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I
f we want to produce good French teachers
in schools, should we require them to learn
Latin in college but not French? After all,
Latin is the mother language of French and is
linguistically more complex than French; by

mastering a more complex language teachers could
enhance their understanding of the French they
already know from their school days. To correlate
their knowledge of French with their students’
achievements, we could look at their grades in
Latin!

As ridiculous as this scenario is, its exact
analogue in mathematics education turns out to be
central to an understanding of the field as of 2011.
A natural question is why the mathematics research
community should be bothered with a problem
in education. The answer is that the freshmen in
our calculus classes year after year, and ultimately
our math graduate students, are products of this
educational philosophy. The purpose of this article
is to alert the mathematics community to the
urgent need of active participation in the education
enterprise. It is a call for action. We will begin by
reviewing the state of the mathematical education
of teachers in the past four decades, and then
give an indication of what needs to be done to
improve teachers’ content knowledge and why
knowledgeable mathematicians’ input is essential.

The Early Work of Begle
No one doubts that improvement in school math-
ematics education depends critically on having
effective mathematics teachers in the classroom.
The common notion that “you cannot teach what
you don’t know” underscores our need to produce
teachers with a solid knowledge of mathematics.
Yet the mathematics education establishment has
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not maintained a sharp focus on the professional
development of both preservice and inservice
teachers, in part because what-you-need-to-know
turns out to be a contentious issue. It appears
that educators1 are content to let the mathematics
community decide what secondary teachers should
know and to deal only with the professional de-
velopment of elementary teachers. In the case of
the former, there is too much of the Latin-French
syndrome. Mathematicians feed secondary teach-
ers the kind of advanced mathematics that future
math researchers should learn and expect the
Intellectual Trickle-Down Theory to work overtime
to give these teachers the mathematical content
knowledge they need in the school classroom. In
the case of elementary teachers, too often the qual-
ity of the mathematics they are taught leaves much
to be desired: the negative evaluation, mostly by
mathematicians, of the commonly used textbooks
for elementary teachers ([NCTQ]2) paints a dismal
picture of how poorly elementary teachers are
served.

A related issue, of course, is whether any correla-
tion exists between mathematics teachers’ content
knowledge and student achievement. Among the
early researchers who tried to establish this corre-
lation was E. G. Begle, the director of SMSG (School
Mathematics Study Group), the group that was
most identified with the “New Math” of the period
1955–1975. In a 1972 study of 308 teachers of
first-year high school algebra ([Begle 1972]), he
gave both teachers and students multiple-choice
tests to measure teachers’ knowledge and student
achievement gains.3 Broadly speaking, he found
“little empirical evidence to substantiate any claim
that, for example, training in mathematics for

1I will use “educator” in this article to refer to the
mathematics education faculty in universities.
2See pp. 34–37 and 76–81.
3Students were given a pretest and a posttest.
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mathematics teachers will have payoff in increased
mathematics achievement for their students”. Sub-
sequently, he surveyed the empirical literature in
mathematics education research and again con-
firmed that the available evidence did not support
the belief that “the more one knows about one’s
subject, the more effective one can be as a teacher”
(p. 51, [Begle1979]).

The 1972 work of Begle is best known for casting
doubt on the relevance of mathematical content
knowledge to the effectiveness of teaching, but a
close examination of this report is extremely in-
structive. Begle administered two tests to teachers,
one on the algebra of the real number system and
the other on the level of the abstract algebra of
groups, rings, and fields. Analysis of the results
indicated to Begle that

. . .teacher understanding of mod-
ern algebra (groups, rings, and
fields) has no significant correla-
tion with student achievement in
algebraic computation or in the un-
derstanding of ninth grade algebra.
. . .However, teacher understanding
of the algebra of the real num-
ber system does have significant
positive correlation with student
achievement in the understanding
of ninth grade algebra. (Page 8 of
original text in [Begle 1972].)

From these findings, Begle arrived at the following
two remarkable recommendations:

The nonsignificant relationship be-
tween the teacher modern algebra
scores and student achievement
would suggest the recommendation
that courses not directly relevant
to the courses they will teach
not be imposed on teachers. The
small, but positive, correlation be-
tween teacher understanding of
the real number system and stu-
dent achievement in ninth grade
algebra would lead to the recom-
mendation that teachers should be
provided with a solid understand-
ing of the courses they are expected
to teach. . . (ibid.).

It is to be regretted that Begle did not follow
through with his own recommendations. Had that
been done, there would have been no need for
the present article to be written. Let us put this
statement in context. Begle was dealing with high
school teachers who are traditionally required to
complete the equivalent of a major in mathematics.
However, the requirements for math majors are
designed mainly to enable them to succeed as
mathematics graduate students and, for this very
reason, are full of “courses not directly relevant

to the courses [teachers] will teach” in the school
classroom. Implicitly, Begle recognized back in
1972 a critical flaw in the preservice professional
development of high school teachers, namely,
they are fed information that doesn’t directly
help them with their work. In other words, we
teach Latin to French teachers and hope that they
will become proficient in teaching French. Begle’s
second recommendation hinted at his awareness of
the complementary fact, namely that high school
teachers do need courses that provide them with a
solid understanding of what they teach.

Basic Criteria of Professional Development
Begle’s work was carried on by others in the
intervening years, notably by [Goldhaber-Brewer]
and [Monk]. But the work that is most relevant to
the present article is that of Deborah Ball, who
some twenty years after Begle considered what
teachers need to know about the mathematics
of elementary school ([Ball]). Her survey of both
elementary and secondary teachers showed that
even teachers with a major in mathematics could
not explain something as basic as the division
of fractions (a basic topic in grades 5 and 6) in
a way that is mathematically and pedagogically
adequate. Her conclusion is that “the subject matter
preparation of teachers is rarely the focus of any
phase of teacher education” (p. 465, [Ball]).

A few years later, as a result of my work with
the California Mathematics Project (cf. [Wu1999c]),
I became alarmed by the deficiency of mathemat-
ics teachers’ content knowledge and argued on
theoretical grounds that improvement must be
sought in the way universities teach prospective
mathematics teachers ([Wu1999a], [Wu1999b]).4

The conclusions I arrived at are entirely consis-
tent with those of Begle and Ball, and a slightly
sharpened version may be stated as follows. To
help teachers teach effectively, we must provide
them with a body of mathematical knowledge that
satisfies both of the following conditions:

(A) It is relevant to teaching, i.e.,
does not stray far from the material
they teach in school.
(B) It is consistent with the fun-
damental principles of mathemat-
ics.

The rest of this article will amplify on these two
statements.

Three Examples
The almost contradictory demands of these two
considerations on professional development is
illustrated nowhere better than in the teaching
of fractions in school mathematics. Although

4I wish I could say I was aware of the work of Begle and
Ball at the time that those articles were written, but I can’t.
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fractions are sometimes taught as early as second
grade nowadays, the most substantial instruction
occurs mainly in grades 5–7, and students’ difficulty
with learning fractions in these grades is part of
American folklore.5 We will henceforth concentrate
on fractions in grades 5–7.

Mathematicians who have a dim memory of
their K–12 days may of course wonder why
the teachers of these grades must be provided
with a knowledge of fractions that is relevant
to the school classroom. What is so hard about
equivalence classes of ordered pairs of integers?
Let us recall how fractions are taught in university
mathematics courses. As usual, let Z be the integers,
and let S be the subset of ordered pairs of integers
Z× Z consisting of all the elements (x, y) so that
y ≠ 0. Introduce an equivalence relation ∼ in S by
defining (x, y) ∼ (z,w) if xw = yz. Denoting the
equivalence class of (x, y) in S by x

y , we call the set

of all such x
y the rational numbers Q. Identify Z

with the set of all elements of the form x
1 , and we

have Z ⊂ Q. Finally, we convert Q into a ring by
defining addition and multiplication in Q as

x
y
+ z
w
= xw + zy

yw
, and

x
y
· z
w
= xz
yw

.

Of course we routinely check the compatibility of
these definitions with the equivalence relation. This
is what we normally teach our math majors in two
to three lectures; it is without a doubt consistent
with the fundamental principles of mathematics.
The question is: what could a teacher do with this
information in grades 5–7? Probably nothing.

Let us analyze this definition a bit: it requires
an understanding of the partition of S into equiv-
alence classes and the ability to consider each
equivalence class as one element. Acquiring such
an understanding is a major step in the education
of beginning math majors. In addition, understand-
ing the identification of Z with { x1 : x ∈ Z}, or as
we say, the injective homomorphism of Z into Q,
requires another level of sophistication.

Surely very little of the preceding discussion
is comprehensible to students of ages 10–12,
but even more problematic are the definitions of
addition and multiplication of rational numbers.
For example, consider multiplication once addition
has been defined. The definition

x
y ·

z
w = xz

yw

makes sense to us because we want to introduce a
ring structure in Q and this is the most obvious
way to make it work. But can we explain to an
average pre-teenager that rings are important and
that therefore this definition of multiplication is
the right definition? If so, what is wrong with

defining
x
y +

z
w as

x+z
y+w in accordance with

every school student’s dream?

5If in doubt, look up Peanuts and FoxTrot comic strips.

Because schools were in existence before the in-
troduction of fractions in the 1930s as equivalence
classes of ordered pairs of integers, and because
fractions have been taught in schools from the
beginning, it is a foregone conclusion that some
version of fractions has been taught to teachers for
a long time. But this version of mathematics makes
no pretense of teaching mathematics. At least in
this case, the relevance to the school classroom has
been achieved at an unconscionable cost, namely
at the expense of the fundamental principles of
mathematics.

Mathematics depends on precise and literal
definitions, but the way fractions are taught to
elementary teachers has almost no definitions.
The following is a typical example. A fraction is
presented as three things all at once: it is a part
of a whole, it is a ratio, and it is a division. Thus
3
4 is 3 parts when the whole is divided into 4
equal parts. Because it is not clear what a “whole”
is, the education literature generally resorts to
metaphors. Thus a prototypical “whole” is like
a pizza. Now do we divide a pizza into 4 equal
parts according to shape? Weight? Or is it area?
The education literature doesn’t say. And how to
multiply or divide two pieces of pizza? (See [Hart].)
As to a fraction being a ratio, 3

4 can represent
a “ratio situation”, as 3 boys for every 4 girls.
What is the logical connection of boys and girls
to pizzas? The education literature is again silent
on this point, except to make it clear that every
fifth grader had better acquire such a conceptual
understanding of a fraction, namely that it can
be two things simultaneously. Finally, the fraction
3
4 is also “3 divided by 4”. Now there are many
things wrong with this statement, foremost being
the fact that when students approach fractions,
they are either in the process of learning about
division of whole numbers or just coming out of it.
In the latter situation, they understand m÷ n (for
whole numbers m and n, n ≠ 0) to be a partition
into equal groups or as a measurement only when
m is a multiple of n. If m is not a multiple of n,
then students learn about division-with-remainder,
in which case m÷ n yields two numbers, namely,
the quotient and the remainder. The concept of a
single number 3 ÷ 4 is therefore entirely new to
a student trying to learn fractions, and to define
3
4 in terms of 3÷ 4 is thus a shocking travesty of
mathematics. What is true is that, when “part of a
whole” is suitably defined and when m÷ n is also
suitably defined for arbitrary whole numbers m
and n (n ≠ 0), it is a provable theorem that, indeed,
m
n = m ÷ n. Yet, there is no mention of this fact
in the education literature, and such absence of
reasoning pervades almost all such presentations
of fractions.

As a result of this kind of professional devel-
opment, a typical elementary teacher asks her
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students to believe that there is a mysterious
quantity called fraction that possesses three totally
unrelated properties and then also asks them to
compute with this mysterious quantity in equally
mysterious ways. To add two fractions, take their
least common denominator and then do some un-
usual things with the numerators to get the sum.6

Of why, and of how, this concept of addition is
related to the concept of adding whole numbers as
“combining things”, there is no explanation at all.

Recall that we are here discussing the mathe-
matical education of elementary teachers. We have
to teach them mathematics so that, with proper
pedagogical modifications, they can teach it to
primary students, and so that, with essentially no
modification, they can teach it to students in the
upper elementary grades. So how can a teacher
teach the addition of fractions in grades 5–7? If a
fraction a

b is defined to be a point on the number

line, then the sum of two fractions
a
b and c

d is,
by definition, the total length of the two intervals
[0, ab ] and [0, cd ] joined end-to-end—just as is the
case of the sum of two whole numbers. In this way,
adding fractions is “combining things” again. A
simple reasoning then gives a

b +
c
d =

ad+bc
bd . See, for

example, pp. 46–49 of [Wu2002].
Next, consider division. The rote teaching of

the division of fractions is a good example of
the total neglect of the fundamental principles of
mathematics, and it has inspired the jingle, “Ours
is not to reason why, just invert and multiply.” One
recent response to such rote teaching is to imitate
division between whole numbers by teaching
the division of fractions as repeated subtraction.
Unfortunately, the concept of division in a field
cannot be equated with the division algorithm in
a Euclidean domain, and the reaction against a
defective mathematical practice has resulted in the
introduction of another defective mathematical
practice. Such a turn of events seems to be typical
of the state of school mathematics education in
recent times.

In any intellectual endeavor, a crisis of this nature
naturally calls for research and the infusion of new
ideas for a resolution. What is at present missing
is the kind of education research that addresses
students’ cognitive development without sacrificing
precise definitions, reasoning, and mathematical
coherence in the teaching of fractions (see pp. 33–
38 in [Wu2008a] for a brief discussion of the
research literature).

To improve on fraction instruction in schools, we
first need to produce school textbooks that present
a mathematically coherent way of approaching
the subject, one that proceeds by reason rather
than by decree. Several experiments along this

6This is tantamount to saying that addition cannot be de-
fined in the quotient field of a domain unless the latter is
something like a UFD.

line were tried in the past two decades, but let us
just say that, from the present perspective, they
were not successes. An easier task would be to
produce professional development materials for
elementary teachers that are sufficiently elementary
for students in grades 5–7. This would require
a presentation of the mathematics of fractions
different from the mathematically incoherent one
described above. One way that has been thoroughly
worked out is to define a fraction, in an explicit
manner, as a point on the number line ([Jensen]
and [Wu2002]). It does not matter whether teachers
are taught this or possibly other approaches to
fractions for school students; the important thing
is that teachers are taught some version that is
valid in the sense of conditions (A) and (B) above
so that they can teach it in the school classroom. It
is simply not realistic to expect teachers to develop
by themselves the kind of knowledge that satisfies
(A) and (B).

Two additional comments on fractions will
further illuminate why we need to specifically
address the special knowledge for teaching. At
present, a major stumbling block in the learning
path of school students is the fact that fractions are
taught as different numbers from whole numbers.
For example, it is believed that “Children must
adopt new rules for fractions that often conflict
with well-established ideas about whole numbers”
([Bezuk-Cramer], p. 156). The rules here presumably
refer to the rules of arithmetic; if so, we can say
categorically that there is a complete parallel
between these two sets of rules for whole numbers
and fractions; the similarity in question is a main
point of emphasis in [Wu2002]. If mathematicians
who take for granted that Z is a subring of Q are
surprised by this misconception about fractions
and whole numbers, they would do well to ask
at which point of teachers’ education in K–16 (or,
for that matter, a teacher’s education, period) they
would get an explicit understanding of this basic
algebraic fact. The unfortunate answer is probably
“nowhere”, because until the last two years in
college, mathematics courses are traditionally
more about techniques than ideas, and even for
those junior- and senior-level courses, our usual
mode of instruction often allows the ideas to
be overwhelmed by procedures and formalism
(cf. [Wu1999a]). It should be an achievable goal for
all teachers to acquire an understanding of the
structural similarity between Z and Q so that they
can teach fractions by emphasizing the similarity
rather than the difference between whole numbers
and fractions.

A second comment is that school mathematics
is built onQ (the rationals) and not on R (the reals).
Q is everything in K–12, while R appears only as a
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pale shadow.7 It is this fact that accounts for the
need to teach fractions well. We hope all teachers
are aware of the dominance ofQ in their day-to-day
work,8 but few are, for the simple reason that we
have never brought it to their attention.

In terms of the nitty-gritty of classroom instruc-
tion, real numbers are handled in K–12 by what
is called the Fundamental Assumption of School
Mathematics (FASM; see p. 101 of [Wu2002] and
p. 62 of [Wu2008b]). It states that any formula
or weak inequality that is valid for all rational
numbers is also valid for all real numbers.9 For
example, in the seventh grade, let us say, the
formula for the addition of fractions,

a
b
+ c
d
= ad + bc

bd
,

where a, b, c, d are whole numbers, can be (and
should be) proved to be valid when a, b, c, d are
rational numbers. By FASM, the formula is also
valid for all real numbers a, b, c, d. Thus high
school students can write, without blinking an eye,
that

1√
2
+ 2√

3
=
√

3+ 2
√

2√
2
√

3
,

even if they know nothing about what 1/
√

2 or√
2
√

3 means. If this seems a little cut-and-dried
and irrelevant, consider the useful identity

1
1− x +

1
1+ x =

2
1− x2

for all real numbers x.

If x is rational, this identity is easily verified
(see preceding addition formula). But the identity
implies also

1
1−π +

1
1+π = 2

1−π2
.

Without FASM, there is no way to confirm this
equality in K–12, so its validity is entirely an article
of faith in school mathematics.

As a final example, let a be any positive number
≠ 1. Then for all rational numbers m

n and p
q , the

following law of exponents for rational exponents
can be verified (even if the proof is tedious):

am/n · ap/q = am/n+p/q.
Now, FASM implies that we may assume that the
following identity holds for all real numbers s and
t :

as · at = as+t .
Of course, school mathematics cannot make sense
of any of the numbers as , at , and as+t when s and t
are irrational, much less explain why this equality
is valid. Nevertheless, this equality is of more

7This fundamental fact seems to have escaped Begle, as
evidenced by his tests for teachers ([Begle1972]).
8Better yet, one hopes that all state and national standards
reflect an awareness of this fact as well, but that is just a
forlorn hope.
9A trivial consequence of continuity and the density of Q
in R.

than purely academic interest because it is needed
to describe a basic property of the exponential
function ax : R→ (0,∞).

The preceding discussion brings out the fact
that any discussion in high school mathematics is
bound to be full of holes, and FASM is needed to fill
in those holes. We would like to believe that FASM
is a basic part of the professional development
of mathematics teachers. Yet, to our knowledge,
FASM has never been part of such professional
development, with the result that schoolteachers
are forced to fake their way through the awkward
transition from fractions to real numbers in middle
school. It is difficult to believe that, when teachers
make a habit of blurring the distinction between
what is known and what is not, their teaching
can be wholly beneficial to the students. There is
definitely room for improvement in our education
of mathematics teachers.

Another illustration of the difference between
the teaching of mathematics to the average uni-
versity student and to prospective teachers is the
concept of constant speed. Consider the following
staple problem in fifth or sixth grade:

If Ina can walk 3 2
5 miles in 90

minutes, how long would it take
her to walk half a mile?

A common solution is to set up a proportion:
Suppose it takes Ina x minutes to walk half a
mile; then proportional reasoning shows that “the
distances are to each other as the times”. Therefore
3 2

5 is to 1
2 as 90 is to x. So

3 2
5
1
2

= 90
x
.

By the cross-multiplication algorithm:

3
2
5
· x = 1

2
· 90, so that x = 13

4
17

minutes.

The answer is undoubtedly correct, but what is
the reasoning behind the setting up of a proportion?
This rote procedure cannot be explained because
the assumption that makes possible the explanation
has been suppressed, the fact that Ina walks at
a constant speed. As we know, if there is no
assumption, then there is no deduction either. It
therefore comes to pass that problem solving in
this case is reduced to the rote procedure of setting
up a proportion.

How did school mathematics get to the point
that “constant speed” is not even mentioned
or, if mentioned, is not explained in the school
classroom? It comes back to the issue of how we
educate our teachers. The only time university
mathematics deals with constant speed is in
calculus, where a motion along a line f (t)describing
the distance from a fixed point as a function of
time t is said to have constant speed if its derivative
f ′(t) is a constant. There are teachers who don’t
take calculus, of course, but even those who do
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will see constant speed as a calculus concept and
nothing else. Because we do not see fit to help
prospective teachers relate university mathematics
to school mathematics, such a misconception
about constant speed will remain with them. In
the school classroom, they realize that there is
no place for the derivative and therefore conclude
that it is impossible to discuss constant speed.
Once this realization sets in, they fall back on what
they learned as students in K–12, which is not to
talk about constant speed at all. So the tradition
continues, not just in the classroom instruction
but also in textbooks.

Having taken calculus is usually considered a
badge of honor among middle and elementary
school teachers, and some professional develop-
ment programs go out of their way to include
calculus exactly for this reason. The example of
constant speed is but one of the innumerable
reasons why having taken a standard calculus
course does not ensure a teacher’s effectiveness in
the school classroom.10

Professional development of teachers ideally
should include the instruction that in the school
curriculum the concept of speed is too subtle to
be made precise, but that one should use instead
the concept of average speed in a time interval
[t, t ′], which is the quotient

(the distance traveled from time t to time t ′)
(t ′ − t) .

A motion is said to have constant speed K if, for
every time interval [t, t ′], the average speed is
always equal to K, i.e.,

(the distance traveled from time t to time t ′)
(t ′ − t) = K.

Once this concept is introduced, the setting up
of a proportion in the preceding example can
be explained provided Ina is assumed to walk at a
constant speed. For then her average speeds in the
two time intervals [0,90] and [0, x] are the same,
and therefore

3 2
5

90
=

1
2

x
,

and this equality is equivalent to the proportion
above.

Of course school students would find it difficult
to grasp the idea that the average speed in every
time interval is a fixed number, and education
researchers should consider how to lighten the
attendant cognitive load. But that is a different
story. Our concern here is whether prospective
teachers are taught what they need to know
in order to carry out their duties, and once
again we see the gulf that separates what is
mathematically correct in a university setting
from what is pedagogically feasible in a school

10Calculus is by definition, as well as by design, a
technique-oriented subject.

classroom. What is needed to bridge this gulf is
the concept of customizing abstract mathematics
for use in the school classroom. This is the essence
of mathematics education (see [Wu2006] for a full
discussion). In this case, it is a matter of taking
apart the concept of the constancy of the derivative
of a function and reconstructing it so that it makes
sense to school students.

As a final example to illustrate the chasm
between what we teach teachers and what they
need to know, consider the fundamental concepts
of congruence and similarity in geometry. The gaps
in our teachers’ knowledge of these two concepts
are reflected in the existing school geometry
curricula. For example:

(i) In middle school, two figures (not
necessarily polygons) are defined
to be congruent if they have the
same size and same shape and to
be similar if they have the same
shape but not necessarily the same
size. In high school, congruence
and similarity are defined in terms
of angles and sides, but only for
polygons. There is no attempt to
reconcile the more precise defini-
tions in high school with the general
ones in middle school.
(ii) In middle school, the purpose
of learning about congruence is
to perceive the inherent symme-
tries in nature as well as in artistic
designs such as Escher’s prints, tes-
sellations, and mosaic art. Likewise,
the purpose of learning about simi-
larity is to engage in fun activities
about enlarging pictures. In high
school, students prove theorems
about congruent and similar tri-
angles in a geometry course but
otherwise never again encounter
these concepts in another course
in school mathematics.
(iii) Because similarity is more gen-
eral than congruence and because
two figures are more likely to
be similar than congruent, some
curricula ask teachers to teach sim-
ilarity before congruence in middle
school.11

As a result of the neglect by universities, our
teachers’ conception of congruence and similarity
is largely as fragmented and incoherent as the
practices described in (i)–(iii) above. Not every

11It is possible to define similarity as a bijection of the
plane that changes distance of any two points by a fixed
scale factor k and to define a congruence as the case of
k = 1. This approach is, however, basically impossible to
bring off in a school classroom.
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school geometry curriculum is guilty of all three,
but most are guilty of the first two. So long as
university mathematics courses do not address
issues arising from school mathematics, teachers
will not be sufficiently well informed to reject
such mathematical illiteracy, and publishers will
continue to get away with the promotion of this
kind of illiteracy. We must create a university
mathematics curriculum for prospective teachers
to help them look back at such school concerns as
the meaning of congruence and similarity and why
these concepts are important in mathematics. By
contrast, preservice teachers are given at least some
access to such topics as the curvature of curves,
Gaussian curvature of surfaces, finite geometry,
projective geometry, non-Euclidean geometries,
and the foundations of geometry. They are not,
however, taught plane Euclidean geometry. This
last is exactly what teachers need because it is
usually taught poorly in schools. They desperately
need solid information about school geometry in
order to better teach their own geometry classes.

Thus we see in this case the same scenario
that we saw with fractions played all over again:
mangled definitions, critical gaps in mathematical
reasoning, and insufficient attention to mathemat-
ical coherence; above all, students are given no
purpose for learning these concepts except for fun,
for art appreciation, or for the learning of boring
geometric proofs.

However, we should not accept these results
of years of neglect as immutable, because there
are ways to make mathematical sense of school
geometry and, in particular, of congruence and
similarity. We can begin with the instructions on
the basic rigid motions of the plane (translations,
rotations, and reflections) more or less informally
by the use of hands-on activities; after all, one has
to accept the fact that the concept of a transfor-
mation is difficult for students, and it won’t do to
insist on too much formalism at the outset. We can
do the same with the concept of a dilation from a
point (i.e., central projection of a fixed scale factor
from that point). Then we can define congruence
as a finite composition of basic rigid motions and
similarity as the composition of a dilation and
a congruence. But, as in all things mathematical,
precision is not pursued for its own sake. In the
present situation, students can now make direct
use of translations, rotations, and reflections to
prove the congruence of segments and angles;
such proofs are far more intuitive than those using
the traditional criteria of ASA, SAS, and SSS. In
addition, it is a rather simple exercise to assume
the abundant existence of basic rigid motions in
the plane in order to prove all the usual theorems
in Euclidean geometry, including those on similar
triangles (cf. [CCSS] and Chapter 11 in Volume II
of [Wu2011b]). The requirement of “invariance

under congruence” in such a mathematical devel-
opment further highlights the fundamental role of
congruence in the definitions of length, area, and
volume (cf. Chapter 7 of [Wu2010] and Chapter
18 in Volume III of [Wu2011b]). This is one way
to make teachers aware of what congruence and
similarity are and why they are part of the basic
fabric of mathematics itself.

In advanced mathematics, the basic rigid mo-
tions of Euclidean n-space Rn are defined in terms
of orthogonal transformations and coordinates,
and a dilation is also defined in terms of coor-
dinates. Here we use rigid motions and dilations
instead as the basic building blocks of geometry in
order to define coordinate systems in the plane in
a way that is usable in middle and high schools.
This is another example of the customization of
abstract mathematics for use in schools.

Such content knowledge for mathematics teach-
ers is not yet standard fare in preservice profes-
sional development, but it should be.

The Role of Mathematicians
The three mathematical examples above indicate
what needs to be done to customize abstract
mathematics for use in the K–12 classroom, but
they are only the tip of the iceberg. Almost the
entire K–12 curriculum needs careful revamping
in order to meet the minimum standards of math-
ematics, and this kind of work calls for input
by mathematicians. The mathematical defects of
the present curriculum are, in my opinion, too
pronounced to be undone by people outside of
mathematics. Research mathematicians have their
work cut out for them: consult with education col-
leagues, help design new mathematics courses for
teachers, teach those courses, and offer construc-
tive criticisms in every phase of this reorientation
in preservice professional development. My own
systematic attempt to address the problem is given
in [Wu2011a] (for elementary school teachers) and
in [Wu2011b] (for high school teachers); a third
volume for middle school teachers will include
[Wu2010]).12

For those who don’t care about the details, an
outline of what is possible for the K–8 curriculum
can be found in [Wu2008b]. Such an outline also
appears in [MET], which was written in 2001 to give
guidance on the mathematical education of math
teachers to university math departments. Its main
point was to bring research mathematicians into
the discussion of mathematics education. Although
others may disagree with me, my own opinion is that
its language is not one that speaks persuasively to
mathematicians and that the mathematics therein

12[Wu2011b] is the text for the sequence of three-
semester courses, Mathematics of the Secondary School
Curriculum, which is required of all math majors at UC
Berkeley with a teaching concentration.
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fails to respect the fundamental principles of
mathematics more often than it should.

To (research) mathematicians, the mathematics
of K–12 obviously holds no mystery. If they have
to develop the whole body of knowledge ab initio,
strictly as mathematics, they can do it with ease.
But if they hope to make the exposition speak
to the teachers, then they will have to spend
time to learn about the school classroom. If one
mathematician’s experience is to be trusted, the
pedagogical pitfalls of such an undertaking can be
avoided only if mathematicians can get substantive
input about the K–12 classroom. For starters, one
can go to the local school district office to look
at the textbooks being used; reading them should
be an eye-opener. One should also try to talk to
inservice teachers about their experiences and
their students’ learning difficulties; make an effort
to visit a school classroom if possible. But the
ultimate test is, of course, to get to teach (inservice
or preservice) teachers the mathematics of K–12
and solicit honest feedback about their reactions.
If the mathematics department and the school of
education on campus are on good terms, then the
whole process of getting in touch with teachers
can be expedited with the help of one’s education
colleagues.

There is another crucial contribution that re-
search mathematicians can make, one that seems
to be insufficiently emphasized in education dis-
cussions up to this point. In their routine grappling
with new ideas, mathematicians need to know, for
survival if nothing else, the intuitive meaning of a
concept perhaps not yet precisely formulated and
the motivation behind the creation of a particular
skill and to have a vague understanding of the
direction they have to pursue. These needs com-
pletely parallel those of students in their initial
attempt to learn something new. This part of a
research mathematician’s knowledge would surely
shed light on students’ learning processes. Here,
then, is another important resource that should
not go to waste in our attempt to help teachers
and educators better understand teaching.

The Fundamental Principles of
Mathematics
Having invoked the “fundamental principles of
mathematics” several times throughout this article,
I will now summarize and make explicit what they
are and why they are important. I believe there are
at least five of them. They are interrelated and, to
the extent that they are routinely violated in school
textbooks and in the school education literature
(to be explained below), teachers have to be aware
of them if they hope to teach well.

(1) Every concept is precisely defined, and defi-
nitions furnish the basis for logical deductions. At
the moment, the neglect of definitions in school

mathematics has reached the point at which many
teachers no longer know the difference between a
definition and a theorem. The general perception
among teachers is that a definition is “one more
thing to memorize”. We have already pointed out
that the concepts of a fraction, constant speed,
congruence, and similarity are in general not
defined in the school mathematics education liter-
ature. It is sobering to point out that many more
bread-and-butter concepts of K–12 mathematics
are also not correctly defined or, if defined, are
not put to use as an integral part of reasoning.
These include: number, rational number (in middle
school), decimal (as a fraction in upper elementary
school), ordering of fractions, length-area-volume
(for different grade levels), slope of a line, half-
plane of a line, equation, graph of an equation,
inequality between functions, rational exponents
of a positive number, and polynomial.

(2) Mathematical statements are precise. At any
moment, it is clear what is known and what is not
known. Yet there are too many places in school
mathematics in which textbooks and education
materials fudge the boundary between what is
true and what is not. Often a heuristic argument
is conflated with correct logical reasoning. For
example, the identity

√
a
√
b =

√
ab for positive

numbers a and b is often explained by assigning a
few specific values to a and b and then checking for
these values by a calculator. (For other examples,
see pp. 3–5 of [Wu1998].) Sometimes the lack of
precision comes from an abuse of notation or
terminology, such as using 25 ÷ 6 = 4 R 1 to
express “25 divided by 6 has quotient equal to 4
and remainder 1” (this is an equality of neither
two whole numbers nor two fractions). At other
times an implicit assumption is made but is not
brought to the fore; perhaps the absence of any
explicit statement about FASM is the most obvious
example of this kind of transgression.

(3) Every assertion can be backed by logical rea-
soning. Reasoning is the lifeblood of mathematics
and the platform that launches problem solving.
Given the too frequent absence of reasoning in
school mathematics (cf. the discussion of fractions
and constant speed above), how can we ask stu-
dents to solve problems if teachers do not have
the ability to engage students in logical reasoning
on a consistent basis?

(4) Mathematics is coherent; it is a tapestry in
which all the concepts and skills are logically in-
terwoven to form a single piece. The professional
development of math teachers usually emphasizes
either procedures (in days of yore) or intuition (in
modern times) but not the coherence (structure)
of mathematics. The last may be the one aspect of
mathematics that most teachers (and dare I say also
educators) find most elusive. The lack of awareness
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of the coherence of the number systems in K–1213

may account for teaching fractions as “different
from” whole numbers (so that the learning of
whole numbers becomes almost divorced from the
learning of fractions). We mentioned earlier an
example of curricular incoherence when similarity
is discussed before congruence. A more common
example is the almost universal “proof” of the
theorem on equivalent fractions, which states: For
all fractions m

n and for any nonzero whole number
c,

m
n
= cm
cn
.

The “proof” in question goes as follows:
m
n
= m
n
× 1 = m

n
× c
c
= cm
cn
.

The problem with this argument is that this theorem
must be proved essentially as soon as a fraction is
defined, but multiplication of fractions, the most
sophisticated of the four arithmetic operations
on fractions,14 comes much later in the usual
development of fractions.

The coherence of mathematics includes (but of
course is not limited to) the sequential development
of concepts and theorems; the progression from
the logically simple to the logically complex cannot
be subverted at will. However, for people who have
not been immersed in mathematics systematically
and for a long time, it is almost impossible to
resist the temptation to subvert this sequential
development. The two preceding examples testify
eloquently to this fact.

(5) Mathematics is goal-oriented, and every con-
cept or skill in the standard curriculum is there for
a purpose. Teachers who recognize the purpose-
fulness of mathematics gain an extra tool to make
their lessons more compelling. When congruence
and similarity are taught with no mathematical
purpose except to do “fun activities”, students lose
sight of the mathematics and wonder why they
were made to learn it.15 When students see the
technique of completing the square merely as a
trick to get the quadratic formula rather than as
the central idea underlying the study of quadratic
functions, their understanding of the technique is

13Whole numbers, integers, fractions, rational numbers,
real numbers, and complex numbers.
14The sophistication comes from the fact that at least three
things must be explained aboutm/n×k/` before it can be
effectively used by students: (1) it is the area of a rectangle
of sidesm/n and k/`, (2) it is the number that is the total-
ity ofm parts when k/` is partitioned into n equal parts,
and (3) it is equal to (mk)/(n`). Either (1) or (2) can be
used as the definition ofm/n×k/` and the other will have
to be proved, and then the seductive formula (3) must also
be proved. Too often, the deceptive simplicity of (3) is the
siren song that causes many shipwrecks in the teaching of
fraction multiplication.
15At least according to math majors I have taught at
Berkeley.

superficial. But perhaps the most telling example
of teaching mathematics without a purpose is
teaching students by rote to round off whole
numbers, to the nearest hundreds or to the nearest
thousands, without telling them why it is useful
(cf. section 10.3 of [Wu2011a]). Most elementary
students consider rounding a completely useless
skill that is needed only for exams. If teachers can
put rounding off in the context of the how and
the why of estimations, they are likely to achieve
better results.

The Mathematics Teachers Need to Know
I hope that this discussion of the fundamental
principles of mathematics convinces the reader
that there is substantive mathematics about the
K–12 curriculum that a teacher must learn. This
body of knowledge may be elementary, but it is by
no means trivial, in the same sense that the theory
behind the laptop computer may be elementary
(just nineteenth-century electromagnetic theory as
of 2000) but decidedly not trivial. This discussion
in fact strongly bears on the central question of
the moment in mathematics education: exactly
what kind of content knowledge for teachers
would lead to improved student achievement?
(Cf. Begle’s work, mentioned at the beginning of
this article.) Although research evidence on this
issue is lacking, it is not needed as a first step toward
a better mathematics education for teachers. For
whatever this knowledge may be, it must include the
mathematics of the school curriculum presented
in a way that is consistent with the fundamental
principles of mathematics. Let me be as explicit
as I can: I am not making any extravagant claims
about the advanced mathematics teachers need to
know or even whether they need to know advanced
mathematics, only that they must know the content
of what they teach to their students. Here I am using
the word “know” in the unambiguous sense that
mathematicians understand this term:16 knowing
a concept means knowing its precise definition,
its intuitive content, why it is needed, and in
what contexts it plays a role, and knowing a
technique17 means knowing its precise statement,
when it is appropriate to apply it, how to prove
that it is correct, the motivation for its creation,
and, of course, the ability to use it correctly in
diverse situations. In this unambiguous sense,
teachers cannot claim to know the mathematics
of a particular grade without also knowing a
substantial amount of the mathematics of three or
four grades before and after the grade in question
(see Recommendation 19 of [NMP1]). This necessity
that math teachers actually know the mathematics

16Educators usually use the word “know” in its literal
sense: being able to memorize a fact, a definition, or a
procedure.
17Usually referred to as “skill” in the education literature.
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they teach sheds light, in particular, on why
we want all high school teachers to know some
abstract algebra: this knowledge allows them to
really understand why there are only two arithmetic
operations (+ and×) instead of four, in what way the
rational functions are similar to rational numbers,
and that the axiomatic system they encounter
in geometry18 is part of a universal practice in
mathematics. The necessity that teachers know the
mathematics they teach also explains why we want
all teachers of high school calculus to know some
analysis rather than just lower-division calculus.

At the moment, most of our teachers do not
know the materials of the three grades above and
below what they teach, because our education
system has not seen to it that they do. We have the
obligation to correct this oversight.

Content Knowledge and Pedagogical
Knowledge
The title of this article is about the education
of mathematics teachers, but we have talked
thus far only about learning mathematics, not
about the methodology of teaching it. While
knowing mathematics is undoubtedly necessary
for a teacher to be effective, it is clearly not sufficient.
For example, while we want all teachers to know
precise definitions and their role in the development
of mathematical skills and ideas, we do not wish
to suggest that they teach school mathematics
in the definition-theorem-proof style of graduate
mathematics courses. The fact remains, however,
that the more teachers know about a definition
(the historical need it fulfills, why a particular
formulation is favored, what ramifications it has,
etc.), the more likely it is that they can make it
accessible to their students. The same comment
applies to every one of the fundamental principles
of mathematics.

This then brings up the tension that exists at
present between some mathematicians’ perception
of the most urgent task in a mathematics teacher’s
education and some educators’ perception of
the same. Mathematicians tend to believe that,
because the most difficult step in mathematics
teachers’ education is to learn the necessary
mathematics, giving them this knowledge is the
number one priority in professional development.
Quite understandably, some educators believe
that the really hard work lies in the pedagogical
part of the education that channels the teacher’s
content knowledge into the school classroom. As
this theory goes, teachers learn the mathematics
better if it is taught hand in hand with pedagogy.
The main point of these conflicting perceptions—
whether learning the pedagogy or learning the
mathematics is more difficult to achieve—can at

18This is not to be interpreted as an advocacy of teaching
high school geometry by the use of axioms.

some point be resolved by a large-scale study to
see whether it is a lack of genuine understanding
of content knowledge or weak pedagogical skills
that contribute more to student nonlearning in the
classroom.19 In the meantime, some small-scale
studies, e.g., [Ball] and [Ma], indicate that teachers’
lack of content knowledge is the more severe
problem. The available anecdotal evidence points
in the same direction.

My personal experience, from having taught
elementary and middle school teachers for eleven
summers in four states (sometimes more than once
in a given year) and having taught prospective high
school teachers for four years at Berkeley, is that,
in an overwhelming majority of cases, their mathe-
matical preparation leaves a lot to be desired.20 It
is also the case that even when I inject pedagogical
issues into my teaching from time to time, the
teachers are usually so preoccupied with learning
the mathematics that the pedagogical discussion
hardly ever takes place. Some standard statistics,
such as those in A Nation at Risk (see “Findings
Regarding Teaching” in [NAR]), are consistent with
this overall picture. It is for this reason that I
have focused exclusively in this article on teachers’
content knowledge.

This discussion of content knowledge should be
put in the context of Lee Shulman’s 1985 address
([Shulman]) on pedagogical content knowledge, i.e.,
the kind of pedagogical knowledge specific to the
teaching of mathematics that a math teacher needs
in order to be effective. There are two things that
need clarification in such a discussion: what this
mathematical content knowledge is and what the
associated pedagogical knowledge is. Deborah Ball
and her colleagues have recently begun to codify
both kinds of knowledge in their attempt to reform
math teachers’ education (cf. [Ball-TP2008]). What
must not be left unsaid is the obvious fact that,
without a solid mathematical knowledge base, it is
futile to talk about pedagogical content knowledge.

The Need for Inservice Professional
Development
At the beginning of this article, I mentioned the
disheartening results of Deborah Ball’s survey
of teachers on their understanding of fraction
division ([Ball]). I would venture a guess that,
had her teachers been taught the mathematics of
K–12 in a way that respects the five fundamental
principles of mathematics, the results of the survey

19For teachers in first and third grades, the large-scale
study of [Hill-RB] found positive correlation between teach-
ers’ content knowledge and student achievement. So
content knowledge is likely a major factor even at such
an early stage of student learning.
20Again, see [Hill-RB].
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would have been far more satisfactory.21 Until we
improve on how we teach mathematics to teachers
in the universities, defective mathematics will
continue to be the rule of the day in our schools. It
is time for us to break out of the vicious cycle by
exposing teachers to a mathematically principled
version of the mathematics taught in K–12.

Unfortunately, such short-term exposure in the
university may not be enough to undo thirteen
years of mis-education of prospective teachers in
K–12. Uniform achievement in the content knowl-
edge of all math teachers will thus require heavy
investments by the state and federal governments
in sustained inservice professional development.
To this end we need inservice professional devel-
opment that directly addresses content knowledge.
Funding for such professional development, how-
ever, may be hard to get, for content knowledge
does not seem to be a high-priority consideration
among government agencies. For example, in a
recent survey by Loveless, Henriques, and Kelly of
winning proposals among the state-administered
Mathematics Science Partnership (MSP) grants from
forty-one states ([Loveless-HK]), it was found that:
“Some of the MSPs appear to be offering sound pro-
fessional development. Many, however, are vague
in describing what teachers will learn.” Typically,
these “MSPs’ professional development activities
tip decisively towards pedagogy”. For example,
although the professional workshops described in
[TAMS] were not part of the review in [Loveless-
HK], they nevertheless fit the description of this
review. The [TAMS] document begins with the
promising statement that the “TAMS-style teacher
training increases teachers’ content knowledge”.
But other than mentioning “teacher workshops
focused on data analysis and measurement. . ..
Early grade teachers also studied length, area, and
volume”, the rest of the discussion of mathematics
professional development focuses on persuading
teachers to adopt “constructivist, inquiry-based
instruction”. The lack of awareness in [TAMS] about
what content knowledge elementary teachers need
in their classrooms is far from uncommon. It is
time to face the fact that the need for change in
the funding of inservice professional development
is every bit as urgent as the need for more focus
on content knowledge in the preservice arena.

Concluding Remarks
To conclude, let me add two observations. The
mathematics taught in K–12 is the main source
of the mathematical information of not only
our schoolteachers but also of the mathematics

21Note that the work of Hill, Rowan, and Ball ([Hill-RB]),
while not directly verifying this hypothesis, is nevertheless
fully consistent with it.

education faculties and school administrators.22

Mathematics education cannot improve so long as
educators and administrators remain mathemati-
cally ill-informed as a result of the negligence of
the mathematics community. It is doubtful, for
example, that the research literature on fractions
would slight logical reasoning (cf. pp. 33–38 in
[Wu2008a]) had the researchers been exposed to
a presentation of K–12 mathematics consistent
with the five principles above. Many mathematics
educators have likewise been denied this exposure
and, as a result, have developed a distorted view of
what mathematics is about. As this article tries to
show, the cumulative gap between what (research)
mathematicians take for granted as mathematics
and what teachers and educators perceive to be
mathematics has caused enormous damage in
mathematics education. It is imperative that we
minimize this damage by straightening out at least
the mathematics of K–12, and we cannot possibly
do that without first creating a corps of mathemat-
ically informed teachers. The latter has to be the
mathematics community’s immediate goal.

To lend some perspective on the communication
gap between mathematicians and educators, it must
be said that such miscommunication is by no means
unusual in any interdisciplinary undertaking. In
his celebrated account of the discovery of the
double-helix model of DNA ([Watson]), James
Watson recalled that at one point of his and
Francis Crick’s model building,23 they followed
the standard reference on organic chemistry24 to
pair the bases like-with-like. By luck, the American
crystallographer Jerry Donohue happened to be
visiting and was sharing an office with them, and
Donohue told Watson not only that his (Watson’s)
scheme of pairing was wrong but also that such
information given in most textbooks of chemistry
was incorrect (p. 190, ibid.). In Watson’s own words:

If he [Donohue] had not been with
us in Cambridge, I might still have
been pumping for a like-with-like
structure. (p. 209)

In other words, but for the fortuitous presence
of someone truly knowledgeable about physical
chemistry, Crick and Watson might not have been
able to guess the double helix model, or at least
the discovery would have been much delayed.

The moral one can draw from this story is that,
if such misinformation could exist in high-level
science, one should expect the same in mathematics
education, which is much more freewheeling. This
suggests that real progress in teacher education will

22If anyone wonders where administrators come in, let
me say that the number of horrendous decisions in
school districts on mathematics textbooks and professional
development would easily fill a volume.
23In Cambridge, England.
24The Biochemistry of Nucleic Acids by J. N. Davidson.
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require both the education and the mathematics
communities to collaborate very closely and to be
vigilant in separating the wheat from the chaff.
In particular, given the long years during which
incorrect information about mathematics has been
accumulating in the education literature and school
textbooks, there should be strong incentive for
educators to seek information about the K–12
mathematics curriculum anew and to begin some
critical rethinking.

Last but not least, all through this article I
have put great emphasis on getting teachers and
(consequently) educators to know the mathematics
of K–12. This should in no way be interpreted as
saying that the mathematics of K–12 is all a teacher
needs to know. Contrary to Begle’s belief, there is
no such thing as knowing (in the sense described
above) too much mathematics in mathematics
education. Every bit of mathematical knowledge
will help in the long run. However, faced with
the almost intractable problem of improving the
education of all math teachers, it is only proper
that we focus on a modest and doable first step:
make sure that mathematics teachers all know the
mathematics of K–12. Let us get this done.
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