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Abstract. The aim of this paper is to establish the large time well-posedness of the quadratic Schrödinger

equation in 2D and 3D. Let ε > 0 be the size of an initial datum, which is sufficiently small. Then, by

using the operator L = x− 2it∇ and the associated weighted Sobolev spaces, we show that there exists

a solution whose life-span T is given by T = e1/ε (almost global) in 2D and T =∞ in 3D.

1. Introduction

In this paper, we are concerned with the well-posedness of the Schrödinger equations with the poly-

nomial nonlinearity;

i∂tu−∆u = Nα(u, ū),(1.1)

where Nα(u) is a homogeneous function of u and ū of order α. This problem is easily solvable if α is

large enough, which is the case when the linear term is dominant. The difficulty in the study of the

large time behavior of solutions for small α’s lies in the fact that the structure of the nonlinearity plays

a significant role. This can be understood, for example, in terms of the Strauss exponents; α0 =
√

2 + 1

in 2D and α0 = 2 in 3D ([7]). For α larger than the Strauss exponent, there exists global-in-time

solutions in Lα+1 for small data by using the Strichartz estimates ([1, 8]). For detailed list of known

results for the solvability of (1.1), see [5].

In this paper, we consider the Schrödinger equation with quadratic nonlinearity, α = 2, which is

equal to or less than the Strauss exponent in 3D or 2D. Therefore, small initial data do not guarantee a

global existence of a solution in L3. (See Appendix for details.) To establish the existence of a solution

whose life span is beyond the existence time in L3, we now use the maximal decay rate of the linear

part in L∞; ∥∥eit∆u0

∥∥
L∞ . t

− d
2 ‖u0‖L1 ,

which will lead to a global existence in 3D (relatively) easily. However, the structure of the nonlinearity

plays a significant role in 2D; the quadratic nonlinear terms decay in time with the same speed as

the linear term. Thus, the special oscillating structure of nonlinear terms must be taken into account.

Along this direction, the role of the nonlinearity is well understood in [3, 5], where they establish the
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existence of a global solution of the Schrödinger equation

i∂tu−∆u = N2(u), N̂2(u)(ξ) =

∫
R2

Q(ξ, η)û(ξ − η)û(η)dξ,(1.2)

where

(1) Q = 1 in 3D (N(u) = u2),

(2) Q is linear for |(ξ, η)| ≤ 1 and Q = 1 for |(ξ, η)| ≥ 2 in 2D. (N2(u) behaves like u∇u for low

frequency part and u2 for large frequency part.)

The main idea in [3, 5] is the so called space-time resonance, where the particular structure of N2(u) in

fact cancels the space-time resonant set, which is equal to the zero frequencies of the interacting waves.

The goal of this paper is to provide a different approach of the work [3, 5] to the equation

i∂tu−∆u = u2 + ū2 + |u|2.(1.3)

We observe that the (classical) weighted L2 estimates and L∞ decay of solutions are enough to prove

the almost global existence of a solution in 2D (which is weaker than the result in [5], but without

the derivative structure in N(u)) and the global existence in 3D. Moreover, our method covers the

nonlinearity |u|2, which cannot be addressed by the space-time resonance method due to the large

resonance set.

The weighted L2 spaces are defined by the operator L = (L1, · · · ,Ld), Lj = xj − 2it∇j , which is

unitarily equivalent to x and 2it∇ such as

Lj = U(t)xjU(−t) = eix
2/t(2it∇j)e−ix

2/t, U(t) = eit∆ is the free Schrödinger operator.

This method was developed by Klainerman([2]) and was used in [6] to establish the global well-posedness

for the nonlinear Schrödinger equation of the form i∂tu − ∆u = |u|2qu. In this paper, we follow the

same approach in [6].

Notation and main result. Let H(0,n) be the space of complex valued functions with

H(0,n)[f ] =

n∑
m=0

(‖∇mf‖L2 + ‖Xmf‖L2) , n ∈ N,(1.4)

where X is the operator f 7→ xf , x = (x1, · · · , xd). And the fact that the linear operator (i∂t − ∆)

commutes with the operator L = (x− 2it∇) leads to the time-dependent norm;

H(t,n)[f ] =
n∑

m=0

(‖∇mf‖L2 + ‖Lmf‖L2) .(1.5)

The first term in (1.5) is the usual energy norm and it is easy to show that u satisfies

‖u(t)‖Hs . ‖u0‖Hs +

∫ t

0
‖u(s)‖L∞‖u(s)‖Hsds.(1.6)
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Therefore, it is natural to obtain decay estimates of ‖u(t)‖L∞ and the bound of second term in (1.5)

similar to (1.6). It is shown in [6] that ‖u(t)‖L∞ decays as

‖u(t)‖L∞ . (1 + t)−d/2H(t,n)[u], n >
d

2
.(1.7)

The main contribution of the paper is to show that a solution of (1.3) satisfies the estimate

d

dt
‖L ku‖L2 . ‖u‖L∞‖L ku‖L2 , k = 1, 2(1.8)

which is enough to show the following result.

Theorem 1.1. Let u0 be an initial datum such that H(0,2)[u0] = ε which is sufficiently small. Then,

there exists a solution u of (1.3) such that sup
0<t≤T

H(t,2)[u] . ε with T = e1/ε in 2D and T =∞ in 3D.

2. Proof of Theorem

To prove Theorem 1.1, we need the following lemma. For detailed proofs, see [6].

Lemma 2.1. (1) H(0,n) = H(t,n), (2)
∥∥(L f)2

∥∥
L2 . ‖f‖L∞‖L 2f‖L2.

The first statement of Lemma 2.1 implies that ‖L kū‖L2 . H(t,k)[u] because H(0,n) norm is indepen-

dent of the complex conjugate. This property is the main ingredient of the proof of Theorem 1.1.

Proof of Theorem. We now take L to the equation (1.3).

(i∂t −∆)L u = 2uL u+ 2ūL ū+ ūL u+ uL ū− xu2 − xū2 − x|u|2.(2.1)

Then, by Lemma 2.1, we have

d

dt
‖L u‖2L2 . ‖u‖L∞

(
‖L u‖2L2 + ‖L u‖L2H(t,1)[u]

)
.(2.2)

We take L one more time to the equation (1.3). The direct computation yields that

L 2
(
u2 + ū2 + |u|2

)
= x2

(
u2 + ū2 + |u|2

)
− 4itx (u∇u+ ū∇ū+ u∇ū+ ū∇u)

− 2itδij
(
u2 + ū2 + |u|2

)
+ 8t2

(
(∇u)2 + (∇ū)2 + |∇u|2

)
− 4t2

(
2u∇2u+ 2ū∇2ū+ u∇2ū+ ū∇2u

)
.

(2.3)

In (2.3), we can estimate x2u2 and xut∇u (and variant in ū) in terms of H(t,2)[u]. However, terms

tδij
(
u2 + ū2 + |u|2

)
and t2

(
u∇2u+ ū∇2ū+ u∇2ū+ ū∇2u

)
cannot be estimated directly in H(t,2)[u].

We thus compute further. Since

L 2u = x2u− 4itx∇u− 2itδiju− 4t2∇2u, L 2ū = x2ū− 4itx∇ū− 2itδij ū− 4t2∇2ū,
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by properly multiplying these terms and conjugates with u and ū, we have

uL 2u = x2u2 − 4itxu∇u− 2itδiju
2 − 4t2u∇2u,(2.4a)

ūL 2ū = x2ū2 − 4itxū∇ū− 2itδij ū
2 − 4t2ū∇2ū,(2.4b)

ūL 2u = x2|u|2 − 4itxū∇u− 2itδij |u|2 − 4t2ū∇2u,(2.4c)

uL 2ū = x2|u|2 − 4itxu∇ū− 2itδij |u|2 − 4t2u∇2ū.(2.4d)

Therefore, we can express tδij
(
u2 + ū2 + |u|2

)
and t2

(
u∇2u+ ū∇2ū+ u∇2ū+ ū∇2u

)
in terms of L 2

and x2u2 and xut∇u (and variants in ū) as follows.

8t2u∇2u = −u
(
L 2u+ L 2ū

)
+ 2x2u2,(2.5a)

8t2ū∇2ū = −ū
(
L 2u+ L 2ū

)
+ 2x2ū2,(2.5b)

2itδiju
2 = −1

2
u
(
L 2u−L 2ū

)
− 4itxu∇u,(2.5c)

2itδij ū
2 =

1

2
ū
(
L 2u−L 2ū

)
− 4itxū∇ū,(2.5d)

4t2u∇2ū = −1

2

(
uL 2u− ūL 2u

)
+ x2|u|2 − 4itxu∇ū,(2.5e)

4t2ū∇2u = −1

2

(
ūL 2u− uL 2u

)
+ x2|u|2 + 4itxū∇u,(2.5f)

2itδij |u|2 = −1

2

(
ūL 2ū− uL 2u

)
+ x2|u|2 − 2itxū∇u− 2itxu∇ū− 2t2ū∇2u+ 2t2u∇2ū,(2.5g)

2t2ū∇2u+ 2t2u∇2ū =
1

4

(
uL 2u+ ūL 2u+ ūL 2u+ uL 2u

)
+ x2|u|2 + 2itxu∇ū− 2itxū∇u.(2.5h)

In sum, we have

(i∂t −∆)L 2u =
11

4
uL 2u+ 2ūL 2ū+

5

4
ūL 2u+

1

2
uL 2ū+

3

4
uL 2u+

1

2
ūL 2u

+ 8t2
(
(∇u)2 + (∇ū)2 + |∇u|2

)
− x2

(
u2 + ū2 + |u|2

)
− 4itxū∇u− 8itxu∇ū.

(2.6)

By Lemma 2.1,

d

dt
‖L 2u‖2L2 . ‖u‖L∞

(
‖L 2u‖2L2 + H2

(2,t)[u]
)
.(2.7)

Combining (1.6), (2.2) and (2.7), we finally have

H(t,2)[u] . ε+

∫ t

0
‖u(s)‖L∞H(s,2)[u]ds(2.8)

Let sup
0<t<T

H(t,2)[u] := ‖u‖XT . By (1.7),

‖u‖XT . ε+ lnT‖u‖2XT in 2D,

‖u‖XT . ε+ ‖u‖2XT in 3D.
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In 3D, we can take T =∞, while in 2D we choose T such that ε× lnT ' 1
2 , which leads the existence

of a solution u whose life span is given by T ' e1/ε in 2D. This completes the proof. �

3. Appendix

As mentioned in Introduction, we show the existence of a solution for the Schrödinger equation (1.3)

in Lα+1. To this end, we begin with the Strichartz estimate.

Lemma 3.1 (Lq − Lq′ Estimate). Let U(t) = eit∆ be the Schrödinger operator. For 1 ≤ q ≤ 2,

‖U(t)f‖Lq′ . t
− d

2

(
2
q
−1

)
‖f‖Lq .

3.1. 3D case. Since α = 2, we use L3 − L3/2 estimate.

‖u(t)‖L3 .
1√
t
‖u(1)‖

L
3
2

+

∫ t

1

1√
t− s

‖u(s)‖2L3ds

.
1√
t
‖u(1)‖

L
3
2

+

(
sup

1≤s≤t

√
s‖u(s)‖L3

)2 ∫ t

1

1√
t− s

1

s
ds

.
1√
t
‖u(1)‖

L
3
2

+

(
sup

1≤s≤t

√
s‖u(s)‖L3

)2

× ln t√
t
,

(3.1)

where we take the initial data at t = 1 for the convenience when performing estimates since 1
s is not

integrable at 0. We set ‖u‖XT := sup
0≤t≤T

√
t‖u(t)‖L3 . Then,

‖u‖XT . ‖u0‖
L

3
2

+ lnT‖u‖2XT(3.2)

which implies that there exists a unique solution whose life span T is given by

T ∼ e
1
ε , with ε = ‖u(1)‖

L
3
2
<< 1.

3.2. 2D case. We now apply the same argument to the 2D case.

‖u(t)‖L3 . t−
1
3 ‖u0‖

L
3
2

+

∫ t

0
(t− s)−

1
3 ‖u(s)‖2L3ds

. t−
1
3 ‖u0‖

L
3
2

+

(
sup

0≤s≤t
sβ‖u(s)‖L3

)2 ∫ t

0
(t− s)−

1
3 s−2βds

. t−
1
3 ‖u0‖

L
3
2

+ t
2
3
−2β ·

(
sup

0≤s≤t
sβ‖u(s)‖L3

)2

.

(3.3)

We choose β such that 2
3 − 2β = −β, i.e. β = 2

3 . Then,

sup
0≤t≤T

t2/3‖u(t)‖L3 . T 1/3 · ‖u0‖
L

3
2

+

(
sup

0≤t≤T
t2/3‖u(t)‖L3

)2

.(3.4)
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We set ‖u‖XT := sup
0≤t≤T

t2/3‖u(t)‖L3 . Then,

‖u‖XT . T
1/3 · ‖u0‖

L
3
2

+ ‖u‖2XT(3.5)

which implies the existence of a solution whose life span is given by T ∼ 1/ε, ε = ‖u0‖
L

3
2
.
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