20) is referred to as the linear Lagrange interpolating polynomial.

The same strategy can be employed to fit a parabola through three points. For this case
three parabolas would be used with each one passing through one of the points and equal-
ing zero at the other two. Their sum would then represent the unique parabola that connects
the three points. Such a second-order Lagrange interpolating polynomial can be written as

f2(x) = (x − x2)(x − x3)

(x1 − x2)(x1 − x3)
f (x1) + (x − x1)(x − x3)

(x2 − x1)(x2 − x3)
f (x2)

+ (x − x1)(x − x2)

(x3 − x1)(x3 − x2)
f (x3) (17.21)

Notice how the first term is equal to f (x1) at x1 and is equal to zero at x2 and x3. The other
terms work in a similar fashion.

Both the first- and second-order versions as well as higher-order Lagrange polynomi-
als can be represented concisely as

fn−1(x) =
n∑

i=1

Li (x) f (xi) (17.22)

17.3 LAGRANGE INTERPOLATING POLYNOMIAL 417

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 417

where

Li (x) =
n∏

j=1
j �=i

x − xj

xi − xj
(17.23)

where n = the number of data points and
∏

designates the “product of.”

EXAMPLE 17.5 Lagrange Interpolating Polynomial

Problem Statement. Use a Lagrange interpolating polynomial of the first and second
order to evaluate the density of unused motor oil at T = 15 °C based on the following data:

x1 = 0 f (x1) = 3.85

x2 = 20 f (x2) = 0.800

x3 = 40 f (x3) = 0.212

Solution. The first-order polynomial [Eq. (17.20)] can be used to obtain the estimate at
x = 15:

f1(x) = 15 − 20

0 − 20
3.85 + 15 − 0

20 − 0
0.800 = 1.5625

418 POLYNOMIAL INTERPOLATION

f (x2)

L2 f (x2)

L1 f (x1)

f(x)

f (x1)

x1 x2 x

FIGURE 17.8
A visual depiction of the rationale behind Lagrange interpolating polynomials. The figure shows
the first-order case. Each of the two terms of Eq. (17.20) passes through one of the points and
is zero at the other. The summation of the two terms must, therefore, be the unique straight line
that connects the two points.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 418

In a similar fashion, the second-order polynomial is developed as [Eq. (17.21)]

f2(x) = (15 − 20)(15 − 40)

(0 − 20)(0 − 40)
3.85 + (15 − 0)(15 − 40)

(20 − 0)(20 − 40)
0.800

+ (15 − 0)(15 − 20)

(40 − 0)(40 − 20)
0.212 = 1.3316875

17.3.1 MATLAB M-file: Lagrange

It is straightforward to develop an M-file based on Eqs. (17.22) and (17.23). As in
Fig. 17.9, the function is passed two vectors containing the independent (x) and the
dependent (y) variables. It is also passed the value of the independent variable where you
want to interpolate (xx). The order of the polynomial is based on the length of the x vector
that is passed. If n values are passed, an (n − 1)th order polynomial is fit.

17.3 LAGRANGE INTERPOLATING POLYNOMIAL 419

function yint = Lagrange(x,y,xx)
% Lagrange: Lagrange interpolating polynomial
% yint = Lagrange(x,y,xx): Uses an (n - 1)-order
% Lagrange interpolating polynomial based on n data points
% to determine a value of the dependent variable (yint) at
% a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which the
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

n = length(x);
if length(y)~=n, error('x and y must be same length'); end
s = 0;
for i = 1:n

product = y(i);
for j = 1:n

if i ~= j
product = product*(xx-x(j))/(x(i)-x(j));

end
end
s = s+product;

end
yint = s;

FIGURE 17.9
An M-file to implement Lagrange interpolation.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 419

An example of a session using the function would be to predict the density of air at
1 atm pressure at a temperature of 15 °C based on the first four values from Table 17.1.
Because four values are passed to the function, a third-order polynomial would be imple-
mented by the Lagrange function to give:

>> format long
>> T = [-40 0 20 50];
>> d = [1.52 1.29 1.2 1.09];
>> density = Lagrange(T,d,15)

density =
1.22112847222222

17.4 INVERSE INTERPOLATION

As the nomenclature implies, the f (x) and x values in most interpolation contexts are the
dependent and independent variables, respectively. As a consequence, the values of the x’s
are typically uniformly spaced. A simple example is a table of values derived for the function
f (x) = 1/x :

x 1 2 3 4 5 6 7
f (x) 1 0.5 0.3333 0.25 0.2 0.1667 0.1429

Now suppose that you must use the same data, but you are given a value for f (x) and
must determine the corresponding value of x. For instance, for the data above, suppose that
you were asked to determine the value of x that corresponded to f (x) = 0.3. For this case,
because the function is available and easy to manipulate, the correct answer can be deter-
mined directly as x = 1/0.3 = 3.3333.

Such a problem is called inverse interpolation. For a more complicated case, you
might be tempted to switch the f (x) and x values [i.e., merely plot x versus f (x)] and use
an approach like Newton or Lagrange interpolation to determine the result. Unfortunately,
when you reverse the variables, there is no guarantee that the values along the new abscissa
[the f (x)’s] will be evenly spaced. In fact, in many cases, the values will be “telescoped.”
That is, they will have the appearance of a logarithmic scale with some adjacent points
bunched together and others spread out widely. For example, for f (x) = 1/x the result is

f (x) 0.1429 0.1667 0.2 0.25 0.3333 0.5 1
x 7 6 5 4 3 2 1

Such nonuniform spacing on the abscissa often leads to oscillations in the resulting in-
terpolating polynomial. This can occur even for lower-order polynomials. An alternative
strategy is to fit an nth-order interpolating polynomial, fn(x), to the original data [i.e., with
f (x) versus x]. In most cases, because the x’s are evenly spaced, this polynomial will not
be ill-conditioned. The answer to your problem then amounts to finding the value of x that
makes this polynomial equal to the given f (x). Thus, the interpolation problem reduces to
a roots problem!

420 POLYNOMIAL INTERPOLATION

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 420

For example, for the problem just outlined, a simple approach would be to fit a qua-
dratic polynomial to the three points: (2, 0.5), (3, 0.3333), and (4, 0.25). The result would be

f2(x) = 0.041667x2 − 0.375x + 1.08333

The answer to the inverse interpolation problem of finding the x corresponding to
f (x) = 0.3 would therefore involve determining the root of

0.3 = 0.041667x2 − 0.375x + 1.08333

For this simple case, the quadratic formula can be used to calculate

x = 0.375 ±
√

(−0.375)2 − 4(0.041667)0.78333

2(0.041667)
= 5.704158

3.295842

Thus, the second root, 3.296, is a good approximation of the true value of 3.333. If addi-
tional accuracy were desired, a third- or fourth-order polynomial along with one of the
root-location methods from Chaps. 5 or 6 could be employed.

17.5 EXTRAPOLATION AND OSCILLATIONS

Before leaving this chapter, there are two issues related to polynomial interpolation that
must be addressed. These are extrapolation and oscillations.

17.5.1 Extrapolation

Extrapolation is the process of estimating a value of f (x) that lies outside the range of the
known base points, x1, x2, . . . , xn . As depicted in Fig. 17.10, the open-ended nature of

17.5 EXTRAPOLATION AND OSCILLATIONS 421

f (x)

x

True
curve

Extrapolation
of interpolating
polynomial

Interpolation Extrapolation

x3x2x1

FIGURE 17.10
Illustration of the possible divergence of an extrapolated prediction. The extrapolation is based
on fitting a parabola through the first three known points.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 421

extrapolation represents a step into the unknown because the process extends the curve
beyond the known region. As such, the true curve could easily diverge from the prediction.
Extreme care should, therefore, be exercised whenever a case arises where one must
extrapolate.

EXAMPLE 17.6 Dangers of Extrapolation

Problem Statement. This example is patterned after one originally developed by Forsythe,
Malcolm, and Moler.1 The population in millions of the United States from 1920 to 2000 can
be tabulated as

Date 1920 1930 1940 1950 1960 1970 1980 1990 2000
Population 106.46 123.08 132.12 152.27 180.67 205.05 227.23 249.46 281.42

Fit a seventh-order polynomial to the first 8 points (1920 to 1990). Use it to compute the
population in 2000 by extrapolation and compare your prediction with the actual result.

Solution. First, the data can be entered as

>> t = [1920:10:1990];
>> pop = [106.46 123.08 132.12 152.27 180.67 205.05 227.23

249.46];

The polyfit function can be used to compute the coefficients

>> p = polyfit(t,pop,7)

However, when this is implemented, the following message is displayed:

Warning: Polynomial is badly conditioned. Remove repeated data

points or try centering and scaling as described in HELP

POLYFIT.

We can follow MATLAB’s suggestion by scaling and centering the data values as in

>> ts = (t - 1955)/35;

Now polyfit works without an error message:

>> p = polyfit(ts,pop,7);

We can then use the polynomial coefficients along with the polyval function to predict
the population in 2000 as

>> polyval(p,(2000-1955)/35)

ans =
175.0800

which is much lower that the true value of 281.42. Insight into the problem can be gained
by generating a plot of the data and the polynomial,

>> tt = linspace(1920,2000);
>> pp = polyval(p,(tt-1955)/35);
>> plot(t,pop,'o',tt,pp)

422 POLYNOMIAL INTERPOLATION

1 Cleve Moler is one of the founders of The MathWorks, Inc., the makers of MATLAB.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 422

As in Fig. 17.11, the result indicates that the polynomial seems to fit the data nicely
from 1920 to 1990. However, once we move beyond the range of the data into the realm of
extrapolation, the seventh-order polynomial plunges to the erroneous prediction in 2000.

17.5.2 Oscillations

Although “more is better” in many contexts, it is absolutely not true for polynomial inter-
polation. Higher-order polynomials tend to be very ill-conditioned—that is, they tend to be
highly sensitive to round-off error. The following example illustrates this point nicely.

EXAMPLE 17.7 Dangers of Higher-Order Polynomial Interpolation

Problem Statement. In 1901, Carl Runge published a study on the dangers of higher-
order polynomial interpolation. He looked at the following simple-looking function:

f (x) = 1

1 + 25x2
(17.24)

which is now called Runge’s function. He took equidistantly spaced data points from this
function over the interval [–1, 1]. He then used interpolating polynomials of increasing
order and found that as he took more points, the polynomials and the original curve differed
considerably. Further, the situation deteriorated greatly as the order was increased. Dupli-
cate Runge’s result by using the polyfit and polyval functions to fit fourth- and tenth-
order polynomials to 5 and 11 equally spaced points generated with Eq. (17.24). Create
plots of your results along with the sampled values and the complete Runge’s function.

17.5 EXTRAPOLATION AND OSCILLATIONS 423

200019901980197019601950194019301920

250

200

150

100

FIGURE 17.11
Use of a seventh-order polynomial to make a prediction of U.S. population in 2000 based on
data from 1920 through 1990.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 423

Solution. The five equally spaced data points can be generated as in

>> x = linspace(-1,1,5);
>> y = 1./(1+25*x.^2);

Next, a more finally spaced vector of xx values can be computed so that we can create a
smooth plot of the results:

>> xx = linspace(-1,1);

Recall that linspace automatically creates 100 points if the desired number of points is
not specified. The polyfit function can be used to generate the coefficients of the fourth-
order polynomial, and the polval function can be used to generate the polynomial inter-
polation at the finely spaced values of xx:

>> p = polyfit(x,y,4);
>> y4 = polyval(p,xx);

Finally, we can generate values for Runge’s function itself and plot them along with the
polynomial fit and the sampled data:

>> yr = 1./(1+25*xx.^2);
>> plot(x,y,'o',xx,y4,xx,yr,'--')

As in Fig. 17.12, the polynomial does a poor job of following Runge’s function.
Continuing with the analysis, the tenth-order polynomial can be generated and plotted

with

>> x = linspace(-1,1,11);
>> y = 1./(1+25*x.^2);

424 POLYNOMIAL INTERPOLATION

10.50�0.5�1

1

�0.2

0

0.2

0.4

0.6

0.8

�0.4

FIGURE 17.12
Comparison of Runge’s function (dashed line) with a fourth-order polynomial fit to 5 points
sampled from the function.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 424

>> p = polyfit(x,y,10);
>> y10 = polyval(p,xx);
>> plot(x,y,'o',xx,y10,xx,yr,'--')

As in Fig. 17.13, the fit has gotten even worse, particularly at the ends of the interval!
Although there may be certain contexts where higher-order polynomials are necessary,

they are usually to be avoided. In most engineering and scientific contexts, lower-order
polynomials of the type described in this chapter can be used effectively to capture the
curving trends of data without suffering from oscillations.

PROBLEMS 425

10.50�0.5�1

2

0

0.5

1

1.5

�0.5

FIGURE 17.13
Comparison of Runge’s function (dashed line) with a tenth-order polynomial fit to 11 points
sampled from the function.

PROBLEMS

17.1 The following data come from a table that was mea-
sured with high precision. Use the best numerical method
(for this type of problem) to determine y at x = 3.5. Note
that a polynomial will yield an exact value. Your solution
should prove that your result is exact.

x 0 1.8 5 6 8.2 9.2 12
y 26 16.415 5.375 3.5 2.015 2.54 8

17.2 Use Newton’s interpolating polynomial to determine y at
x = 3.5 to the best possible accuracy. Compute the finite di-
vided differences as in Fig. 17.5, and order your points to attain
optimal accuracy and convergence. That is, the points should
be centered around and as close as possible to the unknown.

x 0 1 2.5 3 4.5 5 6
y 2 5.4375 7.3516 7.5625 8.4453 9.1875 12

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 425

17.3 Use Newton’s interpolating polynomial to determine y at
x = 8 to the best possible accuracy. Compute the finite divided
differences as in Fig. 17.5, and order your points to attain opti-
mal accuracy and convergence. That is, the points should be
centered around and as close as possible to the unknown.

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2

17.4 Given the data

x 1 2 2.5 3 4 5
f (x) 0 5 6.5 7 3 1

(a) Calculate f (3.4)using Newton’s interpolating polynomi-
als of order 1 through 3. Choose the sequence of the points
for your estimates to attain the best possible accuracy.
That is, the points should be centered around and as close
as possible to the unknown.

(b) Repeat (a) but use the Lagrange polynomial.
17.5 Given the data

x 1 2 3 5 6
f (x) 7 4 5.5 40 82

Calculate f (4) using Newton’s interpolating polynomials of
order 1 through 4. Choose your base points to attain good
accuracy. That is, the points should be centered around and
as close as possible to the unknown. What do your results
indicate regarding the order of the polynomial used to gen-
erate the data in the table?
17.6 Repeat Prob. 17.5 using the Lagrange polynomial of
order 1 through 3.
17.7 Table P15.5 lists values for dissolved oxygen concen-
tration in water as a function of temperature and chloride
concentration.
(a) Use quadratic and cubic interpolation to determine the

oxygen concentration for T = 12 °C and c = 10 g/L.
(b) Use linear interpolation to determine the oxygen con-

centration for T = 12 °C and c = 15 g/L.
(c) Repeat (b) but use quadratic interpolation.
17.8 Employ inverse interpolation using a cubic interpolat-
ing polynomial and bisection to determine the value of x that
corresponds to f (x) = 1.7 for the following tabulated data:

x 1 2 3 4 5 6 7
f (x) 3.6 1.8 1.2 0.9 0.72 1.5 0.51429

17.9 Employ inverse interpolation to determine the value of
x that corresponds to f (x) = 0.93 for the following tabu-
lated data:

426 POLYNOMIAL INTERPOLATION

x 0 1 2 3 4 5
f (x) 0 0.5 0.8 0.9 0.941176 0.961538

Note that the values in the table were generated with the
function f (x) = x2/(1 + x2).
(a) Determine the correct value analytically.
(b) Use quadratic interpolation and the quadratic formula to

determine the value numerically.
(c) Use cubic interpolation and bisection to determine the

value numerically.
17.10 Use the portion of the given steam table for super-
heated water at 200 MPa to find (a) the corresponding
entropy s for a specific volume v of 0.118 with linear inter-
polation, (b) the same corresponding entropy using qua-
dratic interpolation, and (c) the volume corresponding to an
entropy of 6.45 using inverse interpolation.

v, m3/kg 0.10377 0.11144 0.12547
s, kJ/(kg K) 6.4147 6.5453 6.7664

17.11 The following data for the density of nitrogen gas ver-
sus temperature come from a table that was measured with
high precision. Use first- through fifth-order polynomials to
estimate the density at a temperature of 330 K. What is your
best estimate? Employ this best estimate and inverse inter-
polation to determine the corresponding temperature.

T, K 200 250 300 350 400 450
Density, 1.708 1.367 1.139 0.967 0.854 0.759

kg/m3

17.12 Ohm’s law states that the voltage drop V across an
ideal resistor is linearly proportional to the current i flowing
through the resister as in V = i R, where R is the resistance.
However, real resistors may not always obey Ohm’s law.
Suppose that you performed some very precise experiments
to measure the voltage drop and corresponding current for a
resistor. The following results suggest a curvilinear relation-
ship rather than the straight line represented by Ohm’s law:

i −1 −0.5 −0.25 0.25 0.5 1
V −637 −96.5 −20.5 20.5 96.5 637

To quantify this relationship, a curve must be fit to the data. Be-
cause of measurement error, regression would typically be the
preferred method of curve fitting for analyzing such experi-
mental data. However, the smoothness of the relationship, as
well as the precision of the experimental methods, suggests
that interpolation might be appropriate. Use a fifth-order inter-
polating polynomial to fit the data and compute V for i = 0.10.

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 426

17.13 Bessel functions often arise in advanced engineering
analyses such as the study of electric fields. Here are some
selected values for the zero-order Bessel function of the first
kind

x 1.8 2.0 2.2 2.4 2.6
J1(x) 0.5815 0.5767 0.5560 0.5202 0.4708

Estimate J1(2.1) using third- and fourth-order interpolating
polynomials. Determine the percent relative error for each
case based on the true value, which can be determined with
MATLAB’s built-in function besselj.
17.14 Repeat Example 17.6 but using first-, second-, third-,
and fourth-order interpolating polynomials to predict the
population in 2000 based on the most recent data. That is, for
the linear prediction use the data from 1980 and 1990, for the
quadratic prediction use the data from 1970, 1980, and 1990,
and so on. Which approach yields the best result?
17.15 The specific volume of a superheated steam is listed
in steam tables for various temperatures. For example, at a
pressure of 3000 lb/in2, absolute:

T, °C 370 382 394 406 418
v, Lt3/kg 5.9313 7.5838 8.8428 9.796 10.5311

Determine v at T = 750 °F.
17.16 The vertical stress σz under the corner of a rectangu-
lar area subjected to a uniform load of intensity q is given by
the solution of Boussinesq’s equation:

σ = q

4π

[
2mn

√
m2 + n2 + 1

m2 + n2 + 1 + m2n2

m2 + n2 + 2

m2 + n2 + 1

+ sin−1

(
2mn

√
m2 + n2 + 1

m2 + n2 + 1 + m2n2

)]

Because this equation is inconvenient to solve manually, it
has been reformulated as

σz = q fz(m, n)

where fz(m, n) is called the influence value, and m and n are
dimensionless ratios, with m = a/z and n = b/z and a and
b are defined in Fig. P17.16. The influence value is then
tabulated, a portion of which is given in Table P17.16. If
a = 4.6 and b = 14, use a third-order interpolating polyno-
mial to compute σz at a depth 10 m below the corner of a
rectangular footing that is subject to a total load of 100 t

(metric tons). Express your answer in tonnes per square
meter. Note that q is equal to the load per area.

TABLE P17.16

m n = 1.2 n = 1.4 n = 1.6

0.1 0.02926 0.03007 0.03058
0.2 0.05733 0.05894 0.05994
0.3 0.08323 0.08561 0.08709
0.4 0.10631 0.10941 0.11135
0.5 0.12626 0.13003 0.13241
0.6 0.14309 0.14749 0.15027
0.7 0.15703 0.16199 0.16515
0.8 0.16843 0.17389 0.17739

17.17 You measure the voltage drop V across a resistor for a
number of different values of current i. The results are

i 0.25 0.75 1.25 1.5 2.0
V −0.45 −0.6 0.70 1.88 6.0

Use first- through fourth-order polynomial interpolation to
estimate the voltage drop for i = 1.15. Interpret your results.
17.18 The current in a wire is measured with great precision
as a function of time:

t 0 0.1250 0.2500 0.3750 0.5000
i 0 6.24 7.75 4.85 0.0000

Determine i at t = 0.23.
17.19 The acceleration due to gravity at an altitude y above
the surface of the earth is given by

y, m 0 30,000 60,000 90,000 120,000
g, m/s2 9.8100 9.7487 9.6879 9.6278 9.5682

Compute g at y = 55,000 m.

PROBLEMS 427

FIGURE P17.16

b

z
a

�z

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 427

17.20 Temperatures are measured at various points on a
heated plate (Table P17.20). Estimate the temperature at
(a) x = 4, y = 3.2, and (b) x = 4.3, y = 2.7.

428 POLYNOMIAL INTERPOLATION

17.21 Use the portion of the given steam table for super-
heated H2O at 200 MPa to (a) find the corresponding
entropy s for a specific volume v of 0.108 m3/kg with linear
interpolation, (b) find the same corresponding entropy using
quadratic interpolation, and (c) find the volume correspond-
ing to an entropy of 6.6 using inverse interpolation.

v (m3/kg) 0.10377 0.11144 0.12540
s (kJ/kg ·K) 6.4147 6.5453 6.7664

TABLE P17.20 Temperatures (°C) at various points
on a square heated plate.

x = 0 x = 2 x = 4 x = 6 x = 8

y = 0 100.00 90.00 80.00 70.00 60.00
y = 2 85.00 64.49 53.50 48.15 50.00
y = 4 70.00 48.90 38.43 35.03 40.00
y = 6 55.00 38.78 30.39 27.07 30.00
y = 8 40.00 35.00 30.00 25.00 20.00

cha01102_ch17_405-428.qxd 12/17/10 8:18 AM Page 428

429

18
Splines and Piecewise
Interpolation

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to splines. Specific objectives
and topics covered are

• Understanding that splines minimize oscillations by fitting lower-order
polynomials to data in a piecewise fashion.

• Knowing how to develop code to perform a table lookup.
• Recognizing why cubic polynomials are preferable to quadratic and higher-order

splines.
• Understanding the conditions that underlie a cubic spline fit.
• Understanding the differences between natural, clamped, and not-a-knot end

conditions.
• Knowing how to fit a spline to data with MATLAB’s built-in functions.
• Understanding how multidimensional interpolation is implemented with MATLAB.

18.1 INTRODUCTION TO SPLINES

In Chap. 17 (n − 1)th-order polynomials were used to interpolate between n data points.
For example, for eight points, we can derive a perfect seventh-order polynomial. This
curve would capture all the meanderings (at least up to and including seventh derivatives)
suggested by the points. However, there are cases where these functions can lead to erro-
neous results because of round-off error and oscillations. An alternative approach is to
apply lower-order polynomials in a piecewise fashion to subsets of data points. Such con-
necting polynomials are called spline functions.

For example, third-order curves employed to connect each pair of data points are
called cubic splines. These functions can be constructed so that the connections between

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 429

adjacent cubic equations are visually smooth. On the surface, it would seem that the third-
order approximation of the splines would be inferior to the seventh-order expression. You
might wonder why a spline would ever be preferable.

Figure 18.1 illustrates a situation where a spline performs better than a higher-order
polynomial. This is the case where a function is generally smooth but undergoes an abrupt
change somewhere along the region of interest. The step increase depicted in Fig. 18.1 is
an extreme example of such a change and serves to illustrate the point.

Figure 18.1a through c illustrates how higher-order polynomials tend to swing through
wild oscillations in the vicinity of an abrupt change. In contrast, the spline also connects
the points, but because it is limited to lower-order changes, the oscillations are kept to a

430 SPLINES AND PIECEWISE INTERPOLATION

(a)

f (x)

x0

(b)

f (x)

x0

(c)

f (x)

x0

(d)

f (x)

x0

FIGURE 18.1
A visual representation of a situation where splines are superior to higher-order interpolating
polynomials. The function to be fit undergoes an abrupt increase at x = 0. Parts (a) through (c)
indicate that the abrupt change induces oscillations in interpolating polynomials. In contrast,
because it is limited to straight-line connections, a linear spline (d) provides a much more
acceptable approximation.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 430

minimum. As such, the spline usually provides a superior approximation of the behavior of
functions that have local, abrupt changes.

The concept of the spline originated from the drafting technique of using a thin, flexi-
ble strip (called a spline) to draw smooth curves through a set of points. The process is de-
picted in Fig. 18.2 for a series of five pins (data points). In this technique, the drafter places
paper over a wooden board and hammers nails or pins into the paper (and board) at the lo-
cation of the data points. A smooth cubic curve results from interweaving the strip between
the pins. Hence, the name “cubic spline” has been adopted for polynomials of this type.

In this chapter, simple linear functions will first be used to introduce some basic con-
cepts and issues associated with spline interpolation. Then we derive an algorithm for fitting
quadratic splines to data. This is followed by material on the cubic spline, which is the most
common and useful version in engineering and science. Finally, we describe MATLAB’s
capabilities for piecewise interpolation including its ability to generate splines.

18.2 LINEAR SPLINES

The notation used for splines is displayed in Fig. 18.3. For n data points (i = 1, 2, . . . , n),
there are n − 1 intervals. Each interval i has its own spline function, si (x). For linear
splines, each function is merely the straight line connecting the two points at each end of
the interval, which is formulated as

si (x) = ai + bi (x − xi) (18.1)

where ai is the intercept, which is defined as

ai = fi (18.2)

and bi is the slope of the straight line connecting the points:

bi = fi+1 − fi

xi+1 − xi
(18.3)

18.2 LINEAR SPLINES 431

FIGURE 18.2
The drafting technique of using a spline to draw smooth curves through a series of points. Notice
how, at the end points, the spline straightens out. This is called a “natural” spline.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 431

where fi is shorthand for f (xi). Substituting Eqs. (18.1) and (18.2) into Eq. (18.3) gives

si (x) = fi + fi+1 − fi

xi+1 − xi
(x − xi) (18.4)

These equations can be used to evaluate the function at any point between x1 and xn

by first locating the interval within which the point lies. Then the appropriate equation is
used to determine the function value within the interval. Inspection of Eq. (18.4) indicates
that the linear spline amounts to using Newton’s first-order polynomial [Eq. (17.5)] to
interpolate within each interval.

EXAMPLE 18.1 First-Order Splines

Problem Statement. Fit the data in Table 18.1 with first-order splines. Evaluate the
function at x = 5.

432 SPLINES AND PIECEWISE INTERPOLATION

sn�1(x)

x

Interval
1

f (x)
s1(x)

x1 x2 xi xi�1 xn�1 xn

f1 fi
fi�1

f2

Interval
i

Interval
n � 1

si(x)

fn�1
fn

FIGURE 18.3
Notation used to derive splines. Notice that there are n − 1 intervals and n data points.

TABLE 18.1 Data to be fit with spline functions.

i xi fi

1 3.0 2.5
2 4.5 1.0
3 7.0 2.5
4 9.0 0.5

Solution. The data can be substituted into Eq. (18.4) to generate the linear spline
functions. For example, for the second interval from x = 4.5 to x = 7, the function is

s2(x) = 1.0 + 2.5 − 1.0

7.0 − 4.5
(x − 4.5)

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 432

The equations for the other intervals can be computed, and the resulting first-order splines
are plotted in Fig. 18.4a. The value at x = 5 is 1.3.

s2(x) = 1.0 + 2.5 − 1.0

7.0 − 4.5
(5 − 4.5) = 1.3

Visual inspection of Fig. 18.4a indicates that the primary disadvantage of first-order
splines is that they are not smooth. In essence, at the data points where two splines meet
(called a knot), the slope changes abruptly. In formal terms, the first derivative of the func-
tion is discontinuous at these points. This deficiency is overcome by using higher-order
polynomial splines that ensure smoothness at the knots by equating derivatives at these
points, as will be discussed subsequently. Before doing that, the following section provides
an application where linear splines are useful.

18.2 LINEAR SPLINES 433

(a)

x

(b)

2

0

f (x)

x

2

0
2 4 6 8 10

f (x)

(c)

2

0

f (x)

x

First-order
spline

Second-order
spline

Interpolating
cubic

Cubic
spline

FIGURE 18.4
Spline fits of a set of four points. (a) Linear spline, (b) quadratic spline, and (c) cubic spline, with
a cubic interpolating polynomial also plotted.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 433

18.2.1 Table Lookup

A table lookup is a common task that is frequently encountered in engineering and science
computer applications. It is useful for performing repeated interpolations from a table of
independent and dependent variables. For example, suppose that you would like to set up
an M-file that would use linear interpolation to determine air density at a particular tem-
perature based on the data from Table 17.1. One way to do this would be to pass the M-file
the temperature at which you want the interpolation to be performed along with the two ad-
joining values. A more general approach would be to pass in vectors containing all the data
and have the M-file determine the bracket. This is called a table lookup.

Thus, the M-file would perform two tasks. First, it would search the independent vari-
able vector to find the interval containing the unknown. Then it would perform the linear
interpolation using one of the techniques described in this chapter or in Chap. 17.

For ordered data, there are two simple ways to find the interval. The first is called a
sequential search. As the name implies, this method involves comparing the desired value
with each element of the vector in sequence until the interval is located. For data in as-
cending order, this can be done by testing whether the unknown is less than the value being
assessed. If so, we know that the unknown falls between this value and the previous one
that we examined. If not, we move to the next value and repeat the comparison. Here is a
simple M-file that accomplishes this objective:

function yi = TableLook(x, y, xx)

n = length(x);
if xx < x(1) | xx > x(n)

error('Interpolation outside range')
end
% sequential search
i = 1;
while(1)

if xx <= x(i + 1), break, end
i = i + 1;

end
% linear interpolation
yi = y(i) + (y(i+1)-y(i))/(x(i+1)-x(i))*(xx-x(i));

The table’s independent variables are stored in ascending order in the array x and the
dependent variables stored in the array y. Before searching, an error trap is included to en-
sure that the desired value xx falls within the range of the x’s. A while . . . break loop
compares the value at which the interpolation is desired, xx, to determine whether it is less
than the value at the top of the interval, x(i+1). For cases where xx is in the second inter-
val or higher, this will not test true at first. In this case the counter i is incremented by one
so that on the next iteration, xx is compared with the value at the top of the second inter-
val. The loop is repeated until the xx is less than or equal to the interval’s upper bound, in
which case the loop is exited. At this point, the interpolation can be performed simply as
shown.

For situations for which there are lots of data, the sequential sort is inefficient because
it must search through all the preceding points to find values. In these cases, a simple
alternative is the binary search. Here is an M-file that performs a binary search followed

434 SPLINES AND PIECEWISE INTERPOLATION

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 434

by linear interpolation:

function yi = TableLookBin(x, y, xx)

n = length(x);
if xx < x(1) | xx > x(n)

error('Interpolation outside range')
end
% binary search
iL = 1; iU = n;
while (1)

if iU - iL <= 1, break, end
iM = fix((iL + iU) / 2);
if x(iM) < xx

iL = iM;
else

iU = iM;
end

end
% linear interpolation
yi = y(iL) + (y(iL+1)-y(iL))/(x(iL+1)-x(iL))*(xx - x(iL));

The approach is akin to the bisection method for root location. Just as in bisection, the
index at the midpoint iM is computed as the average of the first or “lower” index iL = 1
and the last or “upper” index iU = n. The unknown xx is then compared with the value of
x at the midpoint x(iM) to assess whether it is in the lower half of the array or in the upper
half. Depending on where it lies, either the lower or upper index is redefined as being the
middle index. The process is repeated until the difference between the upper and the lower
index is less than or equal to zero. At this point, the lower index lies at the lower bound of
the interval containing xx, the loop terminates, and the linear interpolation is performed.

Here is a MATLAB session illustrating how the binary search function can be applied
to calculate the air density at 350 °C based on the data from Table 17.1. The sequential
search would be similar.

>> T = [-40 0 20 50 100 150 200 250 300 400 500];
>> density = [1.52 1.29 1.2 1.09 .946 .935 .746 .675 .616...

.525 .457];
>> TableLookBin(T,density,350)

ans =
0.5705

This result can be verified by the hand calculation:

f (350) = 0.616 + 0.525 − 0.616

400 − 300
(350 − 300) = 0.5705

18.3 QUADRATIC SPLINES

To ensure that the nth derivatives are continuous at the knots, a spline of at least n + 1
order must be used. Third-order polynomials or cubic splines that ensure continuous first
and second derivatives are most frequently used in practice. Although third and higher

18.3 QUADRATIC SPLINES 435

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 435

derivatives can be discontinuous when using cubic splines, they usually cannot be detected
visually and consequently are ignored.

Because the derivation of cubic splines is somewhat involved, we have decided to first
illustrate the concept of spline interpolation using second-order polynomials. These “qua-
dratic splines” have continuous first derivatives at the knots. Although quadratic splines are
not of practical importance, they serve nicely to demonstrate the general approach for de-
veloping higher-order splines.

The objective in quadratic splines is to derive a second-order polynomial for each inter-
val between data points. The polynomial for each interval can be represented generally as

si (x) = ai + bi (x − xi) + ci (x − xi)
2 (18.5)

where the notation is as in Fig. 18.3. For n data points (i = 1, 2, . . . , n), there are n − 1
intervals and, consequently, 3(n − 1) unknown constants (the a’s, b’s, and c’s) to evaluate.
Therefore, 3(n − 1) equations or conditions are required to evaluate the unknowns. These
can be developed as follows:

1. The function must pass through all the points. This is called a continuity condition. It
can be expressed mathematically as

fi = ai + bi (xi − xi) + ci (xi − xi)
2

which simplifies to

ai = fi (18.6)

Therefore, the constant in each quadratic must be equal to the value of the dependent
variable at the beginning of the interval. This result can be incorporated into Eq. (18.5):

si (x) = fi + bi (x − xi) + ci (x − xi)
2

Note that because we have determined one of the coefficients, the number of condi-
tions to be evaluated has now been reduced to 2(n − 1).

2. The function values of adjacent polynomials must be equal at the knots. This condition
can be written for knot i + 1 as

fi + bi (xi+1 − xi) + ci (xi+1 − xi)
2 = fi+1 + bi+1(xi+1 − xi+1) + ci+1(xi+1 − xi+1)

2

(18.7)

This equation can be simplified mathematically by defining the width of the ith inter-
val as

hi = xi+1 − xi

Thus, Eq. (18.7) simplifies to

fi + bi hi + ci h
2
i = fi+1 (18.8)

This equation can be written for the nodes, i = 1, . . . , n − 1. Since this amounts to
n − 1 conditions, it means that there are 2(n − 1) − (n − 1) = n − 1 remaining
conditions.

436 SPLINES AND PIECEWISE INTERPOLATION

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 436

3. The first derivatives at the interior nodes must be equal. This is an important condition,
because it means that adjacent splines will be joined smoothly, rather than in the jagged
fashion that we saw for the linear splines. Equation (18.5) can be differentiated to yield

s ′
i (x) = bi + 2ci (x − xi)

The equivalence of the derivatives at an interior node, i + 1 can therefore be written as

bi + 2ci hi = bi+1 (18.9)

Writing this equation for all the interior nodes amounts to n − 2 conditions. This
means that there is n − 1 − (n − 2) = 1 remaining condition. Unless we have some
additional information regarding the functions or their derivatives, we must make an
arbitrary choice to successfully compute the constants. Although there are a number of
different choices that can be made, we select the following condition.

4. Assume that the second derivative is zero at the first point. Because the second deriv-
ative of Eq. (18.5) is 2ci , this condition can be expressed mathematically as

c1 = 0

The visual interpretation of this condition is that the first two points will be connected
by a straight line.

EXAMPLE 18.2 Quadratic Splines

Problem Statement. Fit quadratic splines to the same data employed in Example 18.1
(Table 18.1). Use the results to estimate the value at x = 5.

Solution. For the present problem, we have four data points and n = 3 intervals. There-
fore, after applying the continuity condition and the zero second-derivative condition, this
means that 2(4 − 1) − 1 = 5 conditions are required. Equation (18.8) is written for i = 1
through 3 (with c1 = 0) to give

f1 + b1h1 = f2

f2 + b2h2 + c2h2
2 = f3

f3 + b3h3 + c3h2
3 = f4

Continuity of derivatives, Eq. (18.9), creates an additional 3 − 1 = 2 conditions (again,
recall that c1 = 0):

b1 = b2

b2 + 2c2h2 = b3

The necessary function and interval width values are

f1 = 2.5 h1 = 4.5 − 3.0 = 1.5

f2 = 1.0 h2 = 7.0 − 4.5 = 2.5

f3 = 2.5 h3 = 9.0 − 7.0 = 2.0

f4 = 0.5

18.3 QUADRATIC SPLINES 437

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 437

These values can be substituted into the conditions which can be expressed in matrix
form as⎡

⎢⎢⎢⎣
1.5 0 0 0 0
0 2.5 6.25 0 0
0 0 0 2 4
1 −1 0 0 0
0 1 5 −1 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1

b2

c2

b3

c3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1.5
1.5
−2
0
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

These equations can be solved using MATLAB with the results:

b1 = −1

b2 = −1 c2 = 0.64

b3 = 2.2 c3 = −1.6

These results, along with the values for the a’s (Eq. 18.6), can be substituted into the
original quadratic equations to develop the following quadratic splines for each interval:

s1(x) = 2.5 − (x − 3)

s2(x) = 1.0 − (x − 4.5) + 0.64(x − 4.5)2

s3(x) = 2.5 + 2.2(x − 7.0) − 1.6(x − 7.0)2

Because x = 5 lies in the second interval, we use s2 to make the prediction,

s2(5) = 1.0 − (5 − 4.5) + 0.64(5 − 4.5)2 = 0.66

The total quadratic spline fit is depicted in Fig. 18.4b. Notice that there are two shortcom-
ings that detract from the fit: (1) the straight line connecting the first two points and (2) the
spline for the last interval seems to swing too high. The cubic splines in the next section
do not exhibit these shortcomings and, as a consequence, are better methods for spline
interpolation.

18.4 CUBIC SPLINES

As stated at the beginning of the previous section, cubic splines are most frequently used
in practice. The shortcomings of linear and quadratic splines have already been discussed.
Quartic or higher-order splines are not used because they tend to exhibit the instabilities
inherent in higher-order polynomials. Cubic splines are preferred because they provide the
simplest representation that exhibits the desired appearance of smoothness.

The objective in cubic splines is to derive a third-order polynomial for each interval
between knots as represented generally by

si (x) = ai + bi (x − xi) + ci (x − xi)
2 + di (x − xi)

3 (18.10)

Thus, for n data points (i = 1, 2, . . . , n), there are n − 1 intervals and 4(n − 1) un-
known coefficients to evaluate. Consequently, 4(n − 1) conditions are required for their
evaluation.

438 SPLINES AND PIECEWISE INTERPOLATION

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 438

The first conditions are identical to those used for the quadratic case. That is, they are
set up so that the functions pass through the points and that the first derivatives at the knots
are equal. In addition to these, conditions are developed to ensure that the second deriva-
tives at the knots are also equal. This greatly enhances the fit’s smoothness.

After these conditions are developed, two additional conditions are required to obtain
the solution. This is a much nicer outcome than occurred for quadratic splines where we
needed to specify a single condition. In that case, we had to arbitrarily specify a zero sec-
ond derivative for the first interval, hence making the result asymmetric. For cubic splines,
we are in the advantageous position of needing two additional conditions and can, there-
fore, apply them evenhandedly at both ends.

For cubic splines, these last two conditions can be formulated in several different
ways. A very common approach is to assume that the second derivatives at the first and last
knots are equal to zero. The visual interpretation of these conditions is that the function be-
comes a straight line at the end nodes. Specification of such an end condition leads to what
is termed a “natural” spline. It is given this name because the drafting spline naturally
behaves in this fashion (Fig. 18.2).

There are a variety of other end conditions that can be specified. Two of the more pop-
ular are the clamped condition and the not-a-knot conditions. We will describe these op-
tions in Section 18.4.2. For the following derivation, we will limit ourselves to natural
splines.

Once the additional end conditions are specified, we would have the 4(n − 1) condi-
tions needed to evaluate the 4(n − 1) unknown coefficients. Whereas it is certainly possible
to develop cubic splines in this fashion, we will present an alternative approach that requires
the solution of only n − 1 equations. Further, the simultaneous equations will be tridiagonal
and hence can be solved very efficiently. Although the derivation of this approach is less
straightforward than for quadratic splines, the gain in efficiency is well worth the effort.

18.4.1 Derivation of Cubic Splines

As was the case with quadratic splines, the first condition is that the spline must pass
through all the data points.

fi = ai + bi (xi − xi) + ci (xi − xi)
2 + di (xi − xi)

3

which simplifies to

ai = fi (18.11)

Therefore, the constant in each cubic must be equal to the value of the dependent variable
at the beginning of the interval. This result can be incorporated into Eq. (18.10):

si (x) = fi + bi (x − xi) + ci (x − xi)
2 + di (x − xi)

3 (18.12)

Next, we will apply the condition that each of the cubics must join at the knots. For
knot i + 1, this can be represented as

fi + bi hi + ci h
2
i + di h

3
i = fi+1 (18.13)

18.4 CUBIC SPLINES 439

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 439

where

hi = xi+1 − xi

The first derivatives at the interior nodes must be equal. Equation (18.12) is differen-
tiated to yield

s ′
i (x) = bi + 2ci (x − xi) + 3di (x − xi)

2 (18.14)

The equivalence of the derivatives at an interior node, i + 1 can therefore be written as

bi + 2ci hi + 3di h
2
i = bi+1 (18.15)

The second derivatives at the interior nodes must also be equal. Equation (18.14) can
be differentiated to yield

s ′′
i (x) = 2ci + 6di (x − xi) (18.16)

The equivalence of the second derivatives at an interior node, i + 1 can therefore be
written as

ci + 3di hi = ci+1 (18.17)

Next, we can solve Eq. (18.17) for di :

di = ci+1 − ci

3hi
(18.18)

This can be substituted into Eq. (18.13) to give

fi + bi hi + h2
i

3
(2ci + ci+1) = fi+1 (18.19)

Equation (18.18) can also be substituted into Eq. (18.15) to give

bi+1 = bi + hi (ci + ci+1) (18.20)

Equation (18.19) can be solved for

bi = fi+1 − fi

hi
− hi

3
(2ci + ci+1) (18.21)

The index of this equation can be reduced by 1:

bi−1 = fi − fi−1

hi−1
− hi−1

3
(2ci−1 + ci) (18.22)

The index of Eq. (18.20) can also be reduced by 1:

bi = bi−1 + hi−1(ci−1 + ci) (18.23)

Equations (18.21) and (18.22) can be substituted into Eq. (18.23) and the result simplified
to yield

hi−1ci−1 + 2(hi−1 − hi)ci + hi ci+1 = 3
fi+1 − fi

hi
− 3

fi − fi−1

hi−1
(18.24)

440 SPLINES AND PIECEWISE INTERPOLATION

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 440

This equation can be made a little more concise by recognizing that the terms on the
right-hand side are finite differences (recall Eq. 17.15):

f [xi , xj] = fi − f j

xi − xj

Therefore, Eq. (18.24) can be written as

hi−1ci−1 + 2(hi−1 − hi)ci + hi ci+1 = 3 (f [xi+1, xi] − f [xi , xi−1]) (18.25)

Equation (18.25) can be written for the interior knots, i = 2, 3, . . . , n − 2, which
results in n − 3 simultaneous tridiagonal equations with n − 1 unknown coefficients,
c1, c2, . . . , cn–1. Therefore, if we have two additional conditions, we can solve for the c’s.
Once this is done, Eqs. (18.21) and (18.18) can be used to determine the remaining coeffi-
cients, b and d.

As stated previously, the two additional end conditions can be formulated in a number
of ways. One common approach, the natural spline, assumes that the second derivatives at
the end knots are equal to zero. To see how these can be integrated into the solution
scheme, the second derivative at the first node (Eq. 18.16) can be set to zero as in

s ′′
1 (x1) = 0 = 2c1 + 6d1(x1 − x1)

Thus, this condition amounts to setting c1 equal to zero.
The same evaluation can be made at the last node:

s ′′
n−1(xn) = 0 = 2cn−1 + 6dn−1hn−1 (18.26)

Recalling Eq. (18.17), we can conveniently define an extraneous parameter cn , in which
case Eq. (18.26) becomes

cn−1 + 3dn−1hn−1 = cn = 0

Thus, to impose a zero second derivative at the last node, we set cn = 0.

The final equations can now be written in matrix form as⎡
⎢⎢⎢⎢⎢⎣

1
h1 2(h1 + h2) h2

hn−2 2(hn−2 + hn−1) hn−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1

c2

cn−1

cn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
3(f [x3, x2] − f [x2, x1])

3(f [xn, xn−1] − f [xn−1, xn−2])
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(18.27)

As shown, the system is tridiagonal and hence efficient to solve.

18.4 CUBIC SPLINES 441

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 441

EXAMPLE 18.3 Natural Cubic Splines

Problem Statement. Fit cubic splines to the same data used in Examples 18.1 and 18.2
(Table 18.1). Utilize the results to estimate the value at x = 5.

Solution. The first step is to employ Eq. (18.27) to generate the set of simultaneous equa-
tions that will be utilized to determine the c coefficients:⎡

⎢⎣
1
h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

1

⎤
⎥⎦

⎧⎪⎨
⎪⎩

c1

c2

c3

c4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
3(f [x3, x2] − f [x2, x1])
3(f [x4, x3] − f [x3, x2])

0

⎫⎪⎬
⎪⎭

The necessary function and interval width values are

f1 = 2.5 h1 = 4.5 − 3.0 = 1.5

f2 = 1.0 h2 = 7.0 − 4.5 = 2.5

f3 = 2.5 h3 = 9.0 − 7.0 = 2.0

f4 = 0.5

These can be substituted to yield⎡
⎢⎣

1
1.5 8 2.5

2.5 9 2
1

⎤
⎥⎦

⎧⎪⎨
⎪⎩

c1

c2

c3

c4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
4.8

−4.8
0

⎫⎪⎬
⎪⎭

These equations can be solved using MATLAB with the results:

c1 = 0 c2 = 0.839543726

c3 = −0.766539924 c4 = 0

Equations (18.21) and (18.18) can be used to compute the b’s and d’s

b1 = −1.419771863 d1 = 0.186565272

b2 = −0.160456274 d2 = −0.214144487

b3 = 0.022053232 d3 = 0.127756654

These results, along with the values for the a’s [Eq. (18.11)], can be substituted into
Eq. (18.10) to develop the following cubic splines for each interval:

s1(x) = 2.5 − 1.419771863(x − 3) + 0.186565272(x − 3)3

s2(x) = 1.0 − 0.160456274(x − 4.5) + 0.839543726(x − 4.5)2

− 0.214144487(x − 4.5)3

s3(x) = 2.5 + 0.022053232(x − 7.0) − 0.766539924(x − 7.0)2

+ 0.127756654(x − 7.0)3

The three equations can then be employed to compute values within each interval. For
example, the value at x = 5, which falls within the second interval, is calculated as

s2(5) = 1.0 − 0.160456274(5 − 4.5) + 0.839543726(5 − 4.5)2 − 0.214144487(5 − 4.5)3

= 1.102889734.

The total cubic spline fit is depicted in Fig. 18.4c.

442 SPLINES AND PIECEWISE INTERPOLATION

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 442

The results of Examples 18.1 through 18.3 are summarized in Fig. 18.4. Notice the pro-
gressive improvement of the fit as we move from linear to quadratic to cubic splines. We
have also superimposed a cubic interpolating polynomial on Fig. 18.4c. Although the cubic
spline consists of a series of third-order curves, the resulting fit differs from that obtained
using the third-order polynomial. This is due to the fact that the natural spline requires zero
second derivatives at the end knots, whereas the cubic polynomial has no such constraint.

18.4.2 End Conditions

Although its graphical basis is appealing, the natural spline is only one of several end con-
ditions that can be specified for splines. Two of the most popular are

• Clamped End Condition. This option involves specifying the first derivatives at the first
and last nodes. This is sometimes called a “clamped” spline because it is what occurs
when you clamp the end of a drafting spline so that it has a desired slope. For example,
if zero first derivatives are specified, the spline will level off or become horizontal at the
ends.

• “Not-a-Knot” End Condition. A third alternative is to force continuity of the third de-
rivative at the second and the next-to-last knots. Since the spline already specifies that
the function value and its first and second derivatives are equal at these knots, speci-
fying continuous third derivatives means that the same cubic functions will apply to
each of the first and last two adjacent segments. Since the first internal knots no longer
represent the junction of two different cubic functions, they are no longer true knots.
Hence, this case is referred to as the “not-a-knot” condition. It has the additional prop-
erty that for four points, it yields the same result as is obtained using an ordinary cubic
interpolating polynomial of the sort described in Chap. 17.

These conditions can be readily applied by using Eq. (18.25) for the interior knots,
i = 2, 3, . . . , n − 2, and using first (1) and last equations (n − 1) as written in Table 18.2.

Figure 18.5 shows a comparison of the three end conditions as applied to fit the data from
Table 18.1. The clamped case is set up so that the derivatives at the ends are equal to zero.

As expected, the spline fit for the clamped case levels off at the ends. In contrast, the
natural and not-a-knot cases follow the trend of the data points more closely. Notice how
the natural spline tends to straighten out as would be expected because the second deriva-
tives go to zero at the ends. Because it has nonzero second derivatives at the ends, the not-
a-knot exhibits more curvature.

18.4 CUBIC SPLINES 443

TABLE 18.2 The first and last equations needed to specify some commonly used end
conditions for cubic splines.

Condition First and Last Equations

Natural c1 = 0, cn = 0

Clamped (where f ′
1 and f ′

n are the specified first 2h1c1 + h1c2 = 3 f [x2, x1] − 3 f ′
1

derivatives at the first and last nodes, respectively). hn−1cn−1 + 2hn−1cn = 3 f ′
n − 3 f [xn, xn−1]

Not-a-knot h2c1 − (h1 + h2)c2 + h1c3 = 0
hn−1cn−2 − (hn−2 + hn−1)cn−1 + hn−2cn = 0

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 443

18.5 PIECEWISE INTERPOLATION IN MATLAB

MATLAB has several built-in functions to implement piecewise interpolation. The spline
function performs cubic spline interpolation as described in this chapter. The pchip func-
tion implements piecewise cubic Hermite interpolation. The interp1 function can also
implement spline and Hermite interpolation, but can also perform a number of other types
of piecewise interpolation.

18.5.1 MATLAB Function: spline

Cubic splines can be easily computed with the built-in MATLAB function, spline. It has
the general syntax,

yy = spline(x, y, xx) (18.28)

where x and y = vectors containing the values that are to be interpolated, and yy = a vector
containing the results of the spline interpolation as evaluated at the points in the vector xx.

By default, spline uses the not-a-knot condition. However, if y contains two more
values than x has entries, then the first and last value in y are used as the derivatives at the
end points. Consequently, this option provides the means to implement the clamped-end
condition.

EXAMPLE 18.4 Splines in MATLAB

Problem Statement. Runge’s function is a notorious example of a function that cannot
be fit well with polynomials (recall Example 17.7):

f (x) = 1

1 + 25x2

444 SPLINES AND PIECEWISE INTERPOLATION

0

3

2

1

f (x)

2 4 6 8

Natural

x

Not-a-knot

Clamped

FIGURE 18.5
Comparison of the clamped (with zero first derivatives), not-a-knot, and natural splines for the
data from Table 18.1.

cha01102_ch18_429-458.qxd 12/18/10 2:12 PM Page 444

Use MATLAB to fit nine equally spaced data points sampled from this function in the
interval [−1, 1]. Employ (a) a not-a-knot spline and (b) a clamped spline with end slopes
of f ′

1 = 1 and f ′
n−1 = −4.

Solution. (a) The nine equally spaced data points can be generated as in

>> x = linspace(-1,1,9);
>> y = 1./(1+25*x.^2);

Next, a more finely spaced vector of values can be generated so that we can create a smooth
plot of the results as generated with the spline function:

>> xx = linspace(-1,1);
>> yy = spline(x,y,xx);

Recall that linspace automatically creates 100 points if the desired number of points are
not specified. Finally, we can generate values for Runge’s function itself and display them
along with the spline fit and the original data:

>> yr = 1./(1+25*xx.^2);
>> plot(x,y,'o',xx,yy,xx,yr,'--')

As in Fig. 18.6, the not-a-knot spline does a nice job of following Runge’s function with-
out exhibiting wild oscillations between the points.

(b) The clamped condition can be implemented by creating a new vector yc that has the
desired first derivatives as its first and last elements. The new vector can then be used to

18.5 PIECEWISE INTERPOLATION IN MATLAB 445

1

0.8

0.6

0.2

0.4

0
�1 �0.5 0 0.5 1

FIGURE 18.6
Comparison of Runge’s function (dashed line) with a 9-point not-a-knot spline fit generated with
MATLAB (solid line).

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 445

generate and plot the spline fit:

>> yc = [1 y -4];
>> yyc = spline(x,yc,xx);
>> plot(x,y,'o',xx,yyc,xx,yr,'--')

As in Fig. 18.7, the clamped spline now exhibits some oscillations because of the artificial
slopes that we have imposed at the boundaries. In other examples, where we have knowl-
edge of the true first derivatives, the clamped spline tends to improve the fit.

18.5.2 MATLAB Function: interp1

The built-in function interp1 provides a handy means to implement a number of differ-
ent types of piecewise one-dimensional interpolation. It has the general syntax

yi = interp1(x, y, xi, 'method')

where x and y = vectors containing values that are to be interpolated, yi = a vector con-
taining the results of the interpolation as evaluated at the points in the vector xi, and
'method' = the desired method. The various methods are

• 'nearest'—nearest neighbor interpolation. This method sets the value of an inter-
polated point to the value of the nearest existing data point. Thus, the interpolation
looks like a series of plateaus, which can be thought of as zero-order polynomials.

• 'linear'—linear interpolation. This method uses straight lines to connect the points.

446 SPLINES AND PIECEWISE INTERPOLATION

1

0.8

0.6

0.2

0.4

0
�1 �0.5 0 0.5 1

FIGURE 18.7
Comparison of Runge’s function (dashed line) with a 9-point clamped end spline fit generated
with MATLAB (solid line). Note that first derivatives of 1 and −4 are specified at the left and
right boundaries, respectively.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 446

• 'spline'—piecewise cubic spline interpolation. This is identical to the spline
function.

• 'pchip' and 'cubic'—piecewise cubic Hermite interpolation.

If the 'method' argument is omitted, the default is linear interpolation.
The pchip option (short for “piecewise cubic Hermite interpolation”) merits more

discussion. As with cubic splines, pchip uses cubic polynomials to connect data points
with continuous first derivatives. However, it differs from cubic splines in that the second
derivatives are not necessarily continuous. Further, the first derivatives at the knots will not
be the same as for cubic splines. Rather, they are expressly chosen so that the interpolation
is “shape preserving.” That is, the interpolated values do not tend to overshoot the data
points as can sometimes happen with cubic splines.

Therefore, there are trade-offs between the spline and the pchip options. The results
of using spline will generally appear smoother because the human eye can detect dis-
continuities in the second derivative. In addition, it will be more accurate if the data are val-
ues of a smooth function. On the other hand, pchip has no overshoots and less oscillation
if the data are not smooth. These trade-offs, as well as those involving the other options, are
explored in the following example.

EXAMPLE 18.5 Trade-Offs Using interp1

Problem Statement. You perform a test drive on an automobile where you alternately
accelerate the automobile and then hold it at a steady velocity. Note that you never decel-
erate during the experiment. The time series of spot measurements of velocity can be
tabulated as

t 0 20 40 56 68 80 84 96 104 110
v 0 20 20 38 80 80 100 100 125 125

Use MATLAB’s interp1 function to fit these data with (a) linear interpolation, (b) near-
est neighbor, (c) cubic spline with not-a-knot end conditions, and (d) piecewise cubic
Hermite interpolation.

Solution. (a) The data can be entered, fit with linear interpolation, and plotted with the
following commands:

>> t = [0 20 40 56 68 80 84 96 104 110];
>> v = [0 20 20 38 80 80 100 100 125 125];
>> tt = linspace(0,110);
>> vl = interp1(t,v,tt);
>> plot(t,v,'o',tt,vl)

The results (Fig. 18.8a) are not smooth, but do not exhibit any overshoot.

(b) The commands to implement and plot the nearest neighbor interpolation are

>> vn = interp1(t,v,tt,'nearest');
>> plot(t,v,'o',tt,vn)

18.5 PIECEWISE INTERPOLATION IN MATLAB 447

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 447

As in Fig. 18.8b, the results look like a series of plateaus. This option is neither a smooth
nor an accurate depiction of the underlying process.

(c) The commands to implement the cubic spline are

>> vs = interp1(t,v,tt,'spline');
>> plot(t,v,'o',tt,vs)

These results (Fig. 18.8c) are quite smooth. However, severe overshoot occurs at several
locations. This makes it appear that the automobile decelerated several times during the
experiment.

448 SPLINES AND PIECEWISE INTERPOLATION

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120

(a) linear

(c) spline (d) pchip

(b) nearest neighbor

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120

FIGURE 18.8
Use of several options of the interp1 function to perform piecewise polynomial interpolation on a velocity time series
for an automobile.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 448

(d) The commands to implement the piecewise cubic Hermite interpolation are

>> vh = interp1(t,v,tt,'pchip');
>> plot(t,v,'o',tt,vh)

For this case, the results (Fig. 18.8d) are physically realistic. Because of its shape-preserving
nature, the velocities increase monotonically and never exhibit deceleration. Although the
result is not as smooth as for the cubic splines, continuity of the first derivatives at the knots
makes the transitions between points more gradual and hence more realistic.

18.6 MULTIDIMENSIONAL INTERPOLATION

The interpolation methods for one-dimensional problems can be extended to multidimen-
sional interpolation. In this section, we will describe the simplest case of two-dimensional
interpolation in Cartesian coordinates. In addition, we will describe MATLAB’s capabili-
ties for multidimensional interpolation.

18.6.1 Bilinear Interpolation

Two-dimensional interpolation deals with determining intermediate values for functions
of two variables z = f (xi , yi). As depicted in Fig. 18.9, we have values at four points:
f (x1, y1), f (x2, y1), f (x1, y2), and f (x2, y2). We want to interpolate between these points

18.6 MULTIDIMENSIONAL INTERPOLATION 449

f (x, y)

f (xi, yi)

(xi, yi)

f (x1, y2)

y2

yi

y1
x1

xi

x2

x
y

f (x2, y2)

f (x2, y1)

f (x1, y1)

FIGURE 18.9
Graphical depiction of two-dimensional bilinear interpolation where an intermediate value (filled
circle) is estimated based on four given values (open circles).

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 449

to estimate the value at an intermediate point f (xi , yi). If we use a linear function, the re-
sult is a plane connecting the points as in Fig. 18.9. Such functions are called bilinear.

A simple approach for developing the bilinear function is depicted in Fig. 18.10. First,
we can hold the y value fixed and apply one-dimensional linear interpolation in the x di-
rection. Using the Lagrange form, the result at (xi , y1) is

f (xi , y1) = xi − x2

x1 − x2
f (x1, y1) + xi − x1

x2 − x1
f (x2, y1) (18.29)

and at (xi , y2) is

f (xi , y2) = xi − x2

x1 − x2
f (x1, y2) + xi − x1

x2 − x1
f (x2, y2) (18.30)

These points can then be used to linearly interpolate along the y dimension to yield the final
result:

f (xi , yi) = yi − y2

y1 − y2
f (xi , y1) + yi − y1

y2 − y1
f (xi , y2) (18.31)

A single equation can be developed by substituting Eqs. (18.29) and (18.30) into Eq. (18.31)
to give

f (xi , yi) = xi − x2

x1 − x2

yi − y2

y1 − y2
f (x1, y1) + xi − x1

x2 − x1

yi − y2

y1 − y2
f (x2, y1)

(18.32)

+ xi − x2

x1 − x2

yi − y1

y2 − y1
f (x1, y2) + xi − x1

x2 − x1

yi − y1

y2 − y1
f (x2, y2)

450 SPLINES AND PIECEWISE INTERPOLATION

FIGURE 18.10
Two-dimensional bilinear interpolation can be implemented by first applying one-dimensional
linear interpolation along the x dimension to determine values at xi. These values can then be
used to linearly interpolate along the y dimension to yield the final result at xi, yi.

y1

x1 x2xi

y2

yi

f (x1, y1) f (x2, y1)f (xi, y1)

f(xi, yi)

f (x, y2)f (x1, y2) f (x2, y2)

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 450

EXAMPLE 18.6 Bilinear Interpolation

Problem Statement. Suppose you have measured temperatures at a number of coordi-
nates on the surface of a rectangular heated plate:

T(2, 1) = 60 T(9, 1) = 57.5

T(2, 6) = 55 T(9, 6) = 70

Use bilinear interpolation to estimate the temperature at xi = 5.25 and yi = 4.8.

Solution. Substituting these values into Eq. (18.32) gives

f (5.25, 4.8) = 5.25 − 9

2 − 9

4.8 − 6

1 − 6
60 + 5.25 − 2

9 − 2

4.8 − 6

1 − 6
57.5

+ 5.25 − 9

2 − 9

4.8 − 1

6 − 1
55 + 5.25 − 2

9 − 2

4.8 − 1

6 − 1
70 = 61.2143

18.6.2 Multidimensional Interpolation in MATLAB

MATLAB has two built-in functions for two- and three-dimensional piecewise interpola-
tion: interp2 and interp3. As you might expect from their names, these functions oper-
ate in a similar fashion to interp1 (Section 18.5.2). For example, a simple representation
of the syntax of interp2 is

zi = interp2(x, y, z, xi, yi, 'method')

where x and y = matrices containing the coordinates of the points at which the values in
the matrix z are given, zi = a matrix containing the results of the interpolation as evalu-
ated at the points in the matrices xi and yi, and method = the desired method. Note that
the methods are identical to those used by interp1; that is, linear, nearest, spline,
and cubic.

As with interp1, if the method argument is omitted, the default is linear interpolation.
For example, interp2 can be used to make the same evaluation as in Example 18.6 as

>> x=[2 9];
>> y=[1 6];
>> z=[60 57.5;55 70];
>> interp2(x,y,z,5.25,4.8)

ans =
61.2143

18.6 MULTIDIMENSIONAL INTERPOLATION 451

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 451

452 SPLINES AND PIECEWISE INTERPOLATION

18.7 CASE STUDY HEAT TRANSFER

Background. Lakes in the temperate zone can become thermally stratified during the
summer. As depicted in Fig. 18.11, warm, buoyant water near the surface overlies colder,
denser bottom water. Such stratification effectively divides the lake vertically into two lay-
ers: the epilimnion and the hypolimnion, separated by a plane called the thermocline.

Thermal stratification has great significance for environmental engineers and scientists
studying such systems. In particular, the thermocline greatly diminishes mixing between the
two layers. As a result, decomposition of organic matter can lead to severe depletion of oxy-
gen in the isolated bottom waters.

The location of the thermocline can be defined as the inflection point of the temperature-
depth curve—that is, the point at which d2T/dz2 = 0. It is also the point at which the
absolute value of the first derivative or gradient is a maximum.

The temperature gradient is important in its own right because it can be used in con-
junction with Fourier’s law to determine the heat flux across the thermocline:

J = −DρC
dT

dz
(18.33)

where J = heat flux [cal/(cm2 · s)], α = an eddy diffusion coefficient (cm2/s), ρ = density
(∼=1 g/cm3), and C = specific heat [∼= 1 cal/(g · C)].

In this case study, natural cubic splines are employed to determine the thermocline
depth and temperature gradient for Platte Lake, Michigan (Table 18.3). The latter is also
used to determine the heat flux for the case where α = 0.01 cm2/s.

TABLE 18.3 Temperature versus depth during summer for Platte Lake, Michigan.

z, m 0 2.3 4.9 9.1 13.7 18.3 22.9 27.2
T, °C 22.8 22.8 22.8 20.6 13.9 11.7 11.1 11.1

z
(m

)

0

10

20

30

0 10

Epilimnion

Thermocline

Hypolimnion

T (�C)

20 30

FIGURE 18.11
Temperature versus depth during summer for Platte Lake, Michigan.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 452

18.7 CASE STUDY continued

Solution. As just described, we want to use natural spline end conditions to perform this
analysis. Unfortunately, because it uses not-a-knot end conditions, the built-in MATLAB
spline function does not meet our needs. Further, the spline function does not return the
first and second derivatives we require for our analysis.

However, it is not difficult to develop our own M-file to implement a natural spline
and return the derivatives. Such a code is shown in Fig. 18.12. After some preliminary error
trapping, we set up and solve Eq. (18.27) for the second-order coefficients (c). Notice how

18.7 CASE STUDY 453

function [yy,dy,d2] = natspline(x,y,xx)
% natspline: natural spline with differentiation
% [yy,dy,d2] = natspline(x,y,xx): uses a natural cubic spline
% interpolation to find yy, the values of the underlying function
% y at the points in the vector xx. The vector x specifies the
% points at which the data y is given.
% input:
% x = vector of independent variables
% y = vector of dependent variables
% xx = vector of desired values of dependent variables
% output:
% yy = interpolated values at xx
% dy = first derivatives at xx
% d2 = second derivatives at xx

n = length(x);
if length(y)~=n, error('x and y must be same length'); end
if any(diff(x)<=0),error('x not strictly ascending'),end
m = length(xx);
b = zeros(n,n);
aa(1,1) = 1; aa(n,n) = 1; %set up Eq. 18.27
bb(1)=0; bb(n)=0;
for i = 2:n-1

aa(i,i-1) = h(x, i - 1);
aa(i,i) = 2 * (h(x, i - 1) + h(x, i));
aa(i,i+1) = h(x, i);
bb(i) = 3 * (fd(i + 1, i, x, y) - fd(i, i - 1, x, y));

end
c=aa\bb'; %solve for c coefficients
for i = 1:n - 1 %solve for a, b and d coefficients

a(i) = y(i);
b(i) = fd(i + 1, i, x, y) - h(x, i) / 3 * (2 * c(i) + c(i + 1));
d(i) = (c(i + 1) - c(i)) / 3 / h(x, i);

end

(continued)

FIGURE 18.12
M-file to determine intermediate values and derivatives with a natural spline. Note that the diff
function employed for error trapping is described in Section 21.7.1.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 453

18.7 CASE STUDY continued

454 SPLINES AND PIECEWISE INTERPOLATION

for i = 1:m %perform interpolations at desired values
[yy(i),dy(i),d2(i)] = SplineInterp(x, n, a, b, c, d, xx(i));

end
end
function hh = h(x, i)
hh = x(i + 1) - x(i);
end
function fdd = fd(i, j, x, y)
fdd = (y(i) - y(j)) / (x(i) - x(j));
end
function [yyy,dyy,d2y]=SplineInterp(x, n, a, b, c, d, xi)
for ii = 1:n - 1

if xi >= x(ii) - 0.000001 & xi <= x(ii + 1) + 0.000001
yyy=a(ii)+b(ii)*(xi-x(ii))+c(ii)*(xi-x(ii))^2+d(ii)...

*(xi-x(ii))^3;
dyy=b(ii)+2*c(ii)*(xi-x(ii))+3*d(ii)*(xi-x(ii))^2;
d2y=2*c(ii)+6*d(ii)*(xi-x(ii));
break

end
end
end

FIGURE 18.12 (Continued)

we use two subfunctions, h and fd, to compute the required finite differences. Once
Eq. (18.27) is set up, we solve for the c’s with back division. A loop is then employed to
generate the other coefficients (a, b, and d).

At this point, we have all we need to generate intermediate values with the cubic
equation:

f (x) = ai + bi (x − xi) + ci (x − xi)
2 + di (x − xi)

3

We can also determine the first and second derivatives by differentiating this equation
twice to give

f ′(x) = bi + 2ci (x − xi) + 3di (x − xi)
2

f ′′(x) = 2ci + 6di (x − xi)

As in Fig. 18.12, these equations can then be implemented in another subfunction,
SplineInterp, to determine the values and the derivatives at the desired intermediate
values.

Here is a script file that uses the natspline function to generate the spline and create
plots of the results:

z = [0 2.3 4.9 9.1 13.7 18.3 22.9 27.2];
T=[22.8 22.8 22.8 20.6 13.9 11.7 11.1 11.1];
zz = linspace(z(1),z(length(z)));

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 454

18.7 CASE STUDY continued

18.7 CASE STUDY 455

[TT,dT,dT2] = natspline(z,T,zz);
subplot(1,3,1),plot(T,z,'o',TT,zz)
title('(a) T'),legend('data','T')
set(gca,'YDir','reverse'),grid
subplot(1,3,2),plot(dT,zz)
title('(b) dT/dz')
set(gca,'YDir','reverse'),grid
subplot(1,3,3),plot(dT2,zz)
title('(c) d2T/dz2')
set(gca,'YDir','reverse'),grid

As in Fig. 18.13, the thermocline appears to be located at a depth of about 11.5 m. We
can use root location (zero second derivative) or optimization methods (minimum first
derivative) to refine this estimate. The result is that the thermocline is located at 11.35 m
where the gradient is −1.61 °C/m.

0
(a) T

5

10

15

20

25

30
10 20 30

data

T

0
(b) dT/dz

5

10

15

20

25

30
–2 0 2

0
(c) d2T/dz2

5

10

15

20

25

30
–0.5 0 0.5

FIGURE 18.13
Plots of (a) temperature, (b) gradient, and (c) second derivative versus depth (m) generated with
the cubic spline program. The thermocline is located at the inflection point of the temperature-
depth curve.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 455

18.7 CASE STUDY continued

The gradient can be used to compute the heat flux across the thermocline with
Eq. (18.33):

J = −0.01
cm2

s
× 1

g

cm3
× 1

cal

g · ◦C
×

(
−1.61

◦C

m

)
× 1 m

100 cm
× 86,400 s

d
= 13.9

cal

cm2 · d

The foregoing analysis demonstrates how spline interpolation can be used for engi-
neering and scientific problem solving. However, it also is an example of numerical differ-
entiation. As such, it illustrates how numerical approaches from different areas can be used
in tandem for problem solving. We will be describing the topic of numerical differentiation
in detail in Chap. 21.

456 SPLINES AND PIECEWISE INTERPOLATION

PROBLEMS

18.1 Given the data

x 1 2 2.5 3 4 5
f (x) 1 5 7 8 2 1

Fit these data with (a) a cubic spline with natural end condi-
tions, (b) a cubic spline with not-a-knot end conditions, and
(c) piecewise cubic Hermite interpolation.
18.2 A reactor is thermally stratified as in the following
table:

Depth, m 0 0.5 1 1.5 2 2.5 3
Temperature, �C 70 70 55 22 13 10 10

Based on these temperatures, the tank can be idealized as
two zones separated by a strong temperature gradient or
thermocline. The depth of the thermocline can be defined
as the inflection point of the temperature-depth curve—that
is, the point at which d2T/dz2 = 0. At this depth, the heat
flux from the surface to the bottom layer can be computed
with Fourier’s law:

J = −k
dT

dz

Use a clamped cubic spline fit with zero end derivatives to
determine the thermocline depth. If k = 0.01 cal/ (s · cm · °C)
compute the flux across this interface.
18.3 The following is the built-in humps function that
MATLAB uses to demonstrate some of its numerical
capabilities:

f (x) = 1

(x − 0.3)2 + 0.01
+ 1

(x − 0.9)2 + 0.04
− 6

The humps function exhibits both flat and steep regions over
a relatively short x range. Here are some values that have
been generated at intervals of 0.1 over the range from x = 0
to 1:

x 0 0.1 0.2 0.3 0.4 0.5
f (x) 5.176 15.471 45.887 96.500 47.448 19.000

x 0.6 0.7 0.8 0.9 1
f (x) 11.692 12.382 17.846 21.703 16.000

Fit these data with a (a) cubic spline with not-a-knot end
conditions and (b) piecewise cubic Hermite interpolation. In
both cases, create a plot comparing the fit with the exact
humps function.
18.4 Develop a plot of a cubic spline fit of the following
data with (a) natural end conditions and (b) not-a-knot end

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 456

conditions. In addition, develop a plot using (c) piecewise
cubic Hermite interpolation.

x 0 100 200 400
f (x) 0 0.82436 1.00000 0.73576

x 600 800 1000
f (x) 0.40601 0.19915 0.09158

In each case, compare your plot with the following equation
which was used to generate the data:

f (x) = x

200
e−x/200+1

18.5 The following data are sampled from the step function
depicted in Fig. 18.1:

x −1 −0.6 −0.2 0.2 0.6 1
f (x) 0 0 0 1 1 1

Fit these data with a (a) cubic spline with not-a-knot end con-
ditions, (b) cubic spline with zero-slope clamped end condi-
tions, and (c) piecewise cubic Hermite interpolation. In each
case, create a plot comparing the fit with the step function.
18.6 Develop an M-file to compute a cubic spline fit with
natural end conditions. Test your code by using it to dupli-
cate Example 18.3.
18.7 The following data were generated with the fifth-
order polynomial: f(x) = 0.0185x5 − 0.444x4 + 3.9125x3 −
15.456x2 + 27.069x − 14.1:

x 1 3 5 6 7 9
f (x) 1.000 2.172 4.220 5.430 4.912 9.120

(a) Fit these data with a cubic spline with not-a-knot end
conditions. Create a plot comparing the fit with the function.
(b) Repeat (a) but use clamped end conditions where the end
slopes are set at the exact values as determined by differen-
tiating the function.
18.8 Bessel functions often arise in advanced engineering
and scientific analyses such as the study of electric fields.
These functions are usually not amenable to straightforward
evaluation and, therefore, are often compiled in standard
mathematical tables. For example,

x 1.8 2 2.2 2.4 2.6
J1(x) 0.5815 0.5767 0.556 0.5202 0.4708

Estimate J1(2.1), (a) using an interpolating polynomial and
(b) using cubic splines. Note that the true value is 0.5683.
18.9 The following data define the sea-level concentra-
tion of dissolved oxygen for fresh water as a function of
temperature:

T, �C 0 8 16 24 32 40
o, mg/L 14.621 11.843 9.870 8.418 7.305 6.413

Use MATLAB to fit the data with (a) piecewise linear inter-
polation, (b) a fifth-order polynomial, and (c) a spline. Dis-
play the results graphically and use each approach to estimate
o(27). Note that the exact result is 7.986 mg/L.
18.10 (a) Use MATLAB to fit a cubic spline to the follow-
ing data to determine y at x = 1.5:

x 0 2 4 7 10 12
y 20 20 12 7 6 6

(b) Repeat (a), but with zero first derivatives at the end
knots.
18.11 Runge’s function is written as

f (x) = 1

1 + 25x2

Generate five equidistantly spaced values of this function
over the interval: [�1, 1]. Fit these data with (a) a fourth-
order polynomial, (b) a linear spline, and (c) a cubic spline.
Present your results graphically.
18.12 Use MATLAB to generate eight points from the
function

f (t) = sin2 t

from t = 0 to 2π . Fit these data using (a) cubic spline with
not-a-knot end conditions, (b) cubic spline with derivative
end conditions equal to the exact values calculated with dif-
ferentiation, and (c) piecewise cubic hermite interpolation.
Develop plots of each fit as well as plots of the absolute error
(Et = approximation − true) for each.
18.13 The drag coefficient for spheres such as sporting balls
is known to vary as a function of the Reynolds number Re, a
dimensionless number that gives a measure of the ratio of
inertial forces to viscous forces:

Re = ρVD

μ

where ρ = the fluid’s density (kg/m3), V = its velocity (m/s),
D = diameter (m), and μ = dynamic viscosity (N · s/m2).

PROBLEMS 457

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 457

Although the relationship of drag to the Reynolds number is
sometimes available in equation form, it is frequently tabu-
lated. For example, the following table provides values for a
smooth spherical ball:

Re (×10−4) 2 5.8 16.8 27.2 29.9 33.9

CD 0.52 0.52 0.52 0.5 0.49 0.44

Re (×10−4) 36.3 40 46 60 100 200 400

CD 0.18 0.074 0.067 0.08 0.12 0.16 0.19

(a) Develop a MATLAB function that employs the spline
function to return a value of CD as a function of
the Reynolds number. The first line of the function
should be

function CDout = Drag(ReCD,ReIn)

where ReCD = a 2-row matrix containing the table, ReIn =
the Reynolds number at which you want to estimate the
drag, and CDout = the corresponding drag coefficient.

458 SPLINES AND PIECEWISE INTERPOLATION

(b) Write a script that uses the function developed in part
(a) to generate a labeled plot of the drag force versus
velocity (recall Sec. 1.4). Use the following parameter val-
ues for the script: D = 22 cm, ρ = 1.3 kg/m3 , and
μ = 1.78 × 10−5 Pa · s. Employ a range of velocities from 4
to 40 m/s for your plot.
18.14 The following function describes the temperature dis-
tribution on a rectangular plate for the range −2 ≤ x ≤ 0
and 0 ≤ y ≤ 3

T = 2 + x − y + 2x2 + 2xy + y2

Develop a script to: (a) Generate a meshplot of this function
using the MATLAB function surfc. Employ the linspace
function with default spacing (i.e., 100 interior points) to
generate the x and y values. (b) Use the MATLAB function
interp2 with the default interpolation option ('linear')
to compute the temperature at x = –1.63 and y = 1.627.
Determine the percent relative error of your result. (c) Re-
peat (b), but with 'spline'. Note: for parts (b) and (c), em-
ploy the linspace function with 9 interior points.

cha01102_ch18_429-458.qxd 12/17/10 8:19 AM Page 458

459

PART FIVE

Integration and
Differentiation

5.1 OVERVIEW

In high school or during your first year of college, you were introduced to differential and
integral calculus. There you learned techniques to obtain analytical or exact derivatives and
integrals.

Mathematically, the derivative represents the rate of change of a dependent variable
with respect to an independent variable. For example, if we are given a function y(t) that
specifies an object’s position as a function of time, differentiation provides a means to de-
termine its velocity, as in:

v(t) = d

dt
y(t)

As in Fig. PT5.1a, the derivative can be visualized as the slope of a function.
Integration is the inverse of differentiation. Just as

differentiation uses differences to quantify an instanta-
neous process, integration involves summing instanta-
neous information to give a total result over an interval.
Thus, if we are provided with velocity as a function of
time, integration can be used to determine the distance
traveled:

y(t) =
∫ t

0
v(t) dt

As in Fig. PT5.1b, for functions lying above the abscissa,
the integral can be visualized as the area under the curve
of v(t) from 0 to t. Consequently, just as a derivative can
be thought of as a slope, an integral can be envisaged as a
summation.

Because of the close relationship between differentia-
tion and integration, we have opted to devote this part of
the book to both processes. Among other things, this will
provide the opportunity to highlight their similarities and

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 459

differences from a numerical perspective. In addition, the material will have relevance to the
next part of the book where we will cover differential equations.

Although differentiation is taught before integration in calculus, we reverse their order
in the following chapters. We do this for several reasons. First, we have already introduced
you to the basics of numerical differentiation in Chap. 4. Second, in part because it is much
less sensitive to roundoff errors, integration represents a more highly developed area of
numerical methods. Finally, although numerical differentiation is not as widely employed,
it does have great significance for the solution of differential equations. Hence, it makes
sense to cover it as the last topic prior to describing differential equations in Part Six.

5.2 PART ORGANIZATION

Chapter 19 is devoted to the most common approaches for numerical integration—the
Newton-Cotes formulas. These relationships are based on replacing a complicated function
or tabulated data with a simple polynomial that is easy to integrate. Three of the most
widely used Newton-Cotes formulas are discussed in detail: the trapezoidal rule, Simpson’s
1/3 rule, and Simpson’s 3/8 rule. All these formulas are designed for cases where the data
to be integrated are evenly spaced. In addition, we also include a discussion of numerical
integration of unequally spaced data. This is a very important topic because many real-
world applications deal with data that are in this form.

460 PART 5 INTEGRATION AND DIFFERENTIATION

y

0
0

200

400

8 124 t

v

0
0

2

4

8 124 t

v

0
0

2

4

8 124

(a)

t

y

0
0

200

400

8 124

(b)

t

FIGURE PT5.1
The contrast between (a) differentiation and (b) integration.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 460

All the above material relates to closed integration, where the function values at the
ends of the limits of integration are known. At the end of Chap. 19, we present open inte-
gration formulas, where the integration limits extend beyond the range of the known data.
Although they are not commonly used for definite integration, open integration formulas
are presented here because they are utilized in the solution of ordinary differential equa-
tions in Part Six.

The formulations covered in Chap. 19 can be employed to analyze both tabulated data
and equations. Chapter 20 deals with two techniques that are expressly designed to integrate
equations and functions: Romberg integration and Gauss quadrature. Computer algorithms
are provided for both of these methods. In addition, adaptive integration is discussed.

In Chap. 21, we present additional information on numerical differentiation to supple-
ment the introductory material from Chap. 4. Topics include high-accuracy finite-difference
formulas, Richardson extrapolation, and the differentiation of unequally spaced data. The
effect of errors on both numerical differentiation and integration is also discussed.

5.2 PART ORGANIZATION 461

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 461

462

Numerical Integration
Formulas

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to numerical integration.
Specific objectives and topics covered are

• Recognizing that Newton-Cotes integration formulas are based on the strategy of
replacing a complicated function or tabulated data with a polynomial that is easy
to integrate.

• Knowing how to implement the following single application Newton-Cotes
formulas:

Trapezoidal rule
Simpson’s 1/3 rule
Simpson’s 3/8 rule

• Knowing how to implement the following composite Newton-Cotes formulas:
Trapezoidal rule
Simpson’s 1/3 rule

• Recognizing that even-segment–odd-point formulas like Simpson’s 1/3 rule
achieve higher than expected accuracy.

• Knowing how to use the trapezoidal rule to integrate unequally spaced data.
• Understanding the difference between open and closed integration formulas.

19

YOU’VE GOT A PROBLEM

R ecall that the velocity of a free-falling bungee jumper as a function of time can be
computed as

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)
(19.1)

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 462

Suppose that we would like to know the vertical distance z the jumper has fallen after a
certain time t. This distance can be evaluated by integration:

z(t) =
∫ t

0
v(t) dt (19.2)

Substituting Eq. (19.1) into Eq. (19.2) gives

z(t) =
∫ t

0

√
gm

cd
tanh

(√
gcd

m
t

)
dt (19.3)

Thus, integration provides the means to determine the distance from the velocity. Calculus
can be used to solve Eq. (19.3) for

z(t) = m

cd
ln

[
cosh

(√
gcd

m
t

)]
(19.4)

Although a closed form solution can be developed for this case, there are other func-
tions that cannot be integrated analytically. Further, suppose that there was some way to
measure the jumper’s velocity at various times during the fall. These velocities along with
their associated times could be assembled as a table of discrete values. In this situation, it
would also be possible to integrate the discrete data to determine the distance. In both these
instances, numerical integration methods are available to obtain solutions. Chapters 19 and
20 will introduce you to some of these methods.

19.1 INTRODUCTION AND BACKGROUND

19.1.1 What Is Integration?

According to the dictionary definition, to integrate means “to bring together, as parts, into
a whole; to unite; to indicate the total amount. . . .” Mathematically, definite integration is
represented by

I =
∫ b

a
f (x) dx (19.5)

which stands for the integral of the function f (x) with respect to the independent variable
x, evaluated between the limits x = a to x = b.

As suggested by the dictionary definition, the “meaning” of Eq. (19.5) is the total
value, or summation, of f (x) dx over the range x = a to b. In fact, the symbol

∫
is actu-

ally a stylized capital S that is intended to signify the close connection between integration
and summation.

Figure 19.1 represents a graphical manifestation of the concept. For functions lying
above the x axis, the integral expressed by Eq. (19.5) corresponds to the area under the
curve of f (x) between x = a and b.

Numerical integration is sometimes referred to as quadrature. This is an archaic term
that originally meant the construction of a square having the same area as some curvilinear
figure. Today, the term quadrature is generally taken to be synonymous with numerical
definite integration.

19.1 INTRODUCTION AND BACKGROUND 463

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 463

464 NUMERICAL INTEGRATION FORMULAS

19.1.2 Integration in Engineering and Science

Integration has so many engineering and scientific applications that you were required to
take integral calculus in your first year at college. Many specific examples of such appli-
cations could be given in all fields of engineering and science. A number of examples re-
late directly to the idea of the integral as the area under a curve. Figure 19.2 depicts a few
cases where integration is used for this purpose.

Other common applications relate to the analogy between integration and summation.
For example, a common application is to determine the mean of a continuous function.
Recall that the mean of n discrete data points can be calculated by [Eq. (14.2)].

Mean =

n∑
i=1

yi

n
(19.6)

where yi are individual measurements. The determination of the mean of discrete points is
depicted in Fig. 19.3a.

In contrast, suppose that y is a continuous function of an independent variable x, as
depicted in Fig. 19.3b. For this case, there are an infinite number of values between a and
b. Just as Eq. (19.6) can be applied to determine the mean of the discrete readings,
you might also be interested in computing the mean or average of the continuous function
y = f (x) for the interval from a to b. Integration is used for this purpose, as specified by

Mean =
∫ b

a f (x) dx

b − a
(19.7)

This formula has hundreds of engineering and scientific applications. For example, it is
used to calculate the center of gravity of irregular objects in mechanical and civil engi-
neering and to determine the root-mean-square current in electrical engineering.

f (x)

a b x

FIGURE 19.1
Graphical representation of the integral of f (x) between the limits x = a to b. The integral is
equivalent to the area under the curve.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 464

19.1 INTRODUCTION AND BACKGROUND 465

(a) (b) (c)

FIGURE 19.2
Examples of how integration is used to evaluate areas in engineering and scientific applications. (a) A surveyor might
need to know the area of a field bounded by a meandering stream and two roads. (b) A hydrologist might need to
know the cross-sectional area of a river. (c) A structural engineer might need to determine the net force due to a
nonuniform wind blowing against the side of a skyscraper.

y

0 4 62

Mean

3 51

ba

(a)

i

y � f (x)

Mean

(b)

x

FIGURE 19.3
An illustration of the mean for (a) discrete and (b) continuous data.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 465

Integrals are also employed by engineers and scientists to evaluate the total amount or
quantity of a given physical variable. The integral may be evaluated over a line, an area, or
a volume. For example, the total mass of chemical contained in a reactor is given as the
product of the concentration of chemical and the reactor volume, or

Mass = concentration × volume

where concentration has units of mass per volume. However, suppose that concentration
varies from location to location within the reactor. In this case, it is necessary to sum the
products of local concentrations ci and corresponding elemental volumes �Vi :

Mass =
n∑

i=1

ci�Vi

where n is the number of discrete volumes. For the continuous case, where c(x, y, z) is a
known function and x, y, and z are independent variables designating position in Cartesian
coordinates, integration can be used for the same purpose:

Mass =
∫∫∫

c(x, y, z) dx dy dz

or

Mass =
∫∫∫

V

c(V) dV

which is referred to as a volume integral. Notice the strong analogy between summation
and integration.

Similar examples could be given in other fields of engineering and science. For exam-
ple, the total rate of energy transfer across a plane where the flux (in calories per square
centimeter per second) is a function of position is given by

Flux =
∫∫

A

 ux d A

which is referred to as an areal integral, where A = area.
These are just a few of the applications of integration that you might face regularly in

the pursuit of your profession. When the functions to be analyzed are simple, you will nor-
mally choose to evaluate them analytically. However, it is often difficult or impossible
when the function is complicated, as is typically the case in more realistic examples. In ad-
dition, the underlying function is often unknown and defined only by measurement at dis-
crete points. For both these cases, you must have the ability to obtain approximate values
for integrals using numerical techniques as described next.

19.2 NEWTON-COTES FORMULAS

The Newton-Cotes formulas are the most common numerical integration schemes. They
are based on the strategy of replacing a complicated function or tabulated data with a poly-
nomial that is easy to integrate:

I =
∫ b

a
f (x) dx ∼=

∫ b

a
fn(x) dx (19.8)

466 NUMERICAL INTEGRATION FORMULAS

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 466

where fn(x) = a polynomial of the form

fn(x) = a0 + a1x + · · · + an−1xn−1 + an xn (19.9)

where n is the order of the polynomial. For example, in Fig. 19.4a, a first-order polynomial
(a straight line) is used as an approximation. In Fig. 19.4b, a parabola is employed for the
same purpose.

The integral can also be approximated using a series of polynomials applied piecewise
to the function or data over segments of constant length. For example, in Fig. 19.5, three

19.2 NEWTON-COTES FORMULAS 467

f (x)

a b
(a) (b)

x

f (x)

a b x

f (x)

a b x

FIGURE 19.4
The approximation of an integral by the area under (a) a straight line and (b) a parabola.

FIGURE 19.5
The approximation of an integral by the area under three straight-line segments.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 467

straight-line segments are used to approximate the integral. Higher-order polynomials can
be utilized for the same purpose.

Closed and open forms of the Newton-Cotes formulas are available. The closed forms
are those where the data points at the beginning and end of the limits of integration are
known (Fig. 19.6a). The open forms have integration limits that extend beyond the range
of the data (Fig. 19.6b). This chapter emphasizes the closed forms. However, material on
open Newton-Cotes formulas is briefly introduced in Section 19.7.

19.3 THE TRAPEZOIDAL RULE

The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It corre-
sponds to the case where the polynomial in Eq. (19.8) is first-order:

I =
∫ b

a

[
f (a) + f (b) − f (a)

b − a
(x − a)

]
dx (19.10)

The result of the integration is

I = (b − a)
f (a) + f (b)

2
(19.11)

which is called the trapezoidal rule.
Geometrically, the trapezoidal rule is equivalent to approximating the area of the

trapezoid under the straight line connecting f (a) and f (b) in Fig. 19.7. Recall from geom-
etry that the formula for computing the area of a trapezoid is the height times the average
of the bases. In our case, the concept is the same but the trapezoid is on its side. Therefore,
the integral estimate can be represented as

I = width × average height (19.12)

468 NUMERICAL INTEGRATION FORMULAS

f (x)

a b
(a)

x

f (x)

a b
(b)

x

FIGURE 19.6
The difference between (a) closed and (b) open integration formulas.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 468

or

I = (b − a) × average height (19.13)

where, for the trapezoidal rule, the average height is the average of the function values at
the end points, or [f (a) + f (b)]/2.

All the Newton-Cotes closed formulas can be expressed in the general format of
Eq. (19.13). That is, they differ only with respect to the formulation of the average height.

19.3.1 Error of the Trapezoidal Rule

When we employ the integral under a straight-line segment to approximate the integral
under a curve, we obviously can incur an error that may be substantial (Fig. 19.8). An esti-
mate for the local truncation error of a single application of the trapezoidal rule is

Et = − 1

12
f ′′(ξ)(b − a)3 (19.14)

where ξ lies somewhere in the interval from a to b. Equation (19.14) indicates that if the
function being integrated is linear, the trapezoidal rule will be exact because the second de-
rivative of a straight line is zero. Otherwise, for functions with second- and higher-order
derivatives (i.e., with curvature), some error can occur.

EXAMPLE 19.1 Single Application of the Trapezoidal Rule

Problem Statement. Use Eq. (19.11) to numerically integrate

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Note that the exact value of the integral can be determined analyt-
ically to be 1.640533.

19.3 THE TRAPEZOIDAL RULE 469

f (x)

f (a)

f (b)

a b x

FIGURE 19.7
Graphical depiction of the trapezoidal rule.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 469

Solution. The function values f (0) = 0.2 and f (0.8) = 0.232 can be substituted into
Eq. (19.11) to yield

I = (0.8 − 0)
0.2 + 0.232

2
= 0.1728

which represents an error of Et = 1.640533 − 0.1728 = 1.467733, which corresponds to
a percent relative error of εt = 89.5%. The reason for this large error is evident from the
graphical depiction in Fig. 19.8. Notice that the area under the straight line neglects a sig-
nificant portion of the integral lying above the line.

In actual situations, we would have no foreknowledge of the true value. Therefore,
an approximate error estimate is required. To obtain this estimate, the function’s second
derivative over the interval can be computed by differentiating the original function twice
to give

f ′′(x) = −400 + 4,050x − 10,800x2 + 8,000x3

The average value of the second derivative can be computed as [Eq. (19.7)]

f̄ ′′(x) =
∫ 0.8

0 (−400 + 4,050x − 10,800x2 + 8,000x3) dx

0.8 − 0
= −60

which can be substituted into Eq. (19.14) to yield

Ea = − 1

12
(−60)(0.8)3 = 2.56

470 NUMERICAL INTEGRATION FORMULAS

f (x)

0.80

2.0

x

Error

Integral estimate

FIGURE 19.8
Graphical depiction of the use of a single application of the trapezoidal rule to approximate
the integral of f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5 from x = 0 to 0.8.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 470

which is of the same order of magnitude and sign as the true error. A discrepancy does exist,
however, because of the fact that for an interval of this size, the average second derivative
is not necessarily an accurate approximation of f ′′(ξ). Thus, we denote that the error is
approximate by using the notation Ea, rather than exact by using Et .

19.3.2 The Composite Trapezoidal Rule

One way to improve the accuracy of the trapezoidal rule is to divide the integration interval
from a to b into a number of segments and apply the method to each segment (Fig. 19.9).
The areas of individual segments can then be added to yield the integral for the entire
interval. The resulting equations are called composite, or multiple-segment, integration
formulas.

Figure 19.9 shows the general format and nomenclature we will use to characterize
composite integrals. There are n + 1 equally spaced base points (x0, x1, x2, . . . , xn). Con-
sequently, there are n segments of equal width:

h = b − a

n

(19.15)

If a and b are designated as x0 and xn, respectively, the total integral can be repre-
sented as

I =
∫ x1

x0

f (x) dx +
∫ x2

x1

f (x) dx + · · · +
∫ xn

xn−1

f (x) dx

19.3 THE TRAPEZOIDAL RULE 471

f (x)

x0

x0 � a xn � b

x1 x2 x3 x4 x5

b � a
nh �

FIGURE 19.9
Composite trapezoidal rule.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 471

Substituting the trapezoidal rule for each integral yields

I = h
f (x0) + f (x1)

2
+ h

f (x1) + f (x2)

2
+ · · · + h

f (xn−1) + f (xn)

2
(19.16)

or, grouping terms:

I = h

2

[
f (x0) + 2

n−1∑
i=1

f (xi) + f (xn)

]
(19.17)

or, using Eq. (19.15) to express Eq. (19.17) in the general form of Eq. (19.13):

I = (b − a)︸ ︷︷ ︸
Width

f (x0) + 2
n−1∑
i=1

f (xi) + f (xn)

2n︸ ︷︷ ︸
Average height

(19.18)

Because the summation of the coefficients of f (x) in the numerator divided by 2n is equal
to 1, the average height represents a weighted average of the function values. According to
Eq. (19.18), the interior points are given twice the weight of the two end points f (x0) and
f (xn).

An error for the composite trapezoidal rule can be obtained by summing the individ-
ual errors for each segment to give

Et = − (b − a)3

12n3

n∑
i=1

f ′′(ξi) (19.19)

where f ′′(ξi) is the second derivative at a point ξi located in segment i. This result can be
simplified by estimating the mean or average value of the second derivative for the entire
interval as

f̄ ′′ ∼=

n∑
i=1

f ′′(ξi)

n
(19.20)

Therefore
∑

f ′′(ξi) ∼= n f̄ ′′ and Eq. (19.19) can be rewritten as

Ea = − (b − a)3

12n2
f̄ ′′ (19.21)

Thus, if the number of segments is doubled, the truncation error will be quartered. Note
that Eq. (19.21) is an approximate error because of the approximate nature of Eq. (19.20).

EXAMPLE 19.2 Composite Application of the Trapezoidal Rule

Problem Statement. Use the two-segment trapezoidal rule to estimate the integral of

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Employ Eq. (19.21) to estimate the error. Recall that the exact value
of the integral is 1.640533.

472 NUMERICAL INTEGRATION FORMULAS

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 472

Solution. For n = 2 (h = 0.4):

f (0) = 0.2 f (0.4) = 2.456 f (0.8) = 0.232

I = 0.8
0.2 + 2(2.456) + 0.232

4
= 1.0688

Et = 1.640533 − 1.0688 = 0.57173 εt = 34.9%

Ea = − 0.83

12(2)2
(−60) = 0.64

where −60 is the average second derivative determined previously in Example 19.1.

The results of the previous example, along with three- through ten-segment applica-
tions of the trapezoidal rule, are summarized in Table 19.1. Notice how the error decreases
as the number of segments increases. However, also notice that the rate of decrease is grad-
ual. This is because the error is inversely related to the square of n [Eq. (19.21)]. Therefore,
doubling the number of segments quarters the error. In subsequent sections we develop
higher-order formulas that are more accurate and that converge more quickly on the true in-
tegral as the segments are increased. However, before investigating these formulas, we will
first discuss how MATLAB can be used to implement the trapezoidal rule.

19.3.3 MATLAB M-file: trap

A simple algorithm to implement the composite trapezoidal rule can be written as in
Fig. 19.10. The function to be integrated is passed into the M-file along with the limits of
integration and the number of segments. A loop is then employed to generate the integral
following Eq. (19.18).

19.3 THE TRAPEZOIDAL RULE 473

TABLE 19.1 Results for the composite trapezoidal rule to
estimate the integral of f (x) = 0.2 + 25x −
200x2 + 675x3 − 900x4 + 400x5 from
x = 0 to 0.8. The exact value is 1.640533.

n h I εt (%)

2 0.4 1.0688 34.9
3 0.2667 1.3695 16.5
4 0.2 1.4848 9.5
5 0.16 1.5399 6.1
6 0.1333 1.5703 4.3
7 0.1143 1.5887 3.2
8 0.1 1.6008 2.4
9 0.0889 1.6091 1.9

10 0.08 1.6150 1.6

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 473

An application of the M-file can be developed to determine the distance fallen by
the free-falling bungee jumper in the first 3 s by evaluating the integral of Eq. (19.3). For
this example, assume the following parameter values: g = 9.81 m/s2, m = 68.1 kg, and
cd = 0.25 kg/m. Note that the exact value of the integral can be computed with Eq. (19.4)
as 41.94805.

The function to be integrated can be developed as an M-file or with an anonymous
function,

>> v=@(t) sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t)

v =
@(t) sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t)

First, let’s evaluate the integral with a crude five-segment approximation:

format long
>> trap(v,0,3,5)

ans =
41.86992959072735

474 NUMERICAL INTEGRATION FORMULAS

function I = trap(func,a,b,n,varargin)
% trap: composite trapezoidal rule quadrature
% I = trap(func,a,b,n,pl,p2,...):
% composite trapezoidal rule
% input:
% func = name of function to be integrated
% a, b = integration limits
% n = number of segments (default = 100)
% pl,p2,... = additional parameters used by func
% output:
% I = integral estimate

if nargin<3,error('at least 3 input arguments required'),end
if ~(b>a),error('upper bound must be greater than lower'),end
if nargin<4|isempty(n),n=100;end
x = a; h = (b - a)/n;
s=func(a,varargin{:});
for i = 1 : n-1

x = x + h;
s = s + 2*func(x,varargin{:});

end
s = s + func(b,varargin{:});
I = (b - a) * s/(2*n);

FIGURE 19.10
M-file to implement the composite trapezoidal rule.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 474

As would be expected, this result has a relatively high true error of 18.6%. To obtain a more
accurate result, we can use a very fine approximation based on 10,000 segments:

>> trap(v,0,3,10000)

x =
41.94804999917528

which is very close to the true value.

19.4 SIMPSON’S RULES

Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a
more accurate estimate of an integral is to use higher-order polynomials to connect the
points. For example, if there is an extra point midway between f (a) and f (b), the three
points can be connected with a parabola (Fig. 19.11a). If there are two points equally
spaced between f (a) and f (b), the four points can be connected with a third-order poly-
nomial (Fig. 19.11b). The formulas that result from taking the integrals under these poly-
nomials are called Simpson’s rules.

19.4.1 Simpson’s 1/3 Rule

Simpson’s 1/3 rule corresponds to the case where the polynomial in Eq. (19.8) is second-
order:

I =
∫ x2

x0

[
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0) + (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+ (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2)

]
dx

19.4 SIMPSON’S RULES 475

f (x)

(a)
x

f (x)

(b)
x

FIGURE 19.11
(a) Graphical depiction of Simpson’s 1/3 rule: It consists of taking the area under a parabola
connecting three points. (b) Graphical depiction of Simpson’s 3/8 rule: It consists of taking the
area under a cubic equation connecting four points.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 475

where a and b are designated as x0 and x2, respectively. The result of the integration is

I = h

3
[f (x0) + 4 f (x1) + f (x2)] (19.22)

where, for this case, h = (b − a)/2. This equation is known as Simpson’s 1/3 rule. The
label “1/3” stems from the fact that h is divided by 3 in Eq. (19.22). Simpson’s 1/3 rule can
also be expressed using the format of Eq. (19.13):

I = (b − a)
f (x0) + 4 f (x1) + f (x2)

6
(19.23)

where a = x0, b = x2, and x1 = the point midway between a and b, which is given by
(a + b)/2. Notice that, according to Eq. (19.23), the middle point is weighted by two-
thirds and the two end points by one-sixth.

It can be shown that a single-segment application of Simpson’s 1/3 rule has a trunca-
tion error of

Et = − 1

90
h5 f (4)(ξ)

or, because h = (b − a)/2:

Et = − (b − a)5

2880
f (4)(ξ) (19.24)

where ξ lies somewhere in the interval from a to b. Thus, Simpson’s 1/3 rule is more ac-
curate than the trapezoidal rule. However, comparison with Eq. (19.14) indicates that it is
more accurate than expected. Rather than being proportional to the third derivative, the
error is proportional to the fourth derivative. Consequently, Simpson’s 1/3 rule is third-
order accurate even though it is based on only three points. In other words, it yields exact
results for cubic polynomials even though it is derived from a parabola!

EXAMPLE 19.3 Single Application of Simpson’s 1/3 Rule

Problem Statement. Use Eq. (19.23) to integrate

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Employ Eq. (19.24) to estimate the error. Recall that the exact in-
tegral is 1.640533.

Solution. n = 2(h = 0.4):

f (0) = 0.2 f (0.4) = 2.456 f (0.8) = 0.232

I = 0.8
0.2 + 4(2.456) + 0.232

6
= 1.367467

Et = 1.640533 − 1.367467 = 0.2730667 εt = 16.6%

476 NUMERICAL INTEGRATION FORMULAS

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 476

which is approximately five times more accurate than for a single application of the trape-
zoidal rule (Example 19.1). The approximate error can be estimated as

Ea = − 0.85

2880
(−2400) = 0.2730667

where −2400 is the average fourth derivative for the interval. As was the case in Exam-
ple 19.1, the error is approximate (Ea) because the average fourth derivative is generally
not an exact estimate of f (4)(ξ). However, because this case deals with a fifth-order poly-
nomial, the result matches exactly.

19.4.2 The Composite Simpson’s 1/3 Rule

Just as with the trapezoidal rule, Simpson’s rule can be improved by dividing the integra-
tion interval into a number of segments of equal width (Fig. 19.12). The total integral can
be represented as

I =
∫ x2

x0

f (x) dx +
∫ x4

x2

f (x) dx + · · · +
∫ xn

xn−2

f (x) dx (19.25)

19.4 SIMPSON’S RULES 477

f (x)

xa b

1 4 1

1 4 11 4 1

2

1
44

2

1 4 1

4

2
42

1 4 1

4

1

FIGURE 19.12
Composite Simpson’s 1/3 rule. The relative weights are depicted above the function values.
Note that the method can be employed only if the number of segments is even.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 477

Substituting Simpson’s 1/3 rule for each integral yields

I = 2h
f (x0) + 4 f (x1) + f (x2)

6
+ 2h

f (x2) + 4 f (x3) + f (x4)

6

+ · · · + 2h
f (xn−2) + 4 f (xn−1) + f (xn)

6

or, grouping terms and using Eq. (19.15):

I = (b − a)

f (x0) + 4
n−1∑

i=1,3,5
f (xi) + 2

n−2∑
j=2,4,6

f (xj) + f (xn)

3n
(19.26)

Notice that, as illustrated in Fig. 19.12, an even number of segments must be utilized
to implement the method. In addition, the coefficients “4” and “2” in Eq. (19.26) might
seem peculiar at first glance. However, they follow naturally from Simpson’s 1/3 rule. As
illustrated in Fig. 19.12, the odd points represent the middle term for each application and
hence carry the weight of four from Eq. (19.23). The even points are common to adjacent
applications and hence are counted twice.

An error estimate for the composite Simpson’s rule is obtained in the same fashion as
for the trapezoidal rule by summing the individual errors for the segments and averaging
the derivative to yield

Ea = − (b − a)5

180n4
f̄ (4) (19.27)

where f (4) is the average fourth derivative for the interval.

EXAMPLE 19.4 Composite Simpson’s 1/3 Rule

Problem Statement. Use Eq. (19.26) with n = 4 to estimate the integral of

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Employ Eq. (19.27) to estimate the error. Recall that the exact
integral is 1.640533.

Solution. n = 4(h = 0.2):

f (0) = 0.2 f (0.2) = 1.288

f (0.4) = 2.456 f (0.6) = 3.464

f (0.8) = 0.232

From Eq. (19.26):

I = 0.8
0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232

12
= 1.623467

Et = 1.640533 − 1.623467 = 0.017067 εt = 1.04%

478 NUMERICAL INTEGRATION FORMULAS

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 478

The estimated error (Eq. 19.27) is

Ea = − (0.8)5

180(4)4
(−2400) = 0.017067

which is exact (as was also the case for Example 19.3).

As in Example 19.4, the composite version of Simpson’s 1/3 rule is considered supe-
rior to the trapezoidal rule for most applications. However, as mentioned previously, it is
limited to cases where the values are equispaced. Further, it is limited to situations where
there are an even number of segments and an odd number of points. Consequently, as dis-
cussed in Section 19.4.3, an odd-segment–even-point formula known as Simpson’s 3/8
rule can be used in conjunction with the 1/3 rule to permit evaluation of both even and odd
numbers of equispaced segments.

19.4.3 Simpson’s 3/8 Rule

In a similar manner to the derivation of the trapezoidal and Simpson’s 1/3 rule, a third-
order Lagrange polynomial can be fit to four points and integrated to yield

I = 3h

8
[f (x0) + 3 f (x1) + 3 f (x2) + f (x3)]

where h = (b − a)/3. This equation is known as Simpsons 3/8 rule because h is multiplied
by 3/8. It is the third Newton-Cotes closed integration formula. The 3/8 rule can also be
expressed in the form of Eq. (19.13):

I = (b − a)
f (x0) + 3 f (x1) + 3 f (x2) + f (x3)

8
(19.28)

Thus, the two interior points are given weights of three-eighths, whereas the end points are
weighted with one-eighth. Simpson’s 3/8 rule has an error of

Et = − 3

80
h5 f (4)(ξ)

or, because h = (b − a)/3:

Et = − (b − a)5

6480
f (4)(ξ) (19.29)

Because the denominator of Eq. (19.29) is larger than for Eq. (19.24), the 3/8 rule is some-
what more accurate than the 1/3 rule.

Simpson’s 1/3 rule is usually the method of preference because it attains third-order
accuracy with three points rather than the four points required for the 3/8 version. How-
ever, the 3/8 rule has utility when the number of segments is odd. For instance, in Exam-
ple 19.4 we used Simpson’s rule to integrate the function for four segments. Suppose that
you desired an estimate for five segments. One option would be to use a composite version
of the trapezoidal rule as was done in Example 19.2. This may not be advisable, however,
because of the large truncation error associated with this method. An alternative would be
to apply Simpson’s 1/3 rule to the first two segments and Simpson’s 3/8 rule to the last

19.4 SIMPSON’S RULES 479

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 479

three (Fig. 19.13). In this way, we could obtain an estimate with third-order accuracy across
the entire interval.

EXAMPLE 19.5 Simpson’s 3/8 Rule

Problem Statement. (a) Use Simpson’s 3/8 rule to integrate

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. (b) Use it in conjunction with Simpson’s 1/3 rule to integrate the
same function for five segments.

Solution. (a) A single application of Simpson’s 3/8 rule requires four equally spaced
points:

f (0) = 0.2 f (0.2667) = 1.432724

f (0.5333) = 3.487177 f (0.8) = 0.232

Using Eq. (19.28):

I = 0.8
0.2 + 3(1.432724 + 3.487177) + 0.232

8
= 1.51970

480 NUMERICAL INTEGRATION FORMULAS

f (x)

x0.80.60.40.2

3/8 rule1/3 rule

0

3

2

1

0

FIGURE 19.13
Illustration of how Simpson’s 1/3 and 3/8 rules can be applied in tandem to handle multiple
applications with odd numbers of intervals.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 480

(b) The data needed for a five-segment application (h = 0.16) are

f (0) = 0.2 f (0.16) = 1.296919

f (0.32) = 1.743393 f (0.48) = 3.186015

f (0.64) = 3.181929 f (0.80) = 0.232

The integral for the first two segments is obtained using Simpson’s 1/3 rule:

I = 0.32
0.2 + 4(1.296919) + 1.743393

6
= 0.3803237

For the last three segments, the 3/8 rule can be used to obtain

I = 0.48
1.743393 + 3(3.186015 + 3.181929) + 0.232

8
= 1.264754

The total integral is computed by summing the two results:

I = 0.3803237 + 1.264754 = 1.645077

19.5 HIGHER-ORDER NEWTON-COTES FORMULAS

As noted previously, the trapezoidal rule and both of Simpson’s rules are members of a
family of integrating equations known as the Newton-Cotes closed integration formulas.
Some of the formulas are summarized in Table 19.2 along with their truncation-error
estimates.

Notice that, as was the case with Simpson’s 1/3 and 3/8 rules, the five- and six-point
formulas have the same order error. This general characteristic holds for the higher-point
formulas and leads to the result that the even-segment–odd-point formulas (e.g., 1/3 rule
and Boole’s rule) are usually the methods of preference.

19.5 HIGHER-ORDER NEWTON-COTES FORMULAS 481

TABLE 19.2 Newton-Cotes closed integration formulas. The formulas are presented in the format of Eq. (19.13)
so that the weighting of the data points to estimate the average height is apparent. The step size is
given by h = (b − a)/n.

Segments
(n) Points Name Formula Truncation Error

1 2 Trapezoidal rule (b − a)
f (x0) + f (x1)

2
−(1/12)h3 f ′′(ξ)

2 3 Simpson’s 1/3 rule (b − a)
f (x0) + 4 f (x1) + f (x2)

6
−(1/90)h5 f (4)(ξ)

3 4 Simpson’s 3/8 rule (b − a)
f (x0) + 3 f (x1) + 3 f (x2) + f (x3)

8
−(3/80)h5 f (4)(ξ)

4 5 Boole’s rule (b − a)
7 f (x0) + 32 f (x1) + 12 f (x2) + 32 f (x3) + 7 f (x4)

90
−(8/945)h7 f (6)(ξ)

5 6 (b − a)
19 f (x0) + 75 f (x1) + 50 f (x2) + 50 f (x3) + 75 f (x4) + 19 f (x5)

288
−(275/12,096)h7 f (6)(ξ)

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 481

However, it must also be stressed that, in engineering and science practice, the higher-
order (i.e., greater than four-point) formulas are not commonly used. Simpson’s rules are
sufficient for most applications. Accuracy can be improved by using the composite version.
Furthermore, when the function is known and high accuracy is required, methods such as
Romberg integration or Gauss quadrature, described in Chap. 20, offer viable and attrac-
tive alternatives.

19.6 INTEGRATION WITH UNEQUAL SEGMENTS

To this point, all formulas for numerical integration have been based on equispaced data
points. In practice, there are many situations where this assumption does not hold and we
must deal with unequal-sized segments. For example, experimentally derived data are
often of this type. For these cases, one method is to apply the trapezoidal rule to each seg-
ment and sum the results:

I = h1
f (x0) + f (x1)

2
+ h2

f (x1) + f (x2)

2
+ · · · + hn

f (xn−1) + f (xn)

2
(19.30)

where hi = the width of segment i. Note that this was the same approach used for the com-
posite trapezoidal rule. The only difference between Eqs. (19.16) and (19.30) is that the h’s
in the former are constant.

EXAMPLE 19.6 Trapezoidal Rule with Unequal Segments

Problem Statement. The information in Table 19.3 was generated using the same poly-
nomial employed in Example 19.1. Use Eq. (19.30) to determine the integral for these data.
Recall that the correct answer is 1.640533.

482 NUMERICAL INTEGRATION FORMULAS

TABLE 19.3 Data for f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5,
with unequally spaced values of x.

x f (x) x f (x)

0.00 0.200000 0.44 2.842985
0.12 1.309729 0.54 3.507297
0.22 1.305241 0.64 3.181929
0.32 1.743393 0.70 2.363000
0.36 2.074903 0.80 0.232000
0.40 2.456000

Solution. Applying Eq. (19.30) yields

I = 0.12
0.2 + 1.309729

2
+ 0.10

1.309729 + 1.305241

2

+ · · · + 0.10
2.363 + 0.232

2
= 1.594801

which represents an absolute percent relative error of εt = 2.8%.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 482

19.6.1 MATLAB M-file: trapuneq

A simple algorithm to implement the trapezoidal rule for unequally spaced data can be
written as in Fig. 19.14. Two vectors, x and y, holding the independent and dependent vari-
ables are passed into the M-file. Two error traps are included to ensure that (a) the two vec-
tors are of the same length and (b) the x’s are in ascending order.1 A loop is employed to
generate the integral. Notice that we have modified the subscripts from those of Eq. (19.30)
to account for the fact that MATLAB does not allow zero subscripts in arrays.

An application of the M-file can be developed for the same problem that was solved in
Example 19.6:

>> x = [0 .12 .22 .32 .36 .4 .44 .54 .64 .7 .8];
>> y = 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;
>> trapuneq(x,y)

ans =

1.5948

which is identical to the result obtained in Example 19.6.

19.6 INTEGRATION WITH UNEQUAL SEGMENTS 483

1 The diff function is described in Section 21.7.1.

function I = trapuneq(x,y)
% trapuneq: unequal spaced trapezoidal rule quadrature
% I = trapuneq(x,y):
% Applies the trapezoidal rule to determine the integral
% for n data points (x, y) where x and y must be of the
% same length and x must be monotonically ascending
% input:
% x = vector of independent variables
% y = vector of dependent variables
% output:
% I = integral estimate

if nargin<2,error('at least 2 input arguments required'),end
if any(diff(x)<0),error('x not monotonically ascending'),end
n = length(x);
if length(y)~=n,error('x and y must be same length'); end
s = 0;
for k = 1:n-1

s = s + (x(k+l)-x(k))*(y(k)+y(k+l))/2;
end
I = s;

FIGURE 19.14
M-file to implement the trapezoidal rule for unequally spaced data.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 483

19.6.2 MATLAB Functions: trapz and cumtrapz

MATLAB has a built-in function that evaluates integrals for data in the same fashion as the
M-file we just presented in Fig. 19.14. It has the general syntax

z = trapz(x, y)

where the two vectors, x and y, hold the independent and dependent variables, respectively.
Here is a simple MATLAB session that uses this function to integrate the data from
Table 19.3:

>> x = [0 .12 .22 .32 .36 .4 .44 .54 .64.7 .8];
>> y = 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;
>> trapz(x,y)

ans =

1.5948

In addition, MATLAB has another function, cumtrapz, that computes the cumulative
integral. A simple representation of its syntax is

z = cumtrapz(x, y)

where the two vectors, x and y, hold the independent and dependent variables, respectively,
and z = a vector whose elements z(k) hold the integral from x(1) to x(k).

EXAMPLE 19.7 Using Numerical Integration to Compute Distance from Velocity

Problem Statement. As described at the beginning of this chapter, a nice application
of integration is to compute the distance z(t) of an object based on its velocity v(t) as in
(recall Eq. 19.2):

z(t) =
∫ t

0
v(t) dt

Suppose that we had measurements of velocity at a series of discrete unequally spaced times
during free fall. Use Eq. (19.2) to synthetically generate such information for a 70-kg
jumper with a drag coefficient of 0.275 kg/m. Incorporate some random error by rounding
the velocities to the nearest integer. Then use cumtrapz to determine the distance fallen and
compare the results to the analytical solution (Eq. 19.4). In addition, develop a plot of the
analytical and computed distances along with velocity on the same graph.

Solution. Some unequally spaced times and rounded velocities can be generated as

>> format short g
>> t=[0 1 1.4 2 3 4.3 6 6.7 8];
>> g=9.81;m=70;cd=0.275;
>> v=round(sqrt(g*m/cd)*tanh(sqrt(g*cd/m)*t));

The distances can then be computed as

>> z=cumtrapz(t,v)

z=
0 5 9.6 19.2 41.7 80.7 144.45 173.85 231.7

484 NUMERICAL INTEGRATION FORMULAS

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 484

Thus, after 8 seconds, the jumper has fallen 231.7 m. This result is reasonably close to the
analytical solution (Eq. 19.4):

z(t) = 70

0.275
ln

[
cosh

(√
9.81(0.275)

70
8

)]
= 234.1

A graph of the numerical and analytical solutions along with both the exact and rounded
velocities can be generated with the following commands:

>> ta=linspace(t(1),t(length(t)));
>> za=m/cd*log(cosh(sqrt(g*cd/m)*ta));
>> plot(ta,za,t,z,'o')
>> title('Distance versus time')
>> xlabel('t (s)'),ylabel('x (m)')
>> legend('analytical','numerical')

As in Fig. 19.15, the numerical and analytical results match fairly well.

19.6 INTEGRATION WITH UNEQUAL SEGMENTS 485

250
Distance versus time

numerical
analytical

200

150

100

50

0
0 1 2 3 4

t (s)

x
(m

)

5 6 7 8

FIGURE 19.15
Plot of distance versus time. The line was computed with the analytical solution, whereas the
points were determined numerically with the cumtrapz function.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 485

19.7 OPEN METHODS

Recall from Fig. 19.6b that open integration formulas have limits that extend beyond the
range of the data. Table 19.4 summarizes the Newton-Cotes open integration formulas. The
formulas are expressed in the form of Eq. (19.13) so that the weighting factors are evident.
As with the closed versions, successive pairs of the formulas have the same-order error.
The even-segment-odd-point formulas are usually the methods of preference because they
require fewer points to attain the same accuracy as the odd-segment–even-point formulas.

The open formulas are not often used for definite integration. However, they have util-
ity for analyzing improper integrals. In addition, they will have relevance to our discussion
of methods for solving ordinary differential equations in Chaps. 22 and 23.

19.8 MULTIPLE INTEGRALS

Multiple integrals are widely used in engineering and science. For example, a general
equation to compute the average of a two-dimensional function can be written as [recall
Eq. (19.7)]

f̄ =
∫ d

c

(∫ b
a f (x, y) dx

)
(d − c)(b − a)

(19.31)

The numerator is called a double integral.
The techniques discussed in this chapter (and Chap. 20) can be readily employed to

evaluate multiple integrals. A simple example would be to take the double integral of a
function over a rectangular area (Fig. 19.16).

Recall from calculus that such integrals can be computed as iterated integrals:∫ d

c

(∫ b

a
f (x, y) dx

)
dy =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx (19.32)

Thus, the integral in one of the dimensions is evaluated first. The result of this first inte-
gration is integrated in the second dimension. Equation (19.32) states that the order of in-
tegration is not important.

486 NUMERICAL INTEGRATION FORMULAS

TABLE 19.4 Newton-Cotes open integration formulas. The formulas are presented in the format of Eq. (19.13)
so that the weighting of the data points to estimate the average height is apparent. The step size
is given by h = (b − a)/n.

Segments
(n) Points Name Formula Truncation Error

2 1 Midpoint method (b − a) f (x1) (1/3)h3 f ′′(ξ)

3 2 (b − a)
f (x1) + f (x2)

2
(3/4)h3 f ′′(ξ)

4 3 (b − a)
2 f (x1) − f (x2) + 2 f (x3)

3
(14/45)h5 f (4)(ξ)

5 4 (b − a)
11 f (x1) + f (x2) + f (x3) + 11 f (x4)

24
(95/144)h5 f (4)(ξ)

6 5 (b − a)
11 f (x1) − 14 f (x2) + 26 f (x3) − 14 f (x4) + 11 f (x5)

20
(41/140)h7 f (6)(ξ)

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 486

A numerical double integral would be based on the same idea. First, methods such as
the composite trapezoidal or Simpson’s rule would be applied in the first dimension with
each value of the second dimension held constant. Then the method would be applied to in-
tegrate the second dimension. The approach is illustrated in the following example.

EXAMPLE 19.8 Using Double Integral to Determine Average Temperature

Problem Statement. Suppose that the temperature of a rectangular heated plate is de-
scribed by the following function:

T (x, y) = 2xy + 2x − x2 − 2y2 + 72

If the plate is 8 m long (x dimension) and 6 m wide (y dimension), compute the average
temperature.

Solution. First, let us merely use two-segment applications of the trapezoidal rule in each
dimension. The temperatures at the necessary x and y values are depicted in Fig. 19.17.
Note that a simple average of these values is 47.33. The function can also be evaluated an-
alytically to yield a result of 58.66667.

To make the same evaluation numerically, the trapezoidal rule is first implemented
along the x dimension for each y value. These values are then integrated along the y di-
mension to give the final result of 2544. Dividing this by the area yields the average tem-
perature as 2544/(6 × 8) = 53.

Now we can apply a single-segment Simpson’s 1/3 rule in the same fashion. This results
in an integral of 2816 and an average of 58.66667, which is exact. Why does this occur? Recall
that Simpson’s 1/3 rule yielded perfect results for cubic polynomials. Since the highest-order
term in the function is second order, the same exact result occurs for the present case.

19.8 MULTIPLE INTEGRALS 487

f (x, y)

a

b

x

c

d

y

FIGURE 19.16
Double integral as the area under the function surface.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 487

For higher-order algebraic functions as well as transcendental functions, it would be
necessary to use composite applications to attain accurate integral estimates. In addition,
Chap. 20 introduces techniques that are more efficient than the Newton-Cotes formulas for
evaluating integrals of given functions. These often provide a superior means to implement
the numerical integrations for multiple integrals.

19.8.1 MATLAB Functions: dblquad and triplequad

MATLAB has functions to implement both double (dblquad) and triple (triplequad)
integration. A simple representation of the syntax for dblquad is

q = dblquad(fun, xmin, xmax, ymin, ymax, tol)

where q is the double integral of the function fun over the ranges from xmin to xmax and
ymin to ymax. If tol is not specified, a default tolerance of 1 × 10−6 is used.

Here is an example of how this function can be used to compute the double integral
evaluated in Example 19.7:

>> q = dblquad(@(x,y) 2*x*y+2*x-x.^2-2*y.^2+72,0,8,0,6)

q =
2816

488 NUMERICAL INTEGRATION FORMULAS

40

70

64

0

54

72

48

54

24

(8 – 0)
0 � 2(40) � 48

4

(8 – 0)
54 � 2(70) � 54

4

(8 – 0)
72 � 2(64) � 24

4

(6 � 0) � 2544
256 � 2(496) � 448

4

256

448

496

x

y

FIGURE 19.17
Numerical evaluation of a double integral using the two-segment trapezoidal rule.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 488

19.9 CASE STUDY COMPUTING WORK WITH NUMERICAL INTEGRATION

Background. The calculation of work is an important component of many areas of
engineering and science. The general formula is

Work = force × distance

When you were introduced to this concept in high school physics, simple applications were
presented using forces that remained constant throughout the displacement. For example,
if a force of 10 N was used to pull a block a distance of 5 m, the work would be calculated
as 50 J (1 joule = 1 N · m).

Although such a simple computation is useful for introducing the concept, realistic
problem settings are usually more complex. For example, suppose that the force varies dur-
ing the course of the calculation. In such cases, the work equation is reexpressed as

W =
∫ xn

x0

F(x) dx (19.33)

where W = work (J), x0 and xn = the initial and final positions (m), respectively, and F(x) =
a force that varies as a function of position (N). If F(x) is easy to integrate, Eq. (19.33) can
be evaluated analytically. However, in a realistic problem setting, the force might not be ex-
pressed in such a manner. In fact, when analyzing measured data, the force might be avail-
able only in tabular form. For such cases, numerical integration is the only viable option for
the evaluation.

Further complexity is introduced if the angle between the force and the direction of
movement also varies as a function of position (Fig. 19.18). The work equation can be
modified further to account for this effect, as in

W =
∫ xn

x0

F(x) cos[θ(x)] dx (19.34)

Again, if F(x) and θ (x) are simple functions, Eq. (19.34) might be solved analytically. How-
ever, as in Fig. 19.18, it is more likely that the functional relationship is complicated. For
this situation, numerical methods provide the only alternative for determining the integral.

Suppose that you have to perform the computation for the situation depicted in
Fig. 19.18. Although the figure shows the continuous values for F(x) and θ(x), assume that,
because of experimental constraints, you are provided with only discrete measurements at
x = 5-m intervals (Table 19.5). Use single- and composite versions of the trapezoidal rule
and Simpson’s 1/3 and 3/8 rules to compute work for these data.

Solution. The results of the analysis are summarized in Table 19.6. A percent relative
error εt was computed in reference to a true value of the integral of 129.52 that was esti-
mated on the basis of values taken from Fig. 19.18 at 1-m intervals.

The results are interesting because the most accurate outcome occurs for the simple
two-segment trapezoidal rule. More refined estimates using more segments, as well as
Simpson’s rules, yield less accurate results.

The reason for this apparently counterintuitive result is that the coarse spacing of the
points is not adequate to capture the variations of the forces and angles. This is particularly

19.9 CASE STUDY 489

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 489

490 NUMERICAL INTEGRATION FORMULAS

19.9 CASE STUDY continued

0

10

0 10 20 30

0

1

2

0 10 20 30

x, m

x, m

θ(
x)

, r
ad

F(x) F(x)

xnx0

F
(x

),
 N

FIGURE 19.18
The case of a variable force acting on a block. For this case the angle, as well as the
magnitude, of the force varies.

TABLE 19.5 Data for force F(x) and angle θ (x) as a function of
position x.

x, m F(x), N θ, rad F(x) cos θ

0 0.0 0.50 0.0000
5 9.0 1.40 1.5297

10 13.0 0.75 9.5120
15 14.0 0.90 8.7025
20 10.5 1.30 2.8087
25 12.0 1.48 1.0881
30 5.0 1.50 0.3537

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 490

19.9 CASE STUDY 491

19.9 CASE STUDY continued

evident in Fig. 19.19, where we have plotted the continuous curve for the product of F(x)
and cos [θ (x)]. Notice how the use of seven points to characterize the continuously varying
function misses the two peaks at x = 2.5 and 12.5 m. The omission of these two points ef-
fectively limits the accuracy of the numerical integration estimates in Table 19.6. The fact
that the two-segment trapezoidal rule yields the most accurate result is due to the chance
positioning of the points for this particular problem (Fig. 19.20).

The conclusion to be drawn from Fig. 19.20 is that an adequate number of measure-
ments must be made to accurately compute integrals. For the present case, if data were
available at F(2.5) cos [θ (2.5)] = 3.9007 and F(12.5) cos [θ (12.5)] = 11.3940, we could

TABLE 19.6 Estimates of work calculated using the trapezoidal rule and
Simpson’s rules. The percent relative error εt as computed in
reference to a true value of the integral (129.52 Pa) that was
estimated on the basis of values at 1-m intervals.

Technique Segments Work εt, %

Trapezoidal rule 1 5.31 95.9
2 133.19 2.84
3 124.98 3.51
6 119.09 8.05

Simpson’s 1/3 rule 2 175.82 35.75
6 117.13 9.57

Simpson’s 3/8 rule 3 139.93 8.04

x, ft
0 30

F
(x

)
co

s
[θ

(x
)]

Work

FIGURE 19.19
A continuous plot of F(x) cos [θ (x)] versus position with the seven discrete points used to develop
the numerical integration estimates in Table 19.6. Notice how the use of seven points to
characterize this continuously varying function misses two peaks at x = 2.5 and 12.5 m.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 491

492 NUMERICAL INTEGRATION FORMULAS

19.9 CASE STUDY continued

determine an improved integral estimate. For example, using the MATLAB trapz func-
tion, we could compute

>> x=[0 2.5 5 10 12.5 15 20 25 30];
>> y=[0 3.9007 1.5297 9.5120 11.3940 8.7025 2.8087 ...

1.0881 0.3537];
>> trapz(x,y)

ans =
132.6458

Including the two additional points yields an improved integral estimate of 132.6458
(εt = 2.16%). Thus, the inclusion of the additional data incorporates the peaks that were
missed previously and, as a consequence, lead to better results.

x, ft

0
0

10

30

F
(x

)
co

s
[θ

(x
)]

Overestimates

Underestimates

FIGURE 19.20
Graphical depiction of why the two-segment trapezoidal rule yields a good estimate of the
integral for this particular case. By chance, the use of two trapezoids happens to lead to an
even balance between positive and negative errors.

PROBLEMS

19.1 Derive Eq. (19.4) by integrating Eq. (19.3).
19.2 Evaluate the following integral:∫ 4

0
(1 − e−x) dx

(a) analytically, (b) single application of the trapezoidal rule,
(c) composite trapezoidal rule with n = 2 and 4, (d) single
application of Simpson’s 1/3 rule, (e) composite Simpson’s

1/3 rule with n = 4, (f) Simpson’s 3/8 rule, and (g) com-
posite Simpson’s rule, with n = 5. For each of the numerical
estimates (b) through (g), determine the true percent relative
error based on (a).
19.3 Evaluate the following integral:∫ π/2

0
(8 + 4 cos x) dx

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 492

PROBLEMS 493

19.7 Evaluate the triple integral∫ 4

−4

∫ 6

0

∫ 3

−1
(x3 − 2yz) dx dy dz

(a) analytically, and (b) using single applications of
Simpson’s 1/3 rule. For (b), compute the true percent rela-
tive error.
19.8 Determine the distance traveled from the following
velocity data:

t 1 2 3.25 4.5 6 7 8 8.5 9 10
v 5 6 5.5 7 8.5 8 6 7 7 5

(a) Use the trapezoidal rule. In addition, determine the aver-
age velocity.

(b) Fit the data with a cubic equation using polynomial
regression. Integrate the cubic equation to determine the
distance.

19.9 Water exerts pressure on the upstream face of a dam as
shown in Fig. P19.9. The pressure can be characterized by

p(z) = ρg(D − z)

where p(z) = pressure in pascals (or N/m2) exerted at an
elevation z meters above the reservoir bottom; ρ = density of
water, which for this problem is assumed to be a constant
103 kg/m3; g = acceleration due to gravity (9.81 m/s2); and
D = elevation (in m) of the water surface above the reservoir
bottom. According to Eq. (P19.9), pressure increases linearly
with depth, as depicted in Fig. P19.9a. Omitting atmospheric
pressure (because it works against both sides of the dam face
and essentially cancels out), the total force ft can be deter-
mined by multiplying pressure times the area of the dam face
(as shown in Fig. P19.9b). Because both pressure and area
vary with elevation, the total force is obtained by evaluating

ft =
∫ D

0
ρgw(z)(D − z) dz

(a) analytically, (b) single application of the trapezoidal rule,
(c) composite trapezoidal rule with n = 2 and 4, (d) single
application of Simpson’s 1/3 rule, (e) composite Simpson’s
1/3 rule with n = 4, (f) Simpson’s 3/8 rule, and (g) com-
posite Simpson’s rule, with n = 5. For each of the numerical
estimates (b) through (g), determine the true percent relative
error based on (a).
19.4 Evaluate the following integral:∫ 4

−2
(1 − x − 4x3 + 2x5) dx

(a) analytically, (b) single application of the trapezoidal rule,
(c) composite trapezoidal rule with n = 2 and 4, (d) single ap-
plication of Simpson’s 1/3 rule, (e) Simpson’s 3/8 rule, and
(f) Boole’s rule. For each of the numerical estimates (b) through
(f), determine the true percent relative error based on (a).
19.5 The function

f (x) = e−x

can be used to generate the following table of unequally
spaced data:

x 0 0.1 0.3 0.5 0.7 0.95 1.2

f (x) 1 0.9048 0.7408 0.6065 0.4966 0.3867 0.3012

Evaluate the integral from a = 0 to b = 0.6 using (a) ana-
lytical means, (b) the trapezoidal rule, and (c) a combination
of the trapezoidal and Simpson’s rules wherever possible to
attain the highest accuracy. For (b) and (c), compute the true
percent relative error.
19.6 Evaluate the double integral∫ 2

−2

∫ 4

0
(x2 − 3y2 + xy3) dx dy

(a) analytically, (b) using the composite trapezoidal rule
with n = 2, and (c) using single applications of Simpson’s
1/3 rule. For (b) and (c), compute the percent relative error.

0

(a) (b)

75

50

25

122
130
135
160
175
190
200

FIGURE P19.9
Water exerting pressure on the upstream face of a dam: (a) side view showing force increasing
linearly with depth; (b) front view showing width of dam in meters.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 493

where w(z) = width of the dam face (m) at elevation z
(Fig. P19.9b). The line of action can also be obtained by
evaluating

d =
∫ D

0 ρgzw(z)(D − z) dz∫ D
0 ρgw(z)(D − z) dz

Use Simpson’s rule to compute ft and d.

19.10 The force on a sailboat mast can be represented by the
following function:

f (z) = 200
(

z

5 + z

)
e−2z/H

where z = the elevation above the deck and H = the height of
the mast. The total force F exerted on the mast can be deter-
mined by integrating this function over the height of the mast:

F =
∫ H

0
f (z) dz

The line of action can also be determined by integration:

d =
∫ H

0 z f (z) dz∫ H
0 f (z) dz

(a) Use the composite trapezoidal rule to compute F and d
for the case where H = 30 (n = 6).

(b) Repeat (a), but use the composite Simpson’s 1/3 rule.
19.11 A wind force distributed against the side of a sky-
scraper is measured as

Height l, m 0 30 60 90 120
Force, F(l), N/m 0 340 1200 1550 2700

Height l, m 150 180 210 240
Force, F(l), N/m 3100 3200 3500 3750

Compute the net force and the line of action due to this dis-
tributed wind.
19.12 An 11-m beam is subjected to a load, and the shear
force follows the equation

V (x) = 5 + 0.25x2

where V is the shear force, and x is length in distance along
the beam. We know that V = dM/dx, and M is the bending
moment. Integration yields the relationship

M = Mo +
∫ x

0
V dx

If Mo is zero and x = 11, calculate M using (a) analytical in-
tegration, (b) composite trapezoidal rule, and (c) composite
Simpson’s rules. For (b) and (c) use 1-m increments.
19.13 The total mass of a variable density rod is given by

m =
∫ L

0
ρ(x)Ac(x) dx

where m = mass, ρ(x) = density, Ac(x) = cross-sectional area,
x = distance along the rod and L = the total length of the rod.
The following data have been measured for a 20-m length
rod. Determine the mass in grams to the best possible
accuracy.

x, m 0 4 6 8 12 16 20
ρ, g/cm3 4.00 3.95 3.89 3.80 3.60 3.41 3.30
Ac, cm

2 100 103 106 110 120 133 150

19.14 A transportation engineering study requires that you
determine the number of cars that pass through an intersec-
tion traveling during morning rush hour. You stand at the
side of the road and count the number of cars that pass every
4 minutes at several times as tabulated below. Use the best
numerical method to determine (a) the total number of cars
that pass between 7:30 and 9:15, and (b) the rate of cars
going through the intersection per minute. (Hint: Be careful
with units.)

Time (hr) 7:30 7:45 8:00 8:15 8:45 9:15
Rate (cars

per 4 min) 18 23 14 24 20 9

19.15 Determine the average value for the data in Fig. P19.15.
Perform the integral needed for the average in the order shown
by the following equation:

I =
∫ xn

x0

[∫ ym

y0

f (x, y) dy

]
dx

19.16 Integration provides a means to compute how much
mass enters or leaves a reactor over a specified time period,
as in

M =
∫ t2

t1

Qc dt

where t1 and t2 = the initial and final times, respectively.
This formula makes intuitive sense if you recall the analogy
between integration and summation. Thus, the integral
represents the summation of the product of flow times

494 NUMERICAL INTEGRATION FORMULAS

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 494

concentration to give the total mass entering or leaving from
t1 to t2. Use numerical integration to evaluate this equation
for the data listed below:

t, min 0 10 20 30 35 40 45 50
Q, m3/min 4 4.8 5.2 5.0 4.6 4.3 4.3 5.0
c, mg/m3 10 35 55 52 40 37 32 34

19.17 The cross-sectional area of a channel can be com-
puted as

Ac =
∫ B

0
H(y) dy

where B = the total channel width (m), H = the depth (m),
and y = distance from the bank (m). In a similar fashion, the
average flow Q (m3/s) can be computed as

Q =
∫ B

0
U(y)H(y) dy

where U = water velocity (m/s). Use these relationships and
a numerical method to determine Ac and Q for the following
data:

y, m 0 2 4 5 6 9
H, m 0.5 1.3 1.25 1.8 1 0.25
U, m/s 0.03 0.06 0.05 0.13 0.11 0.02

19.18 The average concentration of a substance c̄(g/m3) in a
lake where the area As(m

2) varies with depth z(m) can be
computed by integration:

c̄ =
∫ Z

0 c(z)As(z) dz∫ Z
0 As(z) dz

where Z = the total depth (m). Determine the average con-
centration based on the following data:

z, m 0 4 8 12 16
A, 106 m2 9.8175 5.1051 1.9635 0.3927 0.0000
c, g/m3 10.2 8.5 7.4 5.2 4.1

19.19 As was done in Section 19.9, determine the work per-
formed if a constant force of 1 N applied at an angle θ results
in the following displacements. Use the cumtrapz function to
determine the cumulative work and plot the result versus θ.

x, m 0 1 2.8 3.9 3.8 3.2 1.3
θ, deg 0 30 60 90 120 150 180

19.20 Compute work as described in Sec. 19.9, but use the
following equations for F(x) and θ(x):

F(x) = 1.6x − 0.045x2

θ(x) = −0.00055x3 + 0.0123x2 + 0.13x

The force is in Newtons and the angle is in radians. Perform
the integration from x = 0 to 30 m.

PROBLEMS 495

FIGURE P19.15

–8

–3

–1

4

7

10

–8
4

2

0
0 4 8 12

–4

–2

–6

1

4

x

y

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 495

19.21 As specified in the following table, a manufactured
spherical particle has a density that varies as a function of the
distance from its center (r = 0):

r, mm 0 0.12 0.24 0.36 0.49
ρ(g/cm3) 6 5.81 5.14 4.29 3.39

r, mm 0.62 0.79 0.86 0.93 1
ρ(g/cm3) 2.7 2.19 2.1 2.04 2

Use numerical integration to estimate the particle’s mass
(in g) and average density (in g/cm3).

496 NUMERICAL INTEGRATION FORMULAS

19.22 As specified in the following table, the earth’s density
varies as a function of the distance from its center (r � 0):

r, km 0 1100 1500 2450 3400 3630
ρ(g/cm3) 13 12.4 12 11.2 9.7 5.7

r, km 4500 5380 6060 6280 6380
ρ(g/cm3) 5.2 4.7 3.6 3.4 3

Use numerical integration to estimate the earth’s mass (in met-
ric tonnes) and average density (in g/cm3). Develop vertically
stacked subplots of (top) density versus radius, and (bottom)
mass versus radius. Assume that the earth is a perfect sphere.

cha01102_ch19_459-496.qxd 12/17/10 8:20 AM Page 496

497

Numerical Integration
of Functions

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to numerical methods for
integrating given functions. Specific objectives and topics covered are

• Understanding how Richardson extrapolation provides a means to create a more
accurate integral estimate by combining two less accurate estimates.

• Understanding how Gauss quadrature provides superior integral estimates by
picking optimal abscissas at which to evaluate the function.

• Knowing how to use MATLAB’s built-in functions quad and quadl to integrate
functions.

20.1 INTRODUCTION

In Chap. 19, we noted that functions to be integrated numerically will typically be of two
forms: a table of values or a function. The form of the data has an important influence on
the approaches that can be used to evaluate the integral. For tabulated information, you are
limited by the number of points that are given. In contrast, if the function is available, you
can generate as many values of f (x) as are required to attain acceptable accuracy.

At face value, the composite Simpson’s 1/3 rule might seem to be a reasonable tool for
such problems. Although it is certainly adequate for many problems, there are more effi-
cient methods that are available. This chapter is devoted to three such techniques, which
capitalize on the ability to generate function values to develop efficient schemes for
numerical integration.

The first technique is based on Richardson extrapolation, which is a method for
combining two numerical integral estimates to obtain a third, more accurate value. The
computational algorithm for implementing Richardson extrapolation in a highly efficient
manner is called Romberg integration. This technique can be used to generate an integral
estimate within a prespecified error tolerance.

20

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 497

498 NUMERICAL INTEGRATION OF FUNCTIONS

The second method is called Gauss quadrature. Recall that, in Chap. 19, values of
f (x) for the Newton-Cotes formulas were determined at specified values of x. For exam-
ple, if we used the trapezoidal rule to determine an integral, we were constrained to take the
weighted average of f (x) at the ends of the interval. Gauss-quadrature formulas employ x
values that are positioned between the integration limits in such a manner that a much more
accurate integral estimate results.

The third approach is called adaptive quadrature. This techniques applies composite
Simpson’s 1/3 rule to subintervals of the integration range in a way that allows error esti-
mates to be computed. These error estimates are then used to determine whether more
refined estimates are required for a subinterval. In this way, more refined segmentation
is only used where it is necessary. Two built-in MATLAB functions that use adaptive quad-
rature are illustrated.

20.2 ROMBERG INTEGRATION

Romberg integration is one technique that is designed to attain efficient numerical integrals
of functions. It is quite similar to the techniques discussed in Chap. 19 in the sense that it
is based on successive application of the trapezoidal rule. However, through mathematical
manipulations, superior results are attained for less effort.

20.2.1 Richardson Extrapolation

Techniques are available to improve the results of numerical integration on the basis of the
integral estimates themselves. Generally called Richardson extrapolation, these methods
use two estimates of an integral to compute a third, more accurate approximation.

The estimate and the error associated with the composite trapezoidal rule can be rep-
resented generally as

I = I (h) + E(h)

where I = the exact value of the integral, I (h) = the approximation from an n-segment
application of the trapezoidal rule with step size h = (b − a)/n, and E(h) = the truncation
error. If we make two separate estimates using step sizes of h1 and h2 and have exact val-
ues for the error:

I (h1) + E(h1) = I (h2) + E(h2) (20.1)

Now recall that the error of the composite trapezoidal rule can be represented approxi-
mately by Eq. (19.21) [with n = (b − a)/h]:

E ∼= −b − a

12
h2 f̄ ′′ (20.2)

If it is assumed that f̄ ′′ is constant regardless of step size, Eq. (20.2) can be used to deter-
mine that the ratio of the two errors will be

E(h1)

E(h2)
∼= h2

1

h2
2

(20.3)

This calculation has the important effect of removing the term f̄ ′′ from the computation.
In so doing, we have made it possible to utilize the information embodied by Eq. (20.2)

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 498

without prior knowledge of the function’s second derivative. To do this, we rearrange
Eq. (20.3) to give

E(h1) ∼= E(h2)

(
h1

h2

)2

which can be substituted into Eq. (20.1):

I (h1) + E(h2)

(
h1

h2

)2

= I (h2) + E(h2)

which can be solved for

E(h2) = I (h1) − I (h2)

1 − (h1/h2)
2

Thus, we have developed an estimate of the truncation error in terms of the integral esti-
mates and their step sizes. This estimate can then be substituted into

I = I (h2) + E(h2)

to yield an improved estimate of the integral:

I = I (h2) + 1

(h1/h2)
2 − 1

[I (h2) − I (h1)] (20.4)

It can be shown (Ralston and Rabinowitz, 1978) that the error of this estimate is
O(h4). Thus, we have combined two trapezoidal rule estimates of O(h2) to yield a new es-
timate of O(h4). For the special case where the interval is halved (h2 = h1/2), this equa-
tion becomes

I = 4

3
I (h2) − 1

3
I (h1) (20.5)

EXAMPLE 20.1 Richardson Extrapolation

Problem Statement. Use Richardson extrapolation to evaluate the integral of f (x) =
0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5 from a = 0 to b = 0.8.

Solution. Single and composite applications of the trapezoidal rule can be used to evalu-
ate the integral:

Segments h Integral εt

1 0.8 0.1728 89.5%
2 0.4 1.0688 34.9%
4 0.2 1.4848 9.5%

Richardson extrapolation can be used to combine these results to obtain improved estimates
of the integral. For example, the estimates for one and two segments can be combined

20.2 ROMBERG INTEGRATION 499

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 499

500 NUMERICAL INTEGRATION OF FUNCTIONS

to yield

I = 4

3
(1.0688) − 1

3
(0.1728) = 1.367467

The error of the improved integral is Et = 1.640533 − 1.367467 = 0.273067(εt = 16.6%),
which is superior to the estimates upon which it was based.

In the same manner, the estimates for two and four segments can be combined to give

I = 4

3
(1.4848) − 1

3
(1.0688) = 1.623467

which represents an error of Et = 1.640533 − 1.623467 = 0.017067 (εt = 1.0%).

Equation (20.4) provides a way to combine two applications of the trapezoidal rule
with error O(h2) to compute a third estimate with error O(h4). This approach is a subset of
a more general method for combining integrals to obtain improved estimates. For instance,
in Example 20.1, we computed two improved integrals of O(h4) on the basis of three trape-
zoidal rule estimates. These two improved integrals can, in turn, be combined to yield an
even better value with O(h6). For the special case where the original trapezoidal estimates
are based on successive halving of the step size, the equation used for O(h6) accuracy is

I = 16

15
Im − 1

15
Il (20.6)

where Im and Il are the more and less accurate estimates, respectively. Similarly, two
O(h6) results can be combined to compute an integral that is O(h8) using

I = 64

63
Im − 1

63
Il (20.7)

EXAMPLE 20.2 Higher-Order Corrections

Problem Statement. In Example 20.1, we used Richardson extrapolation to compute two
integral estimates of O(h4). Utilize Eq. (20.6) to combine these estimates to compute an
integral with O(h6).

Solution. The two integral estimates of O(h4) obtained in Example 20.1 were 1.367467
and 1.623467. These values can be substituted into Eq. (20.6) to yield

I = 16

15
(1.623467) − 1

15
(1.367467) = 1.640533

which is the exact value of the integral.

20.2.2 The Romberg Integration Algorithm

Notice that the coefficients in each of the extrapolation equations [Eqs. (20.5), (20.6), and
(20.7)] add up to 1. Thus, they represent weighting factors that, as accuracy increases,

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 500

place relatively greater weight on the superior integral estimate. These formulations can be
expressed in a general form that is well suited for computer implementation:

Ij,k = 4k−1 Ij+1,k−1 − Ij,k−1

4k−1 − 1
(20.8)

where Ij+1,k−1 and Ij,k−1 = the more and less accurate integrals, respectively, and Ij,k =
the improved integral. The index k signifies the level of the integration, where k = 1 cor-
responds to the original trapezoidal rule estimates, k = 2 corresponds to the O(h4) esti-
mates, k = 3 to the O(h6), and so forth. The index j is used to distinguish between the more
(j + 1) and the less (j) accurate estimates. For example, for k = 2 and j = 1, Eq. (20.8)
becomes

I1,2 = 4I2,1 − I1,1

3

which is equivalent to Eq. (20.5).
The general form represented by Eq. (20.8) is attributed to Romberg, and its system-

atic application to evaluate integrals is known as Romberg integration. Figure 20.1 is a
graphical depiction of the sequence of integral estimates generated using this approach.
Each matrix corresponds to a single iteration. The first column contains the trapezoidal rule
evaluations that are designated Ij,1, where j = 1 is for a single-segment application (step
size is b − a), j = 2 is for a two-segment application [step size is (b − a)/2], j = 3 is for
a four-segment application [step size is (b − a)/4], and so forth. The other columns of the
matrix are generated by systematically applying Eq. (20.8) to obtain successively better
estimates of the integral.

For example, the first iteration (Fig. 20.1a) involves computing the one- and two-
segment trapezoidal rule estimates (I1,1 and I2,1). Equation (20.8) is then used to compute
the element I1,2 = 1.367467, which has an error of O(h4).

20.2 ROMBERG INTEGRATION 501

(a)
0.172800
1.068800

O(h2) O(h4) O(h6) O(h8)

(b)

(c)

0.172800
1.068800
1.484800

1.367467

1.367467
1.623467

1.640533

0.172800
1.068800
1.484800
1.600800

1.367467
1.623467
1.639467

1.640533
1.640533

1.640533

FIGURE 20.1
Graphical depiction of the sequence of integral estimates generated using Romberg integration.
(a) First iteration. (b) Second iteration. (c) Third iteration.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 501

502 NUMERICAL INTEGRATION OF FUNCTIONS

Now, we must check to determine whether this result is adequate for our needs. As in
other approximate methods in this book, a termination, or stopping, criterion is required to
assess the accuracy of the results. One method that can be employed for the present pur-
poses is

|εa| =
∣∣∣∣ I1,k − I2,k−1

I1,k

∣∣∣∣ × 100% (20.9)

where εa = an estimate of the percent relative error. Thus, as was done previously in other
iterative processes, we compare the new estimate with a previous value. For Eq. (20.9), the
previous value is the most accurate estimate from the previous level of integration (i.e., the
k − 1 level of integration with j = 2). When the change between the old and new values
as represented by εa is below a prespecified error criterion εs, the computation is termi-
nated. For Fig. 20.1a, this evaluation indicates the following percent change over the
course of the first iteration:

|εa| =
∣∣∣∣1.367467 − 1.068800

1.367467

∣∣∣∣ × 100% = 21.8%

The object of the second iteration (Fig. 20.1b) is to obtain the O(h6) estimate—I1,3.

To do this, a four-segment trapezoidal rule estimate, I3,1 = 1.4848, is determined. Then it
is combined with I2,1 using Eq. (20.8) to generate I2,2 = 1.623467. The result is, in turn,
combined with I1,2 to yield I1,3 = 1.640533. Equation (20.9) can be applied to determine
that this result represents a change of 1.0% when compared with the previous result I2,2.

The third iteration (Fig. 20.1c) continues the process in the same fashion. In this case,
an eight-segment trapezoidal estimate is added to the first column, and then Eq. (20.8) is
applied to compute successively more accurate integrals along the lower diagonal. After
only three iterations, because we are evaluating a fifth-order polynomial, the result
(I1,4 = 1.640533) is exact.

Romberg integration is more efficient than the trapezoidal rule and Simpson’s rules.
For example, for determination of the integral as shown in Fig. 20.1, Simpson’s 1/3 rule
would require about a 48-segment application in double precision to yield an estimate of
the integral to seven significant digits: 1.640533. In contrast, Romberg integration pro-
duces the same result based on combining one-, two-, four-, and eight-segment trapezoidal
rules—that is, with only 15 function evaluations!

Figure 20.2 presents an M-file for Romberg integration. By using loops, this algorithm
implements the method in an efficient manner. Note that the function uses another function
trap to implement the composite trapezoidal rule evaluations (recall Fig. 19.10). Here is
a MATLAB session showing how it can be used to determine the integral of the polynomial
from Example 20.1:

>> f=@(x) 0.2+25*x-200*x^2+675*x^3-900*x^4+400*x^5;
>> romberg(f,0,0.8)

ans =
1.6405

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 502

20.3 GAUSS QUADRATURE

In Chap. 19, we employed the Newton-Cotes equations. A characteristic of these formulas
(with the exception of the special case of unequally spaced data) was that the integral esti-
mate was based on evenly spaced function values. Consequently, the location of the base
points used in these equations was predetermined or fixed.

For example, as depicted in Fig. 20.3a, the trapezoidal rule is based on taking the area
under the straight line connecting the function values at the ends of the integration interval.
The formula that is used to compute this area is

I ∼= (b − a)
f (a) + f (b)

2
(20.10)

20.3 GAUSS QUADRATURE 503

function [q,ea,iter]=romberg(func,a,b,es,maxit,varargin)
% romberg: Romberg integration quadrature
% q = romberg(func,a,b,es,maxit,p1,p2,...):
% Romberg integration.
% input:
% func = name of function to be integrated
% a, b = integration limits
% es = desired relative error (default = 0.000001%)
% maxit = maximum allowable iterations (default = 30)
% pl,p2,... = additional parameters used by func
% output:
% q = integral estimate
% ea = approximate relative error (%)
% iter = number of iterations

if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(es), es=0.00000l;end
if nargin<5|isempty(maxit), maxit=50;end
n = 1;
I(1,1) = trap(func,a,b,n,varargin{:});
iter = 0;
while iter<maxit

iter = iter+l;
n = 2^iter;
I(iter+l,l) = trap(func,a,b,n,varargin{:});
for k = 2:iter+l

j = 2+iter-k;
I(j,k) = (4^(k-1)*I(j+1,k-1)-I(j,k-1))/(4^(k-1)-1);

end
ea = abs((I(1,iter+l)-I(2,iter))/I(1,iter+l))*100;
if ea<=es, break; end

end
q = I(1,iter+l);

FIGURE 20.2
M-file to implement Romberg integration.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 503

504 NUMERICAL INTEGRATION OF FUNCTIONS

where a and b = the limits of integration and b − a = the width of the integration interval.
Because the trapezoidal rule must pass through the end points, there are cases such as
Fig. 20.3a where the formula results in a large error.

Now, suppose that the constraint of fixed base points was removed and we were free to
evaluate the area under a straight line joining any two points on the curve. By positioning
these points wisely, we could define a straight line that would balance the positive and neg-
ative errors. Hence, as in Fig. 20.3b, we would arrive at an improved estimate of the integral.

Gauss quadrature is the name for a class of techniques to implement such a strategy.
The particular Gauss quadrature formulas described in this section are called Gauss-
Legendre formulas. Before describing the approach, we will show how numerical integra-
tion formulas such as the trapezoidal rule can be derived using the method of undetermined
coefficients. This method will then be employed to develop the Gauss-Legendre formulas.

20.3.1 Method of Undetermined Coefficients

In Chap. 19, we derived the trapezoidal rule by integrating a linear interpolating polynomial
and by geometrical reasoning. The method of undetermined coefficients offers a third ap-
proach that also has utility in deriving other integration techniques such as Gauss quadrature.

f (x)

(a)

(b)

x

f (x)

x

FIGURE 20.3
(a) Graphical depiction of the trapezoidal rule as the area under the straight line joining fixed
end points. (b) An improved integral estimate obtained by taking the area under the straight line
passing through two intermediate points. By positioning these points wisely, the positive and
negative errors are better balanced, and an improved integral estimate results.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 504

To illustrate the approach, Eq. (20.10) is expressed as

I ∼= c0 f (a) + c1 f (b) (20.11)

where the c’s = constants. Now realize that the trapezoidal rule should yield exact results
when the function being integrated is a constant or a straight line. Two simple equations
that represent these cases are y = 1 and y = x (Fig. 20.4). Thus, the following equalities
should hold:

c0 + c1 =
∫ (b−a)/2

−(b−a)/2
1 dx

and

−c0
b − a

2
+ c1

b − a

2
=

∫ (b−a)/2

−(b−a)/2
x dx

20.3 GAUSS QUADRATURE 505

x

y

y � 1

(a)

�(b � a)
2

�(b � a)
2

x

y � x
y

(b)

b � a
2

b � a
2

FIGURE 20.4
Two integrals that should be evaluated exactly by the trapezoidal rule: (a) a constant and
(b) a straight line.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 505

506 NUMERICAL INTEGRATION OF FUNCTIONS

or, evaluating the integrals,

c0 + c1 = b − a

and

−c0
b − a

2
+ c1

b − a

2
= 0

These are two equations with two unknowns that can be solved for

c0 = c1 = b − a

2

which, when substituted back into Eq. (20.11), gives

I = b − a

2
f (a) + b − a

2
f (b)

which is equivalent to the trapezoidal rule.

20.3.2 Derivation of the Two-Point Gauss-Legendre Formula

Just as was the case for the previous derivation of the trapezoidal rule, the object of Gauss
quadrature is to determine the coefficients of an equation of the form

I ∼= c0 f (x0) + c1 f (x1) (20.12)

where the c’s = the unknown coefficients. However, in contrast to the trapezoidal rule that
used fixed end points a and b, the function arguments x0 and x1 are not fixed at the end
points, but are unknowns (Fig. 20.5). Thus, we now have a total of four unknowns that
must be evaluated, and consequently, we require four conditions to determine them exactly.

Just as for the trapezoidal rule, we can obtain two of these conditions by assuming
that Eq. (20.12) fits the integral of a constant and a linear function exactly. Then, to arrive at
the other two conditions, we merely extend this reasoning by assuming that it also fits the
integral of a parabolic (y = x2) and a cubic (y = x3) function. By doing this, we determine

f (x)

f (x0)

f (x1)

�1 1x1 xx0

FIGURE 20.5
Graphical depiction of the unknown variables x0 and x1 for integration by Gauss quadrature.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 506

all four unknowns and in the bargain derive a linear two-point integration formula that is
exact for cubics. The four equations to be solved are

c0 + c1 =
∫ 1

−1
1 dx = 2 (20.13)

c0x0 + c1x1 =
∫ 1

−1
x dx = 0 (20.14)

c0x2
0 + c1x2

1 =
∫ 1

−1
x2 dx = 2

3
(20.15)

c0x3
0 + c1x3

1 =
∫ 1

−1
x3 dx = 0 (20.16)

Equations (20.13) through (20.16) can be solved simultaneously for the four unknowns.
First, solve Eq. (20.14) for c1 and substitute the result into Eq. (20.16), which can be solved for

x2
0 = x2

1

Since x0 and x1 cannot be equal, this means that x0 = −x1. Substituting this result into
Eq. (20.14) yields c0 = c1. Consequently from Eq. (20.13) it follows that

c0 = c1 = 1

Substituting these results into Eq. (20.15) gives

x0 = − 1√
3

= −0.5773503 . . .

x1 = 1√
3

= 0.5773503 . . .

Therefore, the two-point Gauss-Legendre formula is

I = f

(−1√
3

)
+ f

(
1√
3

)
(20.17)

Thus, we arrive at the interesting result that the simple addition of the function values at
x = −1/

√
3 and 1/

√
3 yields an integral estimate that is third-order accurate.

Notice that the integration limits in Eqs. (20.13) through (20.16) are from −1 to 1. This
was done to simplify the mathematics and to make the formulation as general as possible.
A simple change of variable can be used to translate other limits of integration into this
form. This is accomplished by assuming that a new variable xd is related to the original
variable x in a linear fashion, as in

x = a1 + a2xd (20.18)

If the lower limit, x = a, corresponds to xd = −1, these values can be substituted into
Eq. (20.18) to yield

a = a1 + a2(−1) (20.19)

Similarly, the upper limit, x = b, corresponds to xd = 1, to give

b = a1 + a2(1) (20.20)

20.3 GAUSS QUADRATURE 507

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 507

508 NUMERICAL INTEGRATION OF FUNCTIONS

Equations (20.19) and (20.20) can be solved simultaneously for

a1 = b + a

2
and a2 = b − a

2
(20.21)

which can be substituted into Eq. (20.18) to yield

x = (b + a) + (b − a)xd

2
(20.22)

This equation can be differentiated to give

dx = b − a

2
dxd (20.23)

Equations (20.22) and (20.23) can be substituted for x and dx , respectively, in the equation
to be integrated. These substitutions effectively transform the integration interval without
changing the value of the integral. The following example illustrates how this is done in
practice.

EXAMPLE 20.3 Two-Point Gauss-Legendre Formula

Problem Statement. Use Eq. (20.17) to evaluate the integral of

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

between the limits x = 0 to 0.8. The exact value of the integral is 1.640533.

Solution. Before integrating the function, we must perform a change of variable so that
the limits are from −1 to +1. To do this, we substitute a = 0 and b = 0.8 into Eqs. (20.22)
and (20.23) to yield

x = 0.4 + 0.4xd and dx = 0.4dxd

Both of these can be substituted into the original equation to yield∫ 0.8

0
(0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5) dx

=
∫ 1

−1
[0.2 + 25(0.4 + 0.4xd) − 200(0.4 + 0.4xd)

2 + 675(0.4 + 0.4xd)
3

− 900(0.4 + 0.4xd)
4 + 400(0.4 + 0.4xd)

5]0.4dxd

Therefore, the right-hand side is in the form that is suitable for evaluation using Gauss
quadrature. The transformed function can be evaluated at xd = −1/

√
3 as 0.516741 and at

xd = 1/
√

3 as 1.305837. Therefore, the integral according to Eq. (20.17) is 0.516741 +
1.305837 = 1.822578, which represents a percent relative error of −11.1%. This result is
comparable in magnitude to a four-segment application of the trapezoidal rule or a single
application of Simpson’s 1/3 and 3/8 rules. This latter result is to be expected because
Simpson’s rules are also third-order accurate. However, because of the clever choice of
base points, Gauss quadrature attains this accuracy on the basis of only two function
evaluations.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 508

20.3.3 Higher-Point Formulas

Beyond the two-point formula described in the previous section, higher-point versions can
be developed in the general form

I ∼= c0 f (x0) + c1 f (x1) + · · · + cn−1 f (xn−1) (20.24)

where n = the number of points. Values for c’s and x’s for up to and including the six-point
formula are summarized in Table 20.1.

EXAMPLE 20.4 Three-Point Gauss-Legendre Formula

Problem Statement. Use the three-point formula from Table 20.1 to estimate the integral
for the same function as in Example 20.3.

Solution. According to Table 20.1, the three-point formula is

I = 0.5555556 f (−0.7745967) + 0.8888889 f (0) + 0.5555556 f (0.7745967)

which is equal to

I = 0.2813013 + 0.8732444 + 0.4859876 = 1.640533

which is exact.

20.3 GAUSS QUADRATURE 509

TABLE 20.1 Weighting factors and function arguments used in Gauss-Legendre formulas.

Weighting Function Truncation
Points Factors Arguments Error

1 c0 = 2 x0 = 0.0 ∼= f (2)
(ξ)

2 c0 = 1 x0 = −1/
√

3 ∼= f (4)
(ξ)

c1 = 1 x1 = 1/
√

3

3 c0 = 5/9 x0 = −
√

3/5 ∼= f (6)
(ξ)

c1 = 8/9 x1 = 0.0
c2 = 5/9 x2 =

√
3/5

4 c0 = (18 −
√

30)/36 x0 = −
√

525 + 70
√

30/35 ∼= f (8)
(ξ)

c1 = (18 +
√

30)/36 x1 = −
√

525 − 70
√

30/35
c2 = (18 +

√
30)/36 x2 =

√
525 − 70

√
30/35

c3 = (18 −
√

30)/36 x3 =
√

525 + 70
√

30/35

5 c0 = (322 − 13
√

70)/900 x0 = −
√

245 + 14
√

70/21 ∼= f (10)
(ξ)

c1 = (322 + 13
√

70)/900 x1 = −
√

245 − 14
√

70/21
c2 = 128/225 x2 = 0.0
c3 = (322 + 13

√
70)/900 x3 =

√
245 − 14

√
70/21

c4 = (322 − 13
√

70)/900 x4 =
√

245 + 14
√

70/21

6 c0 = 0.171324492379170 x0 = −0.932469514203152 ∼= f (12)
(ξ)

c1 = 0.360761573048139 x1 = −0.661209386466265
c2 = 0.467913934572691 x2 = −0.238619186083197
c3 = 0.467913934572691 x3 = 0.238619186083197
c4 = 0.360761573048131 x4 = 0.661209386466265
c5 = 0.171324492379170 x5 = 0.932469514203152

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 509

510 NUMERICAL INTEGRATION OF FUNCTIONS

Because Gauss quadrature requires function evaluations at nonuniformly spaced points
within the integration interval, it is not appropriate for cases where the function is unknown.
Thus, it is not suited for engineering problems that deal with tabulated data. However, where
the function is known, its efficiency can be a decided advantage. This is particularly true
when numerous integral evaluations must be performed.

20.4 ADAPTIVE QUADRATURE

Although Romberg integration is more efficient than the composite Simpson’s 1/3 rule,
both use equally spaced points. This constraint does not take into account that some func-
tions have regions of relatively abrupt changes where more refined spacing might be re-
quired. Hence, to achieve a desired accuracy, fine spacing must be applied everywhere
even though it is only needed for the regions of sharp change. Adaptive quadrature meth-
ods remedy this situation by automatically adjusting the step size so that small steps are
taken in regions of sharp variations and larger steps are taken where the function changes
gradually.

20.4.1 MATLAB M-file: quadadapt

Adaptive quadrature methods accommodate the fact that many functions have regions of
high variability along with other sections where change is gradual. They accomplish this
by adjusting the step size so that small intervals are used in regions of rapid variations
and larger intervals are used where the function changes gradually. Many of these tech-
niques are based on applying the composite Simpson’s 1/3 rule to subintervals in a fash-
ion that is very similar to the way in which the composite trapezoidal rule was used in
Richardson extrapolation. That is, the 1/3 rule is applied at two levels of refinement, and
the difference between these two levels is used to estimate the truncation error. If the
truncation error is acceptable, no further refinement is required, and the integral estimate
for the subinterval is deemed acceptable. If the error estimate is too large, the step size is
refined and the process repeated until the error falls to acceptable levels. The total inte-
gral is then computed as the summation of the integral estimates for the subintervals.

The theoretical basis of the approach can be illustrated for an interval x = a to x = b
with a width of h1 = b � a. A first estimate of the integral can be estimated with Simpson’s
1/3 rule:

I (h1) = h1

6
[f (a) + 4 f (c) + f (b)] (20.25)

where c = (a � b)�2.
As in Richardson extrapolation, a more refined estimate can be obtained by halving

the step size. That is, by applying the composite Simpson’s 1/3 rule with n = 4:

I (h2) = h2

6
[f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)] (20.26)

where d = (a + c)�2, e = (c + b)�2, and h2 = h1�2.
Because both I(h1) and I(h2) are estimates of the same integral, their difference pro-

vides a measure of the error. That is,

E ∼= I (h2) − I (h1) (20.27)

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 510

In addition, the estimate and error associated with either application can be represented
generally as

I = I (h) + E(h) (20.28)

where I � the exact value of the integral, I(h) � the approximation from an n-segment
application of the Simpson’s 1/3 rule with step size h � (b � a)�n, and E(h) � the corre-
sponding truncation error.

Using an approach similar to Richardson extrapolation, we can derive an estimate in
the error of the more refined estimate I(h2) as a function of the difference between the two
integral estimates:

E(h2) = 1

15
[I (h2) − I (h1)] (20.29)

The error can then be added to I (h2) to generate an even better estimate:

I = I (h2) + 1

15
[I (h2) − I (h1)] (20.30)

This result is equivalent to Boole’s rule (Table 19.2).
The equations just developed can now be combined into an efficient algorithm. Fig-

ure 20.6 presents an M-file function that is based on an algorithm originally developed
by Cleve Moler (2004).

The function consists of a main calling function quadapt along with a recursive func-
tion qstep that actually performs the integration. The main calling function quadapt is
passed the function f and the integration limits a and b. After setting the tolerance, the
function evaluations required for the initial application of Simpson’s 1/3 rule (Eq. 20.25)
are computed. These values along with the integration limits are then passed to qstep.
Within qstep, the remaining step sizes and function values are determined, and the two
integral estimates (Eqs. 20.25 and 20.26) are computed.

At this point, the error is estimated as the absolute difference between the integral
estimates. Depending on the value of the error, two things can then happen:

1. If the error is less or equal to the tolerance (tol), Boole’s rule is generated; the func-
tion terminates and passes back the result.

2. If the error is larger than the tolerance, qstep is invoked twice to evaluate each of the
two subintervals of the current call.

The two recursive calls in the second step represent the real beauty of this algorithm.
They just keep subdividing until the tolerance is met. Once this occurs, their results are
passed back up the recursive path, combining with the other integral estimates along the
way. The process ends when the final call is satisfied and the total integral is evaluated and
returned to the main calling function.

It should be stressed that the algorithm in Fig. 20.6 is a stripped-down version of the quad
function, which is the professional root-location function employed in MATLAB. Thus, it
does not guard against failure such as cases where integrals do not exist. Nevertheless, it works
just fine for many applications, and certainly serves to illustrate how adaptive quadrature

20.4 ADAPTIVE QUADRATURE 511

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 511

512 NUMERICAL INTEGRATION OF FUNCTIONS

20.4.2 MATLAB Functions: quad and quadl

MATLAB has two functions, both based on algorithms developed by Gander and Gautschi
(2000), for implementing adaptive quadrature:

• quad. This function uses adaptive Simpson quadrature. It may be more efficient for
low accuracies or nonsmooth functions.

• quadl. This function uses what is called Lobatto quadrature. It may be more efficient
for high accuracies and smooth functions.

function q = quadadapt(f,a,b,tol,varargin)
% Evaluates definite integral of f(x) from a to b
if nargin < 4 | isempty(tol),tol = 1.e-6;end
c = (a + b)/2;
fa = feval(f,a,varargin{:});
fc = feval(f,c,varargin{:});
fb = feval(f,b,varargin{:});
q = quadstep(f, a, b, tol, fa, fc, fb, varargin{:});
end

function q = quadstep(f,a,b,tol,fa,fc,fb,varargin)
% Recursive subfunction used by quadadapt.
h = b - a; c = (a + b)/2;
fd = feval(f,(a+c)/2,varargin{:});
fe = feval(f,(c+b)/2,varargin{:});
q1 = h/6 * (fa + 4*fc + fb);
q2 = h/12 * (fa + 4*fd + 2*fc + 4*fe + fb);
if abs(q2 - q1) <= tol

q = q2 + (q2 - q1)/15;
else

qa = quadstep(f, a, c, tol, fa, fd, fc, varargin{:});
qb = quadstep(f, c, b, tol, fc, fe, fb, varargin{:});
q = qa + qb;

end
end

FIGURE 20.6
An M-file to implement an adaptive quadrature algorithm based on an algorithm originally
developed by Cleve Moler (2004).

works. Here is a MATLAB session showing how quadadapt can be used to determine the in-
tegral of the polynomial from Example 20.1:

>> f=@(x) 0.2+25*x-200*x^2+675*x^3-900*x^4+400*x^5;
>> q = quadadapt(f,0,0.8)

q =
1.640533333333336

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 512

20.4 ADAPTIVE QUADRATURE 513

The following function syntax for the quad function is the same for the quadl
function:

q = quad(fun, a, b, tol, trace, p1, p2, . . .)

where fun is the function to be integrated, a and b = the integration bounds, tol = the
desired absolute error tolerance (default = 10−6), trace is a variable that when set to a
nonzero value causes additional computational detail to be displayed, and p1, p2, . . .

are parameters that you want to pass to fun. It should be noted that array operators .*, ./
and .^ should be used in the definition of fun. In addition, pass empty matrices for tol or
trace to use the default values.

EXAMPLE 20.5 Adaptive Quadrature

Problem Statement. Use quad to integrate the following function:

f (x) = 1

(x − q)2 + 0.01
+ 1

(x − r)2 + 0.04
− s

between the limits x = 0 to 1. Note that for q = 0.3, r = 0.9, and s = 6, this is the built-
in humps function that MATLAB uses to demonstrate some of its numerical capabilities.
The humps function exhibits both flat and steep regions over a relatively short x range.
Hence, it is useful for demonstrating and testing routines like quad and quadl. Note that
the humps function can be integrated analytically between the given limits to yield an exact
integral of 29.85832539549867.

Solution. First, let’s evaluate the integral in the simplest way possible, using the built-in
version of humps along with the default tolerance:

>> format long
>> quad(@humps,0,1)

ans =
29.85832612842764

Thus, the solution is correct to seven significant digits.
Next, we can solve the same problem, but using a looser tolerance and passing q, r, and

s as parameters. First, we can develop an M-file for the function:

function y = myhumps(x,q,r,s)
y = 1./((x-q).^2 + 0.01) + 1./((x-r).^2+0.04) - s;

Then, we can integrate it with an error tolerance of 10−4 as in

>> quad(@myhumps,0,1,le-4,[],0.3,0.9,6)

ans =
29.85812133214492

Notice that because we used a larger tolerance, the result is now only accurate to five sig-
nificant digits. However, although it would not be apparent from a single application, fewer
function evaluations were made and, hence, the computation executes faster.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 513

514 NUMERICAL INTEGRATION OF FUNCTIONS

20.5 CASE STUDY ROOT-MEAN-SQUARE CURRENT

Background. Because it results in efficient energy transmission, the current in an AC
circuit is often in the form of a sine wave:

i = ipeak sin(ωt)

where i = the current (A = C/s), ipeak = the peak current (A), ω = the angular frequency
(radians/s) and t = time (s). The angular frequency is related to the period T(s) by ω = 2π/T.

The power generated is related to the magnitude of the current. Integration can be used
to determine the average current over one cycle:

ī = 1

T

∫ T

0
ipeak sin(ωt) dt = ipeak

T
(− cos(2π) + cos(0)) = 0

Despite the fact that the average is zero, such a current is capable of generating power.
Therefore, an alternative to the average current must be derived.

To do this, electrical engineers and scientists determine the root mean square current
irms (A), which is calculated as

irms =
√

1

T

∫ T

0
i2
peak sin2(ωt) dt = ipeak√

2
(20.31)

Thus, as the name implies, the rms current is the square root of the mean of the squared cur-
rent. Because 1/

√
2 = 0.70707, irms is equal to about 70% of the peak current for our as-

sumed sinusoidal wave form.
This quantity has meaning because it is directly related to the average power absorbed

by an element in an AC circuit. To understand this, recall that Joule’s law states that the in-
stantaneous power absorbed by a circuit element is equal to product of the voltage across it
and the current through it:

P = iV (20.32)

where P = the power (W = J/s), and V = voltage (V = J/C). For a resistor, Ohm’s law states
that the voltage is directly proportional to the current:

V = i R (20.33)

where R = the resistance (� = V/A = J · s/C2). Substituting Eq. (20.33) into (20.32) gives

P = i2 R (20.34)

The average power can be determined by integrating Eq. (20.34) over a period with the result:

P̄ = i2
rms R

Thus, the AC circuit generates the equivalent power as a DC circuit with a constant current
of irms.

Now, although the simple sinusoid is widely employed, it is by no means the only
waveform that is used. For some of these forms, such as triangular or square waves, the irms

can be evaluated analytically with closed-form integration. However, some waveforms
must be analyzed with numerical integration methods.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 514

20.5 CASE STUDY 515

20.5 CASE STUDY continued

In this case study, we will calculate the root-mean-square current of a non-sinusoidal
wave form. We will use both the Newton-Cotes formulas from Chap. 19 as well as the
approaches described in this chapter.

Solution. The integral that must be evaluated is

i2
rms =

∫ 1/2

0
(10e−t sin 2π t)2 dt (20.35)

For comparative purposes, the exact value of this integral to fifteen significant digits is
15.41260804810169.

Integral estimates for various applications of the trapezoidal rule and Simpson’s 1/3
rule are listed in Table 20.2. Notice that Simpson’s rule is more accurate than the trapezoidal
rule. The value for the integral to seven significant digits is obtained using a 128-segment
trapezoidal rule or a 32-segment Simpson’s rule.

The M-file we developed in Fig. 20.2 can be used to evaluate the integral with
Romberg integration:

>> format long
>> i2=@(t) (10*exp(-t).*sin(2*pi*t)).^2;
>> [q,ea,iter]=romberg(i2,0,.5)

q =
15.41260804288977

ea =
1.480058787326946e-008

iter =
5

TABLE 20.2 Values for the integral calculated using Newton-Cotes
formulas.

Technique Segments Integral εt (%)

Trapezoidal rule 1 0.0 100.0000
2 15.163266493 1.6178
4 15.401429095 0.0725
8 15.411958360 4.22 × 10−3

16 15.412568151 2.59 × 10−4

32 15.412605565 1.61 × 10−5

64 15.412607893 1.01 × 10−6

128 15.412608038 6.28 × 10−8

Simpson’s 1/3 rule 2 20.217688657 31.1763
4 15.480816629 0.4426
8 15.415468115 0.0186

16 15.412771415 1.06 × 10−3

32 15.412618037 6.48 × 10−5

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 515

516 NUMERICAL INTEGRATION OF FUNCTIONS

20.5 CASE STUDY continued

Thus, with the default stopping criterion of es= 1 × 10−6, we obtain a result that is correct
to over nine significant figures in five iterations. We can obtain an even better result if we
impose a more stringent stopping criterion:

>> [q,ea,iter]=romberg(i2,0,.5,1e-15)

q =
15.41260804810169

ea =
0

iter =
7

Gauss quadrature can also be used to make the same estimate. First, a change in
variable is performed by applying Eqs. (20.22) and (20.23) to yield

t = 1

4
+ 1

4
td dt = 1

4
dtd

These relationships can be substituted into Eq. (20.35) to yield

i2
rms =

∫ 1

−1

[
10e−(0.25+0.25td) sin 2π(0.25 + 0.25td)

]2
0.25 dt (20.36)

For the two-point Gauss-Legendre formula, this function is evaluated at td = −1/
√

3 and
1/

√
3, with the results being 7.684096 and 4.313728, respectively. These values can be

substituted into Eq. (20.17) to yield an integral estimate of 11.99782, which represents an
error of εt = 22.1%.

The three-point formula is (Table 20.1)

I = 0.5555556(1.237449) + 0.8888889(15.16327) + 0.5555556(2.684915) = 15.65755

which has εt = 1.6%. The results of using the higher-point formulas are summarized in
Table 20.3.

Finally, the integral can be evaluated with the built-in MATLAB function quad and quadl:

>> irms2=quad(i2,0,.5)

irms2 =
15.41260804934509

TABLE 20.3 Results of using various-point Gauss quadrature
formulas to approximate the integral.

Points Estimate εt (%)

2 11.9978243 22.1
3 15.6575502 1.59
4 15.4058023 4.42 × 10−2

5 15.4126391 2.01 × 10−4

6 15.4126109 1.82 × 10−5

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 516

PROBLEMS 517

20.5 CASE STUDY continued

>> irms2=quadl(i2,0,.5)

irms2 =
15.41260804809967

Both these results are very accurate, with quadl being a little better.
We can now compute the irms by merely taking the square root of the integral. For ex-

ample, using the result computed with quadl, we get

>> irms=sqrt(irms2)

irms =
3.92588945948554

This result could then be employed to guide other aspects of the design and operation of the
circuit such as power dissipation computations.

As we did for the simple sinusoid in Eq. (20.31), an interesting calculation involves
comparing this result with the peak current. Recognizing that this is an optimization prob-
lem, we can readily employ the fminbnd function to determine this value. Because we are
looking for a maximum, we evaluate the negative of the function:

>> [tmax,imax]=fminbnd(@(t) -10*exp(-t).*sin(2*pi*t),0,.5)

tmax =
0.22487940319321

imax =
-7.88685387393258

A maximum current of 7.88685 A occurs at t = 0.2249 s. Hence, for this particular wave
form, the root-mean-square value is about 49.8% of the maximum.

PROBLEMS

20.1 Use Romberg integration to evaluate

I =
∫ 2

1

(
x + 1

x

)2

dx

to an accuracy of εs = 0.5%.Your results should be presented
in the format of Fig. 20.1. Use the analytical solution of the
integral to determine the percent relative error of the result ob-
tained with Romberg integration. Check that εt is less than εs .

20.2 Evaluate the following integral (a) analytically,
(b) Romberg integration (εs = 0.5%), (c) the three-point

Gauss quadrature formula, and (d) MATLAB quad function:

I =
∫ 8

0
− 0.055x4 + 0.86x3 − 4.2x2 + 6.3x + 2 dx

20.3 Evaluate the following integral with (a) Romberg inte-
gration (εs = 0.5%), (b) the two-point Gauss quadrature
formula, and (c) MATLAB quad and quadl functions:

I =
∫ 3

0
xe2x dx

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 517

518 NUMERICAL INTEGRATION OF FUNCTIONS

20.4 There is no closed form solution for the error function

erf(a) = 2√
π

∫ a

0
e−x2

dx

Use the (a) two-point and (b) three-point Gauss-Legendre
formulas to estimate erf(1.5). Determine the percent relative
error for each case based on the true value, which can be de-
termined with MATLAB’s built-in function erf.
20.5 The force on a sailboat mast can be represented by the
following function:

F =
∫ H

0
200

(
z

5 + z

)
e−2z/H dz

where z = the elevation above the deck and H = the height
of the mast. Compute F for the case where H = 30 using
(a) Romberg integration to a tolerance of εs = 0.5%, (b) the
two-point Gauss-Legendre formula, and (c) the MATLAB
quad function.
20.6 The root-mean-square current can be computed as

IRMS =
√

1

T

∫ T

0
i2(t) dt

For T = 1, suppose that i(t) is defined as

i(t) = 8e−t/T sin
(

2π
t

T

)
for 0 ≤ t ≤ T/2

i(t) = 0 for T/2 ≤ t ≤ T

Evaluate the IRMS using (a) Romberg integration to a toler-
ance of 0.1%, (b) the two- and three-point Gauss-Legendre
formulas, and (c) the MATLAB quad function.
20.7 The heat required, �H (cal), to induce a temperature
change, �T (°C), of a material can be computed as

�H = mCp(T)�T

where m � mass (g), and Cp(T) � heat capacity [cal/(g .°C)].
The heat capacity increases with temperature, T (°C),
according to

Cp(T) = 0.132 + 1.56 × 10−4T + 2.64 × 10−7T 2

Write a script that uses the quad function to generate a plot
of �H versus �T for cases where m = 1 kg, the starting
temperature is �100 °C and �T ranges from 0 to 300 °C.
20.8 The amount of mass transported via a pipe over a pe-
riod of time can be computed as

M =
∫ t2

t1

Q(t)c(t) dt

where M = mass (mg), t1 = the initial time (min), t2 = the
final time (min), Q(t) = flow rate (m3/min), and c(t) =
concentration (mg/m3). The following functional repre-
sentations define the temporal variations in flow and
concentration:

Q(t) = 9 + 5 cos2(0.4t)

c(t) = 5e−0.5t + 2e0.15t

Determine the mass transported between t1 = 2 and
t2 = 8 min with (a) Romberg integration to a tolerance of
0.1% and (b) the MATLAB quad function.
20.9 Evaluate the double integral

∫ 2

−2

∫ 4

0
(x2 − 3y2 + xy3) dx dy

(a) analytically and (b) using the MATLAB dblquad
function. Use help to understand how to implement the
function.
20.10 Compute work as described in Sec. 19.9, but use the
following equations for F(x) and θ(x):

F(x) = 1.6x − 0.045x2

θ(x) = −0.00055x3 + 0.0123x2 + 0.13x

The force is in newtons and the angle is in radians. Perform
the integration from x = 0 to 30 m.
20.11 Perform the same computation as in Sec. 20.5, but for
the current as specified by

i (t) = 6e−1.25t sin 2πt for 0 ≤ t ≤ T/2

i (t) = 0 for T/2 < t ≤ T

where T = 1 s.
20.12 Compute the power absorbed by an element in a cir-
cuit as described in Sec. 20.5, but for a simple sinusoidal
current i = sin(2πt/T) where T = 1 s.
(a) Assume that Ohm’s law holds and R = 5 �.
(b) Assume that Ohm’s law does not hold and that voltage

and current are related by the following nonlinear rela-
tionship: V = (5i − 1.25i3).

20.13 Suppose that the current through a resistor is de-
scribed by the function

i(t) = (60 − t)2 + (60 − t) sin(
√

t)

and the resistance is a function of the current:

R = 10i + 2i2/3

Compute the average voltage over t = 0 to 60 using the
composite Simpson’s 1/3 rule.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 518

20.14 If a capacitor initially holds no charge, the voltage
across it as a function of time can be computed as

V (t) = 1

C

∫ t

0
i(t) dt

Use MATLAB to fit these data with a fifth-order polynomial.
Then, use a numerical integration function along with a value
of C = 10−5 farad to generate a plot of voltage versus time.

t, s 0 0.2 0.4 0.6
i, 10−3 A 0.2 0.3683 0.3819 0.2282

t, s 0.8 1 1.2
i, 10−3 A 0.0486 0.0082 0.1441

20.15 The work done on an object is equal to the force times
the distance moved in the direction of the force. The veloc-
ity of an object in the direction of a force is given by

v = 4t 0 ≤ t ≤ 5

v = 20 + (5 − t)2 5 ≤ t ≤ 15

where v is in m/s. Determine the work if a constant force of
200 N is applied for all t.
20.16 A rod subject to an axial load (Fig. P20.16a) will be
deformed, as shown in the stress-strain curve in Fig. P20.16b.

PROBLEMS 519

The area under the curve from zero stress out to the point of
rupture is called the modulus of toughness of the material. It
provides a measure of the energy per unit volume required to
cause the material to rupture. As such, it is representative of
the material’s ability to withstand an impact load. Use nu-
merical integration to compute the modulus of toughness for
the stress-strain curve seen in Fig. P20.16b.
20.17 If the velocity distribution of a fluid flowing through
a pipe is known (Fig. P20.17), the flow rate Q (i.e., the vol-
ume of water passing through the pipe per unit time) can be
computed by Q = ∫

v d A, where v is the velocity, and A is
the pipe’s cross-sectional area. (To grasp the meaning of this
relationship physically, recall the close connection between
summation and integration.) For a circular pipe, A = πr2

and d A = 2πr dr . Therefore,

Q =
∫ r

0
v(2πr) dr

0

20

40

60

0.1

s,
 k

si

(b)(a)

e

0.02
0.05
0.10
0.15
0.20
0.25

s

40.0
37.5
43.0
52.0
60.0
55.0

Rupture

0.2 e

Modulus of
toughness

FIGURE P20.16
(a) A rod under axial loading and (b) the resulting stress-strain curve, where
stress is in kips per square inch (103 lb/in2), and strain is dimensionless.

r
A

FIGURE P20.17

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 519

520 NUMERICAL INTEGRATION OF FUNCTIONS

where r is the radial distance measured outward from the
center of the pipe. If the velocity distribution is given by

v = 2
(

1 − r

r0

)1/6

where r0 is the total radius (in this case, 3 cm), compute Q
using the composite trapezoidal rule. Discuss the results.
20.18 Using the following data, calculate the work done by
stretching a spring that has a spring constant of k = 300 N/m
to x = 0.35 m. To do this, first fit the data with a polynomial
and then integrate the polynomial numerically to compute
the work:

F, 103 · N 0 0.01 0.028 0.046
x, m 0 0.05 0.10 0.15

F, 103 · N 0.063 0.082 0.11 0.13
x, m 0.20 0.25 0.30 0.35

20.19 Evaluate the vertical distance traveled by a rocket if
the vertical velocity is given by

v = 11t2 − 5t 0 ≤ t ≤ 10

v = 1100 − 5t 10 ≤ t ≤ 20

v = 50t + 2(t − 20)2 20 ≤ t ≤ 30

20.20 The upward velocity of a rocket can be computed by
the following formula:

v = u ln
(

m0

m0 − qt

)
− gt

where v = upward velocity, u = velocity at which fuel is ex-
pelled relative to the rocket, m0 = initial mass of the rocket
at time t = 0, q = fuel consumption rate, and g = downward
acceleration of gravity (assumed constant = 9.81 m/s2). If u
= 1850 m/s, m0 = 160,000 kg, and q = 2500 kg/s, determine
how high the rocket will fly in 30 s.
20.21 The normal distribution is defined as

f (x) = 1√
2π

e−x2/2

(a) Use MATLAB to integrate this function from x = −1 to
1 and from −2 to 2.

(b) Use MATLAB to determine the inflection points of this
function.

20.22 Use Romberg integration to evaluate

∫ 2

0

ex sin x

1 + x2
dx

to an accuracy of εs = 0.5%. Your results should be pre-
sented in the form of Fig. 20.1.
20.23 Recall that the velocity of the free-falling bungee
jumper can be computed analytically as [(Eq. 1.9)]:

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)

where v(t) = velocity (m/s), t = time (s), g = 9.81 m/s2,
m = mass (kg), cd = drag coefficient (kg/m).
(a) Use Romberg integration to compute how far the jumper

travels during the first 8 seconds of free fall given m =
80 kg and cd = 0.2 kg/m. Compute the answer to εs = 1%.

(b) Perform the same computation with quad.
20.24 Prove that Eq. (20.30) is equivalent to Boole’s rule.
20.25 As specified in the following table, the earth’s density
varies as a function of the distance from its center (r � 0):

r, km 0 1100 1500 2450 3400 3630 4500
�, g/cm3 13 12.4 12 11.2 9.7 5.7 5.2

r, km 5380 6060 6280 6380
�, g/cm3 4.7 3.6 3.4 3

Develop a script to fit these data with interp1 using the
pchip option. Generate a plot showing the resulting fit
along with the data points. Then use one of MATLAB’s in-
tegration functions to estimate the earth’s mass (in metric
tonnes) by integrating the output of the interp1 function.
20.26 Develop an M-file function to implement Romberg in-
tegration based on Fig. 20.2. Test the function by using it to
determine the integral of the polynomial from Example 20.1.
Then use it to solve Prob. 20.1.
20.27 Develop an M-file function to implement adaptive
quadrature based on Fig. 20.6. Test the function by using it to
determine the integral of the polynomial from Example 20.1.
Then use it to solve Prob. 20.20.

cha01102_ch20_497-520.qxd 12/17/10 8:21 AM Page 520

521

Numerical Differentiation
21

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to numerical differentiation.
Specific objectives and topics covered are

• Understanding the application of high-accuracy numerical differentiation
formulas for equispaced data.

• Knowing how to evaluate derivatives for unequally spaced data.
• Understanding how Richardson extrapolation is applied for numerical

differentiation.
• Recognizing the sensitivity of numerical differentiation to data error.
• Knowing how to evaluate derivatives in MATLAB with the diff and gradient

functions.
• Knowing how to generate contour plots and vector fields with MATLAB.

YOU’VE GOT A PROBLEM

Recall that the velocity of a free-falling bungee jumper as a function of time can be
computed as

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)
(21.1)

At the beginning of Chap. 19, we used calculus to integrate this equation to determine the
vertical distance z the jumper has fallen after a time t.

z(t) = m

cd
ln

[
cosh

(√
gcd

m
t

)]
(21.2)

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 521

522 NUMERICAL DIFFERENTIATION

Now suppose that you were given the reverse problem. That is, you were asked to de-
termine velocity based on the jumper’s position as a function of time. Because it is the in-
verse of integration, differentiation could be used to make the determination:

v(t) = dz(t)

dt
(21.3)

Substituting Eq. (21.2) into Eq. (21.3) and differentiating would bring us back to Eq. (21.1).
Beyond velocity, you might also be asked to compute the jumper’s acceleration. To

do this, we could either take the first derivative of velocity, or the second derivative of
displacement:

a(t) = dv(t)

dt
= d2z(t)

dt2
(21.4)

In either case, the result would be

a(t) = g sech2

(√
gcd

m
t

)
(21.5)

Although a closed-form solution can be developed for this case, there are other func-
tions that may be difficult or impossible to differentiate analytically. Further, suppose that
there was some way to measure the jumper’s position at various times during the fall.
These distances along with their associated times could be assembled as a table of discrete
values. In this situation, it would be useful to differentiate the discrete data to determine the
velocity and the acceleration. In both these instances, numerical differentiation methods
are available to obtain solutions. This chapter will introduce you to some of these methods.

21.1 INTRODUCTION AND BACKGROUND

21.1.1 What Is Differentiation?

Calculus is the mathematics of change. Because engineers and scientists must continuously
deal with systems and processes that change, calculus is an essential tool of our profession.
Standing at the heart of calculus is the mathematical concept of differentiation.

According to the dictionary definition, to differentiate means “to mark off by differ-
ences; distinguish; . . . to perceive the difference in or between.” Mathematically, the deriva-
tive, which serves as the fundamental vehicle for differentiation, represents the rate of change
of a dependent variable with respect to an independent variable. As depicted in Fig. 21.1, the
mathematical definition of the derivative begins with a difference approximation:

�y

�x
= f (xi + �x) − f (xi)

�x
(21.6)

where y and f (x) are alternative representatives for the dependent variable and x is the
independent variable. If �x is allowed to approach zero, as occurs in moving from Fig. 21.1a
to c, the difference becomes a derivative:

dy

dx
= lim

�x→0

f (xi + �x) − f (xi)

�x
(21.7)

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 522

21.1 INTRODUCTION AND BACKGROUND 523

where dy/dx [which can also be designated as y′ or f ′(xi)]1 is the first derivative of y with
respect to x evaluated at xi. As seen in the visual depiction of Fig. 21.1c, the derivative is
the slope of the tangent to the curve at xi.

The second derivative represents the derivative of the first derivative,

d2 y

dx2
= d

dx

(
dy

dx

)
(21.8)

Thus, the second derivative tells us how fast the slope is changing. It is commonly referred
to as the curvature, because a high value for the second derivative means high curvature.

Finally, partial derivatives are used for functions that depend on more than one variable.
Partial derivatives can be thought of as taking the derivative of the function at a point with
all but one variable held constant. For example, given a function f that depends on both x
and y, the partial derivative of f with respect to x at an arbitrary point (x, y) is defined as

∂ f

∂x
= lim

�x→0

f (x + �x, y) − f (x, y)

�x
(21.9)

Similarly, the partial derivative of f with respect to y is defined as

∂ f

∂y
= lim

�y→0

f (x, y + �y) − f (x, y)

�y
(21.10)

To get an intuitive grasp of partial derivatives, recognize that a function that depends on
two variables is a surface rather than a curve. Suppose you are mountain climbing and have
access to a function f that yields elevation as a function of longitude (the east-west oriented

1 The form dy/dx was devised by Leibnitz, whereas y′ is attributed to Lagrange. Note that Newton used the
so-called dot notation: ẏ. Today, the dot notation is usually used for time derivatives.

f (xi)

xi xi + �x x

�x

f (xi + �x)

y y y

�y

f (xi)
f ' (xi)

f (xi + �x)

xi xi + �x x

�x

(a) (b)

�y

xi x

(c)

FIGURE 21.1
The graphical definition of a derivative: as �x approaches zero in going from (a) to (c), the difference approximation
becomes a derivative.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 523

T

x

(b)(a)

Direction of
heat flow

T

x

Direction of
heat flow

�T
�i

� 0

�T
�i

� 0

FIGURE 21.2
Graphical depiction of a temperature gradient. Because heat moves “downhill” from high to low
temperature, the flow in (a) is from left to right. However, due to the orientation of Cartesian
coordinates, the slope is negative for this case. Thus, a negative gradient leads to a positive
flow. This is the origin of the minus sign in Fourier’s law of heat conduction. The reverse case is
depicted in (b), where the positive gradient leads to a negative heat flow from right to left.

524 NUMERICAL DIFFERENTIATION

x axis) and latitude (the north-south oriented y axis). If you stop at a particular point (x0, y0),
the slope to the east would be ∂f(x0, y0)/∂x, and the slope to the north would be ∂f(x0, y0)/∂y.

21.1.2 Differentiation in Engineering and Science

The differentiation of a function has so many engineering and scientific applications that
you were required to take differential calculus in your first year at college. Many specific ex-
amples of such applications could be given in all fields of engineering and science. Differ-
entiation is commonplace in engineering and science because so much of our work involves
characterizing the changes of variables in both time and space. In fact, many of the laws and
other generalizations that figure so prominently in our work are based on the predictable
ways in which change manifests itself in the physical world. A prime example is Newton’s
second law, which is not couched in terms of the position of an object but rather in its change
with respect to time.

Aside from such temporal examples, numerous laws involving the spatial behavior of
variables are expressed in terms of derivatives. Among the most common of these are the
constitutive laws that define how potentials or gradients influence physical processes. For
example, Fourier’s law of heat conduction quantifies the observation that heat flows from
regions of high to low temperature. For the one-dimensional case, this can be expressed
mathematically as

q = −k
dT

dx
(21.11)

where q (x) = heat flux (W/m2), k = coefficient of thermal conductivity [W/(m · K)], T =
temperature (K), and x = distance (m). Thus, the derivative, or gradient, provides a measure
of the intensity of the spatial temperature change, which drives the transfer of heat (Fig. 21.2).

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 524

21.2 HIGH-ACCURACY DIFFERENTIATION FORMULAS 525

Similar laws provide workable models in many other areas of engineering and science,
including the modeling of fluid dynamics, mass transfer, chemical reaction kinetics, elec-
tricity, and solid mechanics (Table 21.1). The ability to accurately estimate derivatives is an
important facet of our capability to work effectively in these areas.

Beyond direct engineering and scientific applications, numerical differentiation is also
important in a variety of general mathematical contexts including other areas of numerical
methods. For example, recall that in Chap. 6 the secant method was based on a finite-
difference approximation of the derivative. In addition, probably the most important appli-
cation of numerical differentiation involves the solution of differential equations. We have
already seen an example in the form of Euler’s method in Chap. 1. In Chap. 24, we will in-
vestigate how numerical differentiation provides the basis for solving boundary-value
problems of ordinary differential equations.

These are just a few of the applications of differentiation that you might face regularly
in the pursuit of your profession. When the functions to be analyzed are simple, you will nor-
mally choose to evaluate them analytically. However, it is often difficult or impossible when
the function is complicated. In addition, the underlying function is often unknown and de-
fined only by measurement at discrete points. For both these cases, you must have the ability
to obtain approximate values for derivatives, using numerical techniques as described next.

21.2 HIGH-ACCURACY DIFFERENTIATION FORMULAS

We have already introduced the notion of numerical differentiation in Chap. 4. Recall that
we employed Taylor series expansions to derive finite-difference approximations of deriva-
tives. In Chap. 4, we developed forward, backward, and centered difference approximations
of first and higher derivatives. Remember that, at best, these estimates had errors that were
O(h2)—that is, their errors were proportional to the square of the step size. This level of
accuracy is due to the number of terms of the Taylor series that were retained during the

TABLE 21.1 The one-dimensional forms of some constitutive laws commonly used in
engineering and science.

Law Equation Physical Area Gradient Flux Proportionality

Fourier’s law q = −k
dT

dx
Heat conduction Temperature Heat flux Thermal

Conductivity

Fick’s law J = −D
dc

dx
Mass diffusion Concentration Mass flux Diffusivity

Darcy’s law q = −k
dh

dx
Flow through Head Flow flux Hydraulic
porous media Conductivity

Ohm’s law J = −σ
dV

dx
Current flow Voltage Current flux Electrical

Conductivity

Newton’s τ = μ
du

dx
Fluids Velocity Shear Dynamic

viscosity law Stress Viscosity

Hooke’s law σ = E
�L

L
Elasticity Deformation Stress Young’s

Modulus

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 525

526 NUMERICAL DIFFERENTIATION

derivation of these formulas. We will now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (4.13)]

f (xi+1) = f (xi) + f ′(xi)h + f ′′(xi)

2!
h2 + · · · (21.12)

which can be solved for

f ′(xi) = f (xi+1) − f (xi)

h
− f ′′(xi)

2!
h + O(h2) (21.13)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative terms
and were thus left with a forward-difference formula:

f ′(xi) = f (xi+1) − f (xi)

h
+ O(h) (21.14)

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

f ′′(xi) = f (xi+2) − 2 f (xi+1) + f (xi)

h2
+ O(h) (21.15)

into Eq. (21.13) to yield

f ′(xi) = f (xi+1) − f (xi)

h
− f (xi+2) − 2 f (xi+1) + f (xi)

2h2
h + O(h2) (21.16)

or, by collecting terms:

f ′(xi) = − f (xi+2) + 4 f (xi+1) − 3 f (xi)

2h
+ O(h2) (21.17)

Notice that inclusion of the second-derivative term has improved the accuracy to O(h2).
Similar improved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 21.3 through Fig. 21.5 along with the lower-order versions from Chap. 4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives.

EXAMPLE 21.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 526

21.2 HIGH-ACCURACY DIFFERENTIATION FORMULAS 527

FIGURE 21.3
Forward finite-difference formulas: two versions are presented for each derivative. The latter version
incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h)

f ′ (xi) = O(h2)

Second Derivative

f ′′ (xi) = O(h)

f ′′ (xi) = O(h2)

Third Derivative

f ′′′ (xi) = O(h)

f ′′′ (xi) = O(h2)

Fourth Derivative

f ′′′′ (xi) = O(h)

f ′′′′ (xi) = O(h2)
−2 f (xi+5) + 11 f (xi+4) − 24 f (xi+3) + 26 f (xi+2) − 14 f (xi+1) + 3 f (xi)

h4

f (xi+4) − 4 f (xi+3) + 6 f (xi+2) − 4 f (xi+1) + f (xi)

h4

−3 f (xi+4) + 14 f (xi+3) − 24 f (xi+2) + 18 f (xi+1) − 5 f (xi)

2h3

f (xi+3) − 3 f (xi+2) + 3 f (xi+1) − f (xi)

h3

− f (xi+3) + 4 f (xi+2) − 5 f (xi+1) + 2 f (xi)

h2

f (xi+2) − 2 f (xi+1) + f (xi)

h2

−f (xi+2) + 4 f (xi+1) − 3 f (xi)

2h

f (xi+1) − f (xi)

h

Solution. The data needed for this example are

xi−2 = 0 f (xi−2) = 1.2

xi−1 = 0.25 f (xi−1) = 1.1035156

xi = 0.5 f (xi) = 0.925

xi+1 = 0.75 f (xi+1) = 0.6363281

xi+2 = 1 f (xi+2) = 0.2

The forward difference of accuracy O(h2) is computed as (Fig. 21.3)

f ′(0.5) = −0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375 εt = 5.82%

The backward difference of accuracy O(h2) is computed as (Fig. 21.4)

f ′(0.5) = 3(0.925) − 4(1.1035156) + 1.2

2(0.25)
= −0.878125 εt = 3.77%

The centered difference of accuracy O(h4) is computed as (Fig. 21.5)

f ′(0.5) = −0.2 + 8(0.6363281) − 8(1.1035156) + 1.2

12(0.25)
= −0.9125 εt = 0%

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 527

528 NUMERICAL DIFFERENTIATION

FIGURE 21.4
Backward finite-difference formulas: two versions are presented for each derivative. The latter
version incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h)

f ′ (xi) = O(h2)

Second Derivative

f ′′ (xi) = O(h)

f ′′ (xi) = O(h2)

Third Derivative

f ′′′ (xi) = O(h)

f ′′′ (xi) = O(h2)

Fourth Derivative

f ′′′′ (xi) = O(h)

f ′′′′ (xi) = O(h2)
3 f (xi) − 14 f (xi−1) + 26 f (xi−2) − 24 f (xi−3) + 11 f (xi−4) − 2f (xi−5)

h4

f (xi) − 4 f (xi−1) + 6 f (xi−2) − 4 f (xi−3) + f (xi−4)

h4

5 f (xi) − 18 f (xi−1) + 24 f (xi−2) − 14 f (xi−3) + 3 f (xi−4)

2h3

f (xi) − 3 f (xi−1) + 3 f (xi−2) − f (xi−3)

h3

2 f (xi) − 5 f (xi−1) + 4 f (xi−2) − f (xi−3)

h2

f (xi) − 2 f (xi−1) + f (xi−2)

h2

3 f (xi) − 4 f (xi−1) + f (xi−2)

2h

f (xi) − f (xi−1)

h

As expected, the errors for the forward and backward differences are considerably
more accurate than the results from Example 4.4. However, surprisingly, the centered dif-
ference yields the exact derivative at x = 0.5. This is because the formula based on the
Taylor series is equivalent to passing a fourth-order polynomial through the data points.

21.3 RICHARDSON EXTRAPOLATION

To this point, we have seen that there are two ways to improve derivative estimates when
employing finite differences: (1) decrease the step size or (2) use a higher-order formula
that employs more points. A third approach, based on Richardson extrapolation, uses two
derivative estimates to compute a third, more accurate, approximation.

Recall from Sec. 20.2.1 that Richardson extrapolation provided a means to obtain an
improved integral estimate by the formula [Eq. (20.4)]

I = I (h2) + 1

(h1/h2)2 − 1
[I (h2) − I (h1)] (21.18)

where I (h1) and I (h2) are integral estimates using two step sizes: h1 and h2. Because of
its convenience when expressed as a computer algorithm, this formula is usually written
for the case where h2 = h1/2, as in

I = 4

3
I (h2) − 1

3
I (h1) (21.19)

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 528

21.3 RICHARDSON EXTRAPOLATION 529

In a similar fashion, Eq. (21.19) can be written for derivatives as

D = 4

3
D(h2) − 1

3
D(h1) (21.20)

For centered difference approximations with O(h2), the application of this formula will
yield a new derivative estimate of O(h4).

EXAMPLE 21.2 Richardson Extrapolation

Problem Statement. Using the same function as in Example 21.1, estimate the first de-
rivative at x = 0.5 employing step sizes of h1 = 0.5 and h2 = 0.25. Then use Eq. (21.20)
to compute an improved estimate with Richardson extrapolation. Recall that the true value
is −0.9125.

Solution. The first-derivative estimates can be computed with centered differences as

D(0.5) = 0.2 − 1.2

1
= −1.0 εt = −9.6%

and

D(0.25) = 0.6363281 − 1.103516

0.5
= −0.934375 εt = −2.4%

First Derivative Error

f ′ (xi) = O(h2)

f ′ (xi) = O(h4)

Second Derivative

f ′′ (xi) = O(h2)

f ′′ (xi) = O(h4)

Third Derivative

f ′′′ (xi) = O(h2)

f ′′′ (xi) = O(h4)

Fourth Derivative

f ′′′′ (xi) = O(h2)

f ′′′′ (xi) = O(h4)
− f (xi+3) + 12 f (xi+2) − 39 f (xi+1) + 56 f (xi) − 39 f (xi−1) + 12 f (xi−2) − f (xi−3)

6h4

f (xi+2) − 4 f (xi+1) + 6 f (xi) − 4 f (xi−1) + f (xi−2)

h4

− f (xi+3) + 8 f (xi+2) − 13 f (xi+1) + 13 f (xi−1) − 8 f (xi−2) + f (xi−3)

8h3

f (xi+2) − 2 f (xi+1) + 2 f (xi−1) − f (xi−2)

2h3

−f (xi+2) + 16 f (xi+1) − 30 f (xi) + 16 f (xi−1) − f (xi−2)

12h2

f (xi+1) − 2 f (xi) + f (xi−1)

h2

− f (xi+2) + 8 f (xi+1) − 8 f (xi−1) + f (xi−2)

12h

f (xi+1) − f (xi−1)

2h

FIGURE 21.5
Centered finite-difference formulas: two versions are presented for each derivative. The latter
version incorporates more terms of the Taylor series expansion and is, consequently, more
accurate.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 529

The improved estimate can be determined by applying Eq. (21.20) to give

D = 4

3
(−0.934375) − 1

3
(−1) = −0.9125

which for the present case is exact.

The previous example yielded an exact result because the function being analyzed was
a fourth-order polynomial. The exact outcome was due to the fact that Richardson extrap-
olation is actually equivalent to fitting a higher-order polynomial through the data and then
evaluating the derivatives by centered divided differences. Thus, the present case matched
the derivative of the fourth-order polynomial precisely. For most other functions, of course,
this would not occur, and our derivative estimate would be improved but not exact. Conse-
quently, as was the case for the application of Richardson extrapolation, the approach can
be applied iteratively using a Romberg algorithm until the result falls below an acceptable
error criterion.

21.4 DERIVATIVES OF UNEQUALLY SPACED DATA

The approaches discussed to this point are primarily designed to determine the derivative of
a given function. For the finite-difference approximations of Sec. 21.2, the data had to be
evenly spaced. For the Richardson extrapolation technique of Sec. 21.3, the data also had to
be evenly spaced and generated for successively halved intervals. Such control of data spac-
ing is usually available only in cases where we can use a function to generate a table of values.

In contrast, empirically derived information—that is, data from experiments or field
studies—are often collected at unequal intervals. Such information cannot be analyzed
with the techniques discussed to this point.

One way to handle nonequispaced data is to fit a Lagrange interpolating polynomial
[recall Eq. (17.21)] to a set of adjacent points that bracket the location value at which you
want to evaluate the derivative. Remember that this polynomial does not require that the
points be equispaced. The polynomial can then be differentiated analytically to yield a for-
mula that can be used to estimate the derivative.

For example, you can fit a second-order Lagrange polynomial to three adjacent points
(x0, y0), (x1, y1), and (x2, y2). Differentiating the polynomial yields:

f ′(x) = f (x0)
2x − x1 − x2

(x0 − x1)(x0 − x2)
+ f (x1)

2x − x0 − x2

(x1 − x0)(x1 − x2)

+ f (x2)
2x − x0 − x1

(x2 − x0)(x2 − x1)
(21.21)

where x is the value at which you want to estimate the derivative. Although this equation is
certainly more complicated than the first-derivative approximation from Fig. 21.3 through
Fig. 21.5, it has some important advantages. First, it can provide estimates anywhere
within the range prescribed by the three points. Second, the points themselves do not have
to be equally spaced. Third, the derivative estimate is of the same accuracy as the centered
difference [Eq. (4.25)]. In fact, for equispaced points, Eq. (21.21) evaluated at x = x1 re-
duces to Eq. (4.25).

530 NUMERICAL DIFFERENTIATION

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 530

21.5 DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS 531

EXAMPLE 21.3 Differentiating Unequally Spaced Data

Problem Statement. As in Fig. 21.6, a temperature gradient can be measured down into the
soil. The heat flux at the soil-air interface can be computed with Fourier’s law (Table 21.1):

q(z = 0) = −k
dT

dz

∣∣∣∣
z=0

where q(z) = heat flux (W/m2), k = coefficient of thermal conductivity for soil [= 0.5 W/
(m · K)], T = temperature (K), and z = distance measured down from the surface into the
soil (m). Note that a positive value for flux means that heat is transferred from the air to the
soil. Use numerical differentiation to evaluate the gradient at the soil-air interface and em-
ploy this estimate to determine the heat flux into the ground.

Solution. Equation (21.21) can be used to calculate the derivative at the air-soil interface as

f ′(0) = 13.5
2(0) − 0.0125 − 0.0375

(0 − 0.0125)(0 − 0.0375)
+ 12

2(0) − 0 − 0.0375

(0.0125 − 0)(0.0125 − 0.0375)

+ 10
2(0) − 0 − 0.0125

(0.0375 − 0)(0.0375 − 0.0125)

= −1440 + 1440 − 133.333 = −133.333 K /m

which can be used to compute

q(z = 0) = −0.5
W

m K

(
−133.333

K

m

)
= 66.667

W

m2

z, cm

T(�C)10Air

Soil

3.75

13.512

1.25

FIGURE 21.6
Temperature versus depth into the soil.

21.5 DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS

Aside from unequal spacing, another problem related to differentiating empirical data is
that these data usually include measurement error. A shortcoming of numerical differentia-
tion is that it tends to amplify errors in the data.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 531

Fig. 21.7a shows smooth, error-free data that when numerically differentiated yield
a smooth result (Fig. 21.7b). In contrast, Fig. 21.7c uses the same data, but with alternat-
ing points raised and lowered slightly. This minor modification is barely apparent from
Fig. 21.7c. However, the resulting effect in Fig. 21.7d is significant.

The error amplification occurs because differentiation is subtractive. Hence, random
positive and negative errors tend to add. In contrast, the fact that integration is a summing
process makes it very forgiving with regard to uncertain data. In essence, as points are
summed to form an integral, random positive and negative errors cancel out.

As might be expected, the primary approach for determining derivatives for imprecise
data is to use least-squares regression to fit a smooth, differentiable function to the data. In
the absence of any other information, a lower-order polynomial regression might be a good
first choice. Obviously, if the true functional relationship between the dependent and inde-
pendent variable is known, this relationship should form the basis for the least-squares fit.

21.6 PARTIAL DERIVATIVES

Partial derivatives along a single dimension are computed in the same fashion as ordinary
derivatives. For example, suppose that we want to determine to partial derivatives for a
two-dimensional function f (x, y). For equally spaced data, the partial first derivatives can be

532 NUMERICAL DIFFERENTIATION

y

t
(a)

D
if

fe
re

n
ti

at
e

y

t
(c)

D
if

fe
re

n
ti

at
e

t
(b)

t
(d)

dy
dt

dy
dt

FIGURE 21.7
Illustration of how small data errors are amplified by numerical differentiation: (a) data with no
error, (b) the resulting numerical differentiation of curve (a), (c) data modified slightly, and (d) the
resulting differentiation of curve (c) manifesting increased variability. In contrast, the reverse
operation of integration [moving from (d) to (c) by taking the area under (d)] tends to attenuate
or smooth data errors.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 532

21.7 NUMERICAL DIFFERENTIATION WITH MATLAB 533

approximated with centered differences:

∂ f

∂x
= f (x + �x, y) − f (x − �x, y)

2�x
(21.22)

∂ f

∂y
= f (x, y + �y) − f (x, y − �y)

2�y
(21.23)

All the other formulas and approaches discussed to this point can be applied to evaluate
partial derivatives in a similar fashion.

For higher-order derivatives, we might want to differentiate a function with respect to
two or more different variables. The result is called a mixed partial derivative. For exam-
ple, we might want to take the partial derivative of f (x, y) with respect to both independent
variables

∂2 f

∂x∂y
= ∂

∂x

(
∂ f

∂y

)
(21.24)

To develop a finite-difference approximation, we can first form a difference in x of the par-
tial derivatives in y:

∂2 f

∂x∂y
=

∂ f

∂y
(x + �x, y) − ∂ f

∂y
(x − �x, y)

2�x
(21.25)

Then, we can use finite differences to evaluate each of the partials in y:

∂2 f

∂x∂y
=

f (x + �x, y + �y) − f (x + �x, y − �y)

2�y
− f (x − �x, y + �y) − f (x − �x, y − �y)

2�y
2�x

(21.26)

Collecting terms yields the final result

∂2 f

∂x∂y
= f (x + �x, y + �y) − f (x + �x, y − �y) − f (x − �x, y + �y) + f (x − �x, y − �y)

4�x�y
(21.27)

21.7 NUMERICAL DIFFERENTIATION WITH MATLAB

MATLAB software has the ability to determine the derivatives of data based on two built-
in functions: diff and gradient.

21.7.1 MATLAB Function: diff

When it is passed a one-dimensional vector of length n, the diff function returns a vector
of length n − 1 containing the differences between adjacent elements. As described in the
following example, these can then be employed to determine finite-difference approxima-
tions of first derivatives.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 533

EXAMPLE 21.4 Using diff for Differentiation

Problem Statement. Explore how the MATLAB diff function can be employed to dif-
ferentiate the function

f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from x = 0 to 0.8. Compare your results with the exact solution:

f ′(x) = 25 − 400x2 + 2025x2 − 3600x3 + 2000x4

Solution. We can first express f (x) as an anonymous function:

>> f=@(x) 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;

We can then generate a series of equally spaced values of the independent and dependent
variables:

>> x=0:0.1:0.8;
>> y=f(x);

The diff function can be used to determine the differences between adjacent elements of
each vector. For example,

>> diff(x)

ans =
Columns 1 through 5

0.1000 0.1000 0.1000 0.1000 0.1000
Columns 6 through 8

0.1000 0.1000 0.1000

As expected, the result represents the differences between each pair of elements of x. To
compute divided-difference approximations of the derivative, we merely perform a vector
division of the y differences by the x differences by entering

>> d=diff(y)./diff(x)

d =
Columns 1 through 5
10.8900 -0.0100 3.1900 8.4900 8.6900
Columns 6 through 8

1.3900 -11.0100 -21.3100

Note that because we are using equally spaced values, after generating the x values, we
could have simply performed the above computation concisely as

>> d=diff(f(x))/0.1;

The vector d now contains derivative estimates corresponding to the midpoint be-
tween adjacent elements. Therefore, in order to develop a plot of our results, we must first
generate a vector holding the x values for the midpoint of each interval:

>> n=length(x);
>> xm=(x(1:n-1)+x(2:n))./2;

534 NUMERICAL DIFFERENTIATION

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 534

21.7 NUMERICAL DIFFERENTIATION WITH MATLAB 535

As a final step, we can compute values for the analytical derivative at a finer level of reso-
lution to include on the plot for comparison.

>> xa=0:.01:.8;
>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;

A plot of the numerical and analytical estimates can be generated with

>> plot(xm,d,'o',xa,ya)

As displayed in Fig. 21.8, the results compare favorably for this case.

Note that aside from evaluating derivatives, the diff function comes in handy as a
programming tool for testing certain characteristics of vectors. For example, the following
statement displays an error message and terminates an M-file if it determines that a vector
x has unequal spacing:

if any(diff(diff(x))~=0), error('unequal spacing'), end

Another common use is to detect whether a vector is in ascending or descending order.
For example, the following code rejects a vector that is not in ascending order (that is, mono-
tonically increasing):

if any(diff(x)<=0), error('not in ascending order'), end

25

20

10

0

–10

–20

15

5

–5

–15

–25
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIGURE 21.8
Comparison of the exact derivative (line) with numerical estimates (circles) computed with
MATLAB’s diff function.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 535

21.7.2 MATLAB Function: gradient

The gradient function also returns differences. However, it does so in a manner that is
more compatible with evaluating derivatives at the values themselves rather than in the
intervals between values. A simple representation of its syntax is

fx = gradient(f)

where f = a one-dimensional vector of length n, and fx is a vector of length n containing
differences based on f. Just as with the diff function, the first value returned is the dif-
ference between the first and second value. However, for the intermediate values, a cen-
tered difference based on the adjacent values is returned

diffi = fi+1 − fi−1

2
(21.28)

The last value is then computed as the difference between the final two values. Hence, the
results are akin to using centered differences for all the intermediate values, with forward
and backward differences at the ends.

Note that the spacing between points is assumed to be one. If the vector represents
equally spaced data, the following version divides all the results by the interval and hence
returns the actual values of the derivatives,

fx = gradient(f, h)

where h = the spacing between points.

EXAMPLE 21.5 Using gradient for Differentiation

Problem Statement. Use the gradient function to differentiate the same function that
we analyzed in Example 21.4 with the diff function.

Solution. In the same fashion as Example 21.4, we can generate a series of equally
spaced values of the independent and dependent variables:

>> f=@(x) 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;
>> x=0:0.1:0.8;
>> y=f(x);

We can then use the gradient function to determine the derivatives as

>> dy=gradient(y,0.1)

dy =
Columns 1 through 5
10.8900 5.4400 1.5900 5.8400 8.5900
Columns 6 through 9

5.0400 -4.8100 -16.1600 -21.3100

As in Example 21.4, we can generate values for the analytical derivative and display both
the numerical and analytical estimates on a plot:

>> xa=0:.01:.8;
>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;
>> plot(x,dy,'o', xa,ya)

536 NUMERICAL DIFFERENTIATION

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 536

21.7 NUMERICAL DIFFERENTIATION WITH MATLAB 537

As displayed in Fig. 21.9, the results are not as accurate as those obtained with the
diff function in Example 21.4. This is due to the fact that gradient employs intervals
that are two times (0.2) as wide as for those used for diff (0.1).

Beyond one-dimensional vectors, the gradient function is particularly well suited
for determining the partial derivatives of matrices. For example, for a two-dimensional ma-
trix, f, the function can be invoked as

[fx,fy] = gradient(f, h)

where fx corresponds to the differences in the x (column) direction, and fy corresponds
to the differences in the y (row) direction, and h = the spacing between points. If h is
omitted, the spacing between points in both dimensions is assumed to be one. In the next
section, we will illustrate how gradient can be used to visualize vector fields.

25

20

10

0

–10

–20

15

5

–5

–15

–25
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIGURE 21.9
Comparison of the exact derivative (line) with numerical estimates (circles) computed with
MATLAB’s gradient function.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 537

538 NUMERICAL DIFFERENTIATION

21.8 CASE STUDY VISUALIZING FIELDS

Background. Beyond the determination of derivatives in one dimension, thegradient
function is also quite useful for determining partial derivatives in two or more dimensions.
In particular, it can be used in conjunction with other MATLAB functions to produce visu-
alizations of vector fields.

To understand how this is done, we can return to our discussion of partial derivatives
at the end of Section 21.1.1. Recall that we used mountain elevation as an example of a
two-dimensional function. We can represent such a function mathematically as

z = f (x, y)

where z = elevation, x = distance measured along the east-west axis, and y = distance
measured along the north-south axis.

For this example, the partial derivatives provide the slopes in the directions of the
axes. However, if you were mountain climbing, you would probably be much more inter-
ested in determining the direction of the maximum slope. If we think of the two partial de-
rivatives as component vectors, the answer is provided very neatly by

∇ f = ∂ f

∂x
i + ∂ f

∂y
j

where ∇ f is referred to as the gradient of f. This vector, which represents the steepest
slope, has a magnitude √(

∂ f

∂x

)2

+
(

∂ f

∂y

)2

and a direction

θ = tan−1

(
∂ f/∂y

∂ f/∂x

)

where θ = the angle measured counterclockwise from the x axis.
Now suppose that we generate a grid of points in the x-y plane and used the foregoing

equations to draw the gradient vector at each point. The result would be a field of arrows
indicating the steepest route to the peak from any point. Conversely, if we plotted the neg-
ative of the gradient, it would indicate how a ball would travel as it rolled downhill from
any point.

Such graphical representations are so useful that MATLAB has a special function,
called quiver, to create such plots. A simple representation of its syntax is

quiver(x,y,u,v)

where x and y are matrices containing the position coordinates and u and v are matrices
containing the partial derivatives. The following example demonstrates the use of quiver
to visualize a field.

Employ the gradient function to determine to partial derivatives for the following
two-dimensional function:

f (x, y) = y − x − 2x2 − 2xy − y2

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 538

21.8 CASE STUDY 539

21.8 CASE STUDY continued

from x = −2 to 2 and y = 1 to 3. Then use quiver to superimpose a vector field on a con-
tour plot of the function.

Solution. We can first express f (x, y) as an anonymous function

>> f=@(x,y) y-x-2*x.^2-2.*x.*y-y.^2;

A series of equally spaced values of the independent and dependent variables can be gen-
erated as

>> [x,y]=meshgrid(-2:.25:0, 1:.25:3);
>> z=f(x,y);

The gradient function can be employed to determine the partial derivatives:

>> [fx,fy]=gradient(z,0.25);

We can then develop a contour plot of the results:

>> cs=contour(x,y,z);clabel(cs);hold on

As a final step, the resultant of the partial derivatives can be superimposed as vectors on the
contour plot:

>> quiver(x,y,-fx,-fy);hold off

–1

0

1
�

0
�

–1
�

–2
� –3

�

–4
�

–5
�

�

�

3

2.8

2.4

2

1.6

1.2

2.6

2.2

1.8

1.4

1
–2 –1.8 –1.6 –1.4 –1.2 –0.8 –0.6 –0.4 –0.2 0–1

FIGURE 21.10
MATLAB generated contour plot of a two-dimensional function with the resultant of the partial
derivatives displayed as arrows.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 539

540 NUMERICAL DIFFERENTIATION

21.8 CASE STUDY continued

Note that we have displayed the negative of the resultants, in order that they point
“downhill.”

The result is shown in Fig. 21.10. The function’s peak occurs at x = −1 and y = 1.5
and then drops away in all directions. As indicated by the lengthening arrows, the gradient
drops off more steeply to the northeast and the southwest.

PROBLEMS

21.1 Compute forward and backward difference approxi-
mations of O(h) and O(h2), and central difference approxi-
mations of O(h2) and O(h4) for the first derivative of
y = cos x at x = π/4 using a value of h = π/12. Estimate
the true percent relative error εt for each approximation.
21.2 Use centered difference approximations to estimate the
first and second derivatives of y = ex at x = 2 for h = 0.1.
Employ both O(h2) and O(h4) formulas for your estimates.
21.3 Use a Taylor series expansion to derive a centered
finite-difference approximation to the third derivative that is
second-order accurate. To do this, you will have to use four
different expansions for the points xi−2, xi−1, xi+1, and xi+2.
In each case, the expansion will be around the point xi . The
interval �x will be used in each case of i − 1 and i + 1, and
2�x will be used in each case of i − 2 and i + 2. The four
equations must then be combined in a way to eliminate the
first and second derivatives. Carry enough terms along in
each expansion to evaluate the first term that will be trun-
cated to determine the order of the approximation.
21.4 Use Richardson extrapolation to estimate the first de-
rivative of y = cos x at x = π/4 using step sizes of h1=π/3
and h2 = π/6. Employ centered differences of O(h2) for the
initial estimates.
21.5 Repeat Prob. 21.4, but for the first derivative of ln x at
x = 5 using h1 = 2 and h2 = 1.
21.6 Employ Eq. (21.21) to determine the first derivative
of y = 2x4 − 6x3 − 12x − 8 at x = 0 based on values at
x0 = −0.5, x1 = 1, and x2 = 2. Compare this result with
the true value and with an estimate obtained using a centered
difference approximation based on h = 1.
21.7 Prove that for equispaced data points, Eq. (21.21)
reduces to Eq. (4.25) at x = x1.
21.8 Develop an M-file to apply a Romberg algorithm to
estimate the derivative of a given function.

21.9 Develop an M-file to obtain first-derivative estimates
for unequally spaced data. Test it with the following data:

x 0.6 1.5 1.6 2.5 3.5
f (x) 0.9036 0.3734 0.3261 0.08422 0.01596

where f (x) = 5e−2x x . Compare your results with the true
derivatives.
21.10 Develop an M-file function that computes first and
second derivative estimates of order O(h2) based on the for-
mulas in Figs. 21.3 through 21.5. The function’s first line
should be set up as

function [dydx, d2ydx2] = diffeq(x,y)

where x and y are input vectors of length n containing the
values of the independent and dependent variables, respec-
tively, and dydx and dy2dx2 are output vectors of length n
containing the first- and second-derivative estimates at
each value of the independent variable. The function should
generate a plot of dydx and dy2dx2 versus x. Have your
M-file return an error message if (a) the input vectors are not
the same length, or (b) the values for the independent vari-
able are not equally spaced. Test your program with the data
from Prob. 21.11.
21.11 The following data were collected for the distance
traveled versus time for a rocket:

t, s 0 25 50 75 100 125
y, km 0 32 58 78 92 100

Use numerical differentiation to estimate the rocket’s veloc-
ity and acceleration at each time.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 540

PROBLEMS 541

21.12 A jet fighter’s position on an aircraft carrier’s runway
was timed during landing:

t, s 0 0.52 1.04 1.75 2.37 3.25 3.83
x, m 153 185 208 249 261 271 273

where x is the distance from the end of the carrier. Estimate
(a) velocity (dx/dt) and (b) acceleration (dv/dt) using nu-
merical differentiation.
21.13 Use the following data to find the velocity and accel-
eration at t = 10 seconds:

Time, t, s 0 2 4 6 8 10 12 14 16
Position, x, m 0 0.7 1.8 3.4 5.1 6.3 7.3 8.0 8.4

Use second-order correct (a) centered finite-difference,
(b) forward finite-difference, and (c) backward finite-
difference methods.
21.14 A plane is being tracked by radar, and data are taken
every second in polar coordinates θ and r.

t, s 200 202 204 206 208 210
θ, (rad) 0.75 0.72 0.70 0.68 0.67 0.66
r, m 5120 5370 5560 5800 6030 6240

At 206 seconds, use the centered finite-difference (second-
order correct) to find the vector expressions for velocity �v
and acceleration �a. The velocity and acceleration given in
polar coordinates are

�v = ṙ �er + r θ̇ �eθ and �a = (r̈ − r θ̇2)�er + (r θ̈ + 2ṙ θ̇)�eθ

21.15 Use regression to estimate the acceleration at each
time for the following data with second-, third-, and fourth-
order polynomials. Plot the results:

t 1 2 3.25 4.5 6 7 8 8.5 9.3 10
v 10 12 11 14 17 16 12 14 14 10

21.16 The normal distribution is defined as

f (x) = 1√
2π

e−x2/2

Use MATLAB to determine the inflection points of this
function.

21.17 The following data were generated from the normal
distribution:

x −2 −1.5 −1 −0.5 0
f (x) 0.05399 0.12952 0.24197 0.35207 0.39894

x 0.5 1 1.5 2
f (x) 0.35207 0.24197 0.12952 0.05399

Use MATLAB to estimate the inflection points of these data.
21.18 Use the diff(y) command to develop a MATLAB
M-file function to compute finite-difference approximations
to the first and second derivative at each x value in the table
below. Use finite-difference approximations that are second-
order correct, O(x2):

x 0 1 2 3 4 5 6 7 8 9 10
y 1.4 2.1 3.3 4.8 6.8 6.6 8.6 7.5 8.9 10.9 10

21.19 The objective of this problem is to compare second-
order accurate forward, backward, and centered finite-
difference approximations of the first derivative of a function
to the actual value of the derivative. This will be done for

f (x) = e−2x − x

(a) Use calculus to determine the correct value of the deriv-
ative at x = 2.

(b) Develop an M-file function to evaluate the centered
finite-difference approximations, starting with x = 0.5.
Thus, for the first evaluation, the x values for the cen-
tered difference approximation will be x = 2 ± 0.5 or
x = 1.5 and 2.5. Then, decrease in increments of 0.1
down to a minimum value of �x = 0.01.

(c) Repeat part (b) for the second-order forward and back-
ward differences. (Note that these can be done at the same
time that the centered difference is computed in the loop.)

(d) Plot the results of (b) and (c) versus x. Include the exact
result on the plot for comparison.

21.20 You have to measure the flow rate of water through a
small pipe. In order to do it, you place a bucket at the pipe’s
outlet and measure the volume in the bucket as a function of
time as tabulated below. Estimate the flow rate at t = 7 s.

Time, s 0 1 5 8
Volume, cm3 0 1 8 16.4

21.21 The velocity v (m/s) of air flowing past a flat surface
is measured at several distances y (m) away from the surface.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 541

542 NUMERICAL DIFFERENTIATION

Use Newton’s viscosity law to determine the shear stress
τ (N/m2) at the surface (y = 0),

τ = μ
du

dy

Assume a value of dynamic viscosity μ= 1.8 × 10−5 N · s/m2.

y, m 0 0.002 0.006 0.012 0.018 0.024
u, m/s 0 0.287 0.899 1.915 3.048 4.299

21.22 Fick’s first diffusion law states that

Mass ux = −D
dc

dx
(P21.22)

where mass flux = the quantity of mass that passes across a
unit area per unit time (g/cm2/s), D = a diffusion coefficient
(cm2/s), c = concentration (g/cm3), and x = distance (cm).
An environmental engineer measures the following con-
centration of a pollutant in the pore waters of sediments un-
derlying a lake (x = 0 at the sediment-water interface and
increases downward):

x, cm 0 1 3
c, 10−6 g/cm3 0.06 0.32 0.6

Use the best numerical differentiation technique available to
estimate the derivative at x = 0. Employ this estimate in
conjunction with Eq. (P21.22) to compute the mass flux of
pollutant out of the sediments and into the overlying waters
(D = 1.52 × 10−6 cm2/s). For a lake with 3.6 × 106 m2 of
sediments, how much pollutant would be transported into
the lake over a year’s time?
21.23 The following data were collected when a large oil
tanker was loading:

t, min 0 10 20 30 45 60 75
V, 106 barrels 0.4 0.7 0.77 0.88 1.05 1.17 1.35

Calculate the flow rate Q (i.e., dV/dt) for each time to the
order of h2.
21.24 Fourier’s law is used routinely by architectural engi-
neers to determine heat flow through walls. The following
temperatures are measured from the surface (x = 0) into a
stone wall:

x, m 0 0.08 0.16
T, °C 19 17 15

If the flux at x = 0 is 60 W/m2, compute k.

21.25 The horizontal surface area As (m2) of a lake at a par-
ticular depth can be computed from volume by differentiation:

As(z) = dV

dz
(z)

where V = volume (m3) and z = depth (m) as measured
from the surface down to the bottom. The average concen-
tration of a substance that varies with depth, c̄ (g/m3), can be
computed by integration:

c̄ =
∫ Z

0 c(z)As(z) dz∫ Z
0 As(z) dz

where Z = the total depth (m). Determine the average con-
centration based on the following data:

z, m 0 4 8 12 16
V, 106 m3 9.8175 5.1051 1.9635 0.3927 0.0000
c, g/m3 10.2 8.5 7.4 5.2 4.1

21.26 Faraday’s law characterizes the voltage drop across
an inductor as

VL = L
di

dt

where VL = voltage drop (V), L = inductance (in henrys;
1 H = 1 V · s/A), i = current (A), and t = time (s). Deter-
mine the voltage drop as a function of time from the follow-
ing data for an inductance of 4 H.

t 0 0.1 0.2 0.3 0.5 0.7
i 0 0.16 0.32 0.56 0.84 2.0

21.27 Based on Faraday’s law (Prob. 21.26), use the follow-
ing voltage data to estimate the inductance if a current of 2 A
is passed through the inductor over 400 milliseconds.

t, ms 0 10 20 40 60 80 120 180 280 400
V, volts 0 18 29 44 49 46 35 26 15 7

21.28 The rate of cooling of a body (Fig. P21.28) can be ex-
pressed as

dT

dt
= −k(T − Ta)

where T = temperature of the body (°C), Ta = temperature of
the surrounding medium (°C), and k = a proportionality con-
stant (per minute). Thus, this equation (called Newton’s law
of cooling) specifies that the rate of cooling is proportional to

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 542

PROBLEMS 543

the difference in the temperatures of the body and of the sur-
rounding medium. If a metal ball heated to 80 °C is dropped
into water that is held constant at Ta = 20 °C, the temperature
of the ball changes, as in

Time, min 0 5 10 15 20 25
T, °C 80 44.5 30.0 24.1 21.7 20.7

Utilize numerical differentiation to determine dT/dt at each
value of time. Plot dT/dt versus T − Ta and employ linear
regression to evaluate k.
21.29 The enthalpy of a real gas is a function of pressure as
described below. The data were taken for a real fluid. Esti-
mate the enthalpy of the fluid at 400 K and 50 atm (evaluate
the integral from 0.1 atm to 50 atm).

H =
∫ P

0

(
V − T

(∂V

∂T

)
P

)
d P

made for air flowing over a flat plate where y = distance nor-
mal to the surface:

y, cm 0 1 3 5
T, K 900 480 270 210

If the plate’s dimensions are 200 cm long and 50 cm wide,
and k = 0.028 J/(s · m · K), (a) determine the flux at the sur-
face, and (b) the heat transfer in watts. Note that 1 J = 1 W· s.
21.31 The pressure gradient for laminar flow through a con-
stant radius tube is given by

dp

dx
= −8μQ

πr4

where p = pressure (N/m2), x = distance along the tube’s
centerline (m), μ = dynamic viscosity (N · s/m2), Q = flow
(m3/s) and r = radius (m).
(a) Determine the pressure drop for a 10-cm length tube

for a viscous liquid (μ = 0.005 N · s/m2, density = ρ =
1 × 103 kg/m3) with a flow of 10 × 10−6 m3/s and the
following varying radii along its length:

x, cm 0 2 4 5 6 7 10
r, mm 2 1.35 1.34 1.6 1.58 1.42 2

(b) Compare your result with the pressure drop that would
have occurred if the tube had a constant radius equal to
the average radius.

(c) Determine the average Reynolds number for the tube to
verify that flow is truly laminar (Re = ρvD/μ < 2100
where v = velocity).

21.32 The following data for the specific heat of benzene
were generated with an nth-order polynomial. Use numeri-
cal differentiation to determine n.

T, K 300 400 500 600
Cp, kJ/(kmol · K) 82.888 112.136 136.933 157.744

T, K 700 800 900 1000
Cp, kJ/(kmol · K) 175.036 189.273 200.923 210.450

21.33 The specific heat at constant pressure cp [J/(kg · K)]
of an ideal gas is related to enthalpy by

cp = dh

dT

where h = enthalpy (kJ/kg), and T = absolute tempera-
ture (K). The following enthalpies are provided for carbon

T

Ta

FIGURE P21.28

V, L

P, atm T = 350 K T = 400 K T = 450 K

0.1 220 250 282.5
5 4.1 4.7 5.23

10 2.2 2.5 2.7
20 1.35 1.49 1.55
25 1.1 1.2 1.24
30 0.90 0.99 1.03
40 0.68 0.75 0.78
45 0.61 0.675 0.7
50 0.54 0.6 0.62

21.30 For fluid flow over a surface, the heat flux to the sur-
face can be computed with Fourier’s law: y = distance nor-
mal to the surface (m). The following measurements are

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 543

dioxide (CO2) at several temperatures. Use these values to
determine the specific heat in J/(kg · K) for each of the tabu-
lated temperatures. Note that the atomic weights of carbon
and oxygen are 12.011 and 15.9994 g/mol, respectively

T, K 750 800 900 1000
h, kJ/kmol 29,629 32,179 37,405 42,769

21.34 An nth-order rate law is often used to model chemical
reactions that solely depend on the concentration of a single
reactant:

dc

dt
= −kcn

where c = concentration (mole), t = time (min), n =
reaction order (dimensionless), and k = reaction rate
(min−1 mole1−n). The differential method can be used to
evaluate the parameters k and n. This involves applying a
logarithmic transform to the rate law to yield,

log
(
− dc

dt

)
= log k + n log c

Therefore, if the nth-order rate law holds, a plot of the
log(−dc/dt) versus log c should yield a straight line with a
slope of n and an intercept of log k. Use the differential
method and linear regression to determine k and n for the
following data for the conversion of ammonium cyanate to
urea:

t, min 0 5 15 30 45
c, mole 0.750 0.594 0.420 0.291 0.223

21.35 The sediment oxygen demand [SOD in units of
g/(m2 · d)] is an important parameter in determining the
dissolved oxygen content of a natural water. It is measured
by placing a sediment core in a cylindrical container
(Fig. P21.35). After carefully introducing a layer of distilled,
oxygenated water above the sediments, the container is cov-
ered to prevent gas transfer. A stirrer is used to mix the water
gently, and an oxygen probe tracks how the water’s oxygen
concentration decreases over time. The SOD can then be
computed as

SOD = −H
do

dt

where H = the depth of water (m), o = oxygen concentration
(g/m3), and t = time (d).

Based on the following data and H = 0.1 m, use nu-
merical differentiation to generate plots of (a) SOD versus
time and (b) SOD versus oxygen concentration:

t, d 0 0.125 0.25 0.375 0.5 0.625 0.75
o, mg/L 10 7.11 4.59 2.57 1.15 0.33 0.03

21.36 The following relationships can be used to analyze
uniform beams subject to distributed loads:

dy

dx
= θ(x)

dθ

dx
= M(x)

E I

d M

dx
= V (x)

dV

dx
= −w(x)

where x = distance along beam (m), y = deflection (m),
�(x) = slope (m/m), E = modulus of elasticity (Pa = N/m2),
I = moment of inertia (m4), M(x) = moment (N m), V(x) =
shear (N), and w(x) = distributed load (N/m). For the case of
a linearly increasing load (recall Fig. P5.13), the slope can
be computed analytically as

θ(x) = w0

120E I L
(−5x4 + 6L2x2 − L4) (P21.36)

Employ (a) numerical integration to compute the deflection
(in m) and (b) numerical differentiation to compute the
moment (in N m) and shear (in N). Base your numerical
calculations on values of the slope computed with
Eq. P21.36 at equally spaced intervals of �x = 0.125 m
along a 3-m beam. Use the following parameter values in
your computation: E = 200 GPa, I = 0.0003 m4, and w0 =
2.5 kN/cm. In addition, the deflections at the ends of the
beam are set at y(0) = y(L) = 0. Be careful of units.
21.37 You measure the following deflections along the
length of a simply supported uniform beam (see Prob. 21.36)

544 NUMERICAL DIFFERENTIATION

Lid

Water

Probe

Sediments

SOD H

FIGURE P21.35

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 544

PROBLEMS 545

x, m 0 0.375 0.75 1.125 1.5
y, cm 0 −0.2571 −0.9484 −1.9689 −3.2262

x, m 1.875 2.25 2.625 3
y, cm −4.6414 −6.1503 −7.7051 −9.275

Employ numerical differentiation to compute the slope, the
moment (in N m), the shear (in N) and the distributed load
(in N/m). Use the following parameter values in your com-
putation: E = 200 GPa, and I = 0.0003 m4.
21.38 Evaluate ∂ f�∂x, ∂ f�∂y, and ∂ f�(∂x∂y) for the follow-
ing function at x = y = 1 (a) analytically and (b) numerically
�x � �y = 0.0001:

f (x, y) = 3xy + 3x − x3 − 3y3

21.39 Develop a script to generate the same computations
and plots as in Sec. 21.8, but for the following functions (for
x = –3 to 3 and y � –3 to 3): (a) f (x, y) = e−(x2+y2) and
(b) f (x, y) = xe−(x2+y2) .
21.40 Develop a script to generate the same computations
and plots as in Sec. 21.8, but for the MATLAB peaks
function over ranges of both x and y from –3 to 3.

cha01102_ch21_521-546.qxd 12/17/10 9:22 AM Page 545

This page intentionally left blank

547

PART SIX

Ordinary Differential
Equations

6.1 OVERVIEW

The fundamental laws of physics, mechanics, electricity, and thermodynamics are usually
based on empirical observations that explain variations in physical properties and states of
systems. Rather than describing the state of physical systems directly, the laws are usually
couched in terms of spatial and temporal changes. These laws define mechanisms of
change. When combined with continuity laws for energy, mass, or momentum, differential
equations result. Subsequent integration of these differential equations results in mathe-
matical functions that describe the spatial and temporal state of a system in terms of energy,
mass, or velocity variations. As in Fig. PT6.1, the integration can be implemented analyti-
cally with calculus or numerically with the computer.

The free-falling bungee jumper problem introduced in Chap. 1 is an example of the de-
rivation of a differential equation from a fundamental law. Recall that Newton’s second law

was used to develop an ODE describing
the rate of change of velocity of a falling
bungee jumper:

dv

dt
= g − cd

m
v2 (PT6.1)

where g is the gravitational constant, m is
the mass, and cd is a drag coefficient.
Such equations, which are composed of
an unknown function and its derivatives,
are called differential equations. They
are sometimes referred to as rate equa-
tions because they express the rate of
change of a variable as a function of vari-
ables and parameters.

In Eq. (PT6.1), the quantity being
differentiated v is called the dependent
variable. The quantity with respect to
which v is differentiated t is called the
independent variable. When the function

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 547

Physical law F = ma

ODE
dv

dt
= g − cd

m
v2

Analytical Numerical
(calculus) (computer)

Solution v =
√

gm

cd
tanh

(√
gcd

m
t

)
vi+1 = vi +

(
g − cd

m
v2

)
�t

FIGURE PT6.1
The sequence of events in the development and solution of ODEs for engineering and science.
The example shown is for the velocity of the free-falling bungee jumper.

involves one independent variable, the equation is called an ordinary differential equation
(or ODE). This is in contrast to a partial differential equation (or PDE) that involves two
or more independent variables.

Differential equations are also classified as to their order. For example, Eq. (PT6.1) is
called a first-order equation because the highest derivative is a first derivative. A second-
order equation would include a second derivative. For example, the equation describing the
position x of an unforced mass-spring system with damping is the second-order equation:

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (PT6.2)

where m is mass, c is a damping coefficient, and k is a spring constant. Similarly, an nth-
order equation would include an nth derivative.

Higher-order differential equations can be reduced to a system of first-order equations.
This is accomplished by defining the first derivative of the dependent variable as a new
variable. For Eq. (PT6.2), this is done by creating a new variable v as the first derivative of
displacement

v = dx

dt
(PT6.3)

where v is velocity. This equation can itself be differentiated to yield

dv

dt
= d2x

dt2
(PT6.4)

Equations (PT6.3) and (PT6.4) can be substituted into Eq. (PT6.2) to convert it into a first-
order equation:

m
dv

dt
+ cv + kx = 0 (PT6.5)

548 PART 6 ORDINARY DIFFERENTIAL EQUATIONS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 548

As a final step, we can express Eqs. (PT6.3) and (PT6.5) as rate equations:

dx

dt
= v (PT6.6)

dv

dt
= − c

m
v − k

m
x (PT6.7)

Thus, Eqs. (PT6.6) and (PT6.7) are a pair of first-order equations that are equivalent
to the original second-order equation (Eq. PT6.2). Because other nth-order differential
equations can be similarly reduced, this part of our book focuses on the solution of first-
order equations.

A solution of an ordinary differential equation is a specific function of the independent
variable and parameters that satisfies the original differential equation. To illustrate this
concept, let us start with a simple fourth-order polynomial,

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1 (PT6.8)

Now, if we differentiate Eq. (PT6.8), we obtain an ODE:

dy

dx
= −2x3 + 12x2 − 20x + 8.5 (PT6.9)

This equation also describes the behavior of the polynomial, but in a manner different from
Eq. (PT6.8). Rather than explicitly representing the values of y for each value of x,
Eq. (PT6.9) gives the rate of change of y with respect to x (i.e., the slope) at every value of
x. Figure PT6.2 shows both the function and the derivative plotted versus x. Notice how the
zero values of the derivatives correspond to the point at which the original function is
flat—that is, where it has a zero slope. Also, the maximum absolute values of the deriva-
tives are at the ends of the interval where the slopes of the function are greatest.

Although, as just demonstrated, we can determine a differential equation given the
original function, the object here is to determine the original function given the differential
equation. The original function then represents the solution.

Without computers, ODEs are usually solved analytically with calculus. For example,
Eq. (PT6.9) could be multiplied by dx and integrated to yield

y =
∫

(−2x3 + 12x2 − 20x + 8.5) dx (PT6.10)

The right-hand side of this equation is called an indefinite integral because the limits of in-
tegration are unspecified. This is in contrast to the definite integrals discussed previously
in Part Five [compare Eq. (PT6.10) with Eq. (19.5)].

An analytical solution for Eq. (PT6.10) is obtained if the indefinite integral can be eval-
uated exactly in equation form. For this simple case, it is possible to do this with the result:

y = −0.5x4 + 4x3 − 10x2 + 8.5x + C (PT6.11)

which is identical to the original function with one notable exception. In the course of dif-
ferentiating and then integrating, we lost the constant value of 1 in the original equation
and gained the value C. This C is called a constant of integration. The fact that such an
arbitrary constant appears indicates that the solution is not unique. In fact, it is but one of

6.1 OVERVIEW 549

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 549

an infinite number of possible functions (corresponding to an infinite number of possible
values of C) that satisfy the differential equation. For example, Fig. PT6.3 shows six pos-
sible functions that satisfy Eq. (PT6.11).

Therefore, to specify the solution completely, a differential equation is usually accom-
panied by auxiliary conditions. For first-order ODEs, a type of auxiliary condition called
an initial value is required to determine the constant and obtain a unique solution. For
example, the original differential equation could be accompanied by the initial condition
that at x = 0, y = 1. These values could be substituted into Eq. (PT6.11) to determine
C = 1. Therefore, the unique solution that satisfies both the differential equation and the
specified initial condition is

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1

Thus, we have “pinned down” Eq. (PT6.11) by forcing it to pass through the initial condi-
tion, and in so doing, we have developed a unique solution to the ODE and have come full
circle to the original function [Eq. (PT6.8)].

Initial conditions usually have very tangible interpretations for differential equations
derived from physical problem settings. For example, in the bungee jumper problem, the

550 PART 6 ORDINARY DIFFERENTIAL EQUATIONS

y

4

(a)

x3

dy/dx
8

(b)

x

– 8

3

FIGURE PT6.2
Plots of (a) y versus x and (b) dy/dx versus x for the function y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 550

initial condition was reflective of the physical fact that at time zero the vertical velocity
was zero. If the bungee jumper had already been in vertical motion at time zero, the solu-
tion would have been modified to account for this initial velocity.

When dealing with an nth-order differential equation, n conditions are required to ob-
tain a unique solution. If all conditions are specified at the same value of the independent
variable (e.g., at x or t = 0), then the problem is called an initial-value problem. This is in
contrast to boundary-value problems where specification of conditions occurs at different
values of the independent variable. Chapters 22 and 23 will focus on initial-value prob-
lems. Boundary-value problems are covered in Chap. 24.

6.2 PART ORGANIZATION

Chapter 22 is devoted to one-step methods for solving initial-value ODEs. As the name
suggests, one-step methods compute a future prediction yi+1, based only on information at
a single point yi and no other previous information. This is in contrast to multistep ap-
proaches that use information from several previous points as the basis for extrapolating to
a new value.

With all but a minor exception, the one-step methods presented in Chap. 22 belong to
what are called Runge-Kutta techniques. Although the chapter might have been organized
around this theoretical notion, we have opted for a more graphical, intuitive approach to in-
troduce the methods. Thus, we begin the chapter with Euler’s method, which has a very
straightforward graphical interpretation. In addition, because we have already introduced
Euler’s method in Chap. 1, our emphasis here is on quantifying its truncation error and de-
scribing its stability.

6.2 PART ORGANIZATION 551

FIGURE PT6.3
Six possible solutions for the integral of −2x3 + 12x2 − 20x + 8.5. Each conforms to a different
value of the constant of integration C.

y

x
C = 0

C = – 1

C = – 2

C = 3

C = 2

C = 1

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 551

Next, we use visually oriented arguments to develop two improved versions of Euler’s
method—the Heun and the midpoint techniques. After this introduction, we formally de-
velop the concept of Runge-Kutta (or RK) approaches and demonstrate how the foregoing
techniques are actually first- and second-order RK methods. This is followed by a discus-
sion of the higher-order RK formulations that are frequently used for engineering and
scientific problem solving. In addition, we cover the application of one-step methods to
systems of ODEs. Note that all the applications in Chap. 22 are limited to cases with a fixed
step size.

In Chap. 23, we cover more advanced approaches for solving initial-value problems.
First, we describe adaptive RK methods that automatically adjust the step size in response
to the truncation error of the computation. These methods are especially pertinent as they
are employed by MATLAB to solve ODEs.

Next, we discuss multistep methods. As mentioned above, these algorithms retain in-
formation of previous steps to more effectively capture the trajectory of the solution. They
also yield the truncation error estimates that can be used to implement step-size control. We
describe a simple method—the non-self-starting Heun method—to introduce the essential
features of the multistep approaches.

Finally, the chapter ends with a description of stiff ODEs. These are both individual
and systems of ODEs that have both fast and slow components to their solution. As a con-
sequence, they require special solution approaches. We introduce the idea of an implicit
solution technique as one commonly used remedy. We also describe MATLAB’s built-in
functions for solving stiff ODEs.

In Chap. 24, we focus on two approaches for obtaining solutions to boundary-value
problems: the shooting and finite-difference methods. Aside from demonstrating how these
techniques are implemented, we illustrate how they handle derivative boundary conditions
and nonlinear ODEs.

552 PART 6 ORDINARY DIFFERENTIAL EQUATIONS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 552

553

22
Initial-Value Problems

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to solving initial-value
problems for ODEs (ordinary differential equations). Specific objectives and topics
covered are

• Understanding the meaning of local and global truncation errors and their
relationship to step size for one-step methods for solving ODEs.

• Knowing how to implement the following Runge-Kutta (RK) methods for
a single ODE:

Euler
Heun
Midpoint
Fourth-order RK

• Knowing how to iterate the corrector of Heun’s method.
• Knowing how to implement the following Runge-Kutta methods for systems

of ODEs:
Euler
Fourth-order RK

YOU’VE GOT A PROBLEM

W e started this book with the problem of simulating the velocity of a free-falling
bungee jumper. This problem amounted to formulating and solving an ordinary
differential equation, the topic of this chapter. Now let’s return to this problem

and make it more interesting by computing what happens when the jumper reaches the end
of the bungee cord.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 553

554 INITIAL-VALUE PROBLEMS

To do this, we should recognize that the jumper will experience different forces de-
pending on whether the cord is slack or stretched. If it is slack, the situation is that of free
fall where the only forces are gravity and drag. However, because the jumper can now
move up as well as down, the sign of the drag force must be modified so that it always tends
to retard velocity,

dv

dt
= g − sign(v)

cd

m
v2 (22.1a)

where v is velocity (m/s), t is time (s), g is the acceleration due to gravity (9.81 m/s2), cd is
the drag coefficient (kg/m), and m is mass (kg). The signum function,1 sign, returns a −1 or
a 1 depending on whether its argument is negative or positive, respectively. Thus, when the
jumper is falling downward (positive velocity, sign = 1), the drag force will be negative
and hence will act to reduce velocity. In contrast, when the jumper is moving upward
(negative velocity, sign = −1), the drag force will be positive so that it again reduces the
velocity.

Once the cord begins to stretch, it obviously exerts an upward force on the jumper. As
done previously in Chap. 8, Hooke’s law can be used as a first approximation of this force.
In addition, a dampening force should also be included to account for frictional effects as
the cord stretches and contracts. These factors can be incorporated along with gravity and
drag into a second force balance that applies when the cord is stretched. The result is the
following differential equation:

dv

dt
= g − sign(v)

cd

m
v2 − k

m
(x − L) − γ

m
v (22.1b)

where k is the cord’s spring constant (N/m), x is vertical distance measured downward from
the bungee jump platform (m), L is the length of the unstretched cord (m), and γ is a damp-
ening coefficient (N · s/m).

Because Eq. (22.1b) only holds when the cord is stretched (x > L), the spring force
will always be negative. That is, it will always act to pull the jumper back up. The damp-
ening force increases in magnitude as the jumper’s velocity increases and always acts to
slow the jumper down.

If we want to simulate the jumper’s velocity, we would initially solve Eq. (22.1a) until
the cord was fully extended. Then, we could switch to Eq. (22.1b) for periods that the cord
is stretched. Although this is fairly straightforward, it means that knowledge of the
jumper’s position is required. This can be done by formulating another differential equa-
tion for distance:

dx

dt
= v (22.2)

Thus, solving for the bungee jumper’s velocity amounts to solving two ordinary dif-
ferential equations where one of the equations takes different forms depending on the value

1 Some computer languages represent the signum function as sgn(x). As represented here, MATLAB uses the
nomenclature sign(x).

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 554

of one of the dependent variables. Chapters 22 and 23 explore methods for solving this and
similar problems involving ODEs.

22.1 OVERVIEW

This chapter is devoted to solving ordinary differential equations of the form

dy

dt
= f (t, y) (22.3)

In Chap. 1, we developed a numerical method to solve such an equation for the velocity of
the free-falling bungee jumper. Recall that the method was of the general form

New value = old value + slope × step size

or, in mathematical terms,

yi+1 = yi + φh (22.4)

where the slope φ is called an increment function. According to this equation, the slope es-
timate of φ is used to extrapolate from an old value yi to a new value yi+1 over a distance
h. This formula can be applied step by step to trace out the trajectory of the solution into
the future. Such approaches are called one-step methods because the value of the increment
function is based on information at a single point i. They are also referred to as Runge-
Kutta methods after the two applied mathematicians who first discussed them in the early
1900s. Another class of methods called multistep methods use information from several
previous points as the basis for extrapolating to a new value. We will describe multistep
methods briefly in Chap. 23.

All one-step methods can be expressed in the general form of Eq. (22.4), with the only
difference being the manner in which the slope is estimated. The simplest approach is to
use the differential equation to estimate the slope in the form of the first derivative at ti . In
other words, the slope at the beginning of the interval is taken as an approximation of the
average slope over the whole interval. This approach, called Euler’s method, is discussed
next. This is followed by other one-step methods that employ alternative slope estimates
that result in more accurate predictions.

22.2 EULER’S METHOD

The first derivative provides a direct estimate of the slope at ti (Fig. 22.1):

φ = f (ti ,yi)

where f (ti , yi) is the differential equation evaluated at ti and yi . This estimate can be sub-
stituted into Eq. (22.1):

yi+1 = yi + f (ti ,yi)h (22.5)

This formula is referred to as Euler’s method (or the Euler-Cauchy or point-slope method).
A new value of y is predicted using the slope (equal to the first derivative at the original
value of t) to extrapolate linearly over the step size h (Fig. 22.1).

22.2 EULER’S METHOD 555

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 555

h

y

tti ti�1

Predicted

error

True

FIGURE 22.1
Euler’s method.

EXAMPLE 22.1 Euler’s Method

Problem Statement. Use Euler’s method to integrate y′ = 4e0.8t − 0.5y from t = 0 to 4
with a step size of 1. The initial condition at t = 0 is y = 2. Note that the exact solution can
be determined analytically as

y = 4

1.3
(e0.8t − e−0.5t) + 2e−0.5t

Solution. Equation (22.5) can be used to implement Euler’s method:

y(1) = y(0) + f (0, 2)(1)

where y(0) = 2 and the slope estimate at t = 0 is

f (0, 2) = 4e0 − 0.5(2) = 3

Therefore,

y(1) = 2 + 3(1) = 5

The true solution at t = 1 is

y = 4

1.3

(
e0.8(1) − e−0.5(1)

) + 2e−0.5(1) = 6.19463

Thus, the percent relative error is

εt =
∣∣∣∣6.19463 − 5

6.19463

∣∣∣∣ × 100% = 19.28%

For the second step:

y(2) = y(1) + f (1, 5)(1)

= 5 + [
4e0.8(1) − 0.5(5)

]
(1) = 11.40216

556 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 556

The true solution at t = 2.0 is 14.84392 and, therefore, the true percent relative error is
23.19%. The computation is repeated, and the results compiled in Table 22.1 and Fig. 22.2.
Note that although the computation captures the general trend of the true solution, the error
is considerable. As discussed in the next section, this error can be reduced by using a
smaller step size.

22.2.1 Error Analysis for Euler’s Method

The numerical solution of ODEs involves two types of error (recall Chap. 4):

1. Truncation, or discretization, errors caused by the nature of the techniques employed
to approximate values of y.

2. Roundoff errors caused by the limited numbers of significant digits that can be retained
by a computer.

The truncation errors are composed of two parts. The first is a local truncation error
that results from an application of the method in question over a single step. The second is
a propagated truncation error that results from the approximations produced during the

22.2 EULER’S METHOD 557

TABLE 22.1 Comparison of true and numerical values of the integral
of y’ = 4e0.8t − 0.5y, with the initial condition that y = 2 at
t = 0. The numerical values were computed using Euler’s
method with a step size of 1.

t ytrue yEuler |εt| (%)

0 2.00000 2.00000
1 6.19463 5.00000 19.28
2 14.84392 11.40216 23.19
3 33.67717 25.51321 24.24
4 75.33896 56.84931 24.54

y

t

60

40

20

0
0 1 2 3 4

Euler solution

True solution

FIGURE 22.2
Comparison of the true solution with a numerical solution using Euler’s method for the integral of
y’ = 4e0.8t − 0.5y from t = 0 to 4 with a step size of 1.0. The initial condition at t = 0 is y = 2.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 557

previous steps. The sum of the two is the total error. It is referred to as the global trunca-
tion error.

Insight into the magnitude and properties of the truncation error can be gained by de-
riving Euler’s method directly from the Taylor series expansion. To do this, realize that the
differential equation being integrated will be of the general form of Eq. (22.3), where
dy/dt = y′, and t and y are the independent and the dependent variables, respectively. If
the solution—that is, the function describing the behavior of y—has continuous derivatives,
it can be represented by a Taylor series expansion about a starting value (ti , yi), as in
[recall Eq. (4.13)]:

yi+1 = yi + y′
i h + y′′

i

2!
h2 + · · · + y(n)

i

n!
hn + Rn (22.6)

where h = ti+1 − ti and Rn = the remainder term, defined as

Rn = y(n+1)(ξ)

(n + 1)!
hn+1 (22.7)

where ξ lies somewhere in the interval from ti to ti+1. An alternative form can be devel-
oped by substituting Eq. (22.3) into Eqs. (22.6) and (22.7) to yield

yi+1 = yi + f (ti , yi)h + f ′(ti , yi)

2!
h2 + · · · + f (n−1)(ti , yi)

n!
hn + O(hn+1) (22.8)

where O(hn+1) specifies that the local truncation error is proportional to the step size
raised to the (n + 1)th power.

By comparing Eqs. (22.5) and (22.8), it can be seen that Euler’s method corresponds
to the Taylor series up to and including the term f (ti , yi)h. Additionally, the comparison
indicates that a truncation error occurs because we approximate the true solution using a fi-
nite number of terms from the Taylor series. We thus truncate, or leave out, a part of the true
solution. For example, the truncation error in Euler’s method is attributable to the remain-
ing terms in the Taylor series expansion that were not included in Eq. (22.5). Subtracting
Eq. (22.5) from Eq. (22.8) yields

Et = f ′(ti , yi)

2!
h2 + · · · + O(hn+1) (22.9)

where Et = the true local truncation error. For sufficiently small h, the higher-order terms
in Eq. (22.9) are usually negligible, and the result is often represented as

Ea = f ′(ti , yi)

2!
h2 (22.10)

or

Ea = O(h2) (22.11)

where Ea = the approximate local truncation error.
According to Eq. (22.11), we see that the local error is proportional to the square of

the step size and the first derivative of the differential equation. It can also be demon-
strated that the global truncation error is O(h)—that is, it is proportional to the step size

558 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 558

(Carnahan et al., 1969). These observations lead to some useful conclusions:

1. The global error can be reduced by decreasing the step size.
2. The method will provide error-free predictions if the underlying function (i.e., the

solution of the differential equation) is linear, because for a straight line the second
derivative would be zero.

This latter conclusion makes intuitive sense because Euler’s method uses straight-line seg-
ments to approximate the solution. Hence, Euler’s method is referred to as a first-order
method.

It should also be noted that this general pattern holds for the higher-order one-step
methods described in the following pages. That is, an nth-order method will yield perfect
results if the underlying solution is an nth-order polynomial. Further, the local truncation
error will be O(hn+1) and the global error O(hn).

22.2.2 Stability of Euler’s Method

In the preceding section, we learned that the truncation error of Euler’s method depends on
the step size in a predictable way based on the Taylor series. This is an accuracy issue.

The stability of a solution method is another important consideration that must be con-
sidered when solving ODEs. A numerical solution is said to be unstable if errors grow
exponentially for a problem for which there is a bounded solution. The stability of a par-
ticular application can depend on three factors: the differential equation, the numerical
method, and the step size.

Insight into the step size required for stability can be examined by studying a very
simple ODE:

dy

dt
= −ay (22.12)

If y(0) = y0, calculus can be used to determine the solution as

y = y0e−at

Thus, the solution starts at y0 and asymptotically approaches zero.
Now suppose that we use Euler’s method to solve the same problem numerically:

yi+1 = yi + dyi

dt
h

Substituting Eq. (22.12) gives

yi+1 = yi − ayi h

or

yi+1 = yi (1 − ah) (22.13)

The parenthetical quantity 1 − ah is called an amplification factor. If its absolute value is
greater than unity, the solution will grow in an unbounded fashion. So clearly, the stability
depends on the step size h. That is, if h > 2/a, |yi | → ∞ as i → ∞. Based on this analy-
sis, Euler’s method is said to be conditionally stable.

Note that there are certain ODEs where errors always grow regardless of the method.
Such ODEs are called ill-conditioned.

22.2 EULER’S METHOD 559

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 559

FIGURE 22.3
An M-file to implement Euler’s method.

function [t,y] = eulode(dydt,tspan,y0,h,varargin)
% eulode: Euler ODE solver
% [t,y] = eulode(dydt,tspan,y0,h,p1,p2,...):
% uses Euler's method to integrate an ODE
% input:
% dydt = name of the M-file that evaluates the ODE
% tspan = [ti, tf] where ti and tf = initial and
% final values of independent variable
% y0 = initial value of dependent variable
% h = step size
% p1,p2,... = additional parameters used by dydt
% output:
% t = vector of independent variable
% y = vector of solution for dependent variable

if nargin<4,error('at least 4 input arguments required'),end
ti = tspan(1);tf = tspan(2);
if ~(tf>ti),error('upper limit must be greater than lower'),end
t = (ti:h:tf)'; n = length(t);
% if necessary, add an additional value of t
% so that range goes from t = ti to tf
if t(n)<tf

t(n+1) = tf;
n = n+1;

end
y = y0*ones(n,1); %preallocate y to improve efficiency
for i = 1:n-1 %implement Euler's method

y(i+1) = y(i) + dydt(t(i),y(i),varargin{:})*(t(i+1)-t(i));
end

Inaccuracy and instability are often confused. This is probably because (a) both repre-
sent situations where the numerical solution breaks down and (b) both are affected by step
size. However, they are distinct problems. For example, an inaccurate method can be very
stable. We will return to the topic when we discuss stiff systems in Chap. 23.

22.2.3 MATLAB M-file Function: eulode

We have already developed a simple M-file to implement Euler’s method for the falling
bungee jumper problem in Chap. 3. Recall from Section 3.6, that this function used Euler’s
method to compute the velocity after a given time of free fall. Now, let’s develop a more
general, all-purpose algorithm.

Figure 22.3 shows an M-file that uses Euler’s method to compute values of the dependent
variable y over a range of values of the independent variable t. The name of the function
holding the right-hand side of the differential equation is passed into the function as the

560 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 560

variable dydt. The initial and final values of the desired range of the independent variable
is passed as a vector tspan. The initial value and the desired step size are passed as y0 and
h, respectively.

The function first generates a vector t over the desired range of the dependent variable
using an increment of h. In the event that the step size is not evenly divisible into the range,
the last value will fall short of the final value of the range. If this occurs, the final value is
added to t so that the series spans the complete range. The length of the t vector is deter-
mined as n. In addition, a vector of the dependent variable y is preallocated with n values
of the initial condition to improve efficiency.

At this point, Euler’s method (Eq. 22.5) is implemented by a simple loop:

for i = 1:n-1
y(i+1) = y(i) + dydt(t(i),y(i),varargin{:})*(t(i+1)-

t(i));
end

Notice how a function is used to generate a value for the derivative at the appropriate val-
ues of the independent and dependent variables. Also notice how the time step is automat-
ically calculated based on the difference between adjacent values in the vector t.

The ODE being solved can be set up in several ways. First, the differential equation can
be defined as an anonymous function object. For example, for the ODE from Example 22.1:

>> dydt=@(t,y) 4*exp(0.8*t) - 0.5*y;

The solution can then be generated as

>> [t,y] = eulode(dydt,[0 4],2,1);
>> disp([t,y])

with the result (compare with Table 22.1):

0 2.0000
1.0000 5.0000
2.0000 11.4022
3.0000 25.5132
4.0000 56.8493

Although using an anonymous function is feasible for the present case, there will be
more complex problems where the definition of the ODE requires several lines of code. In
such instances, creating a separate M-file is the only option.

22.3 IMPROVEMENTS OF EULER’S METHOD

A fundamental source of error in Euler’s method is that the derivative at the beginning of
the interval is assumed to apply across the entire interval. Two simple modifications are
available to help circumvent this shortcoming. As will be demonstrated in Section 22.4,
both modifications (as well as Euler’s method itself) actually belong to a larger class of so-
lution techniques called Runge-Kutta methods. However, because they have very straight-
forward graphical interpretations, we will present them prior to their formal derivation as
Runge-Kutta methods.

22.3 IMPROVEMENTS OF EULER’S METHOD 561

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 561

y

tti ti�1

Slope � f (ti�1, y i
0
�1)

Slope � f (ti, y i)

y

tti ti�1

Slope �
 f (ti, yi) � f (ti�1, y i

0
�1)

2

(a) (b)

FIGURE 22.4
Graphical depiction of Heun’s method. (a) Predictor and (b) corrector.

22.3.1 Heun’s Method

One method to improve the estimate of the slope involves the determination of two deriv-
atives for the interval—one at the beginning and another at the end. The two derivatives are
then averaged to obtain an improved estimate of the slope for the entire interval. This ap-
proach, called Heun’s method, is depicted graphically in Fig. 22.4.

Recall that in Euler’s method, the slope at the beginning of an interval

y′
i = f (ti ,yi) (22.14)

is used to extrapolate linearly to yi+1:

y0
i+1 = yi + f (ti ,yi)h (22.15)

For the standard Euler method we would stop at this point. However, in Heun’s method the
y0

i+1 calculated in Eq. (22.15) is not the final answer, but an intermediate prediction. This is
why we have distinguished it with a superscript 0. Equation (22.15) is called a predictor equa-
tion. It provides an estimate that allows the calculation of a slope at the end of the interval:

y′
i+1 = f

(
ti+1, y0

i+1

)
(22.16)

Thus, the two slopes [Eqs. (22.14) and (22.16)] can be combined to obtain an average slope
for the interval:

ȳ′ = f (ti , yi) + f
(
ti+1, y0

i+1

)
2

This average slope is then used to extrapolate linearly from yi to yi+1 using Euler’s
method:

yi+1 = yi + f (ti , yi) + f
(
ti+1, y0

i+1

)
2

h (22.17)

which is called a corrector equation.

562 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 562

f (ti, y i
m) � f (ti�1, y i�1)

�y i
j
�1 yi

m

2
h

j�1

FIGURE 22.5
Graphical representation of iterating the corrector of Heun’s method to obtain an improved
estimate.

The Heun method is a predictor-corrector approach. As just derived, it can be ex-
pressed concisely as

Predictor (Fig. 22.4a): y0
i+1 = ym

i + f (ti ,yi)h (22.18)

Corrector (Fig. 22.4b): y j
i+1 = ym

i +
f
(
ti , ym

i

) + f
(

ti+1, y j−1
i+1

)
2

h (22.19)

(for j = 1, 2, . . . , m)

Note that because Eq. (22.19) has yi+1 on both sides of the equal sign, it can be applied in
an iterative fashion as indicated. That is, an old estimate can be used repeatedly to provide
an improved estimate of yi+1. The process is depicted in Fig. 22.5.

As with similar iterative methods discussed in previous sections of the book, a termi-
nation criterion for convergence of the corrector is provided by

|εa| =
∣∣∣∣∣ y j

i+1 − y j−1
i+1

y j
i+1

∣∣∣∣∣ × 100%

where y j−1
i+1 and y j

i+1 are the result from the prior and the present iteration of the corrector,
respectively. It should be understood that the iterative process does not necessarily con-
verge on the true answer but will converge on an estimate with a finite truncation error, as
demonstrated in the following example.

EXAMPLE 22.2 Heun’s Method

Problem Statement. Use Heun’s method with iteration to integrate y′ = 4e0.8t − 0.5y
from t = 0 to 4 with a step size of 1. The initial condition at t = 0 is y = 2. Employ a stop-
ping criterion of 0.00001% to terminate the corrector iterations.

Solution. First, the slope at (t0, y0) is calculated as

y′
0 = 4e0 − 0.5(2) = 3

Then, the predictor is used to compute a value at 1.0:

y0
1 = 2 + 3(1) = 5

22.3 IMPROVEMENTS OF EULER’S METHOD 563

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 563

Note that this is the result that would be obtained by the standard Euler method. The true
value in Table 22.2 shows that it corresponds to a percent relative error of 19.28%.

Now, to improve the estimate for yi+1, we use the value y0
1 to predict the slope at the

end of the interval

y′
1 = f

(
x1, y0

1

) = 4e0.8(1) − 0.5(5) = 6.402164

which can be combined with the initial slope to yield an average slope over the interval
from t = 0 to 1:

ȳ′ = 3 + 6.402164

2
= 4.701082

This result can then be substituted into the corrector [Eq. (22.19)] to give the prediction at
t = 1:

y1
1 = 2 + 4.701082(1) = 6.701082

which represents a true percent relative error of −8.18%. Thus, the Heun method without
iteration of the corrector reduces the absolute value of the error by a factor of about 2.4 as
compared with Euler’s method. At this point, we can also compute an approximate error as

|εa| =
∣∣∣∣6.701082 − 5

6.701082

∣∣∣∣ × 100% = 25.39%

Now the estimate of y1 can be refined by substituting the new result back into the
right-hand side of Eq. (22.19) to give

y2
1 = 2 + 3 + 4e0.8(1) − 0.5(6.701082)

2
1 = 6.275811

which represents a true percent relative error of 1.31 percent and an approximate error of

|εa| =
∣∣∣∣6.275811 − 6.701082

6.275811

∣∣∣∣ × 100% = 6.776%

564 INITIAL-VALUE PROBLEMS

TABLE 22.2 Comparison of true and numerical values of the integral of y’ = 4e0.8t −
0.5y, with the initial condition that y = 2 at t = 0. The numerical values
were computed using the Euler and Heun methods with a step size of 1.
The Heun method was implemented both without and with iteration of
the corrector.

Without Iteration With Iteration

t ytrue yEuler |εt| (%) yHeun |εt| (%) yHeun |εt| (%)

0 2.00000 2.00000 2.00000 2.00000
1 6.19463 5.00000 19.28 6.70108 8.18 6.36087 2.68
2 14.84392 11.40216 23.19 16.31978 9.94 15.30224 3.09
3 33.67717 25.51321 24.24 37.19925 10.46 34.74328 3.17
4 75.33896 56.84931 24.54 83.33777 10.62 77.73510 3.18

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 564

The next iteration gives

y2
1 = 2 + 3 + 4e0.8(1) − 0.5(6.275811)

2
1 = 6.382129

which represents a true error of 3.03% and an approximate error of 1.666%.
The approximate error will keep dropping as the iterative process converges on a sta-

ble final result. In this example, after 12 iterations the approximate error falls below the
stopping criterion. At this point, the result at t = 1 is 6.36087, which represents a true rel-
ative error of 2.68%. Table 22.2 shows results for the remainder of the computation along
with results for Euler’s method and for the Heun method without iteration of the corrector.

Insight into the local error of the Heun method can be gained by recognizing that it is
related to the trapezoidal rule. In the previous example, the derivative is a function of both
the dependent variable y and the independent variable t. For cases such as polynomials,
where the ODE is solely a function of the independent variable, the predictor step
[Eq. (22.18)] is not required and the corrector is applied only once for each iteration. For
such cases, the technique is expressed concisely as

yi+1 = yi + f (ti) + f (ti+1)

2
h (22.20)

Notice the similarity between the second term on the right-hand side of Eq. (22.20) and the
trapezoidal rule [Eq. (19.11)]. The connection between the two methods can be formally
demonstrated by starting with the ordinary differential equation

dy

dt
= f (t) (22.21)

This equation can be solved for y by integration:∫ yi+1

yi

dy =
∫ ti+1

ti

f (t) dt (22.22)

which yields

yi+1 − yi =
∫ ti+1

ti

f (t) dt (22.23)

or

yi+1 = yi +
∫ ti+1

ti

f (t) dt (22.24)

Now, recall that the trapezoidal rule [Eq. (19.11)] is defined as

∫ ti+1

ti

f (t) dt = f (ti) + f (ti+1)

2
h (22.25)

22.3 IMPROVEMENTS OF EULER’S METHOD 565

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 565

where h = ti+1 − ti . Substituting Eq. (22.25) into Eq. (22.24) yields

yi+1 = yi + f (ti) + f (ti+1)

2
h (22.26)

which is equivalent to Eq. (22.20). For this reason, Heun’s method is sometimes referred to
as the trapezoidal rule.

Because Eq. (22.26) is a direct expression of the trapezoidal rule, the local truncation
error is given by [recall Eq. (19.14)]

Et = − f ′′(ξ)

12
h3 (22.27)

where ξ is between ti and ti+1. Thus, the method is second order because the second deriv-
ative of the ODE is zero when the true solution is a quadratic. In addition, the local and
global errors are O(h3) and O(h2), respectively. Therefore, decreasing the step size
decreases the error at a faster rate than for Euler’s method.

22.3.2 The Midpoint Method

Figure 22.6 illustrates another simple modification of Euler’s method. Called the midpoint
method, this technique uses Euler’s method to predict a value of y at the midpoint of the
interval (Fig. 22.6a):

yi+1/2 = yi + f (ti ,yi)
h

2
(22.28)

Then, this predicted value is used to calculate a slope at the midpoint:

y′
i+1/2 = f (ti+1/2,yi+1/2) (22.29)

566 INITIAL-VALUE PROBLEMS

y

tti ti�1ti�1�2

Slope � f (ti�1�2, y i�1�2)

Slope � f (ti�1�2, y i�1�2)

y

tti ti�1

(a) (b)

FIGURE 22.6
Graphical depiction of midpoint method. (a) Predictor and (b) corrector.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 566

which is assumed to represent a valid approximation of the average slope for the entire
interval. This slope is then used to extrapolate linearly from ti to ti+1 (Fig. 22.6b):

yi+1 = yi + f (ti+1/2,yi+1/2)h (22.30)

Observe that because yi+1 is not on both sides, the corrector [Eq. (22.30)] cannot be applied
iteratively to improve the solution as was done with Heun’s method.

As in our discussion of Heun’s method, the midpoint method can also be linked to
Newton-Cotes integration formulas. Recall from Table 19.4 that the simplest Newton-Cotes
open integration formula, which is called the midpoint method, can be represented as∫ b

a
f (x) dx ∼= (b − a) f (x1) (22.31)

where x1 is the midpoint of the interval (a, b). Using the nomenclature for the present case,
it can be expressed as∫ ti+1

ti

f (t) dt ∼= h f (ti+1/2) (22.32)

Substitution of this formula into Eq. (22.24) yields Eq. (22.30). Thus, just as the Heun
method can be called the trapezoidal rule, the midpoint method gets its name from the
underlying integration formula on which it is based.

The midpoint method is superior to Euler’s method because it utilizes a slope estimate
at the midpoint of the prediction interval. Recall from our discussion of numerical differen-
tiation in Section 4.3.4 that centered finite differences are better approximations of deriva-
tives than either forward or backward versions. In the same sense, a centered approximation
such as Eq. (22.29) has a local truncation error of O(h2) in comparison with the forward
approximation of Euler’s method, which has an error of O(h). Consequently, the local and
global errors of the midpoint method are O(h3) and O(h2), respectively.

22.4 RUNGE-KUTTA METHODS

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without
requiring the calculation of higher derivatives. Many variations exist but all can be cast in
the generalized form of Eq. (22.4):

yi+1 = yi + φh (22.33)

where φ is called an increment function, which can be interpreted as a representative slope
over the interval. The increment function can be written in general form as

φ = a1k1 + a2k2 + · · · + ankn (22.34)

where the a’s are constants and the k’s are

k1 = f (ti , yi) (22.34a)

k2 = f (ti + p1h, yi + q11k1h) (22.34b)

k3 = f (ti + p2h, yi + q21k1h + q22k2h) (22.34c)
...

kn = f (ti + pn−1h, yi + qn−1,1k1h + qn−1,2k2h + · · · + qn−1,n−1kn−1h) (22.34d)

22.4 RUNGE-KUTTA METHODS 567

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 567

where the p’s and q’s are constants. Notice that the k’s are recurrence relationships. That is,
k1 appears in the equation for k2, which appears in the equation for k3, and so forth. Be-
cause each k is a functional evaluation, this recurrence makes RK methods efficient for
computer calculations.

Various types of Runge-Kutta methods can be devised by employing different num-
bers of terms in the increment function as specified by n. Note that the first-order RK
method with n = 1 is, in fact, Euler’s method. Once n is chosen, values for the a’s, p’s, and
q’s are evaluated by setting Eq. (22.33) equal to terms in a Taylor series expansion. Thus,
at least for the lower-order versions, the number of terms n usually represents the order of
the approach. For example, in Section 22.4.1, second-order RK methods use an increment
function with two terms (n = 2). These second-order methods will be exact if the solution
to the differential equation is quadratic. In addition, because terms with h3 and higher are
dropped during the derivation, the local truncation error is O(h3) and the global error is
O(h2). In Section 22.4.2, the fourth-order RK method (n = 4) is presented for which the
global truncation error is O(h4).

22.4.1 Second-Order Runge-Kutta Methods

The second-order version of Eq. (22.33) is

yi+1 = yi + (a1k1 + a2k2)h (22.35)

where

k1 = f (ti , yi) (22.35a)

k2 = f (ti + p1h, yi + q11k1h) (22.35b)

The values for a1, a2, p1, and q11 are evaluated by setting Eq. (22.35) equal to a
second-order Taylor series. By doing this, three equations can be derived to evaluate the
four unknown constants (see Chapra and Canale, 2010, for details). The three equations are

a1 + a2 = 1 (22.36)

a2 p1 = 1/2 (22.37)

a2q11 = 1/2 (22.38)

Because we have three equations with four unknowns, these equations are said to be
underdetermined. We, therefore, must assume a value of one of the unknowns to determine
the other three. Suppose that we specify a value for a2. Then Eqs. (22.36) through (22.38)
can be solved simultaneously for

a1 = 1 − a2 (22.39)

p1 = q11 = 1

2a2
(22.40)

Because we can choose an infinite number of values for a2, there are an infinite num-
ber of second-order RK methods. Every version would yield exactly the same results if the
solution to the ODE were quadratic, linear, or a constant. However, they yield different re-
sults when (as is typically the case) the solution is more complicated. Three of the most
commonly used and preferred versions are presented next.

568 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 568

Heun Method without Iteration (a2 = 1/2). If a2 is assumed to be 1/2, Eqs. (22.39)
and (22.40) can be solved for a1 = 1/2 and p1 = q11 = 1. These parameters, when substi-
tuted into Eq. (22.35), yield

yi+1 = yi +
(

1

2
k1 + 1

2
k2

)
h (22.41)

where

k1 = f (ti , yi) (22.41a)

k2 = f (ti + h, yi + k1h) (22.41b)

Note that k1 is the slope at the beginning of the interval and k2 is the slope at the end of the
interval. Consequently, this second-order Runge-Kutta method is actually Heun’s tech-
nique without iteration of the corrector.

The Midpoint Method (a2 = 1). If a2 is assumed to be 1, then a1 = 0, p1 = q11 = 1/2,

and Eq. (22.35) becomes

yi+1 = yi + k2h (22.42)

where

k1 = f (ti , yi) (22.42a)

k2 = f (ti + h/2, yi + k1h/2) (22.42b)

This is the midpoint method.

Ralston’s Method (a2 = 2/3). Ralston (1962) and Ralston and Rabinowitz (1978) de-
termined that choosing a2 = 2/3 provides a minimum bound on the truncation error for
the second-order RK algorithms. For this version, a1 = 1/3 and p1 = q11 = 3/4, and
Eq. (22.35) becomes

yi+1 = yi +
(

1

3
k1 + 2

3
k2

)
h (22.43)

where

k1 = f (ti , yi) (22.43a)

k2 = f

(
ti + 3

4
h, yi + 3

4
k1h

)
(22.43b)

22.4.2 Classical Fourth-Order Runge-Kutta Method

The most popular RK methods are fourth order. As with the second-order approaches, there
are an infinite number of versions. The following is the most commonly used form, and we
therefore call it the classical fourth-order RK method:

yi+1 = yi + 1

6
(k1 + 2k2 + 2k3 + k4)h (22.44)

22.4 RUNGE-KUTTA METHODS 569

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 569

where

k1 = f (ti , yi) (22.44a)

k2 = f

(
ti + 1

2
h, yi + 1

2
k1h

)
(22.44b)

k3 = f

(
ti + 1

2
h, yi + 1

2
k2h

)
(22.44c)

k4 = f (ti + h, yi + k3h) (22.44d)

Notice that for ODEs that are a function of t alone, the classical fourth-order RK
method is similar to Simpson’s 1/3 rule. In addition, the fourth-order RK method is simi-
lar to the Heun approach in that multiple estimates of the slope are developed to come up
with an improved average slope for the interval. As depicted in Fig. 22.7, each of the k’s
represents a slope. Equation (22.44) then represents a weighted average of these to arrive
at the improved slope.

EXAMPLE 22.3 Classical Fourth-Order RK Method

Problem Statement. Employ the classical fourth-order RK method to integrate y′ =
4e0.8t − 0.5y from t = 0 to 1 using a step size of 1 with y(0) = 2.

Solution. For this case, the slope at the beginning of the interval is computed as

k1 = f (0, 2) = 4e0.8(0) − 0.5(2) = 3

570 INITIAL-VALUE PROBLEMS

tti ti�1ti�1�2

h

y

k2

k1

k1

k2

k3

k3

k4

�

FIGURE 22.7
Graphical depiction of the slope estimates comprising the fourth-order RK method.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 570

This value is used to compute a value of y and a slope at the midpoint:

y(0.5) = 2 + 3(0.5) = 3.5

k2 = f (0.5, 3.5) = 4e0.8(0.5) − 0.5(3.5) = 4.217299

This slope in turn is used to compute another value of y and another slope at the midpoint:

y(0.5) = 2 + 4.217299(0.5) = 4.108649

k3 = f (0.5, 4.108649) = 4e0.8(0.5) − 0.5(4.108649) = 3.912974

Next, this slope is used to compute a value of y and a slope at the end of the interval:

y(1.0) = 2 + 3.912974(1.0) = 5.912974

k4 = f (1.0, 5.912974) = 4e0.8(1.0) − 0.5(5.912974) = 5.945677

Finally, the four slope estimates are combined to yield an average slope. This average slope
is then used to make the final prediction at the end of the interval.

φ = 1

6
[3 + 2(4.217299) + 2(3.912974) + 5.945677] = 4.201037

y(1.0) = 2 + 4.201037(1.0) = 6.201037

which compares favorably with the true solution of 6.194631 (εt = 0.103%).

It is certainly possible to develop fifth- and higher-order RK methods. For example,
Butcher’s (1964) fifth-order RK method is written as

yi+1 = yi + 1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6)h (22.45)

where

k1 = f (ti , yi) (22.45a)

k2 = f

(
ti + 1

4
h, yi + 1

4
k1h

)
(22.45b)

k3 = f

(
ti + 1

4
h, yi + 1

8
k1h + 1

8
k2h

)
(22.45c)

k4 = f

(
ti + 1

2
h, yi − 1

2
k2h + k3h

)
(22.45d)

k5 = f

(
ti + 3

4
h, yi + 3

16
k1h + 9

16
k4h

)
(22.45e)

k6 = f

(
ti + h, yi − 3

7
k1h + 2

7
k2h + 12

7
k3h − 12

7
k4h + 8

7
k5h

)
(22.45f)

Note the similarity between Butcher’s method and Boole’s rule in Table 19.2. As expected,
this method has a global truncation error of O(h5).

Although the fifth-order version provides more accuracy, notice that six function eval-
uations are required. Recall that up through the fourth-order versions, n function evaluations

22.4 RUNGE-KUTTA METHODS 571

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 571

are required for an nth-order RK method. Interestingly, for orders higher than four, one or
two additional function evaluations are necessary. Because the function evaluations account
for the most computation time, methods of order five and higher are usually considered rel-
atively less efficient than the fourth-order versions. This is one of the main reasons for the
popularity of the fourth-order RK method.

22.5 SYSTEMS OF EQUATIONS

Many practical problems in engineering and science require the solution of a system of si-
multaneous ordinary differential equations rather than a single equation. Such systems may
be represented generally as

dy1

dt
= f1(t, y1, y2, . . . , yn)

dy2

dt
= f2(t, y1, y2, . . . , yn)

...

dyn

dt
= fn(t, y1, y2, . . . , yn)

(22.46)

The solution of such a system requires that n initial conditions be known at the starting
value of t.

An example is the calculation of the bungee jumper’s velocity and position that we set
up at the beginning of this chapter. For the free-fall portion of the jump, this problem
amounts to solving the following system of ODEs:

dx

dt
= v (22.47)

dv

dt
= g − cd

m
v2 (22.48)

If the stationary platform from which the jumper launches is defined as x = 0, the initial
conditions would be x(0) = v(0) = 0.

22.5.1 Euler’s Method

All the methods discussed in this chapter for single equations can be extended to systems
of ODEs. Engineering applications can involve thousands of simultaneous equations. In
each case, the procedure for solving a system of equations simply involves applying the
one-step technique for every equation at each step before proceeding to the next step. This
is best illustrated by the following example for Euler’s method.

EXAMPLE 22.4 Solving Systems of ODEs with Euler’s Method

Problem Statement. Solve for the velocity and position of the free-falling bungee jumper
using Euler’s method. Assuming that at t = 0, x = v = 0, and integrate to t = 10 s with a
step size of 2 s. As was done previously in Examples 1.1 and 1.2, the gravitational accelera-
tion is 9.81 m/s2, and the jumper has a mass of 68.1 kg with a drag coefficient of 0.25 kg/m.

572 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 572

Recall that the analytical solution for velocity is [Eq. (1.9)]:

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)

This result can be substituted into Eq. (22.47) which can be integrated to determine an
analytical solution for distance as

x(t) = m

cd
ln

[
cosh

(√
gcd

m
t

)]

Use these analytical solutions to compute the true relative errors of the results.

Solution. The ODEs can be used to compute the slopes at t = 0 as

dx

dt
= 0

dv

dt
= 9.81 − 0.25

68.1
(0)2 = 9.81

Euler’s method is then used to compute the values at t = 2 s,

x = 0 + 0(2) = 0

v = 0 + 9.81(2) = 19.62

The analytical solutions can be computed as x(2) = 19.16629 and v(2) = 18.72919. Thus,
the percent relative errors are 100% and 4.756%, respectively.

The process can be repeated to compute the results at t = 4 as

x = 0 + 19.62(2) = 39.24

v = 19.62 +
(

9.81 − 0.25

68.1
(19.62)2

)
2 = 36.41368

Proceeding in a like manner gives the results displayed in Table 22.3.

22.5 SYSTEMS OF EQUATIONS 573

TABLE 22.3 Distance and velocity of a free-falling bungee jumper as computed
numerically with Euler’s method.

t xtrue vtrue xEuler vEuler εt (x) εt (v)

0 0 0 0 0
2 19.1663 18.7292 0 19.6200 100.00% 4.76%
4 71.9304 33.1118 39.2400 36.4137 45.45% 9.97%
6 147.9462 42.0762 112.0674 46.2983 24.25% 10.03%
8 237.5104 46.9575 204.6640 50.1802 13.83% 6.86%

10 334.1782 49.4214 305.0244 51.3123 8.72% 3.83%

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 573

Although the foregoing example illustrates how Euler’s method can be implemented for
systems of ODEs, the results are not very accurate because of the large step size. In addition,
the results for distance are a bit unsatisfying because x does not change until the second
iteration. Using a much smaller step greatly mitigates these deficiencies. As described next,
using a higher-order solver provides decent results even with a relatively large step size.

22.5.2 Runge-Kutta Methods

Note that any of the higher-order RK methods in this chapter can be applied to systems of
equations. However, care must be taken in determining the slopes. Figure 22.7 is helpful in
visualizing the proper way to do this for the fourth-order method. That is, we first develop
slopes for all variables at the initial value. These slopes (a set of k1’s) are then used to make
predictions of the dependent variable at the midpoint of the interval. These midpoint val-
ues are in turn used to compute a set of slopes at the midpoint (the k2’s). These new slopes
are then taken back to the starting point to make another set of midpoint predictions that
lead to new slope predictions at the midpoint (the k3’s). These are then employed to make
predictions at the end of the interval that are used to develop slopes at the end of the inter-
val (the k4’s). Finally, the k’s are combined into a set of increment functions [as in
Eq. (22.44)] that are brought back to the beginning to make the final predictions. The fol-
lowing example illustrates the approach.

EXAMPLE 22.5 Solving Systems of ODEs with the Fourth-Order RK Method

Problem Statement. Use the fourth-order RK method to solve for the same problem we
addressed in Example 22.4.

Solution. First, it is convenient to express the ODEs in the functional format of
Eq. (22.46) as

dx

dt
= f1(t, x, v) = v

dv

dt
= f2(t, x, v) = g − cd

m
v2

The first step in obtaining the solution is to solve for all the slopes at the beginning of the
interval:

k1,1 = f1(0, 0, 0) = 0

k1,2 = f2(0, 0, 0) = 9.81 − 0.25

68.1
(0)2 = 9.81

where ki, j is the ith value of k for the jth dependent variable. Next, we must calculate the
first values of x and v at the midpoint of the first step:

x(1) = x(0) + k1,1
h

2
= 0 + 0

2

2
= 0

v(1) = v(0) + k1,2
h

2
= 0 + 9.81

2

2
= 9.81

574 INITIAL-VALUE PROBLEMS

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 574

which can be used to compute the first set of midpoint slopes:

k2,1 = f1(1, 0, 9.81) = 9.8100

k2,2 = f2(1, 0, 9.81) = 9.4567

These are used to determine the second set of midpoint predictions:

x(1) = x(0) + k2,1
h

2
= 0 + 9.8100

2

2
= 9.8100

v(1) = v(0) + k2,2
h

2
= 0 + 9.4567

2

2
= 9.4567

which can be used to compute the second set of midpoint slopes:

k3,1 = f1(1, 9.8100, 9.4567) = 9.4567

k3,2 = f2(1, 9.8100, 9.4567) = 9.4817

These are used to determine the predictions at the end of the interval:

x(2) = x(0) + k3,1h = 0 + 9.4567(2) = 18.9134

v(2) = v(0) + k3,2h = 0 + 9.4817(2) = 18.9634

which can be used to compute the endpoint slopes:

k4,1 = f1(2, 18.9134, 18.9634) = 18.9634

k4,2 = f2(2, 18.9134, 18.9634) = 8.4898

The values of k can then be used to compute [Eq. (22.44)]:

x(2) = 0 + 1

6
[0 + 2(9.8100 + 9.4567) + 18.9634] 2 = 19.1656

v(2) = 0 + 1

6
[9.8100 + 2(9.4567 + 9.4817) + 8.4898] 2 = 18.7256

Proceeding in a like manner for the remaining steps yields the values displayed in
Table 22.4. In contrast to the results obtained with Euler’s method, the fourth-order RK
predictions are much closer to the true values. Further, a highly accurate, nonzero value is
computed for distance on the first step.

22.5 SYSTEMS OF EQUATIONS 575

TABLE 22.4 Distance and velocity of a free-falling bungee jumper as computed
numerically with the fourth-order RK method.

t xtrue vtrue xRK4 vRK4 εt (x) εt (v)

0 0 0 0 0
2 19.1663 18.7292 19.1656 18.7256 0.004% 0.019%
4 71.9304 33.1118 71.9311 33.0995 0.001% 0.037%
6 147.9462 42.0762 147.9521 42.0547 0.004% 0.051%
8 237.5104 46.9575 237.5104 46.9345 0.000% 0.049%

10 334.1782 49.4214 334.1626 49.4027 0.005% 0.038%

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 575

22.5.3 MATLAB M-file Function: rk4sys

Figure 22.8 shows an M-file called rk4sys that uses the fourth-order Runge-Kutta method
to solve a system of ODEs. This code is similar in many ways to the function developed
earlier (Fig. 22.3) to solve a single ODE with Euler’s method. For example, it is passed the
function name defining the ODEs through its argument.

576 INITIAL-VALUE PROBLEMS

FIGURE 22.8
An M-file to implement the RK4 method for a system of ODEs.

function [tp,yp] = rk4sys(dydt,tspan,y0,h,varargin)
% rk4sys: fourth-order Runge-Kutta for a system of ODEs
% [t,y] = rk4sys(dydt,tspan,y0,h,p1,p2,...): integrates
% a system of ODEs with fourth-order RK method
% input:
% dydt = name of the M-file that evaluates the ODEs
% tspan = [ti, tf]; initial and final times with output
% generated at interval of h, or
% = [t0 t1 ... tf]; specific times where solution output
% y0 = initial values of dependent variables
% h = step size
% p1,p2,... = additional parameters used by dydt
% output:
% tp = vector of independent variable
% yp = vector of solution for dependent variables

if nargin<4,error('at least 4 input arguments required'), end
if any(diff(tspan)<=0),error('tspan not ascending order'), end
n = length(tspan);
ti = tspan(1);tf = tspan(n);
if n == 2

t = (ti:h:tf)'; n = length(t);
if t(n)<tf

t(n+1) = tf;
n = n+1;

end
else

t = tspan;
end
tt = ti; y(1,:) = y0;
np = 1; tp(np) = tt; yp(np,:) = y(1,:);
i=1;
while(1)

tend = t(np+1);
hh = t(np+1) - t(np);

(Continued)

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 576

22.5 SYSTEMS OF EQUATIONS 577

FIGURE 22.8 (Continued)

if hh>h,hh = h;end
while(1)

if tt+hh>tend,hh = tend-tt;end
k1 = dydt(tt,y(i,:),varargin{:})';
ymid = y(i,:) + k1.*hh./2;
k2 = dydt(tt+hh/2,ymid,varargin{:})';
ymid = y(i,:) + k2*hh/2;
k3 = dydt(tt+hh/2,ymid,varargin{:})';
yend = y(i,:) + k3*hh;
k4 = dydt(tt+hh,yend,varargin{:})';
phi = (k1+2*(k2+k3)+k4)/6;
y(i+1,:) = y(i,:) + phi*hh;
tt = tt+hh;
i=i+1;
if tt>=tend,break,end

end
np = np+1; tp(np) = tt; yp(np,:) = y(i,:);
if tt>=tf,break,end

end

However, it has an additional feature that allows you to generate output in two ways,
depending on how the input variable tspan is specified. As was the case for Fig. 22.3, you
can set tspan = [ti tf], where ti and tf are the initial and final times, respectively.
If done in this way, the routine automatically generates output values between these limits
at equal spaced intervals h. Alternatively, if you want to obtain results at specific times, you
can define tspan = [t0,t1,...,tf]. Note that in both cases, the tspan values must
be in ascending order.

We can employ rk4sys to solve the same problem as in Example 22.5. First, we can
develop an M-file to hold the ODEs:

function dy = dydtsys(t, y)
dy = [y(2);9.81-0.25/68.1*y(2)^2];

where y(1) = distance (x) and y(2) = velocity (v). The solution can then be generated as

>> [t y] = rk4sys(@dydtsys,[0 10],[0 0],2);
>> disp([t' y(:,1) y(:,2)])

0 0 0
2.0000 19.1656 18.7256
4.0000 71.9311 33.0995
6.0000 147.9521 42.0547
8.0000 237.5104 46.9345
10.0000 334.1626 49.4027

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 577

We can also use tspan to generate results at specific values of the independent vari-
able. For example,

>> tspan=[0 6 10];
>> [t y] = rk4sys(@dydtsys,tspan,[0 0],2);
>> disp([t' y(:,1) y(:,2)])

0 0 0
6.0000 147.9521 42.0547

10.0000 334.1626 49.4027

578 INITIAL-VALUE PROBLEMS

22.6 CASE STUDY PREDATOR-PREY MODELS AND CHAOS

Background. Engineers and scientists deal with a variety of problems involving sys-
tems of nonlinear ordinary differential equations. This case study focuses on two of these
applications. The first relates to predator-prey models that are used to study species inter-
actions. The second are equations derived from fluid dynamics that are used to simulate the
atmosphere.

Predator-prey models were developed independently in the early part of the twentieth
century by the Italian mathematician Vito Volterra and the American biologist Alfred
Lotka. These equations are commonly called Lotka-Volterra equations. The simplest ver-
sion is the following pairs of ODEs:

dx

dt
= ax − bxy (22.49)

dy

dt
= −cy + dxy (22.50)

where x and y = the number of prey and predators, respectively, a = the prey growth rate,
c = the predator death rate, and b and d = the rates characterizing the effect of the predator-
prey interactions on the prey death and the predator growth, respectively. The multiplica-
tive terms (i.e., those involving xy) are what make such equations nonlinear.

An example of a simple nonlinear model based on atmospheric fluid dynamics is the
Lorenz equations created by the American meteorologist Edward Lorenz:

dx

dt
= −σ x − σ y

dy

dt
= r x − y − xz

dz

dt
= −bz + xy

Lorenz developed these equations to relate the intensity of atmospheric fluid motion x to
temperature variations y and z in the horizontal and vertical directions, respectively. As

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 578

22.6 CASE STUDY 579

with the predator-prey model, the nonlinearities stem from the simple multiplicative terms:
xz and xy.

Use numerical methods to obtain solutions for these equations. Plot the results to
visualize how the dependent variables change temporally. In addition, graph the dependent
variables versus each other to see whether any interesting patterns emerge.

Solution. The following parameter values can be used for the predator-prey simula-
tion: a = 1.2, b = 0.6, c = 0.8, and d = 0.3. Employ initial conditions of x = 2 and y = 1
and integrate from t = 0 to 30, using a step size of h = 0.0625.

First, we can develop a function to hold the differential equations:

function yp = predprey(t,y,a,b,c,d)
yp = [a*y(1)-b*y(1)*y(2);-c*y(2)+d*y(1)*y(2)];

The following script employs this function to generate solutions with both the Euler
and the fourth-order RK methods. Note that the function eulersys was based on modify-
ing the rk4sys function (Fig. 22.8). We will leave the development of such an M-file as a
homework problem. In addition to displaying the solution as a time-series plot (x and y
versus t), the script also generates a plot of y versus x. Such phase-plane plots are often
useful in elucidating features of the model’s underlying structure that may not be evident
from the time series.

h=0.0625;tspan=[0 40];y0=[2 1];
a=1.2;b=0.6;c=0.8;d=0.3;
[t y] = eulersys(@predprey,tspan,y0,h,a,b,c,d);
subplot(2,2,1);plot(t,y(:,1),t,y(:,2),'--')
legend('prey','predator');title('(a) Euler time plot')
subplot(2,2,2);plot(y(:,1),y(:,2))
title('(b) Euler phase plane plot')
[t y] = rk4sys(@predprey,tspan,y0,h,a,b,c,d);
subplot(2,2,3);plot(t,y(:,1),t,y(:,2),'--')
title('(c) RK4 time plot')
subplot(2,2,4);plot(y(:,1),y(:,2))
title('(d) RK4 phase plane plot')

The solution obtained with Euler’s method is shown at the top of Fig. 22.9. The time
series (Fig. 22.9a) indicates that the amplitudes of the oscillations are expanding. This is
reinforced by the phase-plane plot (Fig. 22.9b). Hence, these results indicate that the crude
Euler method would require a much smaller time step to obtain accurate results.

In contrast, because of its much smaller truncation error, the RK4 method yields good re-
sults with the same time step. As in Fig. 22.9c, a cyclical pattern emerges in time. Because the
predator population is initially small, the prey grows exponentially. At a certain point, the
prey become so numerous that the predator population begins to grow. Eventually, the in-
creased predators cause the prey to decline. This decrease, in turn, leads to a decrease of the
predators. Eventually, the process repeats. Notice that, as expected, the predator peak lags the
prey. Also, observe that the process has a fixed period—that is, it repeats in a set time.

22.6 CASE STUDY continued

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 579

580 INITIAL-VALUE PROBLEMS

22.6 CASE STUDY continued

The phase-plane representation for the accurate RK4 solution (Fig. 22.9d) indicates
that the interaction between the predator and the prey amounts to a closed counter-
clockwise orbit. Interestingly, there is a resting or critical point at the center of the orbit.
The exact location of this point can be determined by setting Eqs. (22.49) and (22.50)
to steady state (dy/dt = dx/dt = 0) and solving for (x, y) = (0, 0) and (c/d, a/b). The
former is the trivial result that if we start with neither predators nor prey, nothing will
happen. The latter is the more interesting outcome that if the initial conditions are set at
x = c/d and y = a/b, the derivatives will be zero, and the populations will remain
constant.

Now, let’s use the same approach to investigate the trajectories of the Lorenz equations
with the following parameter values: a = 10, b = 8/3, and r = 28. Employ initial conditions
of x = y = z = 5 and integrate from t = 0 to 20. For this case, we will use the fourth-order
RK method to obtain solutions with a constant time step of h = 0.03125.

(a) Euler time plot

15

prey

predator
10

5

0
0 10 20 30 40

(c) RK4 time plot

6

4

2

0
0 10 20 30 40

(b) Euler phase plane plot

8

6

4

2

0
0 5 10 15

(d) RK4 phase plane plot

4

3

2

1

0
0 2 4 6

FIGURE 22.9
Solution for the Lotka-Volterra model. Euler’s method (a) time-series and (b) phase-plane plots, and
RK4 method (c) time-series and (d) phase-plane plots.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 580

22.6 CASE STUDY 581

The results are quite different from the behavior of the Lotka-Volterra equations. As in
Fig. 22.10, the variable x seems to be undergoing an almost random pattern of oscillations,
bouncing around from negative values to positive values. The other variables exhibit
similar behavior. However, even though the patterns seem random, the frequency of the
oscillation and the amplitudes seem fairly consistent.

An interesting feature of such solutions can be illustrated by changing the initial con-
dition for x slightly (from 5 to 5.001). The results are superimposed as the dashed line in
Fig. 22.10. Although the solutions track on each other for a time, after about t = 15 they
diverge significantly. Thus, we can see that the Lorenz equations are quite sensitive to
their initial conditions. The term chaotic is used to describe such solutions. In his origi-
nal study, this led Lorenz to the conclusion that long-range weather forecasts might be
impossible!

The sensitivity of a dynamical system to small perturbations of its initial conditions is
sometimes called the butterfly effect. The idea is that the flapping of a butterfly’s wings
might induce tiny changes in the atmosphere that ultimately leads to a large-scale weather
phenomenon like a tornado.

22.6 CASE STUDY continued

20
Lorenz model x versus t

x � 5.001, y � z� 5
x � y � z � 5

15

10

5

0

�5

�10

�15

�20
0 2 4 6 8 10 12 14 16 18 20

FIGURE 22.10
Time-domain representation of x versus t for the Lorenz equations. The solid time series is for the
initial conditions (5, 5, 5). The dashed line is where the initial condition for x is perturbed slightly
(5.001, 5, 5).

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 581

582 INITIAL-VALUE PROBLEMS

22.6 CASE STUDY continued

Although the time-series plots are chaotic, phase-plane plots reveal an underlying
structure. Because we are dealing with three independent variables, we can generate
projections. Figure 22.11 shows projections in the xy, xz, and the yz planes. Notice how a
structure is manifest when perceived from the phase-plane perspective. The solution forms
orbits around what appear to be critical points. These points are called strange attractors in
the jargon of mathematicians who study such nonlinear systems.

Beyond the two-variable projections, MATLAB’s plot3 function provides a vehicle
to directly generate a three-dimensional phase-plane plot:

>> plot3(y(:,1),y(:,2),y(:,2))
>> xlabel('x');ylabel('y');zlabel('z');grid

As was the case for Fig. 22.11, the three-dimensional plot (Fig 22.12) depicts trajectories
cycling in a definite pattern around a pair of critical points.

As a final note, the sensitivity of chaotic systems to initial conditions has implications
for numerical computations. Beyond the initial conditions themselves, different step sizes
or different algorithms (and in some cases, even different computers) can introduce small
differences in the solutions. In a similar fashion to Fig. 22.10, these discrepancies will
eventually lead to large deviations. Some of the problems in this chapter and in Chap. 23
are designed to demonstrate this issue.

(a) y versus x

x

y

30

20

10

0

0 10 20

�10

�20

�30
�20 �10

(b) z versus x

x

z

45

35

40

25

30

20

0 10 20

15

10

5
�20 �10

(c) z versus y

y

z

45

35

40

25

30

20

0 20 40

15

10

5
�40 �20

FIGURE 22.11
Phase-plane representation for the Lorenz equations. (a) xy, (b) xz, and (c) yz projections.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 582

PROBLEMS 583

22.6 CASE STUDY continued

30

20

10

0

�10

�20

�30
40

20

0

�20

�40 �20
�10

y
x

z

0
10

20

FIGURE 22.12
Three-dimensional phase-plane representation for the Lorenz equations generated with MATLAB’s
plot3 function.

PROBLEMS

22.1 Solve the following initial value problem over the
interval from t = 0 to 2 where y(0) = 1. Display all your
results on the same graph.

dy

dt
= yt3 − 1.5y

(a) Analytically.
(b) Using Euler’s method with h = 0.5 and 0.25.

(c) Using the midpoint method with h = 0.5.

(d) Using the fourth-order RK method with h = 0.5.

22.2 Solve the following problem over the interval from
x = 0 to 1 using a step size of 0.25 where y(0) = 1. Display
all your results on the same graph.

dy

dx
= (1 + 4x)

√
y

(a) Analytically.
(b) Using Euler’s method.
(c) Using Heun’s method without iteration.
(d) Using Ralston’s method.
(e) Using the fourth-order RK method.

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 583

22.3 Solve the following problem over the interval from
t = 0 to 2 using a step size of 0.5 where y(0) = 1. Display
all your results on the same graph.

dy

dt
= −2y + t2

Obtain your solutions with (a) Heun’s method without
iterating the corrector, (b) Heun’s method with iterating the
corrector until εs < 0.1%, (c) the midpoint method, and
(d) Ralston’s method.
22.4 The growth of populations of organisms has many en-
gineering and scientific applications. One of the simplest
models assumes that the rate of change of the population p is
proportional to the existing population at any time t:

dp

dt
= kg p (P22.4.1)

where kg = the growth rate. The world population in mil-
lions from 1950 through 2000 was

t 1950 1955 1960 1965 1970 1975
p 2560 2780 3040 3350 3710 4090

t 1980 1985 1990 1995 2000
p 4450 4850 5280 5690 6080

(a) Assuming that Eq. (P22.4.1) holds, use the data from
1950 through 1970 to estimate kg.

(b) Use the fourth-order RK method along with the results
of (a) to stimulate the world population from 1950 to
2050 with a step size of 5 years. Display your simulation
results along with the data on a plot.

22.5 Although the model in Prob. 22.4 works adequately
when population growth is unlimited, it breaks down when
factors such as food shortages, pollution, and lack of space
inhibit growth. In such cases, the growth rate is not a con-
stant, but can be formulated as

kg = kgm(1 − p/pmax)

where kgm = the maximum growth rate under unlimited
conditions, p = population, and pmax = the maximum
population. Note that pmax is sometimes called the carrying
capacity. Thus, at low population density p � pmax,
kg → kgm . As p approaches pmax, the growth rate ap-
proaches zero. Using this growth rate formulation, the rate
of change of population can be modeled as

dp

dt
= kgm(1 − p/pmax)p

584 INITIAL-VALUE PROBLEMS

This is referred to as the logistic model. The analytical solu-
tion to this model is

p = p0
pmax

p0 + (pmax − p0)e−kgm t

Simulate the world’s population from 1950 to 2050 using
(a) the analytical solution, and (b) the fourth-order RK
method with a step size of 5 years. Employ the following
initial conditions and parameter values for your simulation:
p0 (in 1950) = 2,560 million people, kgm = 0.026/yr, and
pmax = 12,000 million people. Display your results as a plot
along with the data from Prob. 22.4.
22.6 Suppose that a projectile is launched upward from the
earth’s surface. Assume that the only force acting on the ob-
ject is the downward force of gravity. Under these condi-
tions, a force balance can be used to derive

dv

dt
= −g(0)

R2

(R + x)2

where v = upward velocity (m/s), t = time (s), x = alti-
tude (m) measured upward from the earth’s surface,
g(0) = the gravitational acceleration at the earth’s surface
(∼= 9.81 m/s2), and R = the earth’s radius (∼= 6.37×
106 m). Recognizing that dx/dt = v , use Euler’s method
to determine the maximum height that would be obtained
if v(t = 0) = 1500 m/s.
22.7 Solve the following pair of ODEs over the interval
from t = 0 to 0.4 using a step size of 0.1. The initial condi-
tions are y(0) = 2 and z(0) = 4. Obtain your solution with
(a) Euler’s method and (b) the fourth-order RK method. Dis-
play your results as a plot.

dy

dt
= −2y + 5e−t

dz

dt
= − yz2

2

22.8 The van der Pol equation is a model of an electronic
circuit that arose back in the days of vacuum tubes:

d2 y

dt2
− (1 − y2)

dy

dt
+ y = 0

Given the initial conditions, y(0) = y′(0) = 1, solve this
equation from t = 0 to 10 using Euler’s method with a step
size of (a) 0.25 and (b) 0.125. Plot both solutions on the
same graph.
22.9 Given the initial conditions, y(0) = 1 and y′(0) = 0,

solve the following initial-value problem from t = 0 to 4:

d2 y

dt2
+ 4y = 0

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 584

Obtain your solutions with (a) Euler’s method and (b) the
fourth-order RK method. In both cases, use a step size of 0.1.
Plot both solutions on the same graph along with the exact
solution y = cos 2t.
22.10 Develop an M-file to solve a single ODE with Heun’s
method with iteration. Design the M-file so that it creates a
plot of the results. Test your program by using it to solve for
population as described in Prob. 22.5. Employ a step size of
5 years and iterate the corrector until εs < 0.1%.

22.11 Develop an M-file to solve a single ODE with the
midpoint method. Design the M-file so that it creates a plot
of the results. Test your program by using it to solve for pop-
ulation as described in Prob. 22.5. Employ a step size of
5 years.
22.12 Develop an M-file to solve a single ODE with the
fourth-order RK method. Design the M-file so that it creates
a plot of the results. Test your program by using it to solve
Prob. 22.2. Employ a step size of 0.1.
22.13 Develop an M-file to solve a system of ODEs with
Euler’s method. Design the M-file so that it creates a plot of
the results. Test your program by using it to solve Prob. 22.7
with a step size of 0.25.
22.14 Isle Royale National Park is a 210-square-mile archi-
pelago composed of a single large island and many small
islands in Lake Superior. Moose arrived around 1900, and
by 1930, their population approached 3000, ravaging vege-
tation. In 1949, wolves crossed an ice bridge from Ontario.
Since the late 1950s, the numbers of the moose and wolves
have been tracked.

PROBLEMS 585

Year Moose Wolves Year Moose Wolves Year Moose Wolves

1959 563 20 1975 1355 41 1991 1313 12
1960 610 22 1976 1282 44 1992 1590 12
1961 628 22 1977 1143 34 1993 1879 13
1962 639 23 1978 1001 40 1994 1770 17
1963 663 20 1979 1028 43 1995 2422 16
1964 707 26 1980 910 50 1996 1163 22
1965 733 28 1981 863 30 1997 500 24
1966 765 26 1982 872 14 1998 699 14
1967 912 22 1983 932 23 1999 750 25
1968 1042 22 1984 1038 24 2000 850 29
1969 1268 17 1985 1115 22 2001 900 19
1970 1295 18 1986 1192 20 2002 1100 17
1971 1439 20 1987 1268 16 2003 900 19
1972 1493 23 1988 1335 12 2004 750 29
1973 1435 24 1989 1397 12 2005 540 30
1974 1467 31 1990 1216 15 2006 450 30

(a) Integrate the Lotka-Volterra equations (Sec. 22.6) from
1960 through 2020 using the following coefficient val-
ues: a = 0.23, b = 0.0133, c = 0.4, and d = 0.0004.
Compare your simulation with the data using a time-
series plot and determine the sum of the squares of the
residuals between your model and the data for both the
moose and the wolves.

(b) Develop a phase-plane plot of your solution.
22.15 The motion of a damped spring-mass system
(Fig. P22.15) is described by the following ordinary differ-
ential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

where x = displacement from equilibrium position (m), t =
time (s), m = 20-kg mass, and c = the damping coefficient
(N · s/m). The damping coefficient c takes on three values

FIGURE P22.15

k

c

x

m

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 585

of 5 (underdamped), 40 (critically damped), and 200 (over-
damped). The spring constant k = 20 N/m. The initial ve-
locity is zero, and the initial displacement x = 1 m. Solve
this equation using a numerical method over the time period
0 ≤ t ≤ 15 s. Plot the displacement versus time for each of
the three values of the damping coefficient on the same plot.
22.16 A spherical tank has a circular orifice in its bottom
through which the liquid flows out (Fig. P22.16). The flow
rate through the hole can be estimated as

Qout = C A
√

2gh

where Qout = outflow (m3/s), C = an empirically derived
coefficient, A = the area of the orifice (m2), g = the gravita-
tional constant (= 9.81 m/s2), and h = the depth of liquid in
the tank. Use one of the numerical methods described in this
chapter to determine how long it will take for the water to flow
out of a 3-m diameter tank with an initial height of 2.75 m.
Note that the orifice has a diameter of 3 cm and C = 0.55.
22.17 In the investigation of a homicide or accidental death,
it is often important to estimate the time of death. From the
experimental observations, it is known that the surface tem-
perature of an object changes at a rate proportional to the dif-
ference between the temperature of the object and that of the
surrounding environment or ambient temperature. This is
known as Newton’s law of cooling. Thus, if T(t) is the tem-
perature of the object at time t, and Ta is the constant ambi-
ent temperature:

dT

dt
= −K (T − Ta)

where K > 0 is a constant of proportionality. Suppose that
at time t = 0 a corpse is discovered and its temperature is
measured to be To. We assume that at the time of death, the
body temperature Td was at the normal value of 37 °C.

586 INITIAL-VALUE PROBLEMS

Suppose that the temperature of the corpse when it was dis-
covered was 29.5 °C, and that two hours later, it is 23.5 °C.
The ambient temperature is 20 °C.
(a) Determine K and the time of death.
(b) Solve the ODE numerically and plot the results.
22.18 The reaction A → B takes place in two reactors in
series. The reactors are well mixed but are not at steady
state. The unsteady-state mass balance for each stirred tank
reactor is shown below:

dCA1

dt
= 1

τ
(CA0 − CA1) − kCA1

dCB1

dt
= 1

τ
CB1 + kCA1

dCA2

dt
= 1

τ
(CA1 − CA2) − kCA2

dCB2

dt
= 1

τ
(CB1 − CB2) − kCB2

where CA0 = concentration of A at the inlet of the first
reactor, CA1 = concentration of A at the outlet of the first re-
actor (and inlet of the second), CA2 = concentration of A at
the outlet of the second reactor, CB1 = concentration of B at
the outlet of the first reactor (and inlet of the second), CB2 =
concentration of B in the second reactor, τ = residence time
for each reactor, and k = the rate constant for reaction of A to
produce B. If CA0 is equal to 20, find the concentrations of A
and B in both reactors during their first 10 minutes of opera-
tion. Use k = 0.12/min and τ = 5 min and assume that the
initial conditions of all the dependent variables are zero.
22.19 A nonisothermal batch reactor can be described by
the following equations:

dC

dt
= −e(−10/(T +273))C

dT

dt
= 1000e(−10/(T +273))C − 10(T − 20)

where C is the concentration of the reactant and T is the tem-
perature of the reactor. Initially, the reactor is at 16 °C and has
a concentration of reactant C of 1.0 gmol/L. Find the concen-
tration and temperature of the reactor as a function of time.
22.20 The following equation can be used to model the de-
flection of a sailboat mast subject to a wind force:

d2 y

dz2
= f (z)

2E I
(L − z)2

where f (z) = wind force, E = modulus of elasticity, L =
mast length, and I = moment of inertia. Note that the force

FIGURE P22.16
A spherical tank.

H

r

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 586

varies with height according to

f (z) = 200z

5 + z
e−2z/30

Calculate the deflection if y = 0 and dy/dz = 0 at z = 0.
Use parameter values of L = 30, E = 1.3 × 108, and
I = 0.05 for your computation.
22.21 A pond drains through a pipe as shown in Fig. P22.21.
Under a number of simplifying assumptions, the following
differential equation describes how depth changes with time:

dh

dt
= − πd2

4A(h)

√
2g(h + e)

where h = depth (m), t = time (s), d = pipe diameter (m),
A(h) = pond surface area as a function of depth (m2), g =
gravitational constant (= 9.81 m/s2), and e = depth of pipe
outlet below the pond bottom (m). Based on the following
area-depth table, solve this differential equation to deter-
mine how long it takes for the pond to empty, given that
h(0) = 6 m, d = 0.25 m, e = 1 m.

h, m 6 5 4 3 2 1 0

A(h), m2 1.17 0.97 0.67 0.45 0.32 0.18 0

22.22 Engineers and scientists use mass-spring models to
gain insight into the dynamics of structures under the influ-
ence of disturbances such as earthquakes. Figure P22.22
shows such a representation for a three-story building. For
this case, the analysis is limited to horizontal motion of the
structure. Using Newton’s second law, force balances can be
developed for this system as

d2x1

dt2
= − k1

m1
x1 + k2

m1
(x2 − x1)

d2x2

dt2
= k2

m2
(x1 − x2) + k3

m2
(x3 − x2)

d2x3

dt2
= k3

m3
(x2 − x3)

PROBLEMS 587

Simulate the dynamics of this structure from t = 0 to 20 s,
given the initial condition that the velocity of the ground
floor is dx1/dt = 1 m/s, and all other initial values of dis-
placements and velocities are zero. Present your results as
two time-series plots of (a) displacements and (b) velocities.
In addition, develop a three-dimensional phase-plane plot of
the displacements.
22.23 Repeat the the same simulations as in Section 22.6
for the Lorenz equations but generate the solutions with the
midpoint method.
22.24 Perform the same simulations as in Section 22.6 for
the Lorenz equations but use a value of r = 99.96. Compare
your results with those obtained in Section 22.6.

FIGURE P22.21

e

d

h

A(h)

FIGURE P22.22

m3 = 8,000 kg

k3 = 1800 kN/m

k2 = 2400 kN/m

k1 = 3000 kN/m

m2 = 10,000 kg

m1 = 12,000 kg

cha01102_ch22_547-587.qxd 12/17/10 8:23 AM Page 587

588

Adaptive Methods
and Stiff Systems

23

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to more advanced methods
for solving initial-value problems for ordinary differential equations. Specific
objectives and topics covered are

• Understanding how the Runge-Kutta Fehlberg methods use RK methods of
different orders to provide error estimates that are used to adjust the step size.

• Familiarizing yourself with the built-in MATLAB functions for solving ODEs.
• Learning how to adjust the options for MATLAB’s ODE solvers.
• Learning how to pass parameters to MATLAB’s ODE solvers.
• Understanding the difference between one-step and multistep methods for solving

ODEs.
• Understanding what is meant by stiffness and its implications for solving ODEs.

23.1 ADAPTIVE RUNGE-KUTTA METHODS

To this point, we have presented methods for solving ODEs that employ a constant step size.
For a significant number of problems, this can represent a serious limitation. For example,
suppose that we are integrating an ODE with a solution of the type depicted in Fig. 23.1. For
most of the range, the solution changes gradually. Such behavior suggests that a fairly large
step size could be employed to obtain adequate results. However, for a localized region from
t = 1.75 to 2.25, the solution undergoes an abrupt change. The practical consequence of
dealing with such functions is that a very small step size would be required to accurately
capture the impulsive behavior. If a constant step-size algorithm were employed, the smaller
step size required for the region of abrupt change would have to be applied to the entire com-
putation. As a consequence, a much smaller step size than necessary—and, therefore, many
more calculations—would be wasted on the regions of gradual change.

Algorithms that automatically adjust the step size can avoid such overkill and hence be
of great advantage. Because they “adapt” to the solution’s trajectory, they are said to have

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 588

23.1 ADAPTIVE RUNGE-KUTTA METHODS 589

adaptive step-size control. Implementation of such approaches requires that an estimate of
the local truncation error be obtained at each step. This error estimate can then serve as a
basis for either shortening or lengthening the step size.

Before proceeding, we should mention that aside from solving ODEs, the methods
described in this chapter can also be used to evaluate definite integrals. The evaluation of
the definite integral

I =
∫ b

a
f (x) dx

is equivalent to solving the differential equation
dy

dx
= f (x)

for y(b) given the initial condition y(a) = 0. Thus, the following techniques can be em-
ployed to efficiently evaluate definite integrals involving functions that are generally
smooth but exhibit regions of abrupt change.

There are two primary approaches to incorporate adaptive step-size control into one-
step methods. Step halving involves taking each step twice, once as a full step and then as
two half steps. The difference in the two results represents an estimate of the local trunca-
tion error. The step size can then be adjusted based on this error estimate.

In the second approach, called embedded RK methods, the local truncation error is es-
timated as the difference between two predictions using different-order RK methods. These
are currently the methods of choice because they are more efficient than step halving.

y

1

0 1 2 3 t

FIGURE 23.1
An example of a solution of an ODE that exhibits an abrupt change. Automatic step-size
adjustment has great advantages for such cases.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 589

The embedded methods were first developed by Fehlberg. Hence, they are sometimes
referred to as RK-Fehlberg methods. At face value, the idea of using two predictions of dif-
ferent order might seem too computationally expensive. For example, a fourth- and fifth-
order prediction amounts to a total of 10 function evaluations per step [recall Eqs. (22.44)
and (22.45)]. Fehlberg cleverly circumvented this problem by deriving a fifth-order RK
method that employs most of the same function evaluations required for an accompanying
fourth-order RK method. Thus, the approach yielded the error estimate on the basis of only
six function evaluations!

23.1.1 MATLAB Functions for Nonstiff Systems

Since Fehlberg originally developed his approach, other even better approaches have been
developed. Several of these are available as built-in functions in MATLAB.

ode23. The ode23 function uses the BS23 algorithm (Bogacki and Shampine, 1989;
Shampine, 1994), which simultaneously uses second- and third-order RK formulas to solve
the ODE and make error estimates for step-size adjustment. The formulas to advance the
solution are

yi+1 = yi + 1

9
(2k1 + 3k2 + 4k3)h (23.1)

where
k1 = f (ti , yi) (23.1a)

k2 = f

(
ti + 1

2
h, yi + 1

2
k1h

)
(23.1b)

k3 = f

(
ti + 3

4
h, yi + 3

4
k2h

)
(23.1c)

The error is estimated as

Ei+1 = 1

72
(−5k1 + 6k2 + 8k3 − 9k4)h (23.2)

where
k4 = f (ti+1, yi+1) (23.2a)

Note that although there appear to be four function evaluations, there are really only three
because after the first step, the k1 for the present step will be the k4 from the previous step.
Thus, the approach yields a prediction and error estimate based on three evaluations rather
than the five that would ordinarily result from using second- (two evaluations) and third-
order (three evaluations) RK formulas in tandem.

After each step, the error is checked to determine whether it is within a desired toler-
ance. If it is, the value of yi+1 is accepted, and k4 becomes k1 for the next step. If the error
is too large, the step is repeated with reduced step sizes until the estimated error satisfies

E ≤ max(RelTol × |y|, AbsTol) (23.3)

590 ADAPTIVE METHODS AND STIFF SYSTEMS

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 590

23.1 ADAPTIVE RUNGE-KUTTA METHODS 591

where RelTol is the relative tolerance (default = 10–3) and AbsTol is the absolute tolerance
(default = 10–6). Observe that the criteria for the relative error uses a fraction rather than a
percent relative error as we have done on many occasions prior to this point.

ode45. The ode45 function uses an algorithm developed by Dormand and Prince (1980),
which simultaneously uses fourth- and fifth-order RK formulas to solve the ODE and make
error estimates for step-size adjustment. MATLAB recommends that ode45 is the best
function to apply as a “first try” for most problems.

ode113. The ode113 function uses a variable-order Adams-Bashforth-Moulton solver. It
is useful for stringent error tolerances or computationally intensive ODE functions. Note
that this is a multistep method as we will describe subsequently in Section 23.2.

These functions can be called in a number of different ways. The simplest approach is

[t, y] = ode45(odefun, tspan, y0)

where y is the solution array where each column is one of the dependent variables and each
row corresponds to a time in the column vector t, odefun is the name of the function
returning a column vector of the right-hand-sides of the differential equations, tspan spec-
ifies the integration interval, and y0 = a vector containing the initial values.

Note that tspan can be formulated in two ways. First, if it is entered as a vector of two
numbers,

tspan = [ti tf];

the integration is performed from ti to tf. Second, to obtain solutions at specific times
t0, t1, ... , tn (all increasing or all decreasing), use

tspan = [t0 t1 ... tn];

Here is an example of how ode45 can be used to solve a single ODE, y′ =
4e0.8t − 0.5y from t = 0 to 4 with an initial condition of y(0) = 2. Recall from Exam-
ple 22.1 that the analytical solution at t = 4 is 75.33896. Representing the ODE as an
anonymous function, ode45 can be used to generate the same result numerically as

>> dydt=@(t,y) 4*exp(0.8*t)-0.5*y;
>> [t,y]=ode45(dydt,[0 4],2);
>> y(length(t))

ans =
75.3390

As described in the following example, the ODE is typically stored in its own M-file when
dealing with systems of equations.

EXAMPLE 23.1 Using MATLAB to Solve a System of ODEs

Problem Statement. Employ ode45 to solve the following set of nonlinear ODEs from
t = 0 to 20:

dy1

dt
= 1.2y1 − 0.6y1 y2

dy2

dt
= −0.8y2 + 0.3y1 y2

where y1 = 2 and y2 = 1 at t = 0.Such equations are referred to as predator-prey equations.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 591

Solution. Before obtaining a solution with MATLAB, you must create a function to com-
pute the right-hand side of the ODEs. One way to do this is to create an M-file as in

function yp = predprey(t,y)
yp = [1.2*y(1)-0.6*y(1)*y(2);-0.8*y(2)+0.3*y(1)*y(2)];

We stored this M-file under the name: predprey.m.
Next, enter the following commands to specify the integration range and the initial

conditions:

>> tspan = [0 20];
>> y0 = [2, 1];

The solver can then be invoked by

>> [t,y] = ode45(@predprey, tspan, y0);

This command will then solve the differential equations in predprey.m over the range
defined by tspan using the initial conditions found in y0. The results can be displayed by
simply typing

>> plot(t,y)

which yields Fig. 23.2.
In addition to a time series plot, it is also instructive to generate a phase-plane plot—

that is, a plot of the dependent variables versus each other by

>> plot(y(:,1),y(:,2))

which yields Fig. 23.3.

592 ADAPTIVE METHODS AND STIFF SYSTEMS

0
0

1

2

3

4

5

6

5 10 15 20

y1
y2

FIGURE 23.2
Solution of predator-prey model with MATLAB.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 592

23.1 ADAPTIVE RUNGE-KUTTA METHODS 593

0
0

1

2y2

3

4

1 2 3
y1

4 5 6

FIGURE 23.3
State-space plot of predator-prey model with MATLAB.

As in the previous example, the MATLAB solver uses default parameters to control var-
ious aspects of the integration. In addition, there is also no control over the differential equa-
tions’parameters. To have control over these features, additional arguments are included as in

[t, y] = ode45(odefun, tspan, y0, options, p1, p2,...)

where options is a data structure that is created with the odeset function to control fea-
tures of the solution, and p1, p2,... are parameters that you want to pass into odefun.

The odeset function has the general syntax

options = odeset('par1',val1,'par2',val2,...)

where the parameter pari has the value vali. A complete listing of all the possible para-
meters can be obtained by merely entering odeset at the command prompt. Some com-
monly used parameters are

'RelTol' Allows you to adjust the relative tolerance.
'AbsTol' Allows you to adjust the absolute tolerance.
'InitialStep' The solver automatically determines the initial step. This option

allows you to set your own.
'MaxStep' The maximum step defaults to one-tenth of the tspan interval. This

option allows you to override this default.

EXAMPLE 23.2 Using odeset to Control Integration Options

Problem Statement. Use ode23 to solve the following ODE from t = 0 to 4:
dy

dt
= 10e−(t−2)2/[2(0.075)2] − 0.6y

where y(0) = 0.5. Obtain solutions for the default (10–3) and for a more stringent (10–4)

relative error tolerance.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 593

Solution. First, we will create an M-file to compute the right-hand side of the ODE:

function yp = dydt(t, y)
yp = 10*exp(-(t-2)*(t-2)/(2*.075^2))-0.6*y;

Then, we can implement the solver without setting the options. Hence the default value for
the relative error (10–3) is automatically used:

>> ode23(@dydt, [0 4], 0.5);

Note that we have not set the function equal to output variables [t, y]. When we imple-
ment one of the ODE solvers in this way, MATLAB automatically creates a plot of the
results displaying circles at the values it has computed. As in Fig. 23.4a, notice how ode23
takes relatively large steps in the smooth regions of the solution whereas it takes smaller
steps in the region of rapid change around t = 2.

We can obtain a more accurate solution by using the odeset function to set the rela-
tive error tolerance to 10–4:

>> options=odeset('RelTol',1e-4);
>> ode23(@dydt, [0, 4], 0.5, options);

As in Fig. 23.4b, the solver takes more small steps to attain the increased accuracy.

594 ADAPTIVE METHODS AND STIFF SYSTEMS

(a) RelTol � 10–3

2

1.5

1

0.5

0
0 1 2 3 4

(b) RelTol � 10–4

2

1.5

1

0.5

0
0 1 2 3 4

FIGURE 23.4
Solution of ODE with MATLAB. For (b), a smaller relative error tolerance is used and hence many
more steps are taken.

23.1.2 Events

MATLAB’s ODE solvers are commonly implemented for a prespecified integration inter-
val. That is, they are often used to obtain a solution from an initial to a final value of the de-
pendent variable. However, there are many problems where we do not know the final time.

A nice example relates to the free-falling bungee jumper that we have been using
throughout this book. Suppose that the jump master inadvertently neglects to attach the
cord to the jumper. The final time for this case, which corresponds to the jumper hitting the

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 594

23.1 ADAPTIVE RUNGE-KUTTA METHODS 595

ground, is not a given. In fact, the objective of solving the ODEs would be to determine
when the jumper hit the ground.

MATLAB’s events option provides a means to solve such problems. It works by
solving differential equations until one of the dependent variables reaches zero. Of course,
there may be cases where we would like to terminate the computation at a value other than
zero. As described in the following paragraphs, such cases can be readily accommodated.

We will use our bungee jumper problem to illustrate the approach. The system of
ODEs can be formulated as

dx

dt
= v

dv

dt
= g − cd

m
v|v|

where x = distance (m), t = time (s), v = velocity (m/s) where positive velocity is in the
downward direction, g = the acceleration of gravity (= 9.81 m/s2), cd = a second-order
drag coefficient (kg/m), and m = mass (kg). Note that in this formulation, distance and
velocity are both positive in the downward direction, and the ground level is defined as
zero distance. For the present example, we will assume that the jumper is initially located
200 m above the ground and the initial velocity is 20 m/s in the upward direction—that is,
x(0) = –200 and v(0) = –20.

The first step is to express the system of ODEs as an M-file function:

function dydt=freefall(t,y,cd,m)
% y(1) = x and y(2) = v
grav=9.81;
dydt=[y(2);grav-cd/m*y(2)*abs(y(2))];

In order to implement the event, two other M-files need to be developed. These are (1) a
function that defines the event, and (2) a script that generates the solution.

For our bungee jumper problem, the event function (which we have named endevent)
can be written as

function [detect,stopint,direction]=endevent(t,y,varargin)
% Locate the time when height passes through zero
% and stop integration.
detect=y(1); % Detect height = 0
stopint=1; % Stop the integration
direction=0; % Direction does not matter

This function is passed the values of the independent (t) and dependent variables (y) along
with the model parameters (varargin). It then computes and returns three variables.
The first, detect, specifies that MATLAB should detect the event when the dependent
variable y(1) equals zero—that is, when the height x = 0. The second, stopint, is set to 1.
This instructs MATLAB to stop when the event occurs. The final variable, direction, is
set to 0 if all zeros are to be detected (this is the default), +1 if only the zeros where the
event function increases are to be detected, and −1 if only the zeros where the event func-
tion decreases are to be detected. In our case, because the direction of the approach to zero
is unimportant, we set direction to zero.1

1 Note that, as mentioned previously, we might want to detect a nonzero event. For example, we might want to
detect when the jumper reached x = 5. To do this, we would merely set detect = y(1) – 5.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 595

Finally, a script can be developed to generate the solution:

opts=odeset('events',@endevent);
y0=[-200 -20];
[t,y,te,ye]=ode45(@freefall,[0 inf],y0,opts,0.25,68.1);
te,ye
plot(t,-y(:,1),'-',t,y(:,2),'--','LineWidth',2)
legend('Height (m)','Velocity (m/s)')
xlabel('time (s)');
ylabel('x (m) and v (m/s)')

In the first line, the odeset function is used to invoke the events option and specify that the
event we are seeking is defined in the endevent function. Next, we set the initial conditions
(y0) and the integration interval (tspan). Observe that because we do not know when the
jumper will hit the ground, we set the upper limit of the integration interval to infinity.
The third line then employs the ode45 function to generate the actual solution. As in all of
MATLAB’s ODE solvers, the function returns the answers in the vectors t and y. In addition,
when the events option is invoked, ode45 can also return the time at which the event occurs
(te), and the corresponding values of the dependent variables (ye). The remaining lines of the
script merely display and plot the results. When the script is run, the output is displayed as

te =
9.5475

ye =
0.0000 46.2454

The plot is shown in Fig. 23.5. Thus, the jumper hits the ground in 9.5475 s with a veloc-
ity of 46.2454 m/s.

596 ADAPTIVE METHODS AND STIFF SYSTEMS

0 1 2 3 4 5 6 7 8 9 10
�50

0

50

100

150

200

250

time (s)

x
(m

)
an

d
 v

 (
m

/s
)

height (m)
velocity (m/s)

FIGURE 23.5
MATLAB-generated plot of the height above the ground and velocity of the free-falling bungee
jumper without the cord.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 596

23.2 MULTISTEP METHODS 597

23.2 MULTISTEP METHODS

The one-step methods described in the previous sections utilize information at a single
point ti to predict a value of the dependent variable yi+1 at a future point ti+1 (Fig. 23.6a).
Alternative approaches, called multistep methods (Fig. 23.6b), are based on the insight that,
once the computation has begun, valuable information from previous points is at our
command. The curvature of the lines connecting these previous values provides informa-
tion regarding the trajectory of the solution. Multistep methods exploit this information to
solve ODEs. In this section, we will present a simple second-order method that serves to
demonstrate the general characteristics of multistep approaches.

23.2.1 The Non-Self-Starting Heun Method

Recall that the Heun approach uses Euler’s method as a predictor [Eq. (22.15)]:

y0
i+1 = yi + f (ti , yi)h (23.4)

and the trapezoidal rule as a corrector [Eq. (22.17)]:

yi+1 = yi + f (ti , yi) + f
(
ti+1, y0

i+1

)
2

h (23.5)

Thus, the predictor and the corrector have local truncation errors of O(h2) and O(h3),

respectively. This suggests that the predictor is the weak link in the method because it has
the greatest error. This weakness is significant because the efficiency of the iterative cor-
rector step depends on the accuracy of the initial prediction. Consequently, one way to im-
prove Heun’s method is to develop a predictor that has a local error of O(h3). This can be

y

xi

(a)

xxi�1

y

xi

(b)

xxi�1xi�1xi�2

FIGURE 23.6
Graphical depiction of the fundamental difference between (a) one-step and (b) multistep
methods for solving ODEs.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 597

accomplished by using Euler’s method and the slope at yi , and extra information from a
previous point yi–1, as in

y0
i+1 = yi−1 + f (ti ,yi)2h (23.6)

This formula attains O(h3) at the expense of employing a larger step size 2h. In addition,
note that the equation is not self-starting because it involves a previous value of the depen-
dent variable yi–1. Such a value would not be available in a typical initial-value problem.
Because of this fact, Eqs. (23.5) and (23.6) are called the non-self-starting Heun method.
As depicted in Fig. 23.7, the derivative estimate in Eq. (23.6) is now located at the midpoint
rather than at the beginning of the interval over which the prediction is made. This center-
ing improves the local error of the predictor to O(h3).

598 ADAPTIVE METHODS AND STIFF SYSTEMS

ti�1

ti�1 tti

y Slope � f (ti�1, y i
0
�1)

Slope �
 f (ti, yi) � f (ti�1, y i

0
�1)

2

ti�1 tti

y

(a)

(b)

FIGURE 23.7
A graphical depiction of the non-self-starting Heun method. (a) The midpoint method that is used
as a predictor. (b) The trapezoidal rule that is employed as a corrector.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 598

23.2 MULTISTEP METHODS 599

The non-self-starting Heun method can be summarized as

Predictor (Fig. 23.7a): y0
i+1 = ym

i−1 + f
(
ti , ym

i

)
2h (23.7)

Corrector (Fig. 23.7b): y j
i+1 = ym

i +
f
(
ti , ym

i

) + f
(

ti+1, y j−1
i+1

)
2

h (23.8)

(for j = 1, 2, . . . , m)

where the superscripts denote that the corrector is applied iteratively from j = 1 to m to
obtain refined solutions. Note that ym

i and ym
i−1 are the final results of the corrector

iterations at the previous time steps. The iterations are terminated based on an estimate of
the approximate error,

|εa| =
∣∣∣∣∣ y j

i+1 − y j−1
i+1

y j
i+1

∣∣∣∣∣ × 100% (23.9)

When |εa| is less than a prespecified error tolerance εs, the iterations are terminated. At this
point, j = m. The use of Eqs. (23.7) through (23.9) to solve an ODE is demonstrated in the
following example.

EXAMPLE 23.3 Non-Self-Starting Heun’s Method

Problem Statement. Use the non-self-starting Heun method to perform the same com-
putations as were performed previously in Example 22.2 using Heun’s method. That is,
integrate y′ = 4e0.8t − 0.5y from t = 0 to 4 with a step size of 1. As with Example 22.2,
the initial condition at t = 0 is y = 2. However, because we are now dealing with a multi-
step method, we require the additional information that y is equal to – 0.3929953 at t = –1.

Solution. The predictor [Eq. (23.7)] is used to extrapolate linearly from t = –1 to 1:

y0
1 = −0.3929953 + [

4e0.8(0) − 0.5(2)
]

2 = 5.607005

The corrector [Eq. (23.8)] is then used to compute the value:

y1
1 = 2 + 4e0.8(0) − 0.5(2) + 4e0.8(1) − 0.5(5.607005)

2
1 = 6.549331

which represents a true percent relative error of –5.73% (true value = 6.194631). This
error is somewhat smaller than the value of –8.18% incurred in the self-starting Heun.

Now, Eq. (23.8) can be applied iteratively to improve the solution:

y2
1 = 2 + 3 + 4e0.8(1) − 0.5(6.549331)

2
1 = 6.313749

which represents an error of –1.92%. An approximate estimate of the error can be deter-
mined using Eq. (23.9):

|εa| =
∣∣∣∣6.313749 − 6.549331

6.313749

∣∣∣∣ × 100% = 3.7%

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 599

Equation (23.8) can be applied iteratively until εa falls below a prespecified value of εs . As
was the case with the Heun method (recall Example 22.2), the iterations converge on a
value of 6.36087 (εt = –2.68%). However, because the initial predictor value is more
accurate, the multistep method converges at a somewhat faster rate.

For the second step, the predictor is

y0
2 = 2 + [

4e0.8(1) − 0.5(6.36087)
]

2 = 13.44346 εt = 9.43%

which is superior to the prediction of 12.0826 (εt = 18%) that was computed with the
original Heun method. The first corrector yields 15.76693 (εt = 6.8%), and subsequent
iterations converge on the same result as was obtained with the self-starting Heun method:
15.30224 (εt = –3.09%). As with the previous step, the rate of convergence of the correc-
tor is somewhat improved because of the better initial prediction.

23.2.2 Error Estimates

Aside from providing increased efficiency, the non-self-starting Heun can also be used to
estimate the local truncation error. As with the adaptive RK methods in Section 23.1, the
error estimate then provides a criterion for changing the step size.

The error estimate can be derived by recognizing that the predictor is equivalent to the
midpoint rule. Hence, its local truncation error is (Table 19.4)

Ep = 1

3
h3 y(3)(ξp) = 1

3
h3 f ′′(ξp) (23.10)

where the subscript p designates that this is the error of the predictor. This error estimate
can be combined with the estimate of yi+1 from the predictor step to yield

True value = y0
i+1 + 1

3
h3 y(3)(ξp) (23.11)

By recognizing that the corrector is equivalent to the trapezoidal rule, a similar esti-
mate of the local truncation error for the corrector is (Table 19.2)

Ec = − 1

12
h3 y(3)(ξc) = − 1

12
h3 f ′′(ξc) (23.12)

This error estimate can be combined with the corrector result yi+1 to give

True value = ym
i+1 − 1

12
h3 y(3)(ξc) (23.13)

Equation (23.11) can be subtracted from Eq. (23.13) to yield

0 = ym
i+1 − y0

i+1 − 5

12
h3 y(3)(ξ) (23.14)

where ξ is now between ti–1 and ti . Now, dividing Eq. (23.14) by 5 and rearranging the
result gives

y0
i+1 − ym

i+1

5
= − 1

12
h3 y(3)(ξ) (23.15)

600 ADAPTIVE METHODS AND STIFF SYSTEMS

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 600

23.3 STIFFNESS 601

Notice that the right-hand sides of Eqs. (23.12) and (23.15) are identical, with the excep-
tion of the argument of the third derivative. If the third derivative does not vary apprecia-
bly over the interval in question, we can assume that the right-hand sides are equal, and
therefore, the left-hand sides should also be equivalent, as in

Ec = − y0
i+1 − ym

i+1

5
(23.16)

Thus, we have arrived at a relationship that can be used to estimate the per-step truncation
error on the basis of two quantities that are routine by-products of the computation: the
predictor (y0

i+1) and the corrector (ym
i+1) .

EXAMPLE 23.4 Estimate of Per-Step Truncation Error

Problem Statement. Use Eq. (23.16) to estimate the per-step truncation error of Exam-
ple 23.3. Note that the true values at t = 1 and 2 are 6.194631 and 14.84392, respectively.

Solution. At ti+1 = 1, the predictor gives 5.607005 and the corrector yields 6.360865.
These values can be substituted into Eq. (23.16) to give

Ec = −6.360865 − 5.607005

5
= −0.150722

which compares well with the exact error,

Et = 6.194631 − 6.360865 = −0.1662341

At ti+1 = 2, the predictor gives 13.44346 and the corrector yields 15.30224, which
can be used to compute

Ec = −15.30224 − 13.44346

5
= −0.37176

which also compares favorably with the exact error, Et = 14.84392 − 15.30224 =
−0.45831.

The foregoing has been a brief introduction to multistep methods. Additional
information can be found elsewhere (e.g., Chapra and Canale, 2010). Although they
still have their place for solving certain types of problems, multistep methods are usu-
ally not the method of choice for most problems routinely confronted in engineering and
science. That said, they are still used. For example, the MATLAB function ode113 is a
multistep method. We have therefore included this section to introduce you to their basic
principles.

23.3 STIFFNESS

Stiffness is a special problem that can arise in the solution of ordinary differential equa-
tions. A stiff system is one involving rapidly changing components together with slowly
changing ones. In some cases, the rapidly varying components are ephemeral transients
that die away quickly, after which the solution becomes dominated by the slowly varying

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 601

components. Although the transient phenomena exist for only a short part of the integration
interval, they can dictate the time step for the entire solution.

Both individual and systems of ODEs can be stiff. An example of a single stiff ODE is

dy

dt
= −1000y + 3000 − 2000e−t (23.17)

If y(0) = 0, the analytical solution can be developed as

y = 3 − 0.998e−1000t − 2.002e−t (23.18)

As in Fig. 23.8, the solution is initially dominated by the fast exponential term (e–1000t).

After a short period (t < 0.005), this transient dies out and the solution becomes governed
by the slow exponential (e–t).

Insight into the step size required for stability of such a solution can be gained by ex-
amining the homogeneous part of Eq. (23.17):

dy

dt
= −ay

(23.19)

If y(0) = y0, calculus can be used to determine the solution as

y = y0e−at

Thus, the solution starts at y0 and asymptotically approaches zero.
Euler’s method can be used to solve the same problem numerically:

yi+1 = yi + dyi

dt
h

Substituting Eq. (23.19) gives

yi+1 = yi − ayi h

602 ADAPTIVE METHODS AND STIFF SYSTEMS

3

y

2

1

0
42 t0

1

0
0.020.010

FIGURE 23.8
Plot of a stiff solution of a single ODE. Although the solution appears to start at 1, there is
actually a fast transient from y = 0 to 1 that occurs in less than the 0.005 time unit. This transient
is perceptible only when the response is viewed on the finer timescale in the inset.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 602

23.3 STIFFNESS 603

or

yi+1 = yi (1 − ah) (23.20)

The stability of this formula clearly depends on the step size h. That is, |1 − ah| must be
less than 1. Thus, if h > 2/a, |yi | → ∞ as i → ∞.

For the fast transient part of Eq. (23.18), this criterion can be used to show that the step
size to maintain stability must be < 2/1000 = 0.002. In addition, we should note that,
whereas this criterion maintains stability (i.e., a bounded solution), an even smaller step size
would be required to obtain an accurate solution. Thus, although the transient occurs for only
a small fraction of the integration interval, it controls the maximum allowable step size.

Rather than using explicit approaches, implicit methods offer an alternative remedy.
Such representations are called implicit because the unknown appears on both sides of the
equation. An implicit form of Euler’s method can be developed by evaluating the deriva-
tive at the future time:

yi+1 = yi + dyi+1

dt
h

This is called the backward, or implicit, Euler’s method. Substituting Eq. (23.19) yields

yi+1 = yi − ayi+1h

which can be solved for

yi+1 = yi

1 + ah
(23.21)

For this case, regardless of the size of the step, |yi | → 0 as i → ∞. Hence, the approach is
called unconditionally stable.

EXAMPLE 23.5 Explicit and Implicit Euler

Problem Statement. Use both the explicit and implicit Euler methods to solve Eq. (23.17),
where y(0) = 0. (a) Use the explicit Euler with step sizes of 0.0005 and 0.0015 to solve for
y between t = 0 and 0.006. (b) Use the implicit Euler with a step size of 0.05 to solve for y
between 0 and 0.4.

Solution. (a) For this problem, the explicit Euler’s method is

yi+1 = yi + (−1000yi + 3000 − 2000e−ti)h

The result for h = 0.0005 is displayed in Fig. 23.9a along with the analytical solution.
Although it exhibits some truncation error, the result captures the general shape of the ana-
lytical solution. In contrast, when the step size is increased to a value just below the stabil-
ity limit (h = 0.0015), the solution manifests oscillations. Using h > 0.002 would result in
a totally unstable solution—that is, it would go infinite as the solution progressed.

(b) The implicit Euler’s method is

yi+1 = yi + (−1000yi+1 + 3000 − 2000e−ti+1)h

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 603

Now because the ODE is linear, we can rearrange this equation so that yi+1 is isolated on
the left-hand side:

yi+1 = yi + 3000h − 2000he−ti+1

1 + 1000h

The result for h = 0.05 is displayed in Fig. 23.9b along with the analytical solution. Notice
that even though we have used a much bigger step size than the one that induced instabil-
ity for the explicit Euler, the numerical result tracks nicely on the analytical solution.

Systems of ODEs can also be stiff. An example is
dy1

dt
= −5y1 + 3y2 (23.22a)

dy2

dt
= 100y1 − 301y2 (23.22b)

For the initial conditions y1(0) = 52.29 and y2(0) = 83.82, the exact solution is

y1 = 52.96e−3.9899t − 0.67e−302.0101t (23.23a)

y2 = 17.83e−3.9899t + 65.99e−302.0101t (23.23b)

604 ADAPTIVE METHODS AND STIFF SYSTEMS

1.5

y

1

0.5

0
0.0060.004

h � 0.0015

h � 0.0005
Exact

(a)

t0 0.002

2

y

1

0
0.40.3

Exact

h � 0.05

(b)

t0 0.20.1

FIGURE 23.9
Solution of a stiff ODE with (a) the explicit and (b) implicit Euler methods.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 604

23.3 STIFFNESS 605

Note that the exponents are negative and differ by about two orders of magnitude. As with
the single equation, it is the large exponents that respond rapidly and are at the heart of the
system’s stiffness.

An implicit Euler’s method for systems can be formulated for the present example as

y1,i+1 = y1,i + (−5y1,i+1 + 3y2,i+1)h (23.24a)

y2,i+1 = y2,i + (100y1,i+1 − 301y2,i+1)h (23.24b)

Collecting terms gives

(1 + 5h)y1,i+1 − 3y2,i+1 = y1,i (23.25a)

−100y1,i+1 + (1 + 301h)y2,i+1 = y2,i (23.25b)

Thus, we can see that the problem consists of solving a set of simultaneous equations for
each time step.

For nonlinear ODEs, the solution becomes even more difficult since it involves solving a
system of nonlinear simultaneous equations (recall Sec. 12.2). Thus, although stability is
gained through implicit approaches, a price is paid in the form of added solution complexity.

23.3.1 MATLAB Functions for Stiff Systems

MATLAB has a number of built-in functions for solving stiff systems of ODEs. These are

ode15s. This function is a variable-order solver based on numerical differentiation
formulas. It is a multistep solver that optionally uses the Gear backward differentiation
formulas. This is used for stiff problems of low to medium accuracy.

ode23s. This function is based on a modified Rosenbrock formula of order 2. Because it
is a one-step solver, it may be more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems better than ode15s.

ode23t. This function is an implementation of the trapezoidal rule with a “free” inter-
polant. This is used for moderately stiff problems with low accuracy where you need a
solution without numerical damping.

ode23tb. This is an implementation of an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule and a second stage that is a backward differentiation for-
mula of order 2. This solver may also be more efficient than ode15s at crude tolerances.

EXAMPLE 23.6 MATLAB for Stiff ODEs

Problem Statement. The van der Pol equation is a model of an electronic circuit that
arose back in the days of vacuum tubes,

d2 y1

dt2
− μ

(
1 − y2

1

)dy1

dt
+ y1 = 0 (E23.6.1)

The solution to this equation becomes progressively stiffer as μ gets large. Given the ini-
tial conditions, y1(0) = dy1/dt = 1, use MATLAB to solve the following two cases:
(a) for μ = 1, use ode45 to solve from t = 0 to 20; and (b) for μ = 1000, use ode23s to
solve from t = 0 to 6000.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 605

Solution. (a) The first step is to convert the second-order ODE into a pair of first-order
ODEs by defining

dy1

dt
= y2

Using this equation, Eq. (E23.6.1) can be written as

dy2

dt
= μ

(
1 − y2

1

)
y2 − y1 = 0

An M-file can now be created to hold this pair of differential equations:

function yp = vanderpol(t,y,mu)
yp = [y(2);mu*(1-y(1)^2)*y(2)-y(1)];

Notice how the value of μ is passed as a parameter. As in Example 23.1, ode45 can be in-
voked and the results plotted:

>> [t,y] = ode45(@vanderpol,[0 20],[1 1],[],1);
>> plot(t,y(:,1),'-',t,y(:,2),'--')
>> legend('y1','y2');

Observe that because we are not specifying any options, we must use open brackets [] as
a place holder. The smooth nature of the plot (Fig. 23.10a) suggests that the van der Pol
equation with μ = 1 is not a stiff system.

(b) If a standard solver like ode45 is used for the stiff case (μ = 1000), it will fail miser-
ably (try it, if you like). However, ode23s does an efficient job:

>> [t,y] = ode23s(@vanderpol,[0 6000],[1 1],[],1000);
>> plot(t,y(:,1))

606 ADAPTIVE METHODS AND STIFF SYSTEMS

3

2

1

0

�1

�2

�3

3

2

1

0

�1

�2

�3
0 5 10 15 20 0 2000 4000 6000

y1
y2

(b) m � 1000(a) m � 1

FIGURE 23.10
Solutions for van der Pol’s equation. (a) Nonstiff form solved with ode45 and (b) stiff form solved
with ode23s.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 606

23.4 MATLAB APPLICATION: BUNGEE JUMPER WITH CORD 607

We have only displayed the y1 component because the result for y2 has a much larger scale.
Notice how this solution (Fig. 23.10b) has much sharper edges than is the case in Fig. 23.10a.
This is a visual manifestation of the “stiffness” of the solution.

23.4 MATLAB APPLICATION: BUNGEE JUMPER WITH CORD

In this section, we will use MATLAB to solve for the vertical dynamics of a jumper con-
nected to a stationary platform with a bungee cord. As developed at the beginning of
Chap. 22, the problem consisted of solving two coupled ODEs for vertical position and
velocity. The differential equation for position is

dx

dt
= v (23.26)

The differential equation for velocity is different depending on whether the jumper has fallen
to a distance where the cord is fully extended and begins to stretch. Thus, if the distance
fallen is less than the cord length, the jumper is only subject to gravitational and drag forces,

dv

dt
= g − sign(v)

cd

m
v2 (23.27a)

Once the cord begins to stretch, the spring and dampening forces of the cord must also be
included:

dv

dt
= g − sign(v)

cd

m
v2 − k

m
(x − L) − γ

m
v (23.27b)

The following example shows how MATLAB can be used to solve this problem.

EXAMPLE 23.7 Bungee Jumper with Cord

Problem Statement. Determine the position and velocity of a bungee jumper with
the following parameters: L = 30 m, g = 9.81 m/s2, m = 68.1 kg, cd = 0.25 kg/m,
k = 40 N/m, and γ = 8 N · s/m. Perform the computation from t = 0 to 50 s and assume
that the initial conditions are x(0) = v(0) = 0.

Solution. The following M-file can be set up to compute the right-hand sides of the ODEs:

function dydt = bungee(t,y,L,cd,m,k,gamma)
g = 9.81;
cord = 0;
if y(1) > L %determine if the cord exerts a force

cord = k/m*(y(1)-L)+gamma/m*y(2);
end
dydt = [y(2); g - sign(y(2))*cd/m*y(2)^2 - cord];

Notice that the derivatives are returned as a column vector because this is the format
required by the MATLAB solvers.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 607

Because these equations are not stiff, we can use ode45 to obtain the solutions and dis-
play them on a plot:

>> [t,y] = ode45(@bungee,[0 50],[0 0],[],30,0.25,68.1,40,8);
>> plot(t,-y(:,1),'-',t,y(:,2),':')
>> legend('x (m)','v (m/s)')

As in Fig. 23.11, we have reversed the sign of distance for the plot so that negative distance
is in the downward direction. Notice how the simulation captures the jumper’s bouncing
motion.

608 ADAPTIVE METHODS AND STIFF SYSTEMS

40

20

0

�20

�40

�60

�80
0 10 20 30 40 50

x (m)
v (m/s)

FIGURE 23.11
Plot of distance and velocity of a bungee jumper.

23.5 CASE STUDY PLINY’S INTERMITTENT FOUNTAIN

Background. The Roman natural philosopher, Pliny the Elder, purportedly had an in-
termittent fountain in his garden. As in Fig. 23.12, water enters a cylindrical tank at a con-
stant flow rate Qin and fills until the water reaches yhigh. At this point, water siphons out of
the tank through a circular discharge pipe, producing a fountain at the pipe’s exit. The foun-
tain runs until the water level decreases to ylow, whereupon the siphon fills with air and the
fountain stops. The cycle then repeats as the tank fills until the water reaches yhigh, and the
fountain flows again.

When the siphon is running, the outflow Qout can be computed with the following
formula based on Torricelli’s law:

Qout = C
√

2gyπr2
(23.28)

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 608

23.5 CASE STUDY 609

23.5 CASE STUDY continued

Neglecting the volume of water in the pipe, compute and plot the level of the water in the
tank as a function of time over 100 seconds. Assume an initial condition of an empty tank
y(0) = 0, and employ the following parameters for your computation:

RT = 0.05 m r = 0.007 m ylow = 0.025 m

yhigh = 0.1 m C = 0.6 g = 9.81 m/s2

Qin = 50 × 10−6 m3/s

Solution. When the fountain is running, the rate of change in the tank’s volume V (m3)
is determined by a simple balance of inflow minus the outflow:

dV

dt
= Qin − Qout (23.29)

where V = volume (m3). Because the tank is cylindrical, V = π R2
t y. Substituting this re-

lationship along with Eq. (23.28) into Eq. (23.29) gives

dy

dt
= Qin − C

√
2gyπr2

π R2
t

(23.30)

When the fountain is not running, the second term in the numerator goes to zero. We
can incorporate this mechanism in the model by introducing a new dimensionless variable
siphon that equals zero when the fountain is off and equals one when it is flowing:

dy

dt
= Qin − siphon × C

√
2gyπr2

π R2
t

(23.31)

In the present context, siphon can be thought of as a switch that turns the fountain off and
on. Such two-state variables are called Boolean or logical variables, where zero is equiva-
lent to false and one is equivalent to true.

Qin

Qout

RT

y = yhigh

y = ylow
y = 0

r

FIGURE 23.12
An intermittent fountain.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 609

610 ADAPTIVE METHODS AND STIFF SYSTEMS

23.5 CASE STUDY continued

Next we must relate siphon to the dependent variable y. First, siphon is set to zero
whenever the level falls below ylow. Conversely, siphon is set to one whenever the level rises
above yhigh. The following M-file function follows this logic in computing the derivative:

function dy = Plinyode(t,y)
global siphon
Rt = 0.05; r = 0.007; yhi = 0.1; ylo = 0.025;
C = 0.6; g = 9.81; Qin = 0.00005;
if y(1) <= ylo

siphon = 0;
elseif y(1) >= yhi

siphon = 1;
end
Qout = siphon * C * sqrt(2 * g * y(1)) * pi * r ^ 2;
dy = (Qin - Qout) / (pi * Rt ^ 2);

Notice that because its value must be maintained between function calls, siphon is de-
clared as a global variable. Although the use of global variables is not encouraged (partic-
ularly in larger programs), it is useful in the present context.

The following script employs the built-in ode45 function to integrate Plinyode and
generate a plot of the solution:

global siphon
siphon = 0;
tspan = [0 100]; y0 = 0;
[tp,yp]=ode45(@Plinyode,tspan,y0);
plot(tp,yp)
xlabel('time, (s)')
ylabel('water level in tank, (m)')

As shown in Fig. 23.13, the result is clearly incorrect. Except for the original filling
period, the level seems to start emptying prior to reaching yhigh. Similarly, when it is drain-
ing, the siphon shuts off well before the level drops to ylow.

At this point, suspecting that the problem demands more firepower than the trusty
ode45 routine, you might be tempted to use one of the other MATLAB ODE solvers such
as ode23s or ode23tb. But if you did, you would discover that although these routines
yield somewhat different results, they would still generate incorrect solutions.

The difficulty arises because the ODE is discontinuous at the point that the siphon
switches on or off. For example, as the tank is filling, the derivative is dependent only on the
constant inflow and for the present parameters has a constant value of 6.366 × 10−3 m/s.
However, as soon as the level reaches yhigh, the outflow kicks in and the derivative abruptly
drops to −1.013 × 10−2 m/s. Although the adaptive step-size routines used by MATLAB
work marvelously for many problems, they often get heartburn when dealing with such
discontinuities. Because they infer the behavior of the solution by comparing the results of
different steps, a discontinuity represents something akin to stepping into a deep pothole on
a dark street.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 610

23.5 CASE STUDY continued

23.5 CASE STUDY 611

FIGURE 23.13
The level in Pliny’s fountain versus time as simulated with ode45.

0.12

0.08

0.06

0.04

0.1

0.02

0
0 10 20 30 40 50

Time (s)

W
at

er
 le

ve
l i

n
 t

an
k

(m
)

60 70 80 90 100

At this point, your first inclination might be to just give up. After all, if it’s too hard for
MATLAB, no reasonable person could expect you to come up with a solution. Because
professional engineers and scientists rarely get away with such excuses, your only recourse
is to develop a remedy based on your knowledge of numerical methods.

Because the problem results from adaptively stepping across a discontinuity, you
might revert to a simpler approach and use a constant, small step size. If you think about it,
that’s precisely the approach you would take if you were traversing a dark, pothole-filled
street. We can implement this solution strategy by merely replacing ode45 with the
constant-step rk4sys function from Chap. 22 (Fig. 22.8). For the script outlined above, the
fourth line would be formulated as

[tp,yp] = rk4sys(@Plinyode,tspan,y0,0.0625);

As in Fig. 23.14, the solution now evolves as expected. The tank fills to yhigh and then emp-
ties until it reaches ylow, when the cycle repeats.

There are a two take-home messages that can be gleaned from this case study. First,
although it’s human nature to think the opposite, simpler is sometimes better. After all, to
paraphrase Einstein, “Everything should be as simple as possible, but no simpler.” Second,
you should never blindly believe every result generated by the computer. You’ve probably
heard the old chestnut, “garbage in, garbage out” in reference to the impact of data quality

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 611

612 ADAPTIVE METHODS AND STIFF SYSTEMS

23.5 CASE STUDY continued

on the validity of computer output. Unfortunately, some individuals think that regardless of
what went in (the data) and what’s going on inside (the algorithm), it’s always “gospel out.”
Situations like the one depicted in Fig. 23.13 are particularly dangerous—that is, although
the output is incorrect, it’s not obviously wrong. That is, the simulation does not go unsta-
ble or yield negative levels. In fact, the solution moves up and down in the manner of an
intermittent fountain, albeit incorrectly.

Hopefully, this case study illustrates that even a great piece of software such as
MATLAB is not foolproof. Hence, sophisticated engineers and scientists always examine
numerical output with a healthy skepticism based on their considerable experience and
knowledge of the problems they are solving.

FIGURE 23.14
The level in Pliny’s fountain versus time as simulated with a small, constant step size using the
rk4sys function (Fig. 22.8).

0.1

0.07

0.06

0.05

0.04

0.03

0.08

0.09

0.02

0.01

0
0 10 20 30 40 50

Time (s)

W
at

er
 le

ve
l i

n
 t

an
k

(m
)

60 70 80 90 100

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 612

PROBLEMS 613

PROBLEMS

23.1 Repeat the same simulations as in Section 23.5 for
Pliny’s fountain, but generate the solutions with ode23,
ode23s, and ode113. Use subplot to develop a vertical
three-pane plot of the time series.
23.2 The following ODEs have been proposed as a model of
an epidemic:

dS

dt
= −aSI

d I

dt
= aSI − r I

d R

dt
= r I

where S = the susceptible individuals, I = the infected, R =
the recovered, a = the infection rate, and r = the recovery
rate. A city has 10,000 people, all of whom are susceptible.
(a) If a single infectious individual enters the city at t = 0,

compute the progression of the epidemic until the number
of infected individuals falls below 10. Use the following
parameters: a = 0.002/(person · week) and r = 0.15/d.
Develop time-series plots of all the state variables. Also
generate a phase-plane plot of S versus I versus R.

(b) Suppose that after recovery, there is a loss of immunity
that causes recovered individuals to become susceptible.
This reinfection mechanism can be computed as ρR,
where ρ = the reinfection rate. Modify the model to
include this mechanism and repeat the computations in
(a) using ρ = 0.03/d.

23.3 Solve the following initial-value problem over the
interval from t = 2 to 3:

dy

dt
= −0.5y + e−t

Use the non-self-starting Heun method with a step size
of 0.5 and initial conditions of y(1.5) = 5.222138 and
y(2.0) = 4.143883. Iterate the corrector to εs = 0.1%.
Compute the percent relative errors for your results based on
the exact solutions obtained analytically: y(2.5) = 3.273888
and y(3.0) = 2.577988.

23.4 Solve the following initial-value problem over the
interval from t = 0 to 0.5:

dy

dt
= yt2 − y

Use the fourth-order RK method to predict the first value at
t = 0.25. Then use the non-self-starting Heun method to
make the prediction at t = 0.5. Note: y(0) = 1.

23.5 Given

dy

dt
= −100,000y + 99,999e−t

(a) Estimate the step size required to maintain stability
using the explicit Euler method.

(b) If y(0) = 0, use the implicit Euler to obtain a solution
from t = 0 to 2 using a step size of 0.1.

23.6 Given

dy

dt
= 30(sin t − y) + 3 cos t

If y(0) = 0, use the implicit Euler to obtain a solution from
t = 0 to 4 using a step size of 0.4.
23.7 Given

dx1

dt
= 999x1 + 1999x2

dx2

dt
= −1000x1 − 2000x2

If x1(0) = x2(0) = 1, obtain a solution from t = 0 to 0.2
using a step size of 0.05 with the (a) explicit and (b) implicit
Euler methods.
23.8 The following nonlinear, parasitic ODE was suggested
by Hornbeck (1975):

dy

dt
= 5(y − t2)

If the initial condition is y(0) = 0.08, obtain a solution from
t = 0 to 5:
(a) Analytically.
(b) Using the fourth-order RK method with a constant step

size of 0.03125.
(c) Using the MATLAB function ode45.
(d) Using the MATLAB function ode23s.
(e) Using the MATLAB function ode23tb.
Present your results in graphical form.
23.9 Recall from Example 20.5 that the following humps
function exhibits both flat and steep regions over a relatively
short x range,

f (x) = 1

(x − 0.3)2 + 0.01
+ 1

(x − 0.9)2 + 0.04
− 6

Determine the value of the definite integral of this function
between x = 0 and 1 using (a) the quad and (b) the ode45
functions.

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 613

614 ADAPTIVE METHODS AND STIFF SYSTEMS

23.10 The oscillations of a swinging pendulum can be sim-
ulated with the following nonlinear model:

d2θ

dt2
+ g

l
sin θ = 0

where θ = the angle of displacement, g = the gravitational
constant, and l = the pendulum length. For small angular
displacements, the sin θ is approximately equal to θ and the
model can be linearized as

d2θ

dt2
+ g

l
θ = 0

Use ode45 to solve for θ as a function of time for both
the linear and nonlinear models where l = 0.6 m and
g = 9.81 m/s2. First, solve for the case where the initial
condition is for a small displacement (θ = π/8 and
dθ/dt = 0). Then repeat the calculation for a large displace-
ment (θ = π/2). For each case, plot the linear and nonlinear
simulations on the same plot.
23.11 Employ the events option described in Section 23.1.2
to determine the period of a 1-m long, linear pendulum (see
description in Prob. 23.10). Compute the period for the fol-
lowing initial conditions: (a) θ = π/8, (b) θ = π/4, and
(c) θ = π/2. For all three cases, set the initial angular veloc-
ity at zero. (Hint: A good way to compute the period is to
determine how long it takes for the pendulum to reach θ = 0
[i.e., the bottom of its arc]). The period is equal to four times
this value.
23.12 Repeat Prob. 23.11, but for the nonlinear pendulum
described in Prob. 23.10.
23.13 The following system is a classic example of stiff
ODEs that can occur in the solution of chemical reaction
kinetics:

dc1

dt
= −0.013c1 − 1000c1c3

dc2

dt
= −2500c2c3

dc3

dt
= −0.013c1 − 1000c1c3 − 2500c2c3

Solve these equations from t = 0 to 50 with initial conditions
c1(0) = c2(0) = 1 and c3(0) = 0. If you have access to
MATLAB software, use both standard (e.g., ode45) and stiff
(e.g., ode23s) functions to obtain your solutions.
23.14 The following second-order ODE is considered to be
stiff:

d2 y

dx2
= −1001

dy

dx
− 1000y

Solve this differential equation (a) analytically and
(b) numerically for x = 0 to 5. For (b) use an implicit
approach with h = 0.5. Note that the initial conditions are
y(0) = 1 and y′(0) = 0. Display both results graphically.
23.15 Consider the thin rod of length l moving in the
x-y plane as shown in Fig. P23.15. The rod is fixed with a pin
on one end and a mass at the other. Note that g = 9.81 m/s2

and l = 0.5 m. This system can be solved using

θ̈ − g

l
θ = 0

Let θ(0) = 0 and θ̇ (0) = 0.25 rad/s. Solve using any method
studied in this chapter. Plot the angle versus time and the
angular velocity versus time. (Hint: Decompose the second-
order ODE.)

23.16 Given the first-order ODE:

dx

dt
= −700x − 1000e−t

x(t = 0) = 4

Solve this stiff differential equation using a numerical
method over the time period 0 ≤ t ≤ 5. Also solve analyti-
cally and plot the analytic and numerical solution for both
the fast transient and slow transition phase of the time scale.
23.17 Solve the following differential equation from
t = 0 to 2

dy

dt
= −10y

with the initial condition y(0) = 1. Use the following tech-
niques to obtain your solutions: (a) analytically, (b) the ex-
plicit Euler method, and (c) the implicit Euler method. For
(b) and (c) use h = 0.1 and 0.2. Plot your results.
23.18 The Lotka-Volterra equations described in Sec-
tion 22.6 have been refined to include additional factors that
impact predator-prey dynamics. For example, over and
above predation, prey population can be limited by other

FIGURE P23.15

q

m

l

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 614

PROBLEMS 615

factors such as space. Space limitation can be incorporated
into the model as a carrying capacity (recall the logistic
model described in Prob. 22.5) as in

dx

dt
= a

(
1 − x

K

)
x − bxy

dy

dt
= −cy + dxy

where K = the carrying capacity. Use the same parameter
values and initial conditions as in Section 22.6 to integrate
these equations from t = 0 to 100 using ode45, and develop
both time series and phase plane plots of the results.
(a) Employ a very large value of K = 108 to validate that

you obtain the same results as in Section 22.6.
(b) Compare (a) with the more realistic carrying capacity of

K = 200. Discuss your results.
23.19 Two masses are attached to a wall by linear springs
(Fig. P23.19). Force balances based on Newton’s second law
can be written as

d2x1

dt2
= − k1

m1
(x1 − L1) + k2

m1
(x2 − x1 − w1 − L2)

d2x2

dt2
= − k2

m2
(x2 − x1 − w1 − L2)

where k = the spring constants, m = mass, L = the length of
the unstretched spring, and w = the width of the mass. Com-
pute the positions of the masses as a function of time using
the following parameter values: k1 = k2 = 5, m1 = m2 = 2,
w1 = w2 = 5, and L1 = L2 = 2. Set the initial conditions as

x1 = L1 and x2 = L1 + w1 + L2 + 6. Perform the simulation
from t = 0 to 20. Construct time-series plots of both the dis-
placements and the velocities. In addition, produce a phase-
plane plot of x1 versus x2.
23.20 Use ode45 to integrate the differential equations for
the system described in Prob. 23.19. Generate vertically
stacked subplots of displacements (top) and velocities
(bottom). Employ the fft function to compute the discrete
Fourier transform (DFT) of the first mass’s displacement.
Generate and plot a power spectrum in order to identify the
system’s resonant frequencies.
23.21 Perform the same computations as in Prob. 23.20 but
for the structure in Prob. 22.22.
23.22 Use the approach and example outlined in Sec-
tion 23.1.2, but determine the time, height, and velocity
when the bungee jumper is the farthest above the ground,
and generate a plot of the solution.

k2k1

L1 w1 L2 w2

x1

0
x2

x
m1 m2

FIGURE P23.19

cha01102_ch23_588-615.qxd 12/17/10 8:24 AM Page 615

616

Boundary-Value Problems
24

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to solving boundary-value
problems for ODEs. Specific objectives and topics covered are

• Understanding the difference between initial-value and boundary-value problems
• Knowing how to express an nth-order ODE as a system of n first-order ODEs.
• Knowing how to implement the shooting method for linear ODEs by using linear

interpolation to generate accurate “shots.”
• Understanding how derivative boundary conditions are incorporated into the

shooting method.
• Knowing how to solve nonlinear ODEs with the shooting method by using root

location to generate accurate “shots.”
• Knowing how to implement the finite-difference method.
• Understanding how derivative boundary conditions are incorporated into the

finite-difference method.
• Knowing how to solve nonlinear ODEs with the finite-difference method by using

root-location methods for systems of nonlinear algebraic equations.

YOU’VE GOT A PROBLEM

T o this point, we have been computing the velocity of a free-falling bungee jumper by
integrating a single ODE:

dv

dt
= g − cd

m
v2 (24.1)

Suppose that rather than velocity, you are asked to determine the position of the jumper as
a function of time. One way to do this is to recognize that velocity is the first derivative

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 616

24.1 INTRODUCTION AND BACKGROUND 617

of distance:

dx

dt
= v (24.2)

Thus, by solving the system of two ODEs represented by Eqs. (24.1) and (24.2), we can
simultaneously determine both the velocity and the position.

However, because we are now integrating two ODEs, we require two conditions to
obtain the solution. We are already familiar with one way to do this for the case where we
have values for both position and velocity at the initial time:

x(t = 0) = xi

v(t = 0) = vi

Given such conditions, we can easily integrate the ODEs using the numerical techniques
described in Chaps. 22 and 23. This is referred to as an initial-value problem.

But what if we do not know values for both position and velocity at t = 0? Let’s say
that we know the initial position but rather than having the initial velocity, we want the
jumper to be at a specified position at a later time. In other words:

x(t = 0) = xi

x(t = t f) = x f

Because the two conditions are given at different values of the independent variable, this is
called a boundary-value problem.

Such problems require special solution techniques. Some of these are related to the
methods for initial value problems that were described in the previous two chapters. How-
ever, others employ entirely different strategies to obtain solutions. This chapter is de-
signed to introduce you to the more common of these methods.

24.1 INTRODUCTION AND BACKGROUND

24.1.1 What Are Boundary-Value Problems?

An ordinary differential equation is accompanied by auxiliary conditions, which are used
to evaluate the constants of integration that result during the solution of the equation. For
an nth-order equation, n conditions are required. If all the conditions are specified at the
same value of the independent variable, then we are dealing with an initial-value problem
(Fig. 24.1a). To this point, the material in Part Six (Chaps. 22 and 23) has been devoted to
this type of problem.

In contrast, there are often cases when the conditions are not known at a single point
but rather are given at different values of the independent variable. Because these values
are often specified at the extreme points or boundaries of a system, they are customarily
referred to as boundary-value problems (Fig. 24.1b). A variety of significant engineering
applications fall within this class. In this chapter, we discuss some of the basic approaches
for solving such problems.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 617

24.1.2 Boundary-Value Problems in Engineering and Science

At the beginning of this chapter, we showed how the determination of the position and ve-
locity of a falling object could be formulated as a boundary-value problem. For that exam-
ple, a pair of ODEs was integrated in time. Although other time-variable examples can be
developed, boundary-value problems arise more naturally when integrating in space. This
occurs because auxiliary conditions are often specified at different positions in space.

A case in point is the simulation of the steady-state temperature distribution for a long,
thin rod positioned between two constant-temperature walls (Fig. 24.2). The rod’s cross-
sectional dimensions are small enough so that radial temperature gradients are minimal
and, consequently, temperature is a function exclusively of the axial coordinate x. Heat is
transferred along the rod’s longitudinal axis by conduction and between the rod and the
surrounding gas by convection. For this example, radiation is assumed to be negligible.1

618 BOUNDARY-VALUE PROBLEMS

1 We incorporate radiation into this problem later in this chapter in Example 24.4.

y

y1

y2

t
y2, 0

y1, 0

(a)

(b)

0

Initial conditions

Boundary
condition

Boundary
conditiony

yL

x

y0

0 L

� f1(t, y1, y2)
dy1

dt

� f2(t, y1, y2)
dy2

dt

where at t � 0, y1 � y1, 0 and y2 � y2, 0

� f (x, y)
d2y

dx2

where at x � 0, y � y0
x � L, y � yL

FIGURE 24.1
Initial-value versus boundary-value problems. (a) An initial-value problem where all the conditions
are specified at the same value of the independent variable. (b) A boundary-value problem
where the conditions are specified at different values of the independent variable.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 618

24.1 INTRODUCTION AND BACKGROUND 619

As depicted in Fig. 24.2, a heat balance can be taken around a differential element of
thickness �x as

0 = q(x)Ac − q(x + �x)Ac + h As(T∞ − T) (24.3)

where q(x) = flux into the element due to conduction [J/(m2 · s)]; q(x + �x) = flux out
of the element due to conduction [J/(m2 · s)]; Ac = cross-sectional area [m2] = πr2, r = the
radius [m]; h = the convection heat transfer coefficient [J/(m2 · K · s)]; As = the element’s
surface area [m2] = 2πr�x; T∞ = the temperature of the surrounding gas [K]; and T =
the rod’s temperature [K].

Equation (24.3) can be divided by the element’s volume (πr2�x) to yield

0 = q(x) − q(x + �x)

�x
+ 2h

r
(T∞ − T)

Taking the limit �x → 0 gives

0 = −dq

dx
+ 2h

r
(T∞ − T) (24.4)

The flux can be related to the temperature gradient by Fourier’s law:

q = −k
dT

dx
(24.5)

where k = the coefficient of thermal conductivity [J/(s · m · K)]. Equation (24.5) can be dif-
ferentiated with respect to x, substituted into Eq. (24.4), and the result divided by k to yield,

0 = d2T

dx2
+ h′(T∞ − T) (24.6)

where h′ = a bulk heat-transfer parameter reflecting the relative impacts of convection and
conduction [m−2] = 2h/(rk).

Equation (24.6) represents a mathematical model that can be used to compute the tem-
perature along the rod’s axial dimension. Because it is a second-order ODE, two conditions

r

Ac

L

T�

Ta TbConduction

Convection

x

x � �x

�x

0

x

As

FIGURE 24.2
A heat balance for a differential element of a heated rod subject to conduction and convection.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 619

are required to obtain a solution. As depicted in Fig. 24.2, a common case is where the tem-
peratures at the ends of the rod are held at fixed values. These can be expressed mathemat-
ically as

T (0) = Ta

T (L) = Tb

The fact that they physically represent the conditions at the rod’s “boundaries” is the origin
of the terminology: boundary conditions.

Given these conditions, the model represented by Eq. (24.6) can be solved. Because
this particular ODE is linear, an analytical solution is possible as illustrated in the follow-
ing example.

EXAMPLE 24.1 Analytical Solution for a Heated Rod

Problem Statement. Use calculus to solve Eq. (24.6) for a 10-m rod with h′ =
0.05 m−2[h = 1 J/(m2 · K · s), r = 0.2 m, k = 200 J/(s · m · K)], T∞ = 200 K, and the
boundary conditions:

T (0) = 300 K T (10) = 400 K

Solution. This ODE can be solved in a number of ways. A straightforward approach is to
first express the equation as

d2T

dx2
− h′T = −h′T∞

Because this is a linear ODE with constant coefficients, the general solution can be readily
obtained by setting the right-hand side to zero and assuming a solution of the form
T = eλx . Substituting this solution along with its second derivative into the homogeneous
form of the ODE yields

λ2eλx − h′eλx = 0

which can be solved for λ = ±√
h′. Thus, the general solution is

T = Aeλx + Be−λx

where A and B are constants of integration. Using the method of undetermined coefficients
we can derive the particular solution T = T∞. Therefore, the total solution is

T = T∞ + Aeλx + Be−λx

The constants can be evaluated by applying the boundary conditions

Ta = T∞ + A + B

Tb = T∞ + AeλL + Be−λL

These two equations can be solved simultaneously for

A = (Ta − T∞)e−λL − (Tb − T∞)

e−λL − eλL

B = (Tb − T∞) − (Ta − T∞)eλL

e−λL − eλL

620 BOUNDARY-VALUE PROBLEMS

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 620

24.2 THE SHOOTING METHOD 621

Substituting the parameter values from this problem gives A = 20.4671 and B =
79.5329. Therefore, the final solution is

T = 200 + 20.4671e
√

0.05x + 79.5329e−√
0.05x (24.7)

As can be seen in Fig. 24.3, the solution is a smooth curve connecting the two bound-
ary temperatures. The temperature in the middle is depressed due to the convective heat
loss to the cooler surrounding gas.

In the following sections, we will illustrate numerical approaches for solving the same
problem we just solved analytically in Example 24.1. The exact analytical solution will be
useful in assessing the accuracy of the solutions obtained with the approximate, numerical
methods.

24.2 THE SHOOTING METHOD

The shooting method is based on converting the boundary-value problem into an equiva-
lent initial-value problem. A trial-and-error approach is then implemented to develop a so-
lution for the initial-value version that satisfies the given boundary conditions.

Although the method can be employed for higher-order and nonlinear equations, it is
nicely illustrated for a second-order, linear ODE such as the heated rod described in the
previous section:

0 = d2T

dx2
+ h′(T∞ − T) (24.8)

subject to the boundary conditions

T (0) = Ta

T (L) = Tb

We convert this boundary-value problem into an initial-value problem by defining the
rate of change of temperature, or gradient, as

dT

dx
= z (24.9)

x, m

T, K

400

300

200
0 2 4 6 8 10

FIGURE 24.3
Analytical solution for the heated rod.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 621

and reexpressing Eq. (24.8) as

dz

dx
= −h′(T∞ − T) (24.10)

Thus, we have converted the single second-order equation (Eq. 24.8) into a pair of first-
order ODEs (Eqs. 24.9 and 24.10).

If we had initial conditions for both T and z, we could solve these equations as an initial-
value problem with the methods described in Chaps. 22 and 23. However, because we only
have an initial value for one of the variables T (0) = Ta we simply make a guess for the other
z(0) = za1 and then perform the integration.

After performing the integration, we will have generated a value of T at the end of the
interval, which we will call Tb1. Unless we are incredibly lucky, this result will differ from
the desired result Tb.

Now, let’s say that the value of Tb1 is too high (Tb1 > Tb), it would make sense that a
lower value of the initial slope z(0) = za2 might result in a better prediction. Using this
new guess, we can integrate again to generate a second result at the end of the interval Tb2.

We could then continue guessing in a trial-and-error fashion until we arrived at a guess for
z(0) that resulted in the correct value of T (L) = Tb.

At this point, the origin of the name shooting method should be pretty clear. Just as you
would adjust the angle of a cannon in order to hit a target, we are adjusting the trajectory of
our solution by guessing values of z (0) until we hit our target T (L) = Tb.

Although we could certainly keep guessing, a more efficient strategy is possible for
linear ODEs. In such cases, the trajectory of the perfect shot za is linearly related to the re-
sults of our two erroneous shots (za1, Tb1) and (za2, Tb2). Consequently, linear interpola-
tion can be employed to arrive at the required trajectory:

za = za1 + za2 − za1

Tb2 − Tb1
(Tb − Tb1) (24.11)

The approach can be illustrated by an example.

EXAMPLE 24.2 The Shooting Method for a Linear ODE

Problem Statement. Use the shooting method to solve Eq. (24.6) for the same condi-
tions as Example 24.1: L = 10 m, h′ = 0.05 m−2, T∞ = 200 K, T (0) = 300 K, and
T (10) = 400 K.

Solution. Equation (24.6) is first expressed as a pair of first-order ODEs:

dT

dx
= z

dz

dx
= −0.05(200 − T)

Along with the initial value for temperature T (0) = 300 K, we arbitrarily guess a value of
za1 = −5 K/m for the initial value for z (0). The solution is then obtained by integrating the
pair of ODEs from x = 0 to 10. We can do this with MATLAB’s ode45 function by first
setting up an M-file to hold the differential equations:

622 BOUNDARY-VALUE PROBLEMS

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 622

24.2 THE SHOOTING METHOD 623

function dy=Ex2402(x,y)
dy=[y(2);-0.05*(200-y(l))];

We can then generate the solution as

>> [t,y]=ode45(@Ex2402,[0 10],[300,-5]);
>> Tb1=y(length(y))

Tb1 =
569.7539

Thus, we obtain a value at the end of the interval of Tb1 = 569.7539 (Fig. 24.4a), which
differs from the desired boundary condition of Tb = 400. Therefore, we make another
guess za2 = −20 and perform the computation again. This time, the result of
Tb2 = 259.5131 is obtained (Fig. 24.4b).

600

400

200
(a)

600

400

200
(b)

600

400

200
0 2 4 6 8 10

(c)

FIGURE 24.4
Temperature (K) versus distance (m) computed with the shooting method: (a) the first “shot,”
(b) the second “shot,” and (c) the final exact “hit.”

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 623

624 BOUNDARY-VALUE PROBLEMS

Now, because the original ODE is linear, we can use Eq. (24.11) to determine the
correct trajectory to yield the perfect shot:

za = −5 + −20 − (−5)

259.5131 − 569.7539
(400 − 569.7539) = −13.2075

This value can then be used in conjunction with ode45 to generate the correct solution,
asdepicted in Fig. 24.4c.

Although it is not obvious from the graph, the analytical solution is also plotted on
Fig. 24.4c. Thus, the shooting method yields a solution that is virtually indistinguishable
from the exact result.

24.2.1 Derivative Boundary Conditions

The fixed or Dirichlet boundary condition discussed to this point is but one of several types
that are used in engineering and science. A common alternative is the case where the de-
rivative is given. This is commonly referred to as a Neumann boundary condition.

Because it is already set up to compute both the dependent variable and its derivative,
incorporating derivative boundary conditions into the shooting method is relatively
straightforward.

Just as with the fixed-boundary condition case, we first express the second-order ODE
as a pair of first-order ODEs. At this point, one of the required initial conditions, whether
the dependent variable or its derivative, will be unknown. Based on guesses for the miss-
ing initial condition, we generate solutions to compute the given end condition. As with the
initial condition, this end condition can either be for the dependent variable or its deriva-
tive. For linear ODEs, interpolation can then be used to determine the value of the missing
initial condition required to generate the final, perfect “shot” that hits the end condition.

EXAMPLE 24.3 The Shooting Method with Derivative Boundary Conditions

Problem Statement. Use the shooting method to solve Eq. (24.6) for the rod in
Example 24.1: L = 10 m, h′ = 0.05 m−2 [h = 1 J/(m2 · K · s), r = 0.2 m, k = 200 J/
(s · m · K)], T∞ = 200 K, and T (10) = 400 K. However, for this case, rather than having
a fixed temperature of 300 K, the left end is subject to convection as in Fig. 24.5. For

L

T�

T� TbConduction

ConvectionConvection

x

0

FIGURE 24.5
A rod with a convective boundary condition at one end and a fixed temperature at the other.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 624

24.2 THE SHOOTING METHOD 625

simplicity, we will assume that the convection heat transfer coefficient for the end area is
the same as for the rod’s surface.

Solution. As in Example 24.2, Eq. (24.6) is first expressed as

dT

dx
= z

dz

dx
= −0.05(200 − T)

Although it might not be obvious, convection through the end is equivalent to speci-
fying a gradient boundary condition. In order to see this, we must recognize that because
the system is at steady state, convection must equal conduction at the rod’s left boundary
(x = 0). Using Fourier’s law (Eq. 24.5) to represent conduction, the heat balance at the end
can be formulated as

h Ac(T∞ − T (0)) = −k Ac
dT

dx
(0) (24.12)

This equation can be solved for the gradient

dT

dx
(0) = h

k
(T (0) − T∞) (24.13)

If we guess a value for temperature, we can see that this equation specifies the gradient.
The shooting method is implemented by arbitrarily guessing a value for T (0). If we

choose a value of T (0) = Ta1 = 300 K, Eq. (24.13) then yields the initial value for the
gradient

za1 = dT

dx
(0) = 1

200
(300 − 200) = 0.5

The solution is obtained by integrating the pair of ODEs from x = 0 to 10. We can do this
with MATLAB’s ode45 function by first setting up an M-file to hold the differential equa-
tions in the same fashion as in Example 24.2. We can then generate the solution as

>> [t,y]=ode45(@Ex2402,[0 10],[300,0.5]);
>> Tb1=y(length(y))

Tb1 =
683.5088

As expected, the value at the end of the interval of Tb1 = 683.5088 K differs from the
desired boundary condition of Tb = 400. Therefore, we make another guess Ta2 = 150 K,
which corresponds to za2 = −0.25, and perform the computation again.

>> [t,y]=ode45(@Ex2402,[0 10],[150,-0.25]);
>> Tb2=y(length(y))

Tb2 =
−41.7544

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 625

Linear interpolation can then be employed to compute the correct initial temperature:

Ta = 300 + 150 − 300

−41.7544 − 683.5088
(400 − 683.5088) = 241.3643 K

which corresponds to a gradient of za = 0.2068. Using these initial conditions, ode45 can
be employed to generate the correct solution, as depicted in Fig. 24.6.

Note that we can verify that our boundary condition has been satisfied by substituting
the initial conditions into Eq. (24.12) to give

1
J

m2K s
π × (0.2 m)2 × (200 K − 241.3643 K)=−200

J

m K s
π × (0.2 m)2 × 0.2068

K

m

which can be evaluated to yield −5.1980 J/s = −5.1980 J/s. Thus, conduction and con-
vection are equal and transfer heat out of the left end of the rod at a rate of 5.1980 W.

24.2.2 The Shooting Method for Nonlinear ODEs

For nonlinear boundary-value problems, linear interpolation or extrapolation through two
solution points will not necessarily result in an accurate estimate of the required boundary
condition to attain an exact solution. An alternative is to perform three applications of the
shooting method and use a quadratic interpolating polynomial to estimate the proper
boundary condition. However, it is unlikely that such an approach would yield the exact
answer, and additional iterations would be necessary to home in on the solution.

Another approach for a nonlinear problem involves recasting it as a roots problem. Re-
call that the general goal of a roots problem is to find the value of x that makes the function
f (x) = 0. Now, let us use the heated rod problem to understand how the shooting method
can be recast in this form.

First, recognize that the solution of the pair of differential equations is also a “func-
tion” in the sense that we guess a condition at the left-hand end of the rod za, and the inte-
gration yields a prediction of the temperature at the right-hand end Tb. Thus, we can think
of the integration as

Tb = f (za)

626 BOUNDARY-VALUE PROBLEMS

x, m

T, K

400

300

200
0 2 4 6 8 10

FIGURE 24.6
The solution of a second-order ODE with a convective boundary condition at one end and a
fixed temperature at the other.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 626

24.2 THE SHOOTING METHOD 627

That is, it represents a process whereby a guess of za yields a prediction of Tb. Viewed in
this way, we can see that what we desire is the value of za that yields a specific value of Tb.

If, as in the example, we desire Tb = 400, the problem can be posed as

400 = f (za)

By bringing the goal of 400 over to the right-hand side of the equation, we generate a new
function res(za) that represents the difference, or residual, between what we have, f (za),

and what we want, 400.

res(za) = f (za) − 400

If we drive this new function to zero, we will obtain the solution. The next example illus-
trates the approach.

EXAMPLE 24.4 The Shooting Method for Nonlinear ODEs

Problem Statement. Although it served our purposes for illustrating the shooting
method, Eq. (24.6) was not a completely realistic model for a heated rod. For one thing,
such a rod would lose heat by mechanisms such as radiation that are nonlinear.

Suppose that the following nonlinear ODE is used to simulate the temperature of the
heated rod:

0 = d2T

dx2
+ h′(T∞ − T) + σ ′ ′

(T 4
∞ − T 4)

where σ ′ = a bulk heat-transfer parameter reflecting the relative impacts of radiation and
conduction = 2.7 × 10−9 K−3 m−2. This equation can serve to illustrate how the shooting
method is used to solve a two-point nonlinear boundary-value problem. The remaining
problem conditions are as specified in Example 24.2: L = 10 m, h′ = 0.05 m−2,

T∞ = 200 K, T (0) = 300 K, and T (10) = 400 K.

Solution. Just as with the linear ODE, the nonlinear second-order equation is first ex-
pressed as two first-order ODEs:

dT

dx
= z

dz

dx
= −0.05(200 − T) − 2.7 × 10−9(1.6 × 109 − T 4)

An M-file can be developed to compute the right-hand sides of these equations:

function dy=dydxn(x,y)
dy=[y(2);-0.05*(200-y(1))-2.7e-9*(1.6e9-y(1)^4)];

Next, we can build a function to hold the residual that we will try to drive to zero as

function r=res(za)
[x,y]=ode45(@dydxn,[0 10],[300 za]);
r=y(length(x),1)-400;

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 627

Notice how we use the ode45 function to solve the two ODEs to generate the temperature
at the rod’s end: y(length(x),1). We can then find the root with the fzero function:

>> fzero(@res,-50)

ans =
-41.7434

Thus, we see that if we set the initial trajectory z(0) = −41.7434, the residual function will
be driven to zero and the temperature boundary condition T (10) = 400 at the end of the
rod should be satisfied. This can be verified by generating the entire solution and plotting
the temperatures versus x:

>> [x,y]=ode45(@dydxn,[0 10],[300 fzero(@res,-50)]);
>> plot(x,y(:,1))

The result is shown in Fig. 24.7 along with the original linear case from Example 24.2.
As expected, the nonlinear case is depressed lower than the linear model due to the addi-
tional heat lost to the surrounding gas by radiation.

628 BOUNDARY-VALUE PROBLEMS

200

300

400

T, K

0 2 4 6 8

Linear

Nonlinear

10 x, m

FIGURE 24.7
The result of using the shooting method to solve a nonlinear problem.

24.3 FINITE-DIFFERENCE METHODS

The most common alternatives to the shooting method are finite-difference approaches. In
these techniques, finite differences (Chap. 21) are substituted for the derivatives in the
original equation. Thus, a linear differential equation is transformed into a set of simulta-
neous algebraic equations that can be solved using the methods from Part Three.

We can illustrate the approach for the heated rod model (Eq. 24.6):

0 = d2T

dx2
+ h′(T∞ − T) (24.14)

The solution domain is first divided into a series of nodes (Fig. 24.8). At each node, finite-
difference approximations can be written for the derivatives in the equation. For example,

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 628

24.3 FINITE-DIFFERENCE METHODS 629

at node i, the second derivative can be represented by (Fig. 21.5):

d2T

dx2
= Ti−1 − 2Ti + Ti+1

�x2
(24.15)

This approximation can be substituted into Eq. (24.14) to give

Ti−1 − 2Ti + Ti+1

�x2
+ h′(T∞ − Ti) = 0

Thus, the differential equation has been converted into an algebraic equation. Collecting
terms gives

−Ti−1 + (2 + h′�x2)Ti − Ti+1 = h′�x2T∞ (24.16)

This equation can be written for each of the n − 1 interior nodes of the rod. The first and
last nodes T0 and Tn, respectively, are specified by the boundary conditions. Therefore, the
problem reduces to solving n − 1 simultaneous linear algebraic equations for the n − 1
unknowns.

Before providing an example, we should mention two nice features of Eq. (24.16).
First, observe that since the nodes are numbered consecutively, and since each equation
consists of a node (i) and its adjoining neighbors (i − 1 and i + 1), the resulting set of lin-
ear algebraic equations will be tridiagonal. As such, they can be solved with the efficient
algorithms that are available for such systems (recall Sec. 9.4).

Further, inspection of the coefficients on the left-hand side of Eq. (24.16) indicates that
the system of linear equations will also be diagonally dominant. Hence, convergent solutions
can also be generated with iterative techniques like the Gauss-Seidel method (Sec. 12.1).

EXAMPLE 24.5 Finite-Difference Approximation of Boundary-Value Problems

Problem Statement. Use the finite-difference approach to solve the same problem as in
Examples 24.1 and 24.2. Use four interior nodes with a segment length of �x = 2 m.

Solution. Employing the parameters in Example 24.1 and �x = 2 m, we can write
Eq. (24.16) for each of the rod’s interior nodes. For example, for node 1:

−T0 + 2.2T1 − T2 = 40

Substituting the boundary condition T0 = 300 gives

2.2T1 − T2 = 340

T0 T1 Ti�1

Δx

Ti Ti�1 Tn�1 Tn

FIGURE 24.8
In order to implement the finite-difference approach, the heated rod is divided into a series of
nodes.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 629

After writing Eq. (24.16) for the other interior nodes, the equations can be assembled in
matrix form as

⎡
⎢⎣

2.2 −1 0 0
−1 2.2 −1 0
0 −1 2.2 −1
0 0 −1 2.2

⎤
⎥⎦

⎧⎪⎨
⎪⎩

T1

T2

T3

T4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

340
40
40
440

⎫⎪⎬
⎪⎭

Notice that the matrix is both tridiagonal and diagonally dominant.
MATLAB can be used to generate the solution:

>> A=[2.2 -1 0 0;
-1 2.2 -1 0;
0 -1 2.2 -1;
0 0 -1 2.2];
>> b=[340 40 40 440]';
>> T=A\b

T =
283.2660
283.1853
299.7416
336.2462

Table 24.1 provides a comparison between the analytical solution (Eq. 24.7) and the
numerical solutions obtained with the shooting method (Example 24.2) and the finite-
difference method (Example 24.5). Note that although there are some discrepancies, the
numerical approaches agree reasonably well with the analytical solution. Further, the biggest
discrepancy occurs for the finite-difference method due to the coarse node spacing we used
in Example 24.5. Better agreement would occur if a finer nodal spacing had been used.

TABLE 24.1 Comparison of the exact analytical solution for temperature with the results
obtained with the shooting and finite-difference methods.

Analytical Shooting Finite
x Solution Method Difference

0 300 300 300
2 282.8634 282.8889 283.2660
4 282.5775 282.6158 283.1853
6 299.0843 299.1254 299.7416
8 335.7404 335.7718 336.2462

10 400 400 400

24.3.1 Derivative Boundary Conditions

As mentioned in our discussion of the shooting method, the fixed or Dirichlet boundary
condition is but one of several types that are used in engineering and science. A common

630 BOUNDARY-VALUE PROBLEMS

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 630

24.3 FINITE-DIFFERENCE METHODS 631

alternative, called the Neumann boundary condition, is the case where the derivative is
given.

We can use the heated rod introduced earlier in this chapter to demonstrate how a
derivative boundary condition can be incorporated into the finite-difference approach:

0 = d2T

dx2
+ h′(T∞ − T)

However, in contrast to our previous discussions, we will prescribe a derivative boundary
condition at one end of the rod:

dT

dx
(0) = T ′

a

T (L) = Tb

Thus, we have a derivative boundary condition at one end of the solution domain and a
fixed boundary condition at the other.

Just as in the previous section, the rod is divided into a series of nodes and a finite-
difference version of the differential equation (Eq. 24.16) is applied to each interior node.
However, because its temperature is not specified, the node at the left end must also
be included. Fig. 24.9 depicts the node (0) at the left edge of a heated plate for which the
derivative boundary condition applies. Writing Eq. (24.16) for this node gives

−T−1 + (2 + h′�x2)T0 − T1 = h′�x2T∞ (24.17)

Notice that an imaginary node (−1) lying to the left of the rod’s end is required for this
equation. Although this exterior point might seem to represent a difficulty, it actually
serves as the vehicle for incorporating the derivative boundary condition into the problem.
This is done by representing the first derivative in the x dimension at (0) by the centered
difference (Eq. 4.25):

dT

dx
= T1 − T−1

2�x

which can be solved for

T−1 = T1 − 2�x
dT

dx

T�1 T0 T1

Δx Δx

FIGURE 24.9
A boundary node at the left end of a heated rod. To approximate the derivative at the boundary,
an imaginary node is located a distance �x to the left of the rod’s end.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 631

Now we have a formula for T−1 that actually reflects the impact of the derivative. It can be
substituted into Eq. (24.17) to give

(2 + h′�x2)T0 − 2T1 = h′�x2T∞ − 2�x
dT

dx
(24.18)

Consequently, we have incorporated the derivative into the balance.
A common example of a derivative boundary condition is the situation where the end

of the rod is insulated. In this case, the derivative is set to zero. This conclusion follows di-
rectly from Fourier’s law (Eq. 24.5), because insulating a boundary means that the heat
flux (and consequently the gradient) must be zero. The following example illustrates how
the solution is affected by such boundary conditions.

EXAMPLE 24.6 Incorporating Derivative Boundary Conditions

Problem Statement. Generate the finite-difference solution for a 10-m rod with
�x = 2 m, h′ = 0.05 m−2, T∞ = 200 K, and the boundary conditions: T ′

a = 0 and
Tb = 400 K. Note that the first condition means that the slope of the solution should ap-
proach zero at the rod’s left end. Aside from this case, also generate the solution for
dT/dx = −20 at x = 0.

Solution. Equation (24.18) can be used to represent node 0 as

2.2T0 − 2T1 = 40

We can write Eq. (24.16) for the interior nodes. For example, for node 1,

−T0 + 2.2T1 − T2 = 40

A similar approach can be used for the remaining interior nodes. The final system of equa-
tions can be assembled in matrix form as

⎡
⎢⎢⎢⎣

2.2 −2
−1 2.2 −1

−1 2.2 −1
−1 2.2 −1

−1 2.2

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T0

T1

T2

T3

T4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

40
40
40
40
440

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

These equations can be solved for

T0 = 243.0278

T1 = 247.3306

T2 = 261.0994

T3 = 287.0882

T4 = 330.4946

As displayed in Fig. 24.10, the solution is flat at x = 0 due to the zero derivative condition
and then curves upward to the fixed condition of T = 400 at x = 10.

632 BOUNDARY-VALUE PROBLEMS

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 632

24.3 FINITE-DIFFERENCE METHODS 633

For the case where the derivative at x = 0 is set to −20, the simultaneous equations are

⎡
⎢⎢⎢⎣

2.2 −2
−1 2.2 −1

−1 2.2 −1
−1 2.2 −1

−1 2.2

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T0

T1

T2

T3

T4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

120
40
40
40
440

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

which can be solved for

T0 = 328.2710

T1 = 301.0981

T2 = 294.1448

T3 = 306.0204

T4 = 339.1002

As in Fig. 24.10, the solution at x = 0 now curves downward due to the negative derivative
we imposed at the boundary.

24.3.2 Finite-Difference Approaches for Nonlinear ODEs

For nonlinear ODEs, the substitution of finite differences yields a system of nonlinear si-
multaneous equations. Thus, the most general approach to solving such problems is to use
root-location methods for systems of equations such as the Newton-Raphson method de-
scribed in Section 12.2.2. Although this approach is certainly feasible, an adaptation of
successive substitution can sometimes provide a simpler alternative.

The heated rod with convection and radiation introduced in Example 24.4 provides a
nice vehicle for demonstrating this approach,

0 = d2T

dx2
+ h′(T∞ − T) + σ ′ ′

(T 4
∞ − T 4)

200

300

400

T, K

T'(0) � 0

T'(0) � �20

0 2 4 6 8 10 x, m

FIGURE 24.10
The solution of a second-order ODE with a derivative boundary condition at one end and a fixed
boundary condition at the other. Two cases are shown reflecting different derivative values at x = 0.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 633

We can convert this differential equation into algebraic form by writing it for a node i and
substituting Eq. (24.15) for the second derivative:

0 = Ti−1 − 2Ti + Ti+1

�x2
+ h′(T∞ − Ti) + σ ′ ′(

T 4
∞ − T 4

i

)
Collecting terms gives

−Ti−1 + (2 + h′�x2)Ti − Ti+1 = h′�x2T∞ + σ ′ ′
�x2(T 4

∞ − T 4
i

)
Notice that although there is a nonlinear term on the right-hand side, the left-hand side

is expressed in the form of a linear algebraic system that is diagonally dominant. If we as-
sume that the unknown nonlinear term on the right is equal to its value from the previous
iteration, the equation can be solved for

Ti = h′�x2T∞ + σ ′ ′
�x2

(
T 4

∞ − T 4
i

) + Ti−1 + Ti+1

2 + h′�x2

(24.19)

As in the Gauss-Seidel method, we can use Eq. (24.19) to successively calculate the tem-
perature of each node and iterate until the process converges to an acceptable tolerance.
Although this approach will not work for all cases, it converges for many ODEs derived
from physically based systems. Hence, it can sometimes prove useful for solving problems
routinely encountered in engineering and science.

EXAMPLE 24.7 The Finite-Difference Method for Nonlinear ODEs

Problem Statement. Use the finite-difference approach to simulate the temperature of a
heated rod subject to both convection and radiation:

0 = d2T

dx2
+ h′(T∞ − T) + σ ′ ′

(T 4
∞ − T 4)

where σ ′ = 2.7 × 10−9 K−3m−2, L = 10 m, h′ = 0.05 m−2, T∞ = 200 K, T (0) = 300 K,

and T (10) = 400 K. Use four interior nodes with a segment length of �x = 2 m. Recall that
we solved the same problem with the shooting method in Example 24.4.

Solution. Using Eq. (24.19) we can successively solve for the temperatures of the rod’s
interior nodes. As with the standard Gauss-Seidel technique, the initial values of the
interior nodes are zero with the boundary nodes set at the fixed conditions of T0 = 300 and
T5 = 400. The results for the first iteration are

T1 = 0.05(2)2 200 + 2.7 × 10−9 ′
(2)2(2004 − 04) + 300 + 0

2 + 0.05(2)2
= 159.2432

T2 = 0.05(2)2 200 + 2.7 × 10−9 ′
(2)2(2004 − 04) + 159.2432 + 0

2 + 0.05(2)2
= 97.9674

634 BOUNDARY-VALUE PROBLEMS

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 634

PROBLEMS 635

T3 = 0.05(2)2 200 + 2.7 × 10−9 ′
(2)2(2004 − 04) + 97.9674 + 0

2 + 0.05(2)2
= 70.4461

T4 = 0.05(2)2 200 + 2.7 × 10−9 ′
(2)2(2004 − 04) + 70.4461 + 400

2 + 0.05(2)2
= 226.8704

The process can be continued until we converge on the final result:

T0 = 300

T1 = 250.4827

T2 = 236.2962

T3 = 245.7596

T4 = 286.4921

T5 = 400

These results are displayed in Fig. 24.11 along with the result generated in Example 24.4
with the shooting method.

200

400

T, K

0 2 4 6

Finite difference

Shooting

8 10 x, m

FIGURE 24.11
The filled circles are the result of using the finite-difference method to solve a nonlinear problem.
The line generated with the shooting method in Example 24.4 is shown for comparison.

PROBLEMS

24.1 A steady-state heat balance for a rod can be repre-
sented as

d2T

dx2
− 0.15T = 0

Obtain a solution for a 10-m rod with T (0) = 240 and
T (10) = 150 (a) analytically, (b) with the shooting method,
and (c) using the finite-difference approach with �x = 1.

24.2 Repeat Prob. 24.1 but with the right end insulated and
the left end temperature fixed at 240.
24.3 Use the shooting method to solve

7
d2 y

dx2
− 2

dy

dx
− y + x = 0

with the boundary conditions y(0) = 5 and y(20) = 8.

24.4 Solve Prob. 24.3 with the finite-difference approach
using �x = 2.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 635

24.5 The following nonlinear differential equation was
solved in Examples 24.4 and 24.7.

0 = d2T

dx2
+ h′(T∞ − T) + σ ′ ′(T 4

∞ − T 4) (P24.5)

Such equations are sometimes linearized to obtain an ap-
proximate solution. This is done by employing a first-order
Taylor series expansion to linearize the quartic term in the
equation as

σ ′T 4 = σ ′ T 4 + 4σ ′ T 3(T − T)

where T is a base temperature about which the term is lin-
earized. Substitute this relationship into Eq. (P24.5), and
then solve the resulting linear equation with the finite-
difference approach. Employ T = 300,�x = 1 m, and the
parameters from Example 24.4 to obtain your solution. Plot
your results along with those obtained for the nonlinear
versions in Examples 24.4 and 24.7.
24.6 Develop an M-file to implement the shooting method
for a linear second-order ODE. Test the program by dupli-
cating Example 24.2.
24.7 Develop an M-file to implement the finite-difference
approach for solving a linear second-order ODE with
Dirichlet boundary conditions. Test it by duplicating Exam-
ple 24.5.
24.8 An insulated heated rod with a uniform heat source can
be modeled with the Poisson equation:

d2T

dx2
= − f (x)

Given a heat source f (x) = 25 ◦C/m2 and the boundary con-
ditions T (x = 0) = 40 ◦C and T (x = 10) = 200 ◦C, solve
for the temperature distribution with (a) the shooting method
and (b) the finite-difference method (�x = 2).

24.9 Repeat Prob. 24.8, but for the following spatially vary-
ing heat source: f (x) = 0.12x3 − 2.4x2 + 12x .

24.10 The temperature distribution in a tapered conical
cooling fin (Fig. P24.10) is described by the following dif-
ferential equation, which has been nondimensionalized:

d2u

dx2
+

(
2

x

)(
du

dx
− pu

)
= 0

where u = temperature (0 ≤ u ≤ 1), x = axial distance
(0 ≤ x ≤ 1), and p is a nondimensional parameter that de-
scribes the heat transfer and geometry:

p = hL

k

√
1 + 4

2m2

where h = a heat transfer coefficient, k = thermal conduc-
tivity, L = the length or height of the cone, and m = the slope

636 BOUNDARY-VALUE PROBLEMS

of the cone wall. The equation has the boundary conditions:

u(x = 0) = 0 u(x = 1) = 1

Solve this equation for the temperature distribution using
finite-difference methods. Use second-order accurate finite-
difference formulas for the derivatives. Write a computer
program to obtain the solution and plot temperature versus
axial distance for various values of p = 10, 20, 50, and 100.
24.11 Compound A diffuses through a 4-cm-long tube and
reacts as it diffuses. The equation governing diffusion with
reaction is

D
d2 A

dx2
− k A = 0

At one end of the tube (x = 0), there is a large source of A
that results in a fixed concentration of 0.1 M. At the other
end of the tube there is a material that quickly absorbs any A,
making the concentration 0 M. If D = 1.5 × 10−6 cm2/s and
k = 5 × 10−6 s−1, what is the concentration of A as a func-
tion of distance in the tube?
24.12 The following differential equation describes the
steady-state concentration of a substance that reacts with
first-order kinetics in an axially dispersed plug-flow reactor
(Fig. P24.12):

D
d2c

dx2
− U

dc

dx
− kc = 0

where D = the dispersion coefficient (m2/hr), c = concen-
tration (mol/L), x = distance (m), U = the velocity (m/hr),

x �
1

u(x � 1) � 1

u(x � 0) � 0

x

FIGURE P24.10

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 636

PROBLEMS 637

and k = the reaction rate (/hr). The boundary conditions can
be formulated as

Ucin = Uc(x = 0) − D
dc

dx
(x = 0)

dc

dx
(x = L) = 0

where cin = the concentration in the inflow (mol/L), L = the
length of the reactor (m). These are called Danckwerts
boundary conditions.

Use the finite-difference approach to solve for concen-
tration as a function of distance given the following parame-
ters: D = 5000 m2/hr, U = 100 m/hr, k = 2/hr, L = 100 m,
and cin = 100 mol/L. Employ centered finite-difference
approximations with �x = 10 m to obtain your solutions.
Compare your numerical results with the analytical solution:

c = Ucin

(U − Dλ1)λ2eλ2 L − (U − Dλ2)λ1eλ1 L

× (λ2eλ2 L eλ1x − λ1eλ1 L eλ2x)

where

λ1

λ2
= U

2D

(
1 ±

√
1 + 4k D

U 2

)

24.13 A series of first-order, liquid-phase reactions create a
desirable product (B) and an undesirable byproduct (C):

A
k1→ B

k2→ C

If the reactions take place in an axially dispersed plug-flow
reactor (Fig. P24.12), steady-state mass balances can be
used to develop the following second-order ODEs:

D
d2ca

dx2
− U

dca

dx
− k1ca = 0

D
d2cb

dx2
− U

dcb

dx
+ k1ca − k2cb = 0

D
d2cc

dx2
− U

dcc

dx
+ k2cb = 0

Use the finite-difference approach to solve for the concen-
tration of each reactant as a function of distance given: D =
0.1 m2/min, U = 1 m/min, k1 = 3/min, k2 = 1/min, L =
0.5 m, ca,in = 10 mol/L. Employ centered finite-difference
approximations with �x = 0.05 m to obtain your solutions
and assume Danckwerts boundary conditions as described in
Prob. 24.12. Also, compute the sum of the reactants as a
function of distance. Do your results make sense?
24.14 A biofilm with a thickness Lf (cm), grows on the sur-
face of a solid (Fig. P24.14). After traversing a diffusion
layer of thickness L (cm), a chemical compound A diffuses
into the biofilm where it is subject to an irreversible first-
order reaction that converts it to a product B.

Steady-state mass balances can be used to derive the
following ordinary differential equations for compound A:

D
d2ca

dx2
= 0 0 ≤ x < L

Df
d2ca

dx2
− kca = 0 L ≤ x < L + L f

where D = the diffusion coefficient in the diffusion layer =
0.8 cm2/d, Df = the diffusion coefficient in the biofilm =
0.64 cm2/d, and k = the first-order rate for the conversion of
A to B = 0.1/d. The following boundary conditions hold:

ca = ca0 at x = 0

dca

dx
= 0 at x = L + L f

where ca0 = the concentration of A in the bulk liquid =
100 mol/L. Use the finite-difference method to compute the
steady-state distribution of A from x = 0 to L + Lf , where
L = 0.008 cm and Lf = 0.004 cm. Employ centered finite
differences with �x = 0.001 cm.
24.15 A cable is hanging from two supports at A and B
(Fig. P24.15). The cable is loaded with a distributed load
whose magnitude varies with x as

w = wo

[
1 + sin

(
πx

2lA

)]

x � 0 x � L

FIGURE P24.12
An axially dispersed plug-flow reactor.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 637

where wo = 450 N/m. The slope of the cable (dy/dx) = 0 at
x = 0, which is the lowest point for the cable. It is also the
point where the tension in the cable is a minimum of To. The
differential equation which governs the cable is

d2 y

dx2
= wo

To

[
1 + sin

(
πx

2lA

)]

Solve this equation using a numerical method and plot the
shape of the cable (y versus x). For the numerical solution,
the value of To is unknown, so the solution must use an iter-
ative technique, similar to the shooting method, to converge
on a correct value of hA for various values of To.

638 BOUNDARY-VALUE PROBLEMS

24.16 The basic differential equation of the elastic curve for
a simply supported, uniformly loaded beam (Fig. P24.16) is
given as

E I
d2 y

dx2
= wLx

2
− wx2

2

where E = the modulus of elasticity, and I = the moment of
inertia. The boundary conditions are y(0) = y(L) = 0. Solve
for the deflection of the beam using (a) the finite-difference
approach (�x = 0.6 m) and (b) the shooting method. The
following parameter values apply: E = 200 GPa, I =
30,000 cm4, w = 15 kN/m, and L = 3 m. Compare your

w = wo[1 + sin (πx/2la)]

lA = 60 m

x
B

A

y

hA = 15 m

FIGURE P24.15

L Lf

0

Bulk
liquid

Diffusion
layer Biofilm

Solid
surface

x

FIGURE P24.14
A biofilm growing on a solid surface.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 638

PROBLEMS 639

L

y

w

x

0

FIGURE P24.16

numerical results to the analytical solution:

y = wLx3

12E I
− wx4

24E I
− wL3x

24E I

24.17 In Prob. 24.16, the basic differential equation of the
elastic curve for a uniformly loaded beam was formulated as

E I
d2 y

dx2
= wLx

2
− wx2

2

Note that the right-hand side represents the moment as a
function of x. An equivalent approach can be formulated in
terms of the fourth derivative of deflection as

E I
d4 y

dx4
= −w

For this formulation, four boundary conditions are required.
For the supports shown in Fig. P24.16, the conditions are

that the end displacements are zero, y(0) = y(L) = 0, and that
the end moments are zero, y′′(0) = y′′(L) = 0. Solve for the
deflection of the beam using the finite-difference approach
(�x = 0.6 m). The following parameter values apply: E =
200 GPa, I = 30,000 cm4, w = 15 kN/m, and L = 3 m. Com-
pare your numerical results with the analytical solution
given in Prob. 24.16.
24.18 Under a number of simplifying assumptions, the
steady-state height of the water table in a one-dimensional,
unconfined groundwater aquifer (Fig. P24.18) can be mod-
eled with the following second-order ODE:

K h̄
d2h

dx2
+ N = 0

where x = distance (m), K = hydraulic conductivity (m/d),
h = height of the water table (m), h̄ = the average height of
the water table (m), and N = infiltration rate (m/d).

Solve for the height of the water table for x = 0 to
1000 m where h (0) = 10 m and h(1000) = 5 m. Use the
following parameters for the calculation: K = 1 m/d and
N = 0.0001 m/d. Set the average height of the water table as
the average of the boundary conditions. Obtain your solution
with (a) the shooting method and (b) the finite-difference
method (�x = 100 m).
24.19 In Prob. 24.18, a linearized groundwater model was
used to simulate the height of the water table for an uncon-
fined aquifer. A more realistic result can be obtained by
using the following nonlinear ODE:

d

dx

(
K h

dh

dx

)
+ N = 0

Groundwater flow
Aquifer

Ground surface

Infiltration

h

x

Water table

Confining bed

FIGURE P24.18
An unconfined or “phreatic” aquifer.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 639

640 BOUNDARY-VALUE PROBLEMS

where x = distance (m), K = hydraulic conductivity (m/d),
h = height of the water table (m), and N = infiltration
rate (m/d). Solve for the height of the water table for the
same case as in Prob. 24.18. That is, solve from x = 0 to
1000 m with h(0) = 10 m, h(1000) = 5 m, K = 1 m/d, and
N = 0.0001 m /d. Obtain your solution with (a) the
shooting method and (b) the finite-difference method
(�x = 100 m).
24.20 Just as Fourier’s law and the heat balance can be
employed to characterize temperature distribution, analo-
gous relationships are available to model field problems in
other areas of engineering. For example, electrical engi-
neers use a similar approach when modeling electrostatic
fields. Under a number of simplifying assumptions, an ana-
log of Fourier’s law can be represented in one-dimensional
form as

D = −ε
dV

dx

where D is called the electric flux density vector, ε = permit-
tivity of the material, and V = electrostatic potential. Simi-
larly, a Poisson equation (see Prob. 24.8) for electrostatic
fields can be represented in one dimension as

d2V

dx2
= −ρv

ε

where ρv = charge density. Use the finite-difference tech-
nique with �x = 2 to determine V for a wire where V(0) =
1000, V(20) = 0, ε = 2, L = 20, and ρv = 30.

24.21 Suppose that the position of a falling object is gov-
erned by the following differential equation:

d2x

dt2
+ c

m

dx

dt
− g = 0

where c = a first-order drag coefficient = 12.5 kg/s, m =
mass = 70 kg, and g = gravitational acceleration = 9.81 m/s2.

Use the shooting method to solve this equation for the
boundary conditions:

x (0) = 0
x (12) = 500

24.22 As in Fig. P24.22, an insulated metal rod has a fixed
temperature (T0) boundary condition at its left end. On it
right end, it is joined to a thin-walled tube filled with water
through which heat is conducted. The tube is insulated at its
right end and convects heat with the surrounding fixed-
temperature air (T∞). The convective heat flux at a location
x along the tube (W/m2) is represented by

Jconv = h(T∞ − T2(x))

where h � the convection heat transfer coefficient
[W/(m2 . K)]. Employ the finite-difference method with
�x � 0.1 m to compute the temperature distribution for the
case where both the rod and tube are cylindrical with the
same radius r (m). Use the following parameters for your
analysis: Lrod =0.6 m, Ltube = 0.8 m, T0 = 400 K, T∞ = 300 K,
r = 3 cm, �1 = 7870 kg/m3, Cp1 = 447 J/(kg . K), k1 = 80.2
W/(m . K), �2 = 1000 kg/m3, Cp2 = 4.18 kJ/(kg . K), k2 =
0.615 W/(m . K), and h = 3000 W/(m2 . K). The subscripts
designate the rod (1) and the tube (2).

T0

Lrod Ltube

T�

FIGURE P24.22

24.23 Perform the same calculation as in Prob. 24.22, but
for the case where the tube is also insulated (i.e., no convec-
tion) and the right-hand wall is held at a fixed boundary
temperature of 200 K.

cha01102_ch24_616-640.qxd 12/17/10 8:25 AM Page 640

APPENDIX A
MATLAB BUILT-IN FUNCTIONS

abs, 35
acos, 35
ascii, 57
axis, 46
axis square, 40
beep, 68
besselj, 427
ceil, 36
chol, 265, 267
clabel, 196, 539
clear, 56
cond, 276, 277
contour, 196, 539
conv, 173
cumtrapz, 484
dblquad, 488
deconv, 172
det, 234
diag, 315
diff, 533, 534, 535
disp, 53
double, 57
eig, 313
elfun, 35
eps, 101
erf, 518
error, 58
event, 595
exp, 35
eye, 218
factorial, 46, 65n2
fft, 396

fix, 435
floor, 36, 196
fminbnd, 194
fminsearch, 197, 199
format bank, 27
format compact, 25n1
format long, 27, 102
format long e, 27, 300
format long eng, 27
format long g, 27
format loose, 25n1
format short, 27
format short e, 27, 300
format short eng, 27
format short g, 278
fplot, 75
fprintf, 54
fzero, 168–170, 176
getframe, 69
gradient, 536
grid, 38
help, 51, 57
help elfun, 35
hist, 331
hold off, 39
hold on, 39
humps, 86, 513
inline, 75
input, 53
interp1, 446
interp2, 451
interp3, 451

inv, 218, 220
isempty, 94
legend, 374, 485
length, 37
LineWidth, 39
linspace, 77
load, 56, 57
log, 35
log10, 349
log2, 138n2
loglog, 46
logspace, 31
lookfor, 41, 50
lu, 262
MarkerEdgeColor, 39
MarkerFaceColor, 39
MarkerSize, 39
max, 36, 243
mean, 52, 330
median, 330
mesh, 68
meshgrid, 196, 539
min, 36, 330
mode, 330
movie, 69–70
nargin, 63–64
norm, 276
ode113, 591
ode15s, 605
ode23, 590
ode23s, 605
ode23t, 605

641

cha01102_appA_641-642.qxd 12/17/10 8:28 AM Page 641

642 APPENDIX A MATLAB BUILT-IN FUNCTIONS

ode23tb, 605
ode45, 591, 606
odeset, 593
ones, 29
optimset, 169, 170, 176
pause, 68
pchip, 444, 447
peaks, 545
pi, 27
plot, 38
plot3, 40, 582
poly, 171, 172
polyfit, 351, 409, 422
polyval, 351, 409, 422
prod, 36
quad, 513
quadl, 513
quiver, 538

rand, 331–333
randn, 331, 334
realmax, 101
realmin, 101
roots, 171–174
round, 36
save, 56
semilogy, 45, 46
set, 455
sign, 61
sin, 35
size, 219
sort, 36
spline, 444
sqrt, 35
sqrtm, 36
std, 330
stem, 400

subplot, 40
sum, 36, 265
surfc, 196
tanh, 7, 35
tic, 69
title, 38
toc, 69
trapz, 484, 492
triplequad, 488
var, 330
varargin, 78
who, 29
whos, 29
xlabel, 38
ylabel, 38
ylim, 400
zeros, 29
zlabel, 196

cha01102_appA_641-642.qxd 12/17/10 8:28 AM Page 642

APPENDIX B
MATLAB M-FILE FUNCTIONS

M-file Name Description Page

bisect Root location with bisection 139
eulode Integration of a single ordinary differential equation with Euler’s method 560
fzerosimp Brent’s method for root location 167
GaussNaive Solving linear systems with Gauss elimination without pivoting 239
GaussPivot Solving linear systems with Gauss elimination with partial pivoting 244
GaussSeidel Solving linear systems with the Gauss-Seidel method 289
goldmin Minimum of one-dimensional function with golden-section search 192
incsearch Root location with an incremental search 132
IterMeth General algorithm for iterative calculation 94
Lagrange Interpolation with the Lagrange polynomial 419
linregr Fitting a straight line with linear regression 350
natspline Cubic spline with natural end conditions 453
Newtint Interpolation with the Newton polynomial 416
newtmult Root location for nonlinear systems of equations 297
newtraph Root location with the Newton-Raphson method 161
quadadapt Adaptive quadrature 512
rk4sys Integration of system of ODEs with 4th-order RK method 576
romberg Integration of a function with Romberg integration 503
TableLook Table lookup with linear interpolation 434
trap Integration of a function with the composite trapezoidal rule 474
trapuneq Integration of unequispaced data with the trapezoidal rule 483
Tridiag Solving tridiagonal linear systems 247

643

cha01102_appB_643.qxd 12/17/10 8:28 AM Page 643

BIBLIOGRAPHY

Anscombe, F. J., “Graphs in Statistical Analysis,” Am. Stat.,
27(1):17–21, 1973.

Attaway, S., MATLAB: A Practical Introduction to Pro-
gramming and Problem Solving, Elsevier Science,
Burlington, MA, 2009.

Bogacki, P. and L. F. Shampine, “A 3(2) Pair of Runge-Kutta
Formulas,” Appl. Math. Letters, 2(1989):1–9, 1989.

Brent, R. P., Algorithms for Minimization Without
Derivatives, Prentice Hall, Englewood Cliffs,
NJ, 1973.

Butcher, J. C., “On Runge-Kutta Processes of Higher
Order,” J. Austral. Math. Soc., 4:179, 1964.

Carnahan, B., H. A. Luther, and J. O. Wilkes, Applied
Numerical Methods, Wiley, New York, 1969.

Chapra, S. C. and R. P. Canale, Numerical Methods for
Engineers, 6th ed., McGraw-Hill, New York, 2010.

Cooley, J. W. and J. W. Tukey, “An Algorithm for the
Machine Calculation of Complex Fourier Series,”
Math. Comput., 19:297–301, 1965.

Dekker, T. J., “Finding a Zero by Means of Successive
Linear Interpolation.” In B. Dejon and P. Henrici
(editors), Constructive Aspects of the Fundamental
Theorem of Algebra, Wiley-Interscience, New York,
1969, pp. 37–48.

Dormand, J. R. and P. J. Prince, “A Family of Embedded
Runge-Kutta Formulae,” J. Comp. Appl. Math.,
6:19–26, 1980.

Draper, N. R. and H. Smith, Applied Regression Analysis,
2d ed., Wiley, New York, 1981.

Fadeev, D. K. and V. N. Fadeeva, Computational Methods
of Linear Algebra, Freeman, San Francisco, 1963.

Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Com-
puter Methods for Mathematical Computation,
Prentice Hall, Englewood Cliffs, NJ, 1977.

Gabel, R. A. and R. A. Roberts, Signals and Linear
Systems, Wiley, New York, 1987.

Gander, W. and W. Gautschi, Adaptive Quadrature–
Revisited, BIT Num. Math., 40:84–101, 2000.

Gerald, C. F. and P. O. Wheatley, Applied Numerical
Analysis, 3d ed., Addison-Wesley, Reading,
MA, 1989.

Hanselman, D. and B. Littlefield, Mastering MATLAB 7,
Prentice Hall, Upper Saddle River, NJ, 2005.

Hayt, W. H. and J. E. Kemmerly, Engineering Circuit
Analysis, McGraw-Hill, New York, 1986.

Heideman, M. T., D. H. Johnson, and C. S. Burrus, “Gauss
and the History of the Fast Fourier Transform,” IEEE
ASSP Mag., 1(4):14–21, 1984.

Hornbeck, R. W., Numerical Methods, Quantum,
New York, 1975.

James, M. L., G. M. Smith, and J. C. Wolford, Applied
Numerical Methods for Digital Computations with
FORTRAN and CSMP, 3d ed., Harper & Row,
New York, 1985.

Moler, C. B., Numerical Computing with MATLAB, SIAM,
Philadelphia, 2004.

Moore, H., MATLAB for Engineers, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 2008.

Ortega, J. M., Numerical Analysis–A Second Course,
Academic Press, New York, 1972.

Palm, W. J. III, A Concise Introduction to MATLAB,
McGraw-Hill, New York, 2007.

Ralston, A., “Runge-Kutta Methods with Minimum Error
Bounds,” Match. Comp., 16:431, 1962.

Ralston, A. and P. Rabinowitz, A First Course in Numerical
Analysis, 2d ed., McGraw-Hill, New York, 1978.

Ramirez, R. W., The FFT, Fundamentals and Concepts,
Prentice Hall, Englewood Cliffs, NJ, 1985.

644

cha01102_Bib_644-645.qxd 12/17/10 8:27 AM Page 644

BIBLIOGRAPHY 645

Recktenwald, G., Numerical Methods with MATLAB,
Prentice Hall, Englewood Cliffs, NJ, 2000.

Scarborough, I. B., Numerical Mathematical Analysis,
6th ed., Johns Hopkins Press, Baltimore, MD, 1966.

Shampine, L. F., Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

Van Valkenburg, M. E., Network Analysis, Prentice Hall,
Englewood Cliffs, NJ, 1974.

White, F. M., Fluid Mechanics. McGraw-Hill, New York,
1999.

cha01102_Bib_644-645.qxd 12/17/10 8:27 AM Page 645

646

INDEX

~, 60
&, 60
|, 60
‘, 28
*, 32
+, 32
^, 32
/, 32
\, 32, 220. See also Backslash operator
\n, 55
\t, 55
<, 59
<=, 59
>, 59
>=, 59
−, 32
=, 59
==, 59
%d, 55
%E, 55
%e, 55
%f, 55
%g, 55

A
Absolute error, 90
Accuracy, 89, 90
Adaptive methods and stiff systems, 588–615

adaptive Runge-Kutta methods, 588–596
bungee jumper with cord, 607–608
error estimates, 600–601
events, 594–596
MATLAB functions, 590–591, 605
multistep methods, 597–601
non-self-starting Heun method, 597–600
stiffness, 601–607

Adaptive quadrature, 510–513
Adaptive Runge-Kutta methods, 588–596
Adaptive step-size control, 589
Air density, 405
Air pollution, 277–280
Alkalinity, 150
Allosteric enzyme, 352
Alphanumeric information, 31
Amplification factor, 559

Analytical solution, 9
AND, 59
Angular frequency, 309, 383
Animation, 69–70
Anonymous function, 74–75
Archimedes’ principle, 150
Areal integral, 466
Arithmetic manipulation of computer numbers,

101–103
Array, 28
Array operations, 34
Arrhenius equation, 46
Ascent methods, 197
ASCII file, 57
Assignment, 26–31

arrays, vectors, matrices, 28–29
character strings, 31
colon operator, 30
linespace, 30–31
logspace, 31
scalars, 26–27

Augmentation, 216
Avogadro’s number, 98
Axially dispersed plug-flow reactor, 637
axis square, 40

B
Back substitution, 237, 256
Backslash operator, 220, 266, 370
Backward difference, 111–112, 528
Backward Euler’s method, 603
Banded matrix, 213
bank, 27
Base-8 representation, 96
Base-2 system, 96
Base-10 system, 96
beep, 68
Bessel function, 427, 457
besselj, 427
Best-fit line, 336–344
Bias, 89
Bibliography, 645–646
Bilinear interpolation, 449–451
Bin, 329
Binary search, 434–435

Binary system, 96
bisect, 139–140
Bisection, 134–140, 142–143
Bit, 95
Blank lines, 25
Blunders, 119
Book, overview. See Overview of book
Boolean variable, 609
Boole’s rule, 481, 511, 571
Boundary-value problems, 616–641

derivative boundary conditions, 624–626,
630–633

finite-difference methods, 628–635
initial-value problems, compared, 617, 618
introduction and background, 617–621
shooting method, 621–628

Boussinesq’s equation, 427
Bracketing methods, 131–143
Brent, Richard, 163, 194
Brent’s optimization method, 194
Brent’s root-finding method, 163–168
Built-in functions, 35–37, 642–643.

See also Function
Bungee jumper velocity, 79–82
Bungee jumper with cord, 607–608
Bungee jumping problem

analytical solution, 7–9
background, 4–5
case study, 17–19
Euler’s method, 573
event function, 595
fourth-order RK method, 575
MATLAB, 221–222
matrix inverse, 271–272
Newton-Raphson method, 160–161
numerical solution, 10–12
ODE, 607–608

Butcher’s method, 571
Butterfly curve, 47
Butterfly effect, 581

C
Calculator mode, 25
Calculus, 522
Cantilever beam, 202

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 646

INDEX 647

Carrying capacity, 584
Cartesian vector, 86
Case sensitivity, 26
Case studies

bungee jumper velocity, 79–82
chemical reactions, 298–300
circuit analysis, 222–225
drag force, 17–19
earthquakes, 314–316
enzyme kinetics, 351–356
equilibrium and minimum potential energy,

197–199
exploratory data analysis, 42–44
fitting experimental data, 373–375
greenhouse gases and rainwater, 144–147
heat transfer, 452–456
indoor air pollution, 277–280
model of heated rod, 247–250
pipe friction, 173–177
Pliny’s intermittent fountain, 608–612
predator-prey models, 578–583
root-mean-square current, 514–517
sunspots, 401–402
visualizing fields, 538–540
work, calculation of, 489–492

Catenary cable, 179
ceil, 36
Centered difference, 111–112, 529
Chaotic, 581
Character strings, 31
Characteristic polynomial, 305
Characteristic values, 304. See also Eigenvalues
Chemical reactions, 298–300
chol, 265
Cholesky decomposition, 263
Cholesky factorization, 263–266
Circuit analysis, 222–225
Clamped end condition, 443
Clamped spline, 443
Classical fourth-order RK method, 569–572
clear, 56
Closed-form solution, 9
Closed integration, 461
Closed integration formulas, 468, 481
Coefficient of determination, 342–343
Coefficient of restitution, 87
Coefficient of variation, 327
Colebrook equation, 173, 181
Colon operator, 30
Column-sum norm, 274
Column vector, 28, 212
Command prompt, 25
Command window, 25
Companion matrix, 171
Complete pivoting, 242
Composite integration formulas, 471
Composite Simpson’s 1/3 rule, 477–479
Composite trapezoidal rule, 471–474
Computer mathematics, 1
Computer number representation, 95–101
Concatenation, 29, 31

cond, 276
Conditionally stable, 559
Conical helix, 46
Conservation laws, 12–13, 14
Conservation of charge, 14, 222
Conservation of energy, 14, 223
Conservation of mass, 14
Conservation of momentum, 14
Constant of integration, 549
Constitutive laws, 524, 525
Continuity condition, 436
Continuous Fourier series, 387–389
Convergence, 153, 155, 157, 159, 176, 287, 288
Cooley, J. W., 396
Cooley-Tukey algorithm, 396
Corrector equation, 562
Correlation coefficient, 342
Cramer’s rule, 231, 233–234
Critical point, 580
Ctrl+Break, 69
Ctrl+c, 69
Cubic polynomial, 415
Cubic spline, 433, 438–443
cumtrapz, 484
Current rule, 222, 223
Curvature, 523
Curve fitting, 321–458

Fourier analysis. See Fourier analysis
general linear least squares, 367–369
least-squares regression, 336–344, 348
multiple linear regression, 365–367
nonlinear regression, 371–372
part organization, 323
polynomial interpolation. See Polynomial

interpolation
polynomial regression, 361–365
splines and piecewise interpolation. See

Polynomial interpolation; Splines and
piecewise interpolation

uses, 321–323
Curvilinear interpolation, 322

D
Damped spring-mass system, 585
Danckwerts boundary condition, 637
Darcy’s law, 525
Data errors, 531–532
Data uncertainty, 120
dblquad, 488
Decimal system, 95–96
Decisions, 57–64
Decomposition, 254n
Default value, 63
Definite integral, 549
Deflation, 313
Degrees of freedom, 327
Dekker, Theodorus, 163
Dependent variable, 5, 547
Derivative, 459, 522
Derivative boundary conditions, 624–626,

630–633

Derivative mean-value theorem, 108, 109
Descent methods, 197
Descriptive statistics, 326–327, 330
det, 234
Determinant, 231–233
Determinant evaluation, 244–245
Determinant of the Jacobian, 294, 295
DFT, 394–399
Diagonal dominance, 287
Diagonal matrix, 212
diff, 533–535
Differential equation, 7, 547
Differential method, 544
Differentiation, 459, 461, 521–545. See also

Numerical differentiation
data errors, 531–532
diff, 533–535
differentiation, 522–525
error amplification, 532
gradient, 536–537
high-accuracy differentiation formulas,

525–528
partial derivatives, 532–533
Richardson extrapolation, 528–530
unequally spaced data, 530–531

Direct methods, 197
Dirichlet boundary condition, 624, 630
Discrete Fourier transform (DFT), 394–399
disp, 53
Distance versus time, 485
Distributed variable problems, 207
Distribution coefficient, 252
Divergence, 155
Divide and average method, 86, 120, 178
Divided difference table, 414, 415
Dot notation, 523n
Double integral, 486, 487
Drag coefficient, 405
Drag force, 5, 7, 324–325, 332–334
Dummy variable, 81
Dynamics problem, 303

E
Earthquakes, 314–316
Echo printing, 26
Edit window, 25
eig, 313–314
Eigenvalues, 303–319

eig, 313–314
mathematical background, 305–308
physical background, 308–310
polynomial method, 306–307
power method, 310–313

Eigenvector, 306
Electroneutrality, 150
Element-by-element operations, 34
Elimination of unknowns, 234–235
Ellipsis, 31
Embedded RK methods, 589
end, 52n
End conditions, 443

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 647

648 INDEX

Energy balance, 127
Enzyme, 351
Enzyme kinetics, 351–356
Epilimnion, 452
eps, 101
Equilibrium and minimum potential energy,

197–199
erf, 518
Error, 89–95

absolute, 90
blunders, 119
data uncertainty, 120
differentiation, 531–532
Euler’s method, 557–559
linear regression, 340–344
MATLAB function, 58
model, 119–120
non-self-starting Heun method,

600–601
overflow, 98
roundoff, 95–103
total numerical, 114–119
tradeoff, 114, 115
trapezoidal rule, 469
truncation, 103–114

error, 58
Euclid, 187
Euclidean norm, 273
Euler-Cauchy method, 555
Euler phase plane plot, 580
Euler time plot, 580
Euler’s formula, 389
Euler’s method, 10, 555–561, 572–574
eulode, 560
Events, 594–596
events, 595
Explicit, 127
Explicit Euler’s method, 603
Exploratory data analysis, 42–44
Exponential equation, 345
Exponential model, 344
Extrapolation, 421–423
eye, 218

F
factorial, 65n
Factorization

Cholesky, 263–266
LU. See LU factorization
QR, 266n, 370
terminology, 254n

False position, 140–143
False-position formula, 140
Fanning friction factor, 149
Fast Fourier transform (FFT), 395–396
Fehlberg methods, 590
FFT, 395–396
fft, 396–399
Fick’s first diffusion law, 542
Fick’s law, 525
Fifth-order RK method, 571

50th percentile, 326
File. See also MATLAB M-files

ASCII, 57
function, 50–52
MAT-file, 56
script, 49–50

File management, 56–57
Finite difference, 110
Finite-difference approximation, 10

derivatives, 113–114
higher derivatives, 114

Finite-difference methods, 628–635
First divided difference, 414
First finite divided difference, 413
First-order approximation, 105
First-order equation, 548
First-order method, 559
First-order spline, 432–433
Fit curves to data. See Curve fitting
Fitting experimental data, 373–375
Fixed-point iteration, 152–156
Floating-point operations (flops), 239–241
Floating point representation, 97–100
floor, 36
Flops, 239–241
fminbnd, 194–195
fminsearch, 197, 371
Force balance, 127
Forcing function, 5
for...end, 65–67
Format commands, 27
format compact, 25n
format long, 27, 102
format loose, 25n
format short, 27
Forward difference, 110–111, 113, 527
Fourier, Joseph, 380
Fourier analysis, 380–404

continuous Fourier series, 387–389
DFT, 394–399
FFT, 395–396
fft, 396–399
Fourier integral and transform, 391–394
power spectrum, 399–400
sinusoidal functions, 381–387
time and frequency domains, 390–391

Fourier integral, 392
Fourier integral of f(t), 393
Fourier series, 393
Fourier transform, 393
Fourier transform of f(t), 393
Fourier transform pair, 393
Fourier’s law, 452, 525, 619
Fourth-order RK method, 569–572
fplot, 75
fprintf, 54, 55
Frame rate, 69
Free-falling bungee jumper. See Bungee

jumping problem
Frequency, 309, 382–383
Frequency domain, 390

Frequency plane, 391
Friction factor, 173
Frobenius form, 274
Frustrum, 150
Function. See also individual function names

anonymous, 74–75
Bessel, 457
built-in, 35–37, 642–643
forcing, 5
function, 75–78
increment, 555, 567
numerical integration. See Numerical

integration of functions
passed, 75
piecewise, 86
signum, 554
spline, 429

Function file, 50–52
Function function, 75
Fundamental frequency, 387
Fundamental principles (design problems), 127
fzero, 168–170
fzerosimp, 167

G
Gauss elimination. See Naive Gauss elimination
Gauss-Legendre formulas, 506–509
Gauss quadrature, 503–510
Gauss-Seidel method, 284–291
GaussNaive, 239
GaussPivot, 243–244
GaussSeidel, 288, 289
General linear least squares, 367–369
getframe, 69
Global optimum, 186
Global truncation error, 558
Golden ratio, 187
Golden section search, 187–192, 194–195
goldmin, 192
Goodness of fit, 336–344
Gradient, 524, 538, 621
gradient, 536–537
Gradient methods, 197
Graphics, 38–40
Graphics window, 25
Great Lakes, 318, 319
Greenhouse gases and rainwater, 144–147

H
H1 line, 50
Half-saturation constant, 351
Half-wave rectifier, 403
Harmonics, 387
Heat balance, 127
Heat flux, 452
Heat transfer, 452–456
Heated rod, 247–250, 620–621
Helix, 40, 41
help, 35, 41
Henry’s constant, 145
Hertz (Hz), 309, 383

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 648

INDEX 649

Heun’s method, 562–566
Heun’s method without iteration, 569
High-accuracy differentiation formulas, 525–528
Higher-order differential equations, 548
Higher-order Lagrange polynomials, 417
Higher-order Newton-Coles formulas, 481–482
Higher-order polynomial interpolation, 423
Hilbert matrix, 275
hist, 330
Histogram, 329, 331
hold off, 39
hold on, 39
Homogeneous, 305
Hooke’s law, 197, 209, 359, 525, 554
humps, 456, 513
Hydrogen ion concentration, 147
Hypolimnion, 452
Hypothesis testing, 322

I
i, 27
Identity matrix, 212, 215
IEEE double-precision format, 100
if, 57–58
if...else, 60
if...elseif, 60–61
Ill-conditioned/ill-conditioning, 95, 230, 242,

272–273, 559
Implicit, 127, 603
Implicit Euler’s method, 603
Import wizard, 57
Imprecision, 89, 90
Inaccuracy, 89, 90
Increment function, 555, 567
Incremental search, 131–134
incsearch, 132
Indefinite integral, 549
Indentation, 73
Independent variable, 5, 547
Indoor air pollution, 277–280
inf, 101
Infinite loop, 68, 69
Influence value, 427
Initial-value problems, 553–578

boundary-value problems, compared, 617, 618
Euler’s method, 555–561, 572–574
Heun’s method, 562–566
midpoint method, 566–567
overview, 555
RK methods, 567–572, 574–575
rk4sys, 576–578
systems of equations, 572–578

inline, 75
Inner product, 33, 103
input, 53
Input-output, 53–57
Integer representation, 96–97
Integration and differentiation, 459–545

definitions, 459, 463
differentiation. See Numerical differentiation
integration, 463–466

numerical integration formulas. See Numerical
integration formulas

numerical integration of functions. See
Numerical integration of functions

part organization, 460–461
unequal segments, 482–485

Intermittent fountain, 609
interp1, 446–449
interp2, 451
interp3, 451
Interpolating cubic, 415
Interpolation. See Polynomial interpolation;

Splines and piecewise interpolation
inv, 218
Inverse, 215. See also Matrix inverse
Inverse Fourier transform, 393, 394
Inverse interpolation, 420–421
Inverse quadratic interpolation, 164–166
Isle Royale National Park, 585
Iterative methods/calculation, 91, 284–302

computer algorithm, 93–95
error estimates, 92–93
Gauss-Seidel, 284–291
Jacobi method, 286, 287
nonlinear systems, 291–298
relaxation, 288–291

J
j, 27
Jacobi iteration, 286, 287
Jacobian, 294, 296
Jacobian matrix, 296
Joule’s law, 514

K
Kirchhoff’s current rule, 222, 223
Kirchhoff’s laws, 127, 222–223
Kirchhoff’s voltage rule, 223
Knot, 433

L
Lagging phase angle, 383
Lagrange, 419
Lagrange interpolating polynomial, 417–420
Lagrange polynomial, 165
Laplace equation, 301
Large computations, 102
Leading phase angle, 383
Least squares, 338
Least-squares regression, 322, 336–344, 348
Left division, 31, 220, 221, 229, 266, 370
length, 37
Line spectra, 391
Line width, 39
linear (linear interpolation), 446
Linear algebraic equations, 208–229

distributed variable problems, 207
Gauss elimination, 235–242
Gauss-Seidel, 284–291
general form, 205
lumped variable problems, 206–207

MATLAB, 220–222, 229
matrix form, 219–220
overview, 207–208

Linear convergence, 153
Linear interpolation, 322, 406, 409–411
Linear interpolation method, 140, 164
Linear Lagrange interpolating polynomial, 417
Linear least-squares regression, 336–344, 348
Linear regression, 348, 349–350
Linear spline, 431–433
Linearization of nonlinear relationships, 344–348
linspace, 30–31
linregr, 349–350
Lists

built-in functions, 642–643
M-file functions, 644

load, 56
Lobatto quadrature, 512
Local optimum, 186
Local truncation error, 557
Local variable, 52
log, 35
log2, 124n
log10, 349
logb(x), 124n
Logical conditions, 59–60
Logical variable, 609
Logistic model, 584
loglog, 46
logspace, 31
long, 27
long e, 27
long eng, 27
long g, 27
lookfor, 41
Loops, 65–69
Lorenz, Edward, 578
Lorenz equations, 578
Lotka, Alfred, 578
Lotka-Volterra equations, 578, 614
Lower Colorado River, 281, 282
Lower triangular matrix, 213
Lowest detectable frequency, 397
lu, 262
LU decomposition, 254n
LU factorization, 254–263

advantage of, 255
Gauss elimination, 256–263
MATLAB, 262–263
overview, 255–256
partial pivoting, 260–262

LUP factorization with pivoting, 260–262
Lumped drag coefficient, 5, 7, 17
Lumped variable problems, 206–207

M
M-files, 49–53. See also MATLAB M-files
Machine epsilon, 99
Maclaurin series expansion, 46, 92, 403
Main diagonal (matrix), 212
Main function, 53

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 649

650 INDEX

Manning’s equation, 85, 360
Mantissa, 97, 99
Marker styles, 39
Mass balance, 127
Mass-spring models, 587
Mass-spring system, 308
Mathematical modeling, 5
Mathematical operations, 32–35
MATLAB

animation, 69–70
blank lines, 25
built-in functions, 35–37. See also Function
calculator mode, 25
case sensitivity, 26
command prompt, 25
echo printing, 26
ellipsis, 31
format commands, 27
further resources, 40–41
graphics, 38–40
M-files, 49–53
nesting, 71–73
polynomial coefficients, 406
preallocation of memory, 66–67
relational operators, 59
rounding, 36
significant figures, 27
statistics toolbox, 330n
unit imaginary number, 27
windows, 25

MATLAB left division, 266
MATLAB M-files

bisect, 139–140
eulode, 560
fzerosimp, 167
GaussNaive, 239
GaussPivot, 243–244
GaussSeidel, 288, 289
goldmin, 192
incsearch, 132
Lagrange, 419
linregr, 349–350
natspline, 453–454
Newtint, 416–417
newtmult, 297
newtraph, 160–161
quadadapt, 512
rk4sys, 576–578
romberg, 502–503
TableLook, 434
TableLookBin, 435
trap, 473, 474
trapuneq, 483
Tridiag, 247

MATLAB matrix manipulation, 213–219
Matrix, 28

augmentation, 216
companion, 171
defined, 211
dimension, 211
Hilbert, 275

inverse, 215. See also Matrix inverse
Jacobian, 296
linear algebraic equations, and, 219–220
operating rules, 213–219
permutation, 215
row/column, 211
square, 212–213
transpose, 28, 215
Vandermonde, 281, 408

Matrix condition evaluation, 275–276
Matrix condition number, 274–277
Matrix division, 215
Matrix inverse, 215, 220, 229, 268–277

bungee jumper problem, 271–272
calculating the inverse, 268–270
ill-conditioning, 272–273
inv, 218
MATLAB, 276–277
matrix condition evaluation, 275–276
matrix condition number, 274–277
stimulus-response computations, 270–271
vector and matrix norms, 273–274

Matrix-matrix multiplication, 34
Matrix multiplication, 213, 214
max, 36, 243, 329
Maximum likelihood principle, 341
mean, 36, 329
Measure of location, 326–327
Measures of spread, 327
Median, 326
median, 329
Method of undetermined coefficients, 504–506
Michaelis-Menten equation, 351
Michaelis-Menten model, 148, 352
Midpoint method, 486, 566–567, 569
Midtest loop, 68
min, 36, 329
Minimax, 337
Minor, 232
Mixed partial derivative, 533
Modal class interval, 329
Mode, 326
mode, 329
Model error, 119–120
Model of heated rod, 247–250
Modified secant method, 162–163
Modulus of toughness, 519
Moler, Cleve, 166, 167, 422n, 511, 512
Monte Carlo simulation, 334
movie, 69
Multidimensional interpolation, 449–451
Multidimensional optimization, 195–197
Multimodal, 186
Multiple integrals, 486–488
Multiple linear regression, 365–367
Multistep methods, 597–601

N
Naive Gauss elimination, 235–242, 255

back substitution, 237
determinant evaluation, 244–245

forward elimination, 236–237
LU factorization, 256–263
M-file, 239
operation counting, 239–242
overview/phases, 236
partial pivoting, 242–244

nargin, 63–64
natspline, 453–454
Natural cubic spline, 442
Natural end condition, 443
Natural frequency, 315
nearest (nearest neighbor interpolation), 446
Nesting, 71–73
Neumann boundary condition, 624, 631
Newtint, 416–417
newtmult, 297
Newton-Coles formulas, 466–468, 481–482, 486
Newton-Cotes closed integration formulas, 468, 481
Newton-Cotes open integration formulas, 468, 486
Newton interpolating polynomial, 409–417
Newton linear-interpolation formula, 409
Newton-Raphson bungee jumper problem,

160–161
Newton-Raphson formula, 156
Newton-Raphson method, 156–161, 293–298
Newton’s law of cooling, 22, 542, 586
Newton’s laws of motion, 127
Newton’s second law of motion, 5, 524
Newton’s viscosity law, 525, 542
newtraph, 160–161
Non-self-starting Heun method, 597–600
Nongradient methods, 197
Nonhomogeneous, 305
Nonisothermal batch reactor, 586
Nonlinear regression, 371–372
Nonlinear systems of equations, 291–298
Norm, 273–274, 276
norm, 276
Normal distribution, 329, 541
Normal equation, 338
Normalization, 97, 99, 237
NOT, 59
Not-a-knot condition, 443
nth finite divided difference, 413
nth-order rate law, 544
Number systems, 95–96
Numerical differentiation, 110–114
Numerical double integral, 486, 487
Numerical integration. See Integration and

differentiation
Numerical integration formulas, 462–496

average temperature, 487
closed methods, 468–481
computing distance from velocity, 484–485
higher-order Newton-Coles formulas, 481–482
multiple integrals, 486–488
Newton-Coles formulas, 466–468, 481–482, 486
open methods, 486
Simpson’s rules, 475–481
trapezoidal rule, 468–475
unequal segments, 482–485

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 650

INDEX 651

Numerical integration of functions, 497–520
adaptive quadrature, 510–513
Gauss-Legendre formulas, 506–509
Gauss quadrature, 503–510
method of undetermined coefficients, 504–506
Richardson extrapolation, 498–500
Romberg integration, 500–503
three-point Gauss-Legendre formulas, 508
two-point Gauss-Legendre formulas, 506–508

Numerical methods
defined, 1
reformulation, 9
what’s covered in the book, 15, 16
why studied, 1–2

Nyquist frequency, 395, 397

O
Octal representation, 96
ODE. See Ordinary differential equation (ODE)
ode15s, 605
ode23, 590
ode23s, 605
ode23t, 605
ode23tb, 605
ode45, 591
ode113, 591, 601
odeset, 593
Ohm’s law, 223, 426, 514, 525
One-dimensional optimization, 185, 186–195
One-point iteration, 152
One-step method, 555
1/3 rule, 475–479, 481
ones, 29
Open integration formulas, 468, 486
Open root location methods, 151–181
Operation counting, 239–242
optimset, 169, 170
OR, 59
Ordinary differential equation (ODE), 547–641

adaptive methods and stiff systems.
See Adaptive methods and stiff systems

boundary-value problems. See Boundary-value
problems

defined, 547–548
initial-value problems. See Initial-value

problems
overview, 547–551
part organization, 551–552
stiffness, 601–607

Ordinary frequency, 309, 383
Orthogonal, 308
Oscillations, 423–425
Outer product, 33
Overdetermined, 220, 370
Overflow, 101
Overflow error, 98
Overrelaxation, 288
Overview of book, 16

numerical methods covered, 15
Part I, 2–3
Part II, 124–125

Part III, 207–208
Part IV, 323
Part V, 460–461
Part VI, 551–552

Oxygen sag, 202

P
Pane, 40
Parabola, 411
Parameters, 5
Part organization. See Overview of book
Partial derivatives, 532–533
Partial differential equation (PDE), 548
Partial pivoting, 242–244
Passed function, 75
Passing parameters, 78
pause, 68
pchip, 447
PDE, 548
Pentadiagonal system, 253
Period, 309, 381
Periodic function, 381
Permutation matrix, 215, 218, 226, 260
Phase angle, 383
Phase-plane plot, 579, 592
Phasor, 389
Phreatic aquifer, 639
pi, 27
Piecewise cubic Hermite interpolation,

447, 449
Piecewise cubic spline interpolation, 447
Piecewise function, 86
Piecewise interpolation, 444–449
Pipe friction, 173–177
Pivot element, 237
Pivot equation, 237
Pivoting, 242–245
Planck’s constant, 98
Platte Lake, Michigan, 452
Pliny the Elder, 608
Pliny’s intermittent fountain, 608–612
plot, 39
plot3, 582, 583
Point-slope method, 555
Poisson equation, 636, 640
polar, 47
poly, 171, 307
polyfit, 351, 409
Polynomial, 170–173
Polynomial coefficients, 407–408
Polynomial interpolation, 405–428

extrapolation, 421–423
inverse interpolation, 420–421
Lagrange, 419
Lagrange interpolating polynomial, 417–420
linear interpolation, 409–411
Newtint, 416–417
Newton interpolating polynomial, 409–417
oscillations, 423–425
polyfit, 409
polynomial coefficients, 407–408

polyval, 409
quadratic interpolation, 411–413

Polynomial method, 306–307
Polynomial regression, 361–365, 368–369
polyval, 351, 409
Positional notation, 96
Posttest loop, 68
Potential energy, 197
Power equation, 344, 345
Power method, 310–313
Power spectrum, 399–400
Preallocation of memory, 66–67
Precision, 89, 90
Predator-prey equation, 591
Predator-prey models, 578–583
Predictor-corrector approach, 563
Predictor equation, 562
Pretest loop, 68
Primary function, 53
Principal diagonal (matrix), 212
Principle of mass conservation, 206
prod, 36
Propagated truncation error, 557
Proportionality, 271, 272

Q
QR factorization, 266n, 370
quad, 512, 513
quadadapt, 512
quadl, 512, 513
Quadratic convergence, 157
Quadratic interpolation, 411–413
Quadratic polynomial, 411
Quadratic spline, 433, 435–438
Quadrature, 463
quiver, 538, 539

R
Rainwater, 144–147
Ralston’s method, 569
rand, 332
randn, 334
Random numbers, 331–336
Range, 327
range, 329
Rate equation, 547
Rayleigh, Lord, 17
realmax, 101
realmin, 101
Redlich-Kwong equation of state, 178
References (bibliography), 645–646
Regression. See Curve fitting
Relational operators, 59
Residual, 336, 340, 627
Resonant frequency, 315
Reverse-wrap-around order, 397, 399
Reynolds number, 17, 149, 174, 457
Richardson extrapolation, 498–500,

528–530
RK methods, 567–572, 574–575
RK-Fehlberg methods, 590

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 651

652 INDEX

RK4 phase plane plot, 580
RK4 time plot, 580
rk4sys, 576–578
Roller bearings, 203
romberg, 502–503
Romberg integration, 500–503
Root-locating techniques, 126–181

bisection, 134–140, 142–143
bracketing methods, 131–143
Brent’s method, 163–168
false position, 140–143
graphical methods, 128–129
incremental search, 131–134
initial guesses, 129–131
inverse quadratic interpolation, 164–166
Newton-Raphson method, 156–161
open methods, 151–181
secant methods, 161–163, 164
simple fixed-point iteration, 152–156

Root-mean-square current, 514–517
roots, 171, 307
round, 36
Rounding, 36
Roundoff error, 95–103, 557
Row-sum norm, 274
Row vector, 28, 211
Runge, Carl, 423
Runge-Kutta Fehlberg methods, 590
Runge-Kutta methods, 567–572, 574–575
Runge’s function, 423, 444, 445

S
Sampling frequency, 397
Saturation-growth-rate equation, 345
save, 56
Sawtooth wave, 403
Scalars, 26–27
Script file, 49–50
Secant methods, 161–163, 164
Second divided difference, 415
Second finite divided difference, 413
Second forward finite difference, 114
Second-order equation, 548
Second-order Lagrange interpolating

polynomial, 417
Second-order Michaelis-Menten

model, 352
Second-order polynomial, 411
Second-order RK methods, 568–569
Second-order Taylor series, 105
semilogy, 45
Sensitivity analysis, 78
Sequential search, 434
Shooting method, 621–628
short, 27
short e, 27
short eng, 27
short g, 27
Sideways parabola, 164, 165
sign, 61, 554n
Signed magnitude method, 96

Significand, 97
Significant figures, 27
Signum function, 554
Simple fixed-point iteration, 152–156
Simpson’s 1/3 rule, 475–479, 481
Simpson’s 3/8 rule, 479–481
Simpson’s rules, 475–481
Simultaneous nonlinear equations, 291–298
single-line if, 58
Single precision, 121
Singular, 230
Singular value decomposition, 370
Sinusoidal functions, 381–387
size, 219
Small numbers of equations. See Solving small

numbers of equations
Smearing, 103
Solving small numbers of equations

Cramer’s rule, 233, 234
elimination of unknowns, 234–235
graphical methods, 230–231

SOR, 288
sort, 36
Specifiers (colors, symbols, line types), 39
Spectral norm, 274
Spherical tank, 586
spline, 444
spline (piecewise cubic spline interpolation), 447
Spline function, 429
Splines and piecewise interpolation,

429–458
bilinear interpolation, 449–451
cubic spline, 438–443
end conditions, 443
linear spline, 431–433
multidimensional interpolation, 449–451
piecewise interpolation, 444–449
quadratic spline, 435–438
table lookup, 434–435

Square matrix, 212–213
Stage extraction process, 252
Standard deviation, 327
Standard error of the estimate, 341
Statics problem, 303
Statistics, 326–331
Statistics toolbox, 330n
std, 329
Steady-state calculation, 12
Step halving, 589
Stiff system, 601
Stiffness, 601–607
Stimulus-response computations, 270–271
Stokes drag, 17
Stopping criterion, 92
Strange attractor, 582
Streeter-Phelps model, 202
Structured programming, 57–69

decisions, 57–64
for...end, 65–67
if, 57–58
if...else, 60

if...elseif, 60–61
loops, 65–69
switch, 63, 64
while, 67
while...break, 67–68

Subfunction, 52
subplot, 40
Subtractive cancellation, 102, 243
Successive overrelaxation (SOR), 288
Successive substitution, 152, 292–293
sum, 36
Sunspots, 401–402
Superposition, 271, 272
Swamee-Jain equation, 174
switch, 63, 64

T
Table lookup, 434–435
TableLookBin, 435
tanh, 7n
Taylor series, 103–110

approximation of a function, 107
nth-order Taylor series expansion, 106
remainder, 108–109
truncation error, 109–110

Taylor theorem, 103
Telescoped, 420
Terminal velocity, 9
The Mathworks, Inc., 41
Thermal stratification, 452
Thermocline, 452, 456
Third divided difference, 415
Three-point Gauss-Legendre formulas, 508
3/8 rule, 479–481
tic, 69
Time domain, 390
Time plane, 391
Time series, 381
Time-variable computation, 12
toc, 69
Top-down design, 71
Torricelli’s law, 608
Total numerical error, 114–119
Total sample length, 397
Transient computation, 12
Transpose, 28
Transpose (matrix), 215
Transposition matrix, 215
trap, 473, 474
Trapezoidal rule, 468–475, 481, 566
Trapezoidal rule with unequal segments, 482
trapz, 484
trapuneq, 483
Trend analysis, 322
Trial and error, 123
Triangular wave, 403
Tridiag, 247
Tridiagonal matrix, 213
Tridiagonal system, 245–247
triplequad, 488
True fractional relative error, 91

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 652

INDEX 653

Truncation error, 103–104, 557–558
Tukey, J. W., 396
Two-dimensional interpolation, 449–451
Two-dimensional optimization, 185
Two mass-three spring system, 308
Two-point Gauss-Legendre formulas,

506–508
Two-segment trapezoidal rule, 488
Two-spring system, 198
2s complement, 97

U
Uncertain data, 120
Uncertainty, 89
Unconditionally stable, 603
Unconfined aquifer, 639
Underdetermined, 220
Underflow, 101
Underrelaxation, 288
Unimodal, 188
Unit imaginary number, 27
Upper triangular matrix, 212

V
van der Pol equation, 584, 605, 606
Vandermonde matrix, 281, 408
var, 329
varargin, 78
Variable

Boolean, 609
dependent, 5, 547
dummy, 81
independent, 5, 547
local, 52

Variable argument list, 63
Variance, 327
Vector, 28
Vector and matrix norms,

273–274
Vector-matrix multiplication, 33
Vectorization, 66
Viscosity, 405
Visualizing fields, 538–540
Voltage rule, 223
Volterra, 578

Volume integral, 466
von Karman equation, 149

W
Water-resources engineering, 358–359
while, 67
while...break, 67–68
who, 29
whos, 29
Wolf, Johann Rudolph, 401
Wolf sunspot number, 401
Word, 95
Work, calculation of, 489–492
www.mathworks.com, 41

Y
Young’s modulus, 200

Z
Zero-order approximation, 104
Zero-order Taylor series, 108
Zeros, 123
zeros, 29

cha01102_index_646-654.qxd 12/17/10 8:26 AM Page 653

www.mathworks.com

	Cover
	Title Page
	Copyright
	About the Author
	Contents
	Preface
	PART ONE: Modeling, Computers, and Error Analysis
	1.1 Motivation
	1.2 Part Organization
	CHAPTER 1 Mathematical Modeling, Numerical Methods, and Problem Solving
	1.1 A Simple Mathematical Model
	1.2 Conservation Laws in Engineering and Science
	1.3 Numerical Methods Covered in This Book
	1.4 Case Study: It’s a Real Drag
	Problems

	CHAPTER 2 MATLAB Fundamentals
	2.1 The MATLAB Environment
	2.3 Mathematical Operations
	2.2 Assignment

	2.4 Use of Built-In Functions
	2.5 Graphics
	2.6 Other Resources
	2.7 Case Study: Exploratory Data Analysis
	Problems

	CHAPTER 3 Programming with MATLAB
	3.1 M-Files
	3.2 Input-Output
	3.3 Structured Programming
	3.4 Nesting and Indentation
	3.5 Passing Functions to M-Files
	3.6 Case Study: Bungee Jumper Velocity
	Problems

	CHAPTER 4 Roundoff and Truncation Errors
	4.1 Errors
	4.2 Roundoff Errors
	4.3 Truncation Errors
	4.4 Total Numerical Error
	4.5 Blunders, Model Errors, and Data Uncertainty
	Problems

	PART TWO: Roots and Optimization
	2.1 Overview
	2.2 Part Organization
	CHAPTER 5 Roots: Bracketing Methods
	5.1 Roots in Engineering and Science
	5.2 Graphical Methods
	5.3 Bracketing Methods and Initial Guesses
	5.4 Bisection
	5.5 False Position
	5.6 Case Study: Greenhouse Gases and Rainwater
	Problems

	CHAPTER 6 Roots: Open Methods
	6.1 Simple Fixed-Point Iteration
	6.2 Newton-Raphson
	6.3 Secant Methods
	6.4 Brent’s Method
	6.5 MATLAB Function: fzero
	6.6 Polynomials
	6.7 Case Study: Pipe Friction
	Problems

	CHAPTER 7 Optimization
	7.1 Introduction and Background
	7.2 One-Dimensional Optimization
	7.3 Multidimensional Optimization
	7.4 Case Study: Equilibrium and Minimum Potential Energy
	Problems

	PART THREE: Linear Systems
	3.1 Overview
	3.2 Part Organization
	CHAPTER 8 Linear Algebraic Equations and Matrices
	8.1 Matrix Algebra Overview
	8.2 Solving Linear Algebraic Equations with MATLAB
	8.3 Case Study: Currents and Voltages in Circuits
	Problems

	CHAPTER 9 Gauss Elimination
	9.1 Solving Small Numbers of Equations
	9.2 Naive Gauss Elimination
	9.3 Pivoting
	9.4 Tridiagonal Systems
	9.5 Case Study: Model of a Heated Rod
	Problems

	CHAPTER 10 LU Factorization
	10.1 Overview of LU Factorization
	10.2 Gauss Elimination as LU Factorization
	10.3 Cholesky Factorization
	10.4 MATLAB Left Division
	Problems

	CHAPTER 11 Matrix Inverse and Condition
	11.1 The Matrix Inverse
	11.2 Error Analysis and System Condition
	11.3 Case Study: Indoor Air Pollution
	Problems

	CHAPTER 12 Matrix Inverse and Condition
	12.1 Linear Systems: Gauss-Seidel
	12.2 Nonlinear Systems
	12.3 Case Study: Chemical Reactions
	Problems

	CHAPTER 13 Eigenvalues
	13.1 Mathematical Background
	13.2 Physical Background
	13.3 The Power Method
	13.4 MATLAB Function: eig
	13.5 Case Study: Eigenvalues and Earthquakes
	Problems

	PART FOUR: Curve Fitting
	4.1 Overview
	4.2 Part Organization
	CHAPTER 14 Linear Regression
	14.1 Statistics Review
	14.2 Random Numbers and Simulation
	14.3 Linear Least-Squares Regression
	14.4 Linearization of Nonlinear Relationships
	14.5 Computer Applications
	14.6 Case Study: Enzyme Kinetics
	Problems

	CHAPTER 15 General Linear Least-Squares and Nonlinear Regression
	15.1 Polynomial Regression
	15.2 Multiple Linear Regression
	15.3 General Linear Least Squares
	15.4 QR Factorization and the Backslash Operator
	15.5 Nonlinear Regression
	15.6 Case Study: Fitting Experimental Data
	Problems

	CHAPTER 16 Fourier Analysis
	16.1 Curve Fitting with Sinusoidal Functions
	16.2 Continuous Fourier Series
	16.3 Frequency and Time Domains
	16.4 Fourier Integral and Transform
	16.5 Discrete Fourier Transform (DFT)
	16.6 The Power Spectrum
	16.7 Case Study: Sunspots
	Problems

	CHAPTER 17 Polynomial Interpolation
	17.1 Introduction to Interpolation
	17.2 Newton Interpolating Polynomial
	17.3 Lagrange Interpolating Polynomial
	17.4 Inverse Interpolation
	17.5 Extrapolation and Oscillations
	Problems

	CHAPTER 18 Splines and Piecewise Interpolation
	18.1 Introduction to Splines
	18.2 Linear Splines
	18.3 Quadratic Splines
	18.4 Cubic Splines
	18.5 Piecewise Interpolation in MATLAB
	18.6 Multidimensional Interpolation
	18.7 Case Study: Heat Transfer
	Problems

	PART FIVE: Integration and Differentiation
	5.1 Overview
	5.2 Part Organization
	CHAPTER 19 Numerical Integration Formulas
	19.1 Introduction and Background
	19.2 Newton-Cotes Formulas
	19.3 The Trapezoidal Rule
	19.4 Simpson’s Rules
	19.5 Higher-Order Newton-Cotes Formulas
	19.6 Integration with Unequal Segments
	19.7 Open Methods
	19.8 Multiple Integrals
	19.9 Case Study: Computing Work with Numerical Integration
	Problems

	CHAPTER 20 Numerical Integration of Functions
	20.1 Introduction
	20.2 Romberg Integration
	20.3 Gauss Quadrature
	20.4 Adaptive Quadrature
	20.5 Case Study: Root-Mean-Square Current
	Problems

	CHAPTER 21 Numerical Differentiation
	21.1 Introduction and Background
	21.2 High-Accuracy Differentiation Formulas
	21.3 Richardson Extrapolation
	21.4 Derivatives of Unequally Spaced Data
	21.5 Derivatives and Integrals for Data with Errors
	21.6 Partial Derivatives
	21.7 Numerical Differentiation with MATLAB
	21.8 Case Study: Visualizing Fields
	Problems

	PART SIX: Ordinary Differential Equations
	6.1 Overview
	6.2 Part Organization
	CHAPTER 22 Initial-Value Problems
	22.1 Overview
	22.2 Euler’s Method
	22.3 Improvements of Euler’s Method
	22.4 Runge-Kutta Methods
	22.5 Systems of Equations
	22.6 Case Study: Predator-Prey Models and Chaos
	Problems

	CHAPTER 23 Adaptive Methods and Stiff Systems
	23.1 Adaptive Runge-Kutta Methods
	23.2 Multistep Methods
	23.3 Stiffness
	23.4 MATLAB Application: Bungee Jumper with Cord
	23.5 Case Study: Pliny’s Intermittent Fountain
	Problems

	CHAPTER 24 Boundary-Value Problems
	24.1 Introduction and Background
	24.2 The Shooting Method
	24.3 Finite-Difference Methods
	Problems

	APPENDIX A: MATLAB BUILT-IN FUNCTIONS
	APPENDIX B: MATLAB M-FILE FUNCTIONS
	BIBLIOGRAPHY
	INDEX

