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Abstract—The dissimilarity of evidence, which represent the
degree of dissimilarity between bodies of evidence (BOE’s), has
attracted more and more research interests and has been used in
many applications based on evidence theory. In this paper, some
novel dissimilarities of evidence are proposed by using fuzzy sets
theory (FST). The basic belief assignments (bba’s) are first trans-
formed to the measures in FST and then by using the dissimilarity
(or similarity measure) in FST, the dissimilarities between bba’s
are defined. Some numerical examples are provided to verify the
rationality of the proposed dissimilarities of evidence.
Keywords: Evidence theory, dissimilarity, distance of evi-
dence, fuzzy sets theory.

I. INTRODUCTION

Dempster-Shafer evidence theory [1], which can effectively
represent the uncertain information and implement the evi-
dence combination, has been widely used in many applications
in the fields of information fusion. With the development of
evidence theory, several refined or extended evidence theories
have emerged, e.g. the transferable belief model (TBM) [2]
and DSmT [3], which can counteract some drawbacks of
traditional evidence theory.

Recently, the research on dissimilarity measures in evi-
dence theory has attracted more and more interest [4]. The
dissimilarity measure of evidence can describe the degree of
dissimilarity or similarity between bodies of evidence (BOE’s).
Several types of dissimilarities of evidence have been proposed
and used in many applications such as performance evaluation
[5] [6], sensor reliability evaluation [7], conflict evidence com-
bination [8], conflict modeling in evidence combination [9],
target association [10], clustering analysis [11], etc. In 1993,
Tessem et al. [12] proposed the betting commitment distance
to evaluate the approximations for efficient computation in
evidence theory. Two basic belief assignments (bba’s) are first
transformed into two pignistic probability, then the dissimi-
larity between the two pignistic probability are calculated by
using Minkowski family distance to represent the dissimilarity
between their corresponding original bba’s. Bauer [13] did the
similar work in 1997. In Liu’s work [9], she jointly used the
betting commitment distance and the conflicting coefficient
to represent the conflict between BOE’s. Fixsen and Mahler
[5] proposed a “classification miss-distance metric” based
on the bba’s and the Bayesian a priori distribution matrix.
Jousselme [6] proposed a distance of evidence based on the
geometric interpretation of evidence and Euclidean metrics.

In Jousselme’s distance, Jaccard coefficient representing the
similarity between focal elements, is used. In Deng’s work
[8], Jousselme’s distance is used for modifying the BOE’s
to suppress the counter-intuitive results in highly conflicting
evidence combination according to traditional Dempster’s rule.
Zouhal and Denoeux [14] defined a mean square distance
based on pignistic probabilities transformed from bba’s. It can
effectively improve the performance of the classifier based on
k-NN rule and Dempster’s rule of combination. In Wen et
al.’s work [15], a cosine measure is defined to describe the
similarity between two bba’s. In the work of Liu and Dezert
[16], a novel dissimilarity of evidence is defined based on
DSmP and Minkowski’s distance. There are still other types
of dissimilarities of evidence, details can be found in one latest
paper of Jousselme [4], which is a good overview of all the
available research works of dissimilarities of evidence.

Based on the available researches, we find that there are
two types of definition of dissimilarities of evidence. For the
first type, the dissimilarity of evidence is calculated directly
based on the bba’s by mechanical using the distance measures
in Euclidean geometry. For example, Jousselme’s distance [6],
Fixsen and Mahler’s similarity [5] and Wen’s cosine similarity
[15], etc. For the second type, the bba’s are first transformed to
the probabilities by some certain probabilistic transformation
approaches and then the dissimilarity of evidence is calculated
indirectly based on the distances between probabilities. For
example, the betting commitment distance [12], the DSmP
dissimilarity [16] and the mean square distance [14] based on
pignistic probability. To define the dissimilarity of evidence
directly based on bba’s can avoid the loss of information
caused by the probability transformation, but it is lack of solid
foundation and relatively difficult. This is because to design
strict distance metrics in the brand new evidential geometric
space is relatively hard and needs lots of original and ground-
breaking works. The available dissimilarities of evidence are
used for reference from the Euclidean space. Since the geo-
metric interpretation of evidence theory is still lacking of solid
justifications, the mechanical use of the distance measures in
Euclidean geometry might not be proper. For the second type
definitions, although the probability transformation generally
yields to a loss of information which has an impact on the
measurement precision of dissimilarity between bba’s, several
simple dissimilarities based on subjective probability have
been proposed and are still commonly used. It should be
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noted that although several works named their definitions of
dissimilarity between bba’s as “distance”, unless they can
be proved to satisfy the requirements [6] of nonnegativity,
nondegeneracy symmetry and triangle inequality, they can only
be called the “dissimilarity” but not the “distance”.

In this paper we propose new indirect ways to define
dissimilarities between evidences. Our major idea is described
as follows. Fuzzy sets theory [17] is also an effective tool
to handle uncertainty. Besides the probability, the basic belief
assignments (random sets) can also be transformed into fuzzy
sets through fuzzy membership functions (FMF’s) and the
intuitionist fuzzy sets [18]. Furthermore, for fuzzy sets and the
intuitionist fuzzy sets, there already exist some dissimilarity
(or similarity) measures [20] [21] [22] [23]. Thus we present
some new dissimilarity measures between evidences which are
defined from the dissimilarity (or similarity) measures in fuzzy
sets and intuitionist fuzzy sets. Some numerical examples and
related analysis are provided, which show the rationality of
our new proposed dissimilarity measures between evidences.

II. BASICS OF EVIDENCE THEORY

In Dempster-Shafer evidence theory (DST) [1], all the
elements in the frame of discernment (FOD) Θ are mutually
exclusive. A basic belief assignment (bba, also called mass
function) is a mapping 𝑚 : 2Θ → [0, 1] satisfying:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (1)

Belief function and plausibility function are defined respec-
tively in (2) and (3):

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (2)

𝑃𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅𝑚(𝐵) (3)

Dempster’s rule of combination for combining two distinct
BOE’s characterized by bba’s 𝑚1(.) and 𝑚2(.) is defined by:

𝑚(𝐴) =

⎧⎨
⎩

0, 𝐴 = ∅
∑

𝐴𝑖∩𝐵𝑗=𝐴

𝑚1(𝐴𝑖)𝑚2(𝐵𝑗)

1−𝐾 , 𝐴 ∕= ∅
(4)

where coefficient 𝐾 =
∑

𝐴𝑖∩𝐵𝑗=∅ 𝑚1(𝐴𝑖)𝑚2(𝐵𝑗) represent
the conflict between the BOE’s.

Dempster’s rule of combination is recommended to do the
fusion of BOE’s in DST [1]. This rule is both associative
and commutative and can be extended for combining 𝑛 > 2
distinct sources of evidence as well. Its behavior is however
very questionable as soon as the sources become highly
conflicting and that’s why other rules have been proposed in
the literature [3] for dealing with this unexpected behavior.

III. CLASSICAL DISSIMILARITIES BETWEEN BBA’S

Dissimilarity measure between bba’s is used to represent
the degree of dissimilarity between different BOE’s. As afore-
mentioned in Section I there have emerged several definitions
for dissimilarities between bba’s. There are two major types of
definitions. The first type is established directly based on bba’s.

It is based on the geometric interpretation of evidence theory.
The second type is indirectly based on probability measures.
The bba’s are first transformed to subjective probabilities
based on some probability transformations. Then a distance
between probabilities is used to describe the dissimilarity
between BOE’s. In this section, we recall two kinds of widely
used dissimilarities of evidence including Jousselme’s distance
(representative of the first type) and betting commitment
distance (representative of the second type).

A. Jousselme’s distance

Jousselme [6] proposed a distance of evidence denoted by
𝑑𝐽 according to (5) using the form of Euclidean metric.

𝑑𝐽 (𝑚1,𝑚2) =

√
(𝑚1 −𝑚2)

𝑇
Jac (𝑚1 −𝑚2) (5)

For the element in Jaccard’s weighting matrix Jac,

Jac(𝐴,𝐵) =
∣𝐴 ∩𝐵∣
∣𝐴 ∪𝐵∣ (6)

Jousselme’s distance1 has been used in weighted average
evidence combination and in characterizing the reliability
of information sources [7] [8]. In some work, Jousselme’s
distance was used to construct another similarity measure [24].

B. Tessem’s distance

In Tessem’s work [12], a distance of evidence is based
on the pignistic probability transformation used in TBM [2].
Each bba 𝑚(.) is transformed to the corresponding pignistic
probability according to (7):

BetP𝑚(𝐴) =
∑

𝐵⊆Θ

∣𝐴 ∩𝐵∣
∣𝐵∣ 𝑚(𝐵) (7)

where 2Θ is the power set of the FOD. The betting commit-
ment distance (or Tessem’s distance) 𝑑𝑇 is computed by:

𝑑𝑇 (𝑚1,𝑚2) = max
𝐴⊆Θ

{∣BetP1(𝐴) − BetP2(𝐴)∣} (8)

Tessem’s distance has been used in conflicting evidence
combination and in Liu’s work, it has been jointly used
with conflict coefficient 𝐾 in establishing a two-dimensional
measure to better describe the conflict between BOE’s. In fact,
Tessem’s distance belongs to Minkowski’s family of distances.

Besides Jousselme’s and Tessem’s distances, there exist
other dissimilarities in evidence theory which all have their
own advantages and drawbacks (see details in [6]). Until now,
there is no well-admitted dissimilarity measure between bba’s.
The search for new dissimilarities between bba’s is still a main
problem for the community working with belief functions.

1Actually the measure 𝑑𝐽 (𝑚1,𝑚2) has not be proved to be a true distance
measure in [6] because no proof of the strict positiveness of Jac matrix has
been published so far. We conjecture it is.
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IV. NEW DISSIMILARITIES BASED ON FUZZY SETS THEORY

As shown in the previous section, Tessem’s distance is
not established directly based on bba’s, but through a lossy
BetP transformation of bba’s into subjective probabilities.
The reason for such an operation is that for probability,
there exist several well-established definitions of distances
or dissimilarities between probabilities. The difficulty for
designing the distance or dissimilarity of evidence is thus
reduced in comparison to a direct construction of a distance
or dissimilarity from bba’s (a lossless approach).

Besides the probability, there exist other types of measures
of uncertainty, e.g. the fuzzy membership function in fuzzy set
theory (FST), etc. If we are able to transform the bba’s into a
measure of uncertainty used in FST and use the similarity (or
dissimilarity) definitions in FST, then dissimilarity of evidence
can be also derived. Our contribution in this paper is to
construct such dissimilarity between bba’s indirectly from
FST. Some basics of FST are recalled in next subsection. Then
new definitions of dissmilarity will be presented.

A. Fuzzy sets and fuzzy membership function

The fuzzy sets theory was proposed by Zadeh [17]. Fuzzy
mathematics shows its simplicity and power when it is used
to process the large-scale and complicated systems which can
not be processed precisely. It may complement some defects
of classical mathematics. A fuzzy set is defined as follows:
Let 𝜇𝐴 : Θ �→ [0, 1], 𝜃 �→ 𝜇𝐴(𝜃) be a given mapping over
Θ, then 𝐴 is called a fuzzy set over Θ and 𝜇𝐴(𝜃) is called
the fuzzy membership function (FMF) of 𝐴. When there is no
confusion, 𝜇𝐴(𝜃) is briefly denoted by 𝜇(𝜃) in the sequel.

B. Intuitionistic fuzzy sets

Intuitionistic fuzzy set has been proposed by Atanassov in
[18] and it is one of the possible generalizations of fuzzy
sets theory. It appears to be relevant and useful in some
applications. An intuitionist fuzzy set is defined as follows:
Let Θ = 𝜃1, 𝜃2, ..., 𝜃𝑛 be a finite universal set. An intuitionist
fuzzy set 𝐴 in Θ is an object of the following form:

𝐴 = {< 𝜃𝑗 , 𝜇𝐴(𝜃𝑗), 𝜈𝐴(𝜃𝑗) > ∣𝜃𝑗 ∈ Θ} (9)

where the functions defined in (10) and (11)

𝜇𝐴 : Θ → [0, 1], 𝜃𝑗 ∈ Θ → 𝜇𝐴(𝑥𝑗) ∈ [0, 1] (10)

𝜈𝐴 : Θ → [0, 1], 𝜃𝑗 ∈ Θ → 𝜈𝐴(𝜃𝑗) ∈ [0, 1] (11)

define the degree of membership and degree of non-
membership of the element 𝜃𝑗 ∈ Θ to the set 𝐴 ⊆ Θ,
respectively, and for every 𝜃𝑗 ∈ Θ, 0 ≤ 𝜇𝐴(𝜃𝑗)+ 𝜈𝐴(𝜃𝑗) ≤ 1.
The 𝜋𝐴(𝜃𝑖) defined in (12)

𝜋𝐴(𝜃𝑖) = 1− 𝜇𝐴(𝜃𝑖)− 𝜈𝐴(𝜃𝑖) (12)

is called the the intuitionist fuzzy index (or the hesitation
degree) of the element 𝜃𝑗 in the set 𝐴. When there is no
confusion, 𝜇𝐴(𝜃) and 𝜈𝐴(𝜃) is briefly denoted by 𝜇(𝜃) and
𝜈(𝜃) in the sequel.

There are several available similarity (or dissimilarity) defi-
nitions in fuzzy sets and intuitionist fuzzy sets. There exist
relationships between FST and evidence theory (DST) and
several works have pointed out these relationships already. If
the bba’s can be properly transformed into FMF or intuitionist
fuzzy sets, the dissimilarity of evidence can be constructed
directly by using similarity (or dissimilarity) measures in FST.

C. New dissimilarities between bba’s based on FST

Some methods for converting a given bba 𝑚(.) into a FMF
𝜇(.) and an intuitionist fuzzy set are presented here.

1) Converting a bba into a FMF
Let’s consider a given FOD Θ = {𝜃1, 𝜃2, ..., 𝜃𝑛}. Any bba

𝑚(.) defined over Θ can be transformed into FMF from the
plausibility on singletons 𝜃1, 𝜃2,. . . , 𝜃𝑛 by taking

𝜇 =

⎡
⎢⎢⎢⎣

𝜇(𝜃1)
𝜇(𝜃2)

...
𝜇(𝜃𝑛)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

𝑃𝑙(𝜃1)
𝑃𝑙(𝜃2)

...
𝑃𝑙(𝜃𝑛)

⎤
⎥⎥⎥⎦ (13)

or from the credibility on singletons by taking

𝜇 =

⎡
⎢⎢⎢⎣

𝜇(𝜃1)
𝜇(𝜃2)

...
𝜇(𝜃𝑛)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

𝐵𝑒𝑙(𝜃1)
𝐵𝑒𝑙(𝜃2)

...
𝐵𝑒𝑙(𝜃𝑛)

⎤
⎥⎥⎥⎦ (14)

2) Converting a bba into an intuitionist fuzzy set
Recently, there have emerged some research works on the

relationship between the intuitionist fuzzy sets and the frame-
work of DST. For a given FOD Θ = {𝜃1, 𝜃2, ..., 𝜃𝑛}, 𝑚(.)
is the bba defined over Θ. The bba 𝑚(.) can be transformed
into a measure of intuitionist fuzzy sets as follows: at first,
one calculates the plausibility and belief functions of the
singletons 𝜃1, 𝜃2, . . . , 𝜃𝑛, and then for 𝜃𝑖 ∈ Θ, 𝑖 = 1, ..., 𝑛,
the membership function and non-membership function for an
intuitionist fuzzy set are defined as follows [19]:{

𝜇(𝜃𝑖) = 𝐵𝑒𝑙(𝜃𝑖)
𝜈(𝜃𝑖) = 1− 𝑃𝑙(𝜃𝑖)

(15)

For two bba’s 𝑚1(.) and 𝑚2(.) defined on the FOD
Θ = {𝜃1, 𝜃2, ..., 𝜃𝑛}, by using the transformation approaches
and the similarity (or dissimilarity) measures commonly used
in fuzzy sets theory, we propose the two following new
dissimilarity measures between bba’s:

∙ FMF-based dissimilarities 𝑑𝐹 : One transforms bba’s 𝑚1(.)
and 𝑚2(.) into their corresponding FMFs: 𝜇(1) and 𝜇(2). To
avoid zero in denominator in the very special case when all
𝜃𝑖 are not focal elements, we use FMF based on (13) in the
simulations in next section. As soon as at least one singleton
𝜃𝑖 is a focal element of the bba 𝑚(.), then (13) or (14) can
be used for generating FMF from 𝑚(.). From the similarity
definition between FMFs defined in [20], 𝑑𝐹 is defined by:

𝑑𝐹 (𝑚1,𝑚2) = 1−
∑𝑛

𝑖=1 (𝜇
(1)(𝜃𝑖) ∧ 𝜇(2)(𝜃𝑖))∑𝑛

𝑖=1 (𝜇
(1)(𝜃𝑖) ∨ 𝜇(2)(𝜃𝑖))

(16)
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In (16), the operator ∧ represent conjunction(min) and ∨
represent the disjunction(max). For two FMFs defined on
{𝜃1, 𝜃2, 𝜃3}, 𝜇1 = [0.5, 0.3, 0.7] and 𝜇2 = [0.3, 0.6, 0.2],
𝜇1 ∧ 𝜇2 = [0.3, 0.3, 0.2] and 𝜇1 ∨ 𝜇2 = [0.5, 0.6, 0.7].
∙ Intuitionistic fuzzy sets-based dissimilarities 𝑑𝐼𝐹1, 𝑑𝐼𝐹2,
or 𝑑𝐼𝐹3: one transforms 𝑚1(.) and 𝑚2(.) into their corre-
sponding intuitionist fuzzy sets: {< 𝜃𝑗 , 𝜇

(1), 𝜈(1) > ∣𝜃𝑗 ∈ Θ}
and {< 𝜃𝑗 , 𝜇

(2), 𝜈(2) > ∣𝜃𝑗 ∈ Θ}. From the dissimilarity
measures between intuitionist fuzzy sets defined in [21] and
the similarity measures defined in [22], [23], one defines the
new dissimilarity 𝑑𝐼𝐹1, 𝑑𝐼𝐹2 and 𝑑𝐼𝐹3 respectively as follow:

𝑑𝐼𝐹1(𝑚1,𝑚2) =
1
2𝑛

𝑛∑
𝑖=1

(
∣∣𝜇(1)(𝜃𝑖)− 𝜇(2)(𝜃𝑖)

∣∣
+
∣∣𝜈(1)(𝜃𝑖)− 𝜈(2)(𝜃𝑖)

∣∣+ ∣∣𝜋(1)(𝜃𝑖)− 𝜋(2)(𝜃𝑖)
∣∣) (17)

𝑑𝐼𝐹2(𝑚1,𝑚2) =
1
𝑝
√
𝑛

𝑝

√√√⎷ 𝑛∑
𝑖=1

(𝜑(1)(𝜃𝑖)− 𝜑(2)(𝜃𝑖))
𝑝

(18)

where 𝜑(1) and 𝜑(2) are given by

𝜑(1)(𝜃𝑖) =
𝜇(1)(𝜃𝑖) + 1− 𝜈(1)(𝜃𝑖)

2
(19)

𝜑(2)(𝜃𝑖) =
𝜇(2)(𝜃𝑖) + 1− 𝜈(2)(𝜃𝑖)

2
(20)

𝑑𝐼𝐹3(𝑚1,𝑚2) =
1
𝑝
√
𝑛

𝑝

√√√⎷ 𝑛∑
𝑖=1

(𝜑
(1,2)
𝜇 (𝜃𝑖)− 𝜑

(1,2)
𝜈 (𝜃𝑖))

𝑝
(21)

where 𝜑
(1,2)
𝜇 and 𝜑

(1,2)
𝜈 are given by

𝜑𝜇
(1,2)(𝜃𝑖) =

∣∣∣∣𝜇
(1)(𝜃𝑖)− 𝜇(2)(𝜃𝑖)

2

∣∣∣∣ (22)

𝜑𝜈
(1,2)(𝜃𝑖) =

∣∣∣∣1− 𝜈(1)(𝜃𝑖)

2
− 1− 𝜈(2)(𝜃𝑖)

2

∣∣∣∣ (23)

What we want to define is the dissimilarity, so before being
used to construct the dissimilarities of evidence, the original
similarities defined in [20], [22] and [23] are converted to
dissimilarities as illustrated in (16), (18) and (21), respectively.
The dissimilarities we propose are all bounded by 0 and 1. It
is easy to prove that when 𝑚1(.) = 𝑚2(.) (i.e. when the bba’s
are totally similar) then 𝑑𝐹 , 𝑑𝐼𝐹1, 𝑑𝐼𝐹2 and 𝑑𝐼𝐹3 give zero
value. When the dissimilarity reaches its maximum value 1
then the two bba’s are considered as totally dissimilar.

V. SIMULATION RESULTS

To verify the rationality of the proposed new dissimilarities
between bba’s, some numerical examples are provided. In each
example, 𝑑𝐽 , 𝑑𝑇 , 𝑑𝐹 , 𝑑𝐼𝐹1, 𝑑𝐼𝐹2 and 𝑑𝐼𝐹3 are compared.

A. Example 1

For the FOD Θ = {𝜃1, 𝜃2, 𝜃3} satisfying Shafer’s model,
the bba 𝑚1(.) is listed in Table I and other six bba’s are
listed in Table II. We calculated the dissimilarities between
𝑚1(.) and 𝑚𝑖(.), 𝑖 = 2, ..., 7. See results in Figure 1.
For 𝑚1(.), it has relatively large mass assignment value
for the focal element {𝜃2}. Then intuitively, for 𝑚𝑖(.),
𝑖 = 2, ..., 7 listed in Table II, if the mass assignment for
{𝜃2} is relative large, the dissimilarity between 𝑚1(.) and
𝑚𝑖(.) should be relatively small. As illustrated in Figure
1, all the dissimilarities used here are rational. 𝑑𝐼𝐹1 has a

Table I
BBA 𝑚1(.)

Focal el.\ bba 𝑚1(.)
𝜃1 0.1
𝜃2 0.8
𝜃3 0.1
𝜃1 ∪ 𝜃2 0
𝜃2 ∪ 𝜃3 0
𝜃1 ∪ 𝜃3 0
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0

Table II
BBA’S 𝑚𝑖(.), 𝑖 = 2, . . . , 7

Focal el.\ bba’s 𝑚2(.) 𝑚3(.) 𝑚4(.) 𝑚5(.) 𝑚6(.) 𝑚7(.)
𝜃1 0.8 0 0 0 0 0
𝜃2 0 0.8 0 0 0 0
𝜃3 0 0 0.8 0 0 0
𝜃1 ∪ 𝜃2 0 0 0 0.8 0 0
𝜃2 ∪ 𝜃3 0 0 0 0 0.8 0
𝜃1 ∪ 𝜃3 0 0 0 0 0 0.8
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.2 0.2 0.2 0.2 0.2 0.2
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Figure 1. Dissimilarities between 𝑚1 and 𝑚𝑖, 𝑖 = 2, ..., 7
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different trend when compared with other dissimilarities at
𝑚5(.) and 𝑚6(.). When compared with the value at 𝑚3(.),
the dissimilarity value of 𝑑𝐼𝐹1 at 𝑚4(.) and 𝑚5(.) increase
while for other types of dissimilarity, the corresponding
values decrease. For 𝑚5 and 𝑚6, the focal elements
containing 𝜃2 ( 𝜃1 ∪ 𝜃2 and 𝜃2 ∪ 𝜃3 ) is 0.8, it should be more
rational if the dissimilarity value at 𝑚5(.) and 𝑚6(.) decrease.

B. Example 2

This example was proposed in [6]. Let Θ be a FOD with
20 elements satisfying Shafer’s model (i.e. all elements of
Θ are truly exhaustive and exclusive). For notation conve-
nience, we use 1, 2, etc. to denote element 𝜃1, element
𝜃2, etc. in the FOD. The first bba 𝑚1(.) is defined as:
𝑚1({2, 3, 4}) = 0.05, 𝑚1({7}) = 0.05, 𝑚1(Θ) = 0.1,
and 𝑚1(𝐴) = 0.8 for some other subset 𝐴 of Θ. The
second bba used is 𝑚2({1, 2, 3, 4, 5}) = 1. We consider
20 cases where 𝐴 increments one more element at a time
staring from Case 1 with 𝐴 = {1} and ending with Case 20
with 𝐴 = {1, 2, 3, ..., 20} = Θ. The different dissimilarities
between 𝑚1(.) and 𝑚2(.) calculated for all 20 cases are shown
in Figure 2.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i

D
is

ta
nc

e 
V

al
ue

s

 

 d
J

d
T

d
F

d
IF1

d
IF2

d
IF3

Figure 2. Dissimilarities between 𝑚1(.) and 𝑚2(.).

In this example, all the dissimilarities tested present a similar
behavior. When 𝐴 = {1, 2, 3, 4, 5}, all the dissimilarities used
reach their minimum values.

C. Example 3

This example was proposed in [16]. Let Θ = {𝜃1, ..., 𝜃𝑛}
be a FOD satisfying Shafer’s model. There are three bba’s

defined on Θ defined as follows:

𝑚1({𝜃1}) = 𝑚1({𝜃2}) = ⋅ ⋅ ⋅ = 𝑚1({𝜃𝑛}) = 1/𝑛;

𝑚2(Θ) = 1;

𝑚3({𝜃𝑘}) = 1, for some 𝑘 ∈ {1, ..., 𝑛}.
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Figure 3. Dissimilarities between 𝑚1(.), 𝑚2(.) and 𝑚3(.).

The behaviors of the different dissimilarities of evidence
with the increase of 𝑛 for 𝑛 = 1, . . . , 20 are shown in
Figure 3. The vertical axis represents the value of dissimilarity
while the horizontal axis represents the value of 𝑛. In this
example, 𝑚3(.) is absolutely confident in 𝜃𝑘 and it is signif-
icantly different from both 𝑚1(.) and 𝑚2(.). 𝑚1(.) is rather
different from 𝑚2(.) even if they represent both two different
uncertain sources. The source 𝑚2(.) is actually a vacuous
belief assignment which represent truly the full ignorance on
the real state of the nature. The source 𝑚1(.) is much more
specific than 𝑚2(.) since it is a Bayesian belief assignment.
It turns out that 𝑚1(.) corresponds actually to nothing but a
“probabilistic” fully ignorant (random) source having uniform
probability mass function (pmf). As one sees in figure 3(a),
Jousselme’s distance cannot discriminate well the difference
between these two very different cases for dealing efficiently
with the specificity of the information because 𝑑𝐽 (𝑚1,𝑚2) =

𝑑𝐽(𝑚1,𝑚3) =
√

1
2 (1− 1

𝑛 ). For Tessem’s distance, one gets
𝑑𝑇 (𝑚1,𝑚2) = 0 thus it cannot discriminate 𝑚1(.) and 𝑚2(.)
as shown in Figure 3(b). For the new defined dissimilarities of
evidence based on fuzzy sets theory, some of them also cannot
discriminate all the three BOE’s: 𝑚1(.), 𝑚2(.), 𝑚3(.), but as
shown in Figure 3(e) the dissimilarity 𝑑𝐼𝐹2 can discriminate
all the three BOE’s pretty well.
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D. Example 4

This example was proposed in [6]. Let Θ = {𝜃1, 𝜃2, 𝜃3} be
a FOD satisfying Shafer’s model. We consider the following
three bba’s defined on Θ:

𝑚1({𝜃1}) = 𝑚1({𝜃2}) = 𝑚1({𝜃3}) = 1/3;

𝑚2({𝜃1}) = 𝑚2({𝜃2}) = 𝑚2({𝜃3}) = 0.1,𝑚2(Θ) = 0.7;

𝑚3({𝜃1}) = 𝑚3({𝜃2}) = 0.1,𝑚2(𝜃3) = 0.8.

The values of the different dissimilarities between 𝑚1(.)
and 𝑚2(.), and between 𝑚1(.) and 𝑚3(.) are given in Table
III.

Table III
EXAMPLE 4: RESULTS BASED ON DIFFERENT DISSIMILARITIES OF

EVIDENCE.

Dissimilarity types \ values 𝑑(𝑚1,𝑚2) 𝑑(𝑚1,𝑚3)
𝑑𝐽 0.4041 0.4041
𝑑𝑇 0 0.4667
𝑑𝐹 0.5833 0.6364
𝑑𝐼𝐹1 0.7000 0.3111
𝑑𝐼𝐹2 0.1167 0.3300
𝑑𝐼𝐹3 0.3500 0.3300

In this example, one sees that it is impossible to take a
rational decision from 𝑚1(.) because all masses of singletons
are equal. Same problem occurs with 𝑚2(.) because this
second source has a very high value of mass assignment
to the total ignorance and the mass assignment values of
singletons are also the same. 𝑚1(.) and 𝑚2(.) correspond
to two very different situations in term of the specificity of
their informational content but they yield the same prob-
lem for decision-making. 𝑚3(.) assigns its largest mass as-
signment to 𝜃3. Intuitively, it seems reasonable to consider
𝑚1(.) and 𝑚2(.) more closer than 𝑚1(.) and 𝑚3(.) since
𝑚1(.) and 𝑚2(.) yields the same indeterminate choice in
decision-making because of the ambiguity in choice among
the singletons in the FOD. Using Jousselme’s distance, one
obtains 𝑑𝐽 (𝑚1,𝑚2) = 𝑑𝐽(𝑚1,𝑚3) = 0.4041 which is
not very satisfactory for such case because it means that
the dissimilarities between 𝑚1(.) and 𝑚2(.) is the same as
between 𝑚1(.) and 𝑚3(.) which is obviously not acceptable,
nor convincing. Based on the results of Table III, one sees
that when using the dissimilarities of 𝑑𝑇 , 𝑑𝐹 , 𝑑𝐼𝐹2, one gets
𝑑(𝑚1,𝑚2) < 𝑑(𝑚1,𝑚3) which is more reasonable. However
for Tessem’s distance, one gets 𝑑𝑇 (𝑚1,𝑚2) = 0 which is not
rational (intuitively acceptable) or at least very questionable.

According to the above four simple numerical examples,
one sees that the new defined dissimilarities 𝑑𝐹 and 𝑑𝐼𝐹2

based on fuzzy sets theory always present an acceptable
behavior with respect to other dissimilarities presented in this
paper.

VI. CONCLUSIONS

In this work, some new dissimilarities of evidence based
on fuzzy membership functions and intuitionist fuzzy sets
have been proposed. Similarly to the definition of distances or
dissimilarities based on lossy probabilistic transformations of

bba’s, here the basic belief assignments are first transformed
into FMFs or intuitionist fuzzy sets, then the new dissimi-
larities of evidence are indirectly defined using the classical
similarity or dissimilarity measures proposed in fuzzy sets
theory. Some numerical examples were given in this paper to
show the behavior of the dissimilarities in very different cases.
We have shown that at least two new dissimilarities presented
in this paper (𝑑𝐹 and 𝑑𝐼𝐹2) have a rational behavior, contrari-
wise to other tested dissimilarities. It should be noted that all
these new dissimilarities are also based on lossy fuzzy sets
transformations, like with lossy probability transformations.
Therefore there exists a loss of information when transforming
bba’s into FMF’s or intuitionist fuzzy sets. To try to improve
these new dissimilarity measures, it is necessary to define
better (possibly lossless) transformations in future research
works.

In all the four new definitions of dissimilarities in evidence
theory, it can be easily proved that they are non-negative, non-
degeneracy and symmetric. And their values are all belonging
to [0,1]. It should be noted that till now whether the new
proposed dissimilarities satisfy the triangle inequality have
not been theoretically proved. Strictly speaking, until they are
proved to satisfy all the requirements for being a distance
measure, they can be called only the “pseudo-distance” but
not “distance”. Not only for our proposed definitions but also
all the other available distances of evidence, they all have the
problem of the theoretical strictness. Although they might not
be totally strict distances, to some extent they still can be used
to represent the dissimilarity or difference between BOEs. To
accomplish the theoretical proof for the strictness of the new
proposed dissimilarities of evidence strictness and to propose
more strict definitions of dissimilarity of evidence are both
important works in future.
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