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ABSTRACT 
In this work, an auxiliary algorithm is proposed to assist a gradient-based optimizer 
in searching for an optimal solution of a muffler design problem formulated by 
topology optimization. The proposed algorithm escapes an objective function from 
one of local minima and pushes it toward a global optimum. Its key idea is adjusting 
a sign of sensitivity, the first derivative of an objective function with respect to a 
design variable, by multiplying it with 1 or -1. In an acoustical topology optimization 
problem formulated for muffler design, the absolute value of an acoustic pressure 
at the outlet is selected as an objective function, and the number of allowed finite 
elements for partitions inside the muffler is constrained. The formulated muffler 
design problem is solved for several design conditions, and the numerical results 
support the validity of the proposed auxiliary algorithm. 
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1. INTRODUCTION 

A muffler is used in an exhaust system of a vehicle to attenuate noise of an 
exhausted gas generated from the engine. The noise attenuation performance of a muffler 
is evaluated by a transmission loss (TL) value at a target frequency, which should be 
maximized for low noise exhausted gas. Generally, the positions and shapes of the 
partitions inside the muffler should be optimally determined for a high TL value at a target 
frequency. A high TL value is identical to the low magnitude of acoustic pressure at the 
outlet1.Therefore, if the magnitude of acoustic pressure at the outlet is selected as an 
objective function in a muffler design problem, even a single target frequency problem is 
formulated as a multi-objective optimization problem. Unfortunately, however, it is hard 
to obtain a satisfactory result in the multi-objective optimization problem because one of 
the sub-objectives often converges to the local minima.  A new method to overcome this 
issue in a muffler design problem including a multi-objective function is required. 
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Since the topology optimization method was reported for the compliance 
minimization structural problem2, it has been applied to various acoustic device design 
problems. Lee and Kim3 optimally designed a partition layout inside the muffler by using 
topology optimization for high TL values at several target frequencies. The 
eigenfrequency controlling problem for a double cavity was reported by using topology 
optimization4. Kook et al.5 solved the acoustical topology optimization problem for 
Zwicker’s loudness model, and Du and Olhoff6 minimized sound radiation for vibrating 
structures by using the topology optimization method. In addition, acoustical topology 
optimization problems considering flow, thermal and structural characteristics7-9 were 
formulated and solved. However, a research result to figure out the aforementioned local 
minima issue in the acoustic topology optimization problem has not been reported yet. 

In the study, an auxiliary algorithm to avoid the local minima is proposed and a 
multi-objective topology optimization problem is formulated for muffler design. The 
magnitude of the acoustic pressure at the outlet is selected as the objective function, and 
the partition volume is constrained. The proposed algorithm is validated by comparing 
the results obtained with/without using the algorithm. 

 
2.  TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 

 

 
Fig. 1 – 2-dimensional muffler for acoustical topology optimization problem 

 
Fig. 1 shows the half of a 2-dimensional concentric expansion chamber muffler 

which has an inlet, an expansion chamber, and an outlet. The Helmholtz equation in 
Equation 1 governs the acoustic pressure p inside the muffler. 
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where   and B  denote the density and bulk modulus of the acoustic medium, 
respectively, and the symbol of   is angular frequency ( 2 f  ; f  denotes 
frequency). In a multi-objective optimization problem, the sum of the squared magnitude 
of the outlet acoustic pressure at the multiple target frequencies (fn) is selected as an 
objective function as in Equation 2, and each sub-objective function is defined as in 
Equation 3. 
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In Equation 2, nw  denotes an adaptive weighting factor, which is determined by utilizing 

former step sub-objective values ( old
nL ) during the optimization process as expressed in 

Equation 4. 
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During the topology optimization process, the material properties (   and B ) of 

each finite element are determined by using the carefully-selected interpolation functions 
in Equation 5. The design variable ( r ) assigned to each finite element in a design domain 

changes between 0 and 1 during optimization process and determines the material 
properties of the associated finite element. The design variables are updated by using the 
MMA algorithm10 which is one of the gradient-based algorithms. When a design variable 
converges to ‘1’, the associated finite element becomes a rigid body element. In contrast, 
when it converges to ‘0’, it is filled with air. 
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where the subscripts ‘air’ and ‘rigid’ denote the air and acoustic rigid body elements, 
respectively.  

The acoustical topology optimization problem for muffler design is formulated in 
Equations 6 and 7. 
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where R and Vr denote the number of the total finite elements in a design domain and the 
volume ratio between allowed partitions and the design domain, respectively. 
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Fig. 2 – Optimal topologies: (a) Optimal muffler obtained by not using the auxiliary 
algorithm, (b) Optimal muffler obtained by using the auxiliary algorithm. 
 
3.  OPTIMAL RESULTS 

The topology optimization problem was solved at the target frequency of 
400 Hztf   and 5% volume ratio ( 0.05rV  ). Fig. 2 shows the optimal topologies 

 

 



obtained with and without the proposed auxiliary algorithm. Fig. 3 compares the TL 
curves of two optimal topologies in Fig. 2. 
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where 0p  denotes unit acoustic pressure. 

 

 
Fig. 3 – TL curve comparison for the two optimal topologies in Fig. 2(a) and 2(b). 
 
4.  CONCLUSIONS 
 In this paper, we proposed an auxiliary algorithm to avoid the local minima during 
the optimization process and applied it to a muffler design problem. Two optimal results 
with or without the proposed algorithm were compared. The comparison supported the 
validity of the proposed auxiliary algorithm. 
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