A Tutorial on
(Co)Algebras and (Co)Induction*

BART JACOBS JAN RUTTEN

Dep. Comp. Sci., Univ. Nijmegen, CWI,

P.O. Box 9010, 6500 GL Nijmegen, P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands. The Netherlands.
bart@cs.kun.nl janr@cwi.nl

Abstract. Algebraic structures which are generated by a collection of constructors—
like natural numbers (generated by a zero and a successor) or finite lists and trees—
are of well-established importance in computer science. Formally, they are initial
algebras. Induction is used both as a definition principle, and as a proof principle for
such structures. But there are also important dual “coalgebraic” structures, which do
not come equipped with constructor operations but with what are sometimes called
“destructor” operations (also called observers, accessors, transition maps, or mutators).
Spaces of infinite data (including, for example, infinite lists, and non-well-founded sets)
are generally of this kind. In general, dynamical systems with a hidden, black-box
state space, to which a user only has limited access via specified (observer or mutator)
operations, are coalgebras of various kinds. Such coalgebraic systems are common in
computer science. And “coinduction” is the appropriate technique in this coalgebraic
context, again both as a definition principle and as a proof principle. The latter
involves bisimulations. It is the aim of this tutorial to provide a brief introduction to
this relatively new field of coalgebra.

1 Introduction

Algebra is a well-established part of mathematics, dealing with sets with operations satisfying
certain properties, like groups, rings , vector spaces, etcetera. Its results are essential throughout
mathematics and other sciences. Universal algebra is a part of algebra in which algebraic struc-
tures are studied at a high level of abstraction and in which general notions like homomorphism,
subalgebra, congruence are studied in themselves, see e.g. [17, 48, 70]. A further step up the
abstraction ladder is taken when one studies algebra with the notions and tools from category
theory. This approach leads to a particularly concise notion of what is an algebra (for a functor or
for a monad), see for example [45]. The conceptual world that we are about to enter owes much
to this categorical view, but it also takes inspiration from universal algebra, see e.g. [65].

In general terms, a program in some programming language manipulates data. During the
development of computer science over the past few decades it became clear that an abstract
description of these data is desirable, for example to ensure that one’s program does not depend
on the particular representation of the data on which it operates. Also, such abstractness facilitates
correctness proofs. This desire led to the use of algebraic methods in computer science, in a branch
called algebraic specification or abstract data type theory. The object of study are data types in
themselves, using notions of techniques which are familiar from algebra. The data types used
by computer scientists are often generated from a given collection of (constructor) operations,

*This paper is published in: EATCS Bulletin 62 (1997), p.222-259.

and it is for this reason that “initiality” of algebras plays such an important role (as first clearly
emphasised in [26]). See for example [19, 71, 70] for more information.

Standard algebraic techniques have proved useful in capturing various essential aspects of data
structures used in computer science. But it turned out to be difficult to algebraically describe some
of the inherently dynamical structures occuring in computing. Such structures usually involve a
notion of state, which can be transformed in various ways. Formal approaches to such state-based
dynamical systems generally make use of automata or transition systems, see e.g. [60, 53, 50] as
classical early references. During the last decade the insight gradually grew that such state-based
systems should not be described as algebras, but as so-called coalgebras. These are the formal
duals of algebras, in a way which will be made precise in this tutorial. The dual property of
initiality for algebras, namely finality turned out to be crucial for such coalgebras. And the logical
reasoning principle that is needed for such final coalgebras is not induction but coinduction. There
is no single reference in which this link between state-based dynamical systems and coalgebra is
made explicitly (with all its ramifications), but important insights can be found in [21, 69, 5, 25,
40, 1, 2, 51, 15, 58, 63, 64, 61, 20, 37, 35, 34, 67, 65, 38]. This list is incomplete and does not do
Justice to the various contributors to this area, but it hopefully gives the reader an impression of
some of the developments.

These notions of coalgebra and coinduction are still relatively unfamiliar, and it is our aim in
this tutorial to explain them in elementary terms. There is currently little introductory material
available, since most of the literature already assumes some form of familiarity either with category
theory, or with the (dual) coalgebraic way of thinking (or both). The author’s experiences in
lecturing about coalgebras is that the material in itself is usually not seen as difficult, but that
it takes a subtle change-of-view (with respect to the traditional algebraic approach) to be able to
appreciate, recognise and apply the coalgebraic notions and techniques.

Before we start, we should emphasise that there is no new (research) material in this tutorial.
Everything that we present is either known in the literature, or in the folklore, so we do not
have any claims to originality (except possibly regarding the presentation of the material). Also,
our main concern is with conveying ideas, and not with giving a correct representation of the
historical developments of these ideas. Reference are given mainly in order to provide sources for
more (background) information.

Also, we should emphasise that we do not assume any knowledge of category theory on the part
of the reader. We shall often use the diagrammatic notation which is typical of category theory, but
only in order to express equality of two composites of functions, as often used also in other contexts.
This is simply the most efficient and most informative way of presenting such information. But in
order to fully appreciate the underlying duality between algebra and induction on the one hand,
and coalgebra and coinduction on the other, some elementary notions from category theory are
needed, especially the notions of functor (homomorphism of categories), and of initial and final
(also called terminal) object in a category. Here we shall explain these notions in the concrete
set-theoretic setting in which we are working, but we definitely encourage the interested reader
who wishes to further pursue the topic of this tutorial to study category theory in greater detail.
Among the many available texts on category theory, [57, 68, 4] are recommended as easy-going
starting points, [9, 18, 41] as more substantial texts, and [42, 13] as advanced reference texts.

This tutorial starts with some introductory expositions in Sections 2 — 4. The technical material
in the subsequent sections is organised as follows.

1. The starting point is ordinary induction, both as a definition principle and as a proof prin-
ciple. We shall assume that the reader is familiar with induction, over natural numbers, but
also over other data types, say of lists, trees or (in general) of terms. The first real step is
to reformulate ordinary induction in a more abstract way, using initiality (see Section 5).
More precisely, using initiality for “algebras of a functor”. This is something which we do
not assume to be familiar. We therefore explain how signatures of operations give rise to
certain functors, and how algebras of these functors correspond to algebras (or models) of the
signatures (consisting of a set equipped with certain functions interpreting the operations).
This description of induction in terms of algebras (of functors) has the advantage that it is

highly uniform, in the sense that it applies in the same way to all kinds of (algebraic) data
types. Further, it can be dualised easily, thus giving rise to the theory of coalgebras.

2. The dual notion of an algebra (of a functor) is a coalgebra (of a functor). It can also be
understood as a model consisting of a set with certain operations, but the direction of these
operations is not as in algebra. The dual notion of initiality is finality, and this finality gives
us coinduction, both as a definition principle and as a reasoning principle. This pattern is
as in the previous point, and is explained in Section 6.

3. Finally in Section 7, we give an alternative formulation of the coinductive reasoning principle
(introduced in terms of finality) which makes use of bisimulations. These are relations
on coalgebras which are suitably closed under the (coalgebraic) operations; they may be
understood as duals of congruences, which are relations which are closed under algebraic
operations. Bisimulation arguments are used to prove the equality of two elements of a final
coalgebra, and require that these elements are in a bisimulation relation. Such arguments
are much used in concurrency theory. We conclude with a brief discussion of the various
predicates and relations which are of relevance in algebra and coalgebra.

In a first approximation, the duality between induction and coinduction that we intend to describe
can be understood as the duality between least and greatest fixed points (of a monotone function).
These notions generalise to least and greatest fixed points of a functor, which are suitably described
as initial algebras and final coalgebras. The point of view mentioned in 1. and 2. above can be
made more explicit as follows—without going into technicalities yet. The abstract reformulation
of induction that we will describe is:

‘induction = use of initiality for algebras ‘

An algebra (of a certain kind) is initial if for an arbitrary algebra (of the same kind) there is a
unique homomorphism (structure-preserving mapping) of algebras:

(initial) unique (arbitrary)

—— s (1)
algebra homomorphism algebra '
This principle is extremely useful. Once we know that a certain algebra is initial, by this principle
we can define functions acting on this algebra. Initiality involves unique existence, which has two
aspects:

Existence. This corresponds to (ordinary) definition by induction.

Uniqueness. This corresponds to proof by induction. In such uniqueness proofs, one shows that
two functions acting on an initial algebra are the same by showing that they are both homomor-
phisms (to the same algebra).

The details of this abstract reformulation will be elaborated as we proceed.
Dually, coinduction may be described as:

‘ coinduction = wuse of finality for coalgebras ‘

A coalgebra (of some kind) is final (or terminal) if for an arbitrary coalgebra (of the same kind),
there is a unique homomorphism of coalgebras as shown:

arbitrary unique final .
Bttt dt (2)
coalgebra homomorphism coalgebra
Again we have the same two aspects: existence and uniqueness, corresponding this time to defini-
tion and proof by coinduction.
The initial algebras and terminal coalgebras which play such a prominent role in this theory can
be described in a canonical way: an initial algebra can be obtained from the closed terms (i.e. from
those terms which are generated by iteratively applying the algebra’s constructor operations), and

the terminal coalgebra can be obtained from the pure observations. The latter is probably not
very familiar, and will be illustrated in several examples in the next section.

2 Algebraic and coalgebraic phenomena

The distinction between algebra and coalgebra pervades computer science and has been recog-
nised by many people in many situations, usually in terms of data versus machines. A modern,
mathematically precise way to express the difference is in terms of algebras and coalgebras. The
basic dichotomy may be described as construction versus observation. It may be found in process
theory [50], data type theory [21, 25, 5, 40] (including the theory of classes and objects in object-
oriented programming [61, 30, 37, 35]), semantics of programming languages [46] (denotational
versus operational [64, 67, 6]) and of lambda-calculi [58, 59, 20, 31], automata theory [53], system
theory [65, 34], natural language theory [10, 62] and many other fields.

We assume that the reader is familiar with definitions and proofs by (ordinary) induction. As
a typical example, consider for a fixed data set A, the set A* = list(A) of finite sequences (lists)
of elements of A. One can inductively define a length function len: A* — N by the two clauses:

len(()) =0 and len(a- o) =1+ len(o)

for all a € A and o € A*. Here we have used the notation () € A* for the empty list (sometimes
called nil), and a ¢ (sometimes written as cons(a, o)) for the list obtained from o € A* by prefixing
a € A. As we shall see later, the definition of this length function len: A* — N can be seen as an
instance of the above initiality diagram (1).

A typical induction proof that a predicate P C A* holds for all lists requires us to prove the
induction assumptions

P({)) and P(o) = P(a- o)

for all a € A and ¢ € A*. For example, in this way one can prove that len(c - a) = 1 + len(o) by
taking P = {c € A*|Va € A.len(c -a) = 1+ len(c)}. (Essentially, this induction proof method
says that A* has no proper subalgebras.) In this (algebraic) setting we make essential use of the
fact that all finite lists of elements of A can be constructed from the two operations nil € A* and
cons: A x A* — A*. As above, we also write () for nil and a - ¢ for cons(a, 7).

Next we describe some typically coalgebraic phenomena, by sketching some relevant examples.
Many of the issues that come up during the description of these examples will be explained in
further detail in later sections.

(i) Consider a black-box machine (or process) with one (external) button and one light. The
machine performs a certain action only if the button is pressed. And the light goes on only if the
machine stops operating (i.e. has reached a final state); in that case, pressing the button has no
effect any more. A client on the outside of such a machine cannot directly observe the internal
state of the machine, but (s)he can only observe its behaviour via the button and the light. In this
simple (but paradigmatic) situation, all that can be observed directly about a particular state of
the machine is whether the light is on or not. But a user may iterate this experiment, and record
the observations after a change of state caused by pressing the button!. Tn this situation, a user
can observe how many times (s)he has to press the button to make the light go on. This may be
zero times (if the light is already on), n € N times, or infinitely many times (if the machine keeps
on operating and the light never goes on).

Mathematically, we can describe such a machine in terms of a set X, which we understand as
the unknown state space of the machine, on which we have a function

button: X — {*} U X

where # is a new symbol not occurring in X. In a particular state s € X, applying the function
button—which corresponds to pressing the button—has two possible outcomes: either button(s) =
*, meaning that the machine stops operating and that the light goes on, or button(s) € X. In the
latter case the machine has moved to a next state as a result of the button being pressed. (And

11t is assumed that such actions of pressing a button happen instantaneously, so that there is always an order
in the occurrence of such actions.

in this next state, the button can be pressed again) The above pair (X, button: X — {x} U X) is
an example of a coalgebra.

The observable behaviour resulting from iterated observations as described above yields an
element of the set N = N U {oo}, describing the number of times the button has to be pressed to
make the light go on. Actually, we can describe this behaviour as a function beh: X — N. As we
shall see later, it can be obtained as instance of the finality diagram (2).

(i1) Let us consider a slightly different machine with two buttons: value and next. Pressing
the value button results in some visible indication (or attribute) of the internal state (e.g. on a
display), taking values in a dataset A, without affecting the internal state. (Hence pressing value
twice consecutively yields the same result.) By pressing the next button the machine moves to
another state (the value of which can be inspected again). Abstractly, this new machine can be
described as a coalgebra

(value,next): X ——= A x X

on a state space X. The behaviour that we can observe of such machines is the following:
read the value after pressing the next button n € N times. This results in an infinite sequence
(a0, a1, as,...) € AV of elements of the dataset A, with element a; describing the value after press-
ing next i times. Observing this behaviour for every state s € X gives us a function beh: X — AN,
which can be described as instance of (2).

(iii) The previous example is leading us in the direction of a coalgebraic description of classes
in object-oriented languages. Suppose we wish to capture the essential aspects of the class of
points in a (real) plane that can be moved around by a client. In this situation we certainly
want two attribute buttons first: X — R and second: X — R which tell us, when pushed, the
first and second coordinate of a point belonging to this class. As before, the X plays the role
of a hidden state space, and elements of X are seen as objects of the class (so that an object is
identified with a state). Further we want a button (or method, in object-oriented terminology)
move: X x (R x R) = X which requires two parameters (corresponding to the change in first and
second coordinate). This move operation allows us to change a state in a certain way, depending
on the values of the parameters. The move method can equivalently be described as a function
move: X — XExE) taking the state as single argument, and yielding a function RxR)—> X
from parameters to states.

As a client of such a class we are not interested in the actual details of the implementation
(what the state space X exactly looks like) as long as the behaviour is determined by the following
two equations:

first(move(s, (d1, d2))) first(s) + d1

second (move(s, (d1,d2))) = second(s) + d2

These describe the first and second coordinates after a move in terms of the original coordinates
and the parameters of the move. Such equations can be seen as constraints on the observable
behaviour.

An important aspect of the object-oriented approach is that classes are built around a hidden
state space, which can only be observed and modified via certain specified operations. A user is not
interested in the details of the actual implementation, but only in the behaviour that is realised.
This is why our black-box description of classes with an unknown state space X is appropriate.

The three buttons of such a class (as abstract machine) can be combined into a single function

(first, second, move): X — =R x R x X (RxE)

which forms a coalgebra on the state space X. The observable behaviour is very simple in this
case. It consists of the values of the first and second coordinates, since if we know these values,
then we know the future observable behaviour: the only change of state that we can bring about is
through the move button; but its observable effect is determined by the above two equations. Thus
what we can observe about a state is obtained by direct observation, and repeated observations
do not produce new information. Hence our behaviour function takes the form beh: X — R x IR,

and is again an instance of (2). In automata-theoretic terms one can call the space R x R the
minimal realisation (or implementation) of the specified behaviour.

(iv) We return to the second example with two buttons (value, next): X — Ax X. This example
may also be understood as a deterministic transition system: write for states s, s’ € X and for an
observable value a € A,

s —5 s if and only if value(s) = a and next(s) = s’
We read s — s’ as: in state s we can observe a and move on to s’. The trace Tr(s) of observations
of a state s € X in this transition system is

Tr(s) = (a1,as,...) where S =1 51 —25 59 -

It is the sequence of the observable behaviour beh(s) € AN of the state s € X, as identified in (ii).
The successor states s; of s are completely determined because we have a deterministic machine
in which we allow only one next state.

(v) Consider a general, not necessarily deterministic, transition system (X, A, —), where —
is a subset of X x A x X. Tt can equivalently be described in coalgebra form using a powerset P,
namely, as a function

X —=PAx X)=PX)4

The equivalence is based on: (a,t) € a(s) < s —=» t. The (deterministic) transition system
mentioned in the previous point is a special case with each “successor set” a(s) a singleton.
Such a general transition system a may also be understood as a (transition function of a) non-
deterministic automaton with the set A as input alphabet.

The labels a € A of such a transition system are seen as observable. What then, is an
appropriate domain of observations? This is a difficult question. We shall not give a complete
answer, but mention some of the difficulties, sketch solutions, and give references for further details.
First, we consider a variation of the above kind of transition systems, given by maps of the form:

a: X — (A x X)* =list(A x X)

In this case we can move from a state s € X to an ordered sequence a(s) € (A x X)* of labels
and next states, say of the form a(s) = ((a1,s1),...,(an,s,)). And we can continue this process
with all these s;’s. The resulting space of observations consists of all possibly infinite A-labeled
trees with at each node finitely many ordered branches. We shall return to such coalgebras in
Example 6.7.

In a next step, consider transition systems of the form

a: X —>Ps(Ax X)

which are finitely non-deterministic, in the sense that for each set s € X there are only finitely
many pairs (a,t) with s 5t (which are no longer ordered). One might think that the space of
observations is now simply the set of all (possibly infinite) A-labeled trees with finitely many (non-
ordered) branches, but the situation is more subtle. The problem is that for a state s there may
be two transitions s — #; and s — £ with the same label, for which it is not clear yet if they
lead to the same observations (and hence should be identified). In the previous situation (with
(A x X)* instead of Py (A x X) this question does not occur, because such transitions are different
components of an ordered sequence. Actually, an appropriate space of observations for transition
systems of the form X — P (A x X)) can be constructed by quotienting the space of observations
of transition systems X — (A x X)* with respect to bisimulation, see [8] for categorical details, or
also [64] for some more explanations. Bisimulation with respect to this functor will be described
in Example 7.1.

What is left is the general situation of arbitrary, not necessarily finitely non-deterministic,
transition systems X — P(A x X). As we shall see below, the spaces of observations that we are

describing are final coalgebras. It will be shown in general that such coalgebras are isomorphisms
X = P(A x X). An easy cardinality argument shows that such an isomorphism cannot exist (for
non-empty sets A). Hence there is no such space of observations ... in the world of ordinary sets.
However, in the world of non-well-founded sets and classes, such a space does exist, and it plays
an important role in giving meaning to various process operators, see [1, 2, 64, 67].

(vi) In another variation on the second example we may consider a machine with two buttons
(value,next): X — A x X, as above, but with autonomous activity in time. What we mean is
that the machine may perform actions (and thereby change its state) if time progresses, without
someone pressing a button. Hence, if at some stage the machine is in state s € X, then after
some time interval of length o € Ry = {# € R |2 > 0} in which no buttons have been pressed,
the machine is possibly in a different state s’ € X (depending? on a). Such an action of time
on states in combination with (coalgebraic) operations value, next acting on states, may be used
in abstract descriptions of hybrid systems, combining discrete and continuous behaviour. The
possible observations that we can make in this situation are of the form: after pushing the next
button n € N times with intervals of length a1, ..., a,, we see a certain value in A after an interval
of length 3. This yields a space of observations

And the associated behaviour function beh: X — A®>0" forms a suitable homomorphism as
in (2).

(vii) Another example of the pattern given by the finality diagram (2) involves the definition of
Bohm-trees for (untyped) lambda-terms, see [7, 10.1.3 and 10.1.4]. Briefly, the Bohm-tree BT (M)
of a A-term M is obtained as follows. Find out if M has a head normal form. If not, then BT (M)
consists of a single, unlabeled node. Tf M does have a normal form, say of the form AZ. yM; - - My,
put

Ay
BT(M) = A IR

BT (M) BT(M,)

Such a tree can be seen as arising from observations about the A-term M. What can be observed
about such a term are its abstraction variables and head variable (if any). The operation BT (—) of
taking Bohm trees can then be seen as a function like in (2) from the set of lambda terms (modulo
B-equivalence) to an appropriate space of observations (consisting of possibly infinite trees labeled
by sequences of variables with finitely many branches)?3.

(viii) Other examples of interesting coalgebras can be obtained by supplying the underlying
set of states with additional structure. For instance, a one-dimensional discrete time dynamical
systems (X, f) consist of a complete metric space X (with distance function dx) and a continuous
function f : X — X, which describes the dynamical behaviour of the system. Such systems occur,
for instance, in population biology and physics. One of the main themes in the theory of dynamical
systems 1is the systematic study of orbits: if ¥ € X then its orbit is the set

<z>={z, fO(2), fO2), FP(2),..},

where f(”+1)(1:) = f(f(”) (x)). In coalgebraic terms, the orbit of z is just the smallest subsystem
(i.e., subcoalgebra) of (X, f) that contains 2. Questions to be addressed are, for instance, whether
a point z is periodic (2 = f(")(z), for some n > 0); whether there are many such periodic points
and how they are distributed over X (e.g., do they form a dense subset?); and whether orbits

)

2The canonical way to describe a functional dependence on « is via a so-called monoid action p: X x Ry — X
satisfying u(s,0) = s and pu(s, o + B) = p(u(s,), B), see [36]. -

3In personal communication, the author of [7], Henk Barendregt, said that at the time of writing this definition
of Béhm trees he felt slightly uncomfortable about the nature of the definition. He saw it as a possibly infinite
process, which is well-defined at every finite stage. He emphasised, see loc. cit. Remark (ii) on p. 216, that it is
certainly not an inductive definition. Indeed, it is a coinductive definition!

< x > and < y > are similar if we know that z and y are close, that is, dx(z,y) is small. As
it turns out, at least one important technique that is used in the world of dynamical systems to
answer some of such questions, called symbolic dynamics (cf. [11]), can be described elegantly in
the theory of coalgebras, using amongst others techniques from metric domain theory [3, 63]. The
interested reader is referred to [65] for further details, which are outside the scope of the present
tutorial.

In this series of examples of coalgebras we see each time a state space X about which we make
no assumptions. On this state space a function is defined, often consisting of different components,
which allow us either to observe some aspect of the state space directly, or to move on to next
states. We have limited access to this state space in the sense that we can only observe or modify it
via these specified operations. In such a situation all that we can describe about a particular state
is its behaviour, which arises by making successive observations. This will lead to the notion of
bisimilarity of states: it expresses of two states that we cannot distinguish them via the operations
that are at our disposal, i.e. that they are “equal as far as we can see”. But this does not mean
that these states are also identical as elements of X. Bisimilarity is an important, and typically
coalgebraic, concept.

The above examples are meant to suggest the difference between construction in algebra, and
observation in coalgebra. This difference will be described more formally below. In practice it
is not always straightforward to distinguish between algebraic and coalgebraic aspects, for the
following two reasons.

1. Certain abstract operations, like X x A — X, can be seen as both algebraic and coalgebraic.
Algebraically, such an operation allows us to build new elements in X starting from given
elements in X and parameters in A. Coalgebraically, this operation is often presented in the
equivalent from X — X4 using function types. It is then seen as acting on the state space
X, and yielding for each state a function from A to X which produces for each parameter
element in A a next state. The context should make clear which view is prevalent. But
operations of the form A — X are definitely algebraic (because they gives us information
about how to put elements in X), and operations of the form X — A are coalgebraic (because
they give us observable attribute values holding for elements of X). A further complication
at this point is that on an initial algebra X one may have operations of the form X — A,
obtained by initiality. An example is the length function on lists. Such operations are
derived, and are not an integral part of the (definition of the) algebra. Dually, one may have
derived operations A — X on a final coalgebra X.

2. Algebraic and coalgebraic structures may be found in different hierarchic layers. For example,
one can start with certain algebras describing one’s application domain. On top of these
one can have certain dynamical systems (processes) as coalgebras, involving such algebras
(e.g. as codomains of attributes). And such coalgebraic systems may exist in an algebra of
processes.

A concrete example of such layering of coalgebra on top of algebra is given by Plotkin’s so-called
structural operational semantics [60]. Tt involves a transition system (a coalgebra) describing the
operational semantics of some language, by giving the transition rules by induction on the structure
of the terms of the language. The latter means that the set of terms of the language is used as
(initial) algebra. See [64, 67] for an investigation of this perspective. Hidden sorted algebras,
see [23, 22, 14, 24, 44] can be seen as other examples: they involve “algebras” with “invisible”
sorts, playing a (coalgebraic) role of a state space. Coinduction is used to reason about such
hidden state spaces, see [24].

3 Inductive and coinductive definitions

In the previous section we have seen that “constructor” and “destructor/observer” operations play
an important role for algebras and coalgebras, respectively. Constructors tell us how to generate

our (algebraic) data elements: the empty list constructor nil and the prefix operation cons generate
all finite lists. And destructors (or observers, or transition functions) tell us what we can observe
about our data elements: the head and tail operations tell us all about infinite lists: head gives a
direct observation, and tail returns a next state.

Once we are aware of this duality between constructing and observing, it is easy to see the dif-
ference between inductive and coinductive definitions (relative to given collections of constructors
and destructors):

In an inductive definition of a function f,
one defines the value of f on all constructors.

And:

In a coinductive definition of a function f,
one defines the values of all destructors on each outcome f(z).

Such a coinductive definition determines the observable behaviour of each f(z).

We shall illustrate inductive and coinductive definitions in some examples involving finite lists
(with constructors nil and cons) and infinite lists (with destructors head and tail) over a fixed
dataset A, as in the previous section. We assume that inductive definitions are well-known, so we
only mention two trivial examples: the (earlier mentioned) function len from finite lists to natural
numbers giving the length, and the function empty? from finite lists to booleans {true, false} telling
whether a list is empty or not:

{ len(nil) = 0 { empty?(nil) = true

len(cons(a, o)) = 1 + len(o). empty?(cons(a, o)) = false.

Typically in such inductive definitions, the constructors on the left hand side appear “inside” the
function that we are defining.

We turn to examples of coinductive definitions (on infinite lists, say of type A). If we have a
function f: A — A, then we would like to define an extension ext(f) of f mapping an infinite list
to an infinite list by applying f componentwise. According to the above coinductive definition
scheme we have to give the values of the destructors head and tail for a sequence ext(f)(c). They

should be:
head (ext(f)(o)) = f(head(o))
{ tail(ext(f) (o)) = ext(f)(tail(o))

Here we clearly see that on the left hand side, the function that we are defining occurs “inside”
the destructors. At this stage it is not yet clear if ext(f) is well-defined, but this is not our concern
at the moment.

Alternatively, using the transition relation notation from Example (iv) in the previous section,
we can write the definition of ext(f) as:

a !
o — O

ext(f)(0) 1Y ext(f)(")

Suppose next, that we wish to define an operation odd which takes an infinite list, and produces
a new infinite list which contains (in order) all the elements occurring in oddly numbered places
of the original list. A little thought leads to the following definition clauses.

head(odd(c)) = head(o)
{ tail(odd(c)) = odd(tail(tail(c)))

Or, in the transition relation notation:

o = o a—l> o’
odd(o) LI odd(o"")

Let us convince ourselves that this definition gives us what we want. The first clause says
that the first element of the list odd(o) is the first element of . The next element in odd(o) is
head(tail(odd(¢))), and can be computed as

head (tail(odd(c))) = head(odd(tail(tail(¢)))) = head(tail(tail(c))).

Hence the second element in odd(c) is the third element in o. It is not hard to show for n € N
that head(tall()(odd())) is the same as head(tall()(0')).

In a similar way one can coinductively define a function even which keeps all the evenly listed
elements. But it is much easier to define even as: even = odd o tail.

As another example, we consider the merge of two infinite lists o, 7 into a single list, by taking
elements from o and 7 in turn, starting with o, say. A coinductive definition of such a function
merge requires the outcomes of the destructors head and tail on merge(o, 7). They are given as:

{ head (merge(o, 7)) = head (o)
tail(merge(o, 7)) = merge(T, tail(c))

In transition system notation, this definition looks as follows.

a !
o — O

merge(o,) — merge(T, o’)

Now one can show that the n-th element of o occurs as 2n-th element in merge(o, 7), and that the
n-th element of 7 occurs as (2n + 1)-th element of merge(o, 7):

head(taiI(Q”)((r,T))_) = head(tail(")((r))
head(tai|(2n+1)(0',7'))) = head(tail(n)(T)).

One can also define a function merge; 1(o, 7) which takes two elements of o for every element of
7. We leave this function as an exercise to the interested reader?.

An obvious result that we would like to prove is: merging the lists of oddly and evenly occuring
elements in a list o returns the original list o. That is: merge(odd(c),even(o)) = o. From what
we have seen above we can easily compute that the n-th elements on both sides are equal:

w(n head (tail ™ (odd (o ifn=2m
head tail") (merge(odd (<), even(<)))) = { rend i (ovnton)) i 1

(
(
head (tail 2m)()) if n=2m
head(tall (2m+1) (0') ifn=2m+1
= head(tall(n)(o)).

There is however a more elegant coinductive proof-technique, which will be presented later: in Ex-
ample 6.3 using uniqueness—based on the finality diagram (2)—and in the beginning of Section 7
using bisimulations.

4 Functoriality of products, coproducts and powersets

In the remainder of this paper we shall put the things we have discussed so far in a general
framework. Doing so properly requires a certain amount of category theory. We do not intend to
describe the relevant matters at the highest level of abstraction, making full use of category theory.
Instead, we shall work mainly with ordinary sets. That is, we shall work in the universe given by the
category of sets and functions. What we do need is that many operations on sets are “functorial”.

4Stop reading here if you do not want a hint ... First, give a coinductive definition of a function merge3(z, 7, p)
which merges three infinite lists in a round robin way.

10

This means that they do not act only on sets, but also on functions between sets, in an appropriate
manner. This is familiar in the computer science literature, not in categorical terminology, but
using a “map” terminology. For example, if list(A) = A* describes the set of finite lists of elements
of a set A, then for a function f: A — B one can define a function list(A) — list(B) between the
corresponding sets of lists, which is usually called® map_list(f). It sends a finite list (a1, ...,a,) of
elements of A to the list (f(a1),..., f(an)) of elements of B, by applying f elementwise. It is not
hard to show that this map_list operation preserves identity functions and composite functions,
i.e. that map_list(ida) = idjist(a) and map_list(g o f) = map_list(g) o map_list(f). This preservation
of identities and compositions is the appropriateness that we mentioned above. In this section we
concentrate on such functoriality of several basic operations, such as products, coproducts (disjoint
unions) and powersets. It will be used in later sections.

We recall that for two sets X, Y the Cartesian product X x Y is the set of pairs
XxY={(zv,y)|lzre X andyeY}.

There are then obvious projection functions m: X xY — X and 7: X xY = Y by n(z,y) = =
and 7'(z,y) = y. Also, for functions f: Z — X and g: Z — Y there is a unique “pair function”

(f,9):Z - X xY with mo(f,g) = f and @’ o (f, g) = g, namely (f, ¢9)(z) = (f(2),9(2)) € X XY

for z € Z. Notice that (7, 7') = id: X xY — X xY and that (f,g)oh = (foh,goh): W — X XY,
for functions h: W — 7.

Interestingly, the product operation (X,Y) — X x Y does not only apply to sets, but also to
functions: for functions f: X — X’ and g: Y — Y’ we can define a function X x X' - Y x Y’ by
(z,y) — (f(2),9(y)). One writes this function as f x g: X xY — X’ x Y’, whereby the symbol
x is overloaded: 1t is used both on sets and on functions. We note that f x g can be described in
terms of projections and pairing as f x ¢ = (f o, g on'). It is easily verified that the operation
x on functions satisfies

idx X idy = idxxy and (foh)x (gok)=(fxg)o(hxk).

This expresses that the product x is functorial: it does not only apply to sets, but also to functions;
and 1t does so in such a way that identity maps and composites are preserved.

Many more operations are functorial. Also the coproduct (or disjoint union, or sum) + is. For
sets X, Y we write their disjoint union as X + Y. Explicitly:

X—{—Y:{(O,JTHJ?EX}U{<],y>|yEY}.

The first components 0 and 1 serve to force this union to be disjoint. These “tags” enables us
to recognise the elements of X and of Y inside X + Y. Instead of projections as above we now
have “coprojections” k: X — X +Y and £:Y — X + VY going in the other direction. One puts
k(z) = (0,z) and &'(y) = (1,y). And instead of tupleing we now have “cotupleing” (sometimes
called “source tupleing”): for functions f: X — Z and ¢g:Y — Z there is a unique function

[f,9]: X +Y — Z with [f,g]lok = [and [f,g] o &' = ¢g. One defines [f, g] by case distinction:
] fle) ifw=(0,2)
L7.l(w) = { 9(y) ifw=(Ly).

Notice that [k, k'] = id and ho [f,g] = [ho f,hoyg].
This is the coproduct X 4+ Y on sets. We can extend it to functions in the following way. For
f:X = X" and ¢:Y — Y’ there is a function f+¢: X +YV — X' +VY' by

0, f(z)y ifw={0=z
(F+9)w) :{ Elag((y)>> if w= §1,y>>-

5Tn the category theory literature one uses the same name for the actions of a functor on objects and on
morphisms; this leads to the notation list(f) or f* for this function map_list(f).

11

Equivalently, we could have defined: f+g = [ko f, k' og]. This operation + on functions preserves
identities and composition:

idx +idy =idxyy and (foh)+ (gok)=(f+g)o(h+k).

We should emphasise that this coproduct + is very different from ordinary union U. For example,
U is idempotent: X U X = X, but there is not even an isomorphism between X + X and X (if
X #£0).

For a fixed set A, the assignment X ~ X4 = {f|fisa function A — X} is functorial: a
function g: X — Y yields a function g4: X4 — Y4 sending f € X4 to (go f) € Y4. Clearly,
id4 = id and (ho g)* = h o g4.

Another example of a functorial operation is powerset: X +— P(X). For a function f: X — X'
one defines P(f): P(X) — P(X’') by

U A{flz)|zecU}.
Then P(idx) = idp(xy and P(f o h) = P(f) o P(h). We shall write Pg,(—) for the (functorial)

operation which maps X to the set of its finite subsets.

Here are some trivial examples of functors. The identity operation X +— X is functorial: it
acts on functions as f — f. And for a constant set C' we have a constant functorial operation
X +— C; afunction f: X — X' is mapped to the identity function id¢: C — C.

Once we know these actions on functions, we can define functorial operations (or: functors, for
short) merely by giving their actions on sets. We will often say things like: consider the functor

T(X) = X + (C x X).

The action on sets is then X — X + (C' x X). And for a function f: X — X’ we have an action
T(f) of the functor 7" on f as a function T'(f): 7(X) — T(X'). Explicitly, T'(f) is the function

4+ Gde xf): X+ (CxX)— X'+ (CxX')

given by:
o { 01 ite (0
(1, (c, f(2))) ifw=(1(c,2)).
In the sequel we shall only use such “polynomial” functors 7' that are built up with constants,
identity functors, products, coproducts and also (finite) powersets. We describe these functors by
only giving their actions on sets.

(There is a more general notion of ‘functor’ as mapping from one “category” to another. Here
we are only interested in these polynomial functors, going from the category of sets and functions
to itself. But much of the theory applies to more general situations.)

We shall write 1 = {x} for a singleton set, with typical inhabitant . Notice that for every set
X there is precisely one function X — 1. This says that 1 is final (or terminal) in the category of
sets and functions. And functions 1 — X correspond to elements of X. Usually we shall identify
the two. We write 0 for the empty set. For every set X there is precisely one function 0 — X,
namely the empty function. This property is the initiality of 0. (These sets 1 and 0 can be seen
as the empty product and coproduct.)

We list some useful isomorphisms.

XxY = YxX X+Y = Y+X
IxX = X o+X = X

Xx(YxZ) = (XxY)xZ X+Y+7) =2 (X+Y)+7Z
Xx0 = 0 Xx(Y+7Z) 2 (XxY)+ (X x2Z).

The last two isomorphisms describe the distribution of products over finite coproducts. We shall
often work “up-to” the above isomorphisms, so that we can simply write an n-ary product as
X1 x -+ x X, without bothering about bracketing.

12

5 Algebras and induction

In this section we start by showing how polynomial functors—as introduced in the previous
section—can be used to describe signatures of operations. Algebras of such functors correspond
to models of such signatures. They consist of a carrier set with certain functions interpreting the
operations. A general notion of homomorphism is defined between such algebras of a functor.
This allows us to define initial algebras by the following property: for an arbitrary algebra there
is precisely one homomorphism from the initial algebra to this algebra. This turns out to be a
powerful notion. Tt captures algebraic structures which are generated by constructor operations,
as will be shown in several examples. Also, it gives rise to the familiar principles of definition by
induction and proof by induction.

We start with an example. Let T be the polynomial functor 7(X) = 14+ X + (X x X), and
consider for a set U a function a:7(U) — U. Such a map ¢ may be identified with a 3-cotuple
[a1,as,a3] of maps a1:1 - U, as: U — U and a3: U x U — U giving us three separate functions
going into the set U. They form an example of an algebra (of the functor T): a set together with
a (cotupled) number of functions going into that set. For example, if one has a group G, with
unit element e: 1 — G, inverse function 7: G — G and multiplication function m: G x G — G, then
one can organise these three maps as an algebra [e,i, m]: T(G) — G via cotupling®. The shape
of the functor T" determines a certain signature of operations. Had we taken a different functor
S(X) = 14 (X x X), then maps (algebras of S) S(U) — U would capture pairs of functions
1> U,UxU—=U (eg. of a monoid).

Definition 5.1 Let 7" be a functor. An algebra of T' (or, a T-algebra) is a pair consisting of a set
U and a function a: T'(U) = U.

We shall call the set U the carrier of the algebra, and the function a the algebra structure, or
also the operation of the algebra.

For example, the zero and successor functions 0:1 — N, S:IN — N on the natural numbers
form an algebra [0, S]: 1 + N — N of the functor 7(X) = 14+ X. And the set of A-labeled finite
binary trees Tree(A) comes with functions nil: 1 — Tree(A) for the empty tree, and node: Tree(A) x
A x Tree(A) — Tree(A) for constructing a tree out of two (sub)trees and a (node) label. Together,
nil and node form an algebra 1+ (Tree(A) x A x Tree(A)) — Tree(A) of the functor S(X) =
14+ (X x Ax X).

We illustrate the link between signatures (of operations) and functors with further details. Let
Y be a (single-sorted, or single-typed) signature, given by a finite collection ¥ of operations o,
each with an arity ar(c) € N. Each ¢ € ¥ will be understood as an operation

o X x oo x X —X
————

ar(c) times

taking ar(c) inputs of some type X, and producing an output of type X. With this signature 3,
say with set of operations {o1,...,0,} we associate a functor
Ts(X) = xar(on) 4.4 Xar(ﬂn),
where for m € N the set X™ is the m-fold product X x --- x X. An algebra a:Tx;(U) — U of
this functor Ty can be identified with an n-cotuple @ = [ay, ... a,]: par(@1) 4 ... 4 yar(on) 5 U of
functions a;: parlei) interpreting the operations o; in X as functions on U. Hence algebras of
the functor 1% correspond to models of the signature . One sees how the arities in the signature
Y determine the shape of the associated functor 1x. Notice that as special case when an arity of
an operation is zero we have a constant in X. In a Tx-algebra Tx(U) — U we get an associated
map U® = 1 — U giving us an element of the carrier set U as interpretation of the constant. The
assumption that the signature X is finite 1s not essential for the correspondence between models

6Only the group’s operations, and not its equations, are captured in this map T(G) = G.

13

of ¥ and algebras of Tx; if ¥ is infinite, one can define 7% via an infinite coproduct, commonly
written as Tx(X) = Her xar(e)

Polynomial functors T' built up from the identity functor, products and coproducts (without
constants) have algebras which are models of the kind of signatures ¥ described above. This
is because by the distribution of products over coproducts one can always write such a functor

in “disjunctive normal form” as 7T'(X) = X™ + ... 4+ X™~ for certain natural numbers n and
mi,...,m,. The essential role of the coproducts is to combine multiple operations into a single
operation.

The polynomial functors that we use are not only of this form 7(X) = X™ + ... 4+ X™~ but
may also involve constant sets. This is quite useful, for example, to describe for an arbitrary set A a
signature for lists of A’s, with function symbols nil: 1 — X for the empty list, and cons: Ax X — X
for prefixing an element of type A to a list. A model (interpretation) for such a signature is an
algebra T(U) — U of the functor T'(X) = 1 + (A x X) associated with this signature.

We turn to “homomorphisms of algebras”, to be understood as structure preserving functions
between algebras (of the same signature, or functor). Such a homomorphism is a function between
the carrier sets of the algebras which commutes with the operations. For example, suppose we
have two algebras £1:1 — Uy, c1: A x Uy — Uy and fo:1 — Us, ¢o: A x Us — Us of the above
list signature. A homomorphism of algebras from the first to the second consists of a function
f:U1 — Us between the carriers with fof; = £y and foci = cy0 (id x f). In two diagrams:

- id
| —— Ao — Ly,
b l l& and c1 l l02
U1 f > U2 U1 U2

f

Thus, writing ny = £1(%) and ny = £2(%), these diagrams express that f(n1) = ns and f(c1(a, z)) =
ea(a, f(x)), for a € A and x € Uy.

These two diagrams can be combined into a single diagram:

14 (A xUr) id + (id x f) 14 (A x Us)
(61, Cl]l l[fm co]
U1 UZ

i.e., for the list-functor 7T'(X) =1+ (4 x X),

T(Uy) &T(Ug)

[ty cl]l l[fz, co]

UOh———Us
The latter formulation is entirely in terms of the functor involved. This motivates the following
definition.

Definition 5.2 Let T be a functor with algebras a: T(U) — U and b:T(V) — V. A homomor-
phism of algebras (also called a map of algebras, or an algebra map) from (U, a) to (V,b) is a
function f:U — V between the carrier sets which commutes with the operations: foa =boT(f)

14

n

As a triviality we notice that for an algebra a: T(U) — U the identity function U — U is an
algebra map (U,a) — (U, a). And we can compose algebra maps as functions: given two algebra
maps

(rw) -4 0) f, (T(V) LN V) —Ls (W) S w)

then the composite function go f: U — W is an algebra map from (U, a) to (W, ¢). This is because
gofoa=goboT(f)=coT(g)oT(f) =coT(gof), see the following diagram.

T(gof)
T(lU) T) Y;(lV) T(g) l
U ! 1% g w
gof

(Thus: algebras and their homomorphisms form a category.)

Now that we have a notion of homomorphism of algebras we can formulate the important
concept of “initiality” for algebras.

Definition 5.3 An algebra a: T(U) — U of a functor 7' is initial if for each algebra b: T(V) — V
there is a unique homomorphism of algebras from (U, a) to (V,b). Diagrammatically we express
this uniqueness by a dashed arrow, call it f, in

1)~ -0y
| I
U= - -V

We shall sometimes call this f the “unique mediating algebra map”.

We emphasise that unique existence has two aspects, namely ezistence of an algebra map
out of the initial algebra to another algebra, and uniqueness, in the form of equality of any two
algebra maps going out of the initial algebra to some other algebra. Existence will be used as an
(inductive) definition principle, and uniqueness as an (inductive) proof principle.

As a first example, we shall describe the set N of natural numbers as initial algebra.

Example 5.4 Consider the set N of natural number with its zero and successor function 0: 1 — N
and S:N — N. These functions combine into a single function [0,5]:1 + N — N, forming an
algebra of the functor T(X) = 1 + X. We will show that this map [0, 5]: 1 + N — N is the initial
algebra of this functor. And this characterises the set of natural numbers (up-to-isomorphism),
by Lemma 5.5 (ii) below.

To prove initiality, assume we have an arbitrary set U carrying a T-algebra structure [u, h]: 1+
U — U. We have to define a “mediating” homomorphism f:N — U. We try iteration:

f(n) = h™(u)

(where we simply write u instead of u(*)). That is,

flO)=w and f(n+1) =h(f(n)).

These two equations express that we have a commuting diagram

wd+ f
I+ N————> 14U

[O,S]l l[u,h]

N—————>U
f
making f a homomorphism of algebras. This can be verified easily by distinguishing for an

arbitrary element 2 € 1 4+ N in the upper-left corner the two cases z = (0,*) = x(x) and z =
(I,n) = k'(n), for n € N. In the first case z = k(%) we get

F[0,5)(5(x))) = f(0) = v = [u, h)(r(x)) = [u, h]((id + F)((*)))-

In the second case & = k'(n) we similarly check:

F(00,81(+"(n))) = f(S(n)) = h(f(n)) = [u, BI(x"(F(n))) = [u, A]((id + f)(x"(n)))-

Hence we may conclude that f([0, S](z)) = [u, h]((id+ f)(2)), for all z € 1+ N, i.e. that fo[0,S5] =
[u, h]o (id + f).

This looks promising, but we still have to show that f is the only map making the diagram
commute. If g:N — U also satisfies go[0, S] = [u, h]o(id+g), then g(0) = w and g(n+1) = h(g(n)),
by the same line of reasoning followed above. Hence g(n) = f(n) by induction on n, so that
g=FN=>U.

We shall give a simple example showing how to use this initiality for inductive definitions.
Suppose we wish to define by induction the function f(n) = 27" from the natural numbers N to
the rational numbers Q. Its defining equations are:

f(0) =1 and fln+1)= %f(n)

In order to define this function f:N — @ by initiality, we have to put an algebra structure
14+ Q — @Q on the set of rational numbers @, see the above definition. This algebra on Q
corresponds to the right hand side of the two defining equations of f, given as two functions

1
1_1>Q QL)Q
* — | II%-%J:

(where we use ‘1’ both for the singleton set 1 = {*} and for the number 1 € @) which combine
into a single function

[1’ %(_)]

1+Q Q

forming an algebra on Q. The function f(n) = 27" is then determined by initiality as the unique
function making the following diagram commute.

id +
1+N—f>1-|-©

[o,S]l (1)

N————Q

f

This shows how initiality can be used to define functions by induction. It requires that one
puts an appropriate algebra structure on the codomain (i.e. the range) of the intended function,
corresponding to the induction clauses that determine the function.

16

We emphasise that the functor 7" is a parameter in Definitions 5.2 and 5.3 of “homomorphism”
and “initiality” for algebras, yielding uniform notions for all functors T' (representing certain
signatures). It turns out that initial algebras have certain properties, which can be shown for all
functors T' at once. Diagrams are convenient in expressing and proving these properties, because
they display information in a succinct way. And they are useful both in existence and uniqueness
arguments.

Lemma 5.5 Let T be a functor.

(i) Initial T-algebras, if they exist, are unique, up-to-isomorphism of algebras. That is, if we
have two initial algebras a: T(U) — U and a’: T(U') = U’ of T, then there is a unique isomorphism
£:U S U’ of algebras:

U—————"U'

(ii) The operation of an initial algebras is an isomorphism: if a:T(U) — U is initial algebra,
then a has an inverse a=': U — T'(U).

The first point tells us that a functor can have (essentially) at most one initial algebra.
Therefore, we often speak of the initial algebra of a functor 7. And the second point—which is
due to Lambek—says that an initial algebra T'(UU) — U is a fixed point T'(U) = U of the functor
T'. Initial algebras may be seen as generalizations of least fixed points of monotone functions,
since they have a (unique) map into an arbitrary algebra.

Proof: (i) Suppose both a:T(U) — U and a': T(U') — U’ are initial algebras of the functor 7.
By initiality of a there is a unique algebra map f: U — U’. Similarly, by initiality of a’ there is a
unique algebra map f': U’ — U in the other direction:

T(W)- - - - = T(U") (') - -~ - = T(U)
N
e e e R

Here we use the existence parts of initiality. The uniqueness part gives us that the two resulting
algebra maps (U, a) — (U, a), namely fo f' and id in:

70y — I iy LU) -)
al a'l Ja and al la
U ——f—= U ———U U———U

must be equal, i.e. that f'o f = id. Uniqueness of algebra maps (U’, a’) — (U’, a’) similarly yields
fof' =id. Hence f is an isomorphism of algebras.

(i) Let a: T(U) — U be initial T-algebra. In order to show that the function a is an isomorphism,
we have to produce an inverse function U — T(U). Initiality of (U, a) can be used to define
functions out of U to arbitrary algebras. Since we seek a function U — T'(U), we have to put
an algebra structure on the set T(U). A moment’s thought yields a candidate, namely the result

"This is a more general property of initial objects in a category.

17

T(a): T(T(U)) — T(U) of applying the functor 7" to the function a. This function 7'(a) gives by
initiality of a: T(U) — U rise to a function a’: U — T(U) with T'(a) o T'(a') = a’ 0 @ in:

T - - s ey
al T(a)
U~ == T(0)

The function a o a’: U — U is an algebra map (U, a) — (U, a):

T(a') T(a)

) — ey —)
al T(a) la
vy—A— > T(U) I E—— U

Cll

so that @ o a’ = id by uniqueness of algebra maps (U,a) = (U, a). But then

a’oa = T(a)oT(a') by definition of a’
= T(aod) since 1" preserves composition
= T(id) as we have just seen
= id since T" preserves identities.
Hence a: T(U) — U is an isomorphism with a’ as its inverse. O

From now on we shall often write an initial T-algebra as a map a:T(U) 5 U, making this
isomorphism explicit.

Example 5.6 Let A be fixed set and consider the functor T(X) = 1+ (A x X) that we used earlier
to capture models of the list signature 1 — X, A x X — X. We claim that the initial algebra of T'
is the set A* = list(A) = |,y A™ of finite sequences of elements of A, together with the function
(or element) 1 — A* given by the empty list nil = (), and the function A x A* — A* which maps
an element ¢ € A and a list @« = (a1,...,an) € A* to the list cons(a, o) = (a,a1,...,a,) € A*,
obtained by prefixing a to a. These two functions combine into a single function [nil, cons]: 1 +
(A x A*) = A*, which, as one easily checks, is an isomorphism. But this does not yet mean that
it is the initial algebra. We will check this explicitly.

For an arbitrary algebra [u,h]: 14+ (A x U) — U of the list-functor 7" we have a unique
homomorphism f: A* — U of algebras:

L (o an) 2D
[nil,cons]l l[u,h]
A* U

namely

u if « = nil
fla) = { h(a, f(B)) if a = cons(a, 3).

We leave it to the reader to verify that f is indeed the unique function A* — U making the
diagram commute.

18

Again we can use this initiality of A* to define functions by induction (for lists). As example
we take the length function len: A* — N, described already in the beginning of Section 2. In
order to define it by initiality, it has to arise from a list-algebra structure 1+ A x N — N on
the natural numbers N. This algebra structure is the cotuple of the two functions 0: 1 — N and
Son:AxN — N. Hence len is determined as the unique function in the following initiality
diagram.

id + (id x len)

14 (A x A%) 1+ (A x N)
[nil,cons]l% l[O,Sow’]
A len i
The algebra structure that we use on N corresponds to the defining clauses len(nil) = 0 and

len(cons(a, a)) = S(len(a)) = S(len(n'(a, &))) = S(7'(id x len)(a, a)).

We proceed with an example showing how proof by induction involves using the uniqueness
of a map out of an initial algebra. Consider therefore the “doubling” function d: A* — A* which
replaces each element a in a list a by two consecutive occurrences a,a in d(«). This function is
defined as the unique one making the following diagram commute.

g (Ao U)o
[nil, cons] l% l[nil, A(a,). cons(a, cons(a, a))]
A* 7 A*

That is, d is defined by the induction clauses d(nil) = nil and d(cons(a, a)) = cons(a, cons(a, d(a)).
We wish to show that the length of the list d(a) is twice the length of «, i.e. that

len(d(a)) = 2 - len(a).
The ordinary induction proof consists of two steps:
len(d(nil)) = len(nil) =0 =2-0=2"len(nil)
And
len(d(cons(a,@))) = len(cons(a,cons(a,d(a))))

= 14 1+4len(d(a))

=" 242 len(e)

= 2-(1+len(a))

= 2.len(cons(a, a)).

The “initiality” induction proof of the fact len o d = 2 - (—) o len uses uniqueness in the following
manner. Both lenod and 2 (=) olen are homomorphism from the (initial) algebra (A*, [nil, cons])

to the algebra (IN, [0, So S o ']), so they must be equal by initiality. First we check that len o d is
an appropriate homomorphism by inspection of the following diagram.

id + (id x d id + (id x |
L (A xAn) U)oy ey e
[nil, cons] | = [nil, A(a,). cons(a, cons(a, a))] [0,S0Son]
* *
A d A len N

19

The rectangle on the left commutes by definition of d. And commutation of the rectangle on the
right follows easily from the definition of len. Next we check that 2-(—)olen is also a homomorphism

of algebras:

L (A x A% id + (id x len) 1+(A><N)Z.d+(id><2.(_))1+(A><N)
id+7r’l ' lid—i—ﬂ"
[nil, cons] | = 14+ N id+2-(-) 14+ N [0,S0S o]
[O,S]lz l[O,SoS]
A — N O N

The square on the left commutes by definition of len. Commutation of the upper square on the
right follows from an easy computation. And the lower square on the right may be seen as defining
the function 2 - (=):N — N by the clauses: 2-0 =0 and 2 - (S(n)) = S(S(2 - n))—which we took

for granted in the earlier “ordinary” proof.

We conclude our brief discussion of algebras and induction with a few remarks.

1. Given a number of constructors one can form the carrier set of the associated initial algebra
as the set of ‘closed’ terms (or ‘ground’ terms, not containing variables) that can be formed
with these constructors. For example, the zero and successor constructors 0:1 — X and
S: X — X give rise to the set of closed terms,

10,5(0),5(5(0))), ...}

which is (isomorphic to) the set N of natural numbers. Similarly, the set of closed terms
arising from the A-list constructors nil: 1 — X, cons: A x X — X is the set A* of finite
sequences (of elements of A).

Although it is pleasant to know what an initial algebra looks like, in using initiality we do
not need this knowledge. All we need to know is that there exists an initial algebra. Its
defining property is sufficient to use it. There are abstract results, guaranteeing the existence
of initial algebras for certain (continuous) functors, see e.g. [43, 66], where initial algebras
are constructed as suitable colimits, generalizing the construction of least fixed points of
continuous functions.

2. The initiality format of induction has the important advantage that it generalises smoothly
from natural numbers to other (algebraic) data types, like lists or trees. Once we know
the signature containing the constructor operations of these data types, we know what the
associated functor is and we can determine its initial algebra. This uniformity provided by
initiality was first stressed by the “ADT-group” [26], and forms the basis for inductively
defined types in many programming languages. For example, in the (functional) language
ML, the user can introduce a new inductive type X via the notation

datatype X = ¢q of 01 (X) | -+ | en of o (X).

The idea is that X is the carrier of the initial algebra associated with the constructors
c1:01(X) = X, ..., cn:on(X) = X. That is, with the functor T(X) = o1 (X) 4+ -+ on(X).
The o; are existing types which may contain X (positively)®. The uniformity provided by
the initial algebra format (and dually also by the final coalgebra format) is very useful if one

8 This definition scheme in ML contains various aspects which are not investigated here, e.g. it allows (a) X = X (&)
to contain type variables &, (b) mutual dependencies between such definitions, (c) iteration of inductive definitions
(so that, for example, the LIST operation which is obtained via this scheme can be used in the o;.

20

wishes to automatically generate various rules associated with (co)inductively defined types
(for example in programming languages like cHARITY [15, 16] or in proof tools like Pvs [52],
HOL/ISABELLE [27, 49, 55, 56], or coq [54]).

Another great advantage of the initial algebra format is that it is dual to the final coalgebra
format, as we shall see in the next section. This forms the basis for the duality between
induction and coinduction.

. We have indicated only in one example that uniqueness of maps out of an initial algebra
corresponds to proof (as opposed to definition) by induction. To substantiate this claim
further we show how the usual predicate formulation of induction for lists can be derived
from the initial algebra formulation. This predicate formulation says that a predicate (or
subset) P C A* is equal to A* in case nil € P and a € P = cons(a, o) € P (for alla € A). Let
us consider P as a set in its own right, with an explicit inclusion function i: P — A* (given
by i(z) =). The induction assumptions on P essentially say that P carries an algebra
structure nil: 1 — P, cons: A x P — P, in such a way that the inclusion map i: P — A* is a
map of algebras:
id 4 (id x 1)
T4+ (Ax P) ————= 1+ (A x A%)

[nil, cons]l El[nil, cons]

P - A*
7

In other words: P is a subalgebra of A*. By initiality we get a function j: A* — P as on the
left below. But then i o j = id, by uniqueness.

id + (id x id)

/—\
T4+ (Ax A T s 14 (Ax P)————— > 1+ (A x A¥)

id + (id x j) | id + (id x 1)
[nil, cons] | = [nil, cons] 2 | [nil, cons]
id

This means that P = A*, as we wished to derive.

. The initiality property from Definition 5.3 allows us to define functions f: U — V out of an
initial algebra (with carrier) U. Often one wishes to define functions U x D — V involving
an additional parameter ranging over a set D. A typical example is the addition function
plus: N x N — N, defined by induction on (say) its first argument, with the second argument
as parameter. One can handle such functions U x D — V via Currying: they correspond to
functions U — VP, And the latter can be defined via the initiality scheme. For example, we
can define a Curryied addition function plus: N — N via initiality by putting an appropriate
algebra structure 1 +N¥ — NY on N (see Example 5.4):

plus

1+N 1+ NN
[O,S]lg l[)\x.x, Af Az S(f(x))]

N——————nN"

plus

This says that

plus(0) = Az. z and plus(n + 1) = Az. S(plus(n)(z)).

21

Alternatively, one may formulate initiality “with parameters”, see [15, 33], so that one can
handle such functions U x D — V directly.

6 Coalgebras and coinduction

In Section 4 we have seen that a “co”-product + behaves like a product X, except that the
arrows point in opposite direction: one has coprojections X — X +Y « Y instead of projections
X « X xY — Y, and cotupleing instead of tupleing. One says that the coproduct + is the dual
of the product x, because the associated arrows are reversed. Similarly, a “co”-algebra is the dual
of an algebra.

Definition 6.1 For a functor 7', a coalgebra (or a T-coalgebra) is a pair (U, ¢) consisting of a set
U and a function ¢: U — T'(U).

Like for algebras, we call the set U the carrier and the function ¢ the structure or operation
of the coalgebra (U, ¢). Because coalgebras often describe dynamical systems (of some sort), the
carrier set U is also called the state space.

What, then, is the difference between an algebra T(U) — U and a coalgebra U — T(U)?
Essentially, it 1s the difference between construction and observation. An algebra consists of a
carrier set U with a function T(U) — U going into this carrier U. Tt tells us how to construct
elements in U. And a coalgebra consists of a carrier set U with a function U — T'(U) in the
opposite direction, going out of U. In this case we do not know how to form elements in U, but
we only have operations acting on U, which may give us some information about U. In general,
these coalgebraic operations do not tell us all there is to say about elements of U, so that we
only have limited access to U. Coalgebras—Ilike algebras—can be seen as models of a signature of
operations—not of constructor operations, but of destructor/observer operations.

Consider for example the functor T(X) = A x X, where A is a fixed set. A coalgebra U —
T(U) consists of two functions U — A and U — U, which we earlier called value:UU — A and
next: U — U. With these operations we can do two things, given an element u € U:

1. produce an element in A, namely value(u);
2. produce a next element in U, namely next(u).

Now we can repeat 1. and 2. and form another element in A, namely value(next(u)). By proceeding
in this way we can get for each element u € U an infinite sequence (a1, as,...) € AN of elements of

a; = value(next(™) (u)) € A. This sequence of elements that u gives rise to is what we can observe
about u. Two elements u1,us € U may well give rise to the same sequence of elements of A,
without actually being equal as elements of U. In such a case one calls u; and us observationally
indistinguishable, or bisimilar.

Here is another example. Let the functor 7'(X) = 1+ Ax X have a coalgebrapn: U — 1+ AxU,

where ‘pn’ stands for ‘possible next’. If we have an element u € U, then we can see the following.

1. Either pn(u) = &(x) € 1 + A x U is in the left component of +. If this happens, then our
experiment stops, since there is no state (element of U) left with which to continue.

2. Orpn(u) = k'(a,u) € 1 + Ax U is in the right +-component. This gives us an element a € A
and a next element u’ € U of the carrier, with which we can proceed.

Repeating this we can observe for an element u € U either a finite sequence (a1, as, ..., a,) € A*
of, or an infinite sequence (ay,as,...) € AN. The observable outcomes are elements of the set
A® = A* + AN of finite and infinite lists of A’s.

These observations will turn out to be elements of the final coalgebra of the functors involved,
see Example 6.3 and 6.5 below. But in order to formulate this notion of finality for coalgebras
we first need to know what a “homomorphism of coalgebras” is. It is, like in algebra, a function
between the underlying sets which commutes with the operations. For example, let T'(X) =

22

A x X be the “infinite list” functor as used above, with coalgebras (hi,#1):U1 — A x Uy and
(ha,t2):Us — A x Us. A homomorphism of coalgebras from the first to the second consists of a
function f:U; — Us between the carrier sets (state spaces) with hao f = hy and t20 f = foty in:

f

U ———Us U ————=U

| o ul |t

A=—=—=1 gt

f

These two diagrams can be combined into a single one:

f f

Uy Us U ————=0Us
<h1,t1>l l<h2,t2> 1e into <h1,t1>l l<h2,t2>
A A TU)) —————=T(U
x Uy zd—xf> x U (1) T (2)

Definition 6.2 Let 1" be a functor.

(1) A homomorphism of coalgebras (or, map of coalgebras, or coalgebra map) from a T-coalgebra
U =% T(U1) to another T-coalgebra Us N T'(Us) consists of a function f: U1 — U between the
carrier sets which commutes with the operations: ¢s o f = T'(f) o ¢1 as expressed by the following
diagram.

f

U —————=U»

cll l@

T(U1) W T(UZ)

(i1) A final coalgebra d:W — T(W) is a coalgebra such that for every coalgebra ¢: U — T(U)
there is a unique map of coalgebras (U, C') — (W, d).

Notice that where the initiality property for algebras allows us to define functions going out
of an initial algebra, the finality property for coalgebras gives us means to define functions into
a final coalgebra. Earlier we have emphasised that what is typical in a coalgebraic setting is that
there are no operations for constructing elements of a state space (of a coalgebra), and that state
spaces should therefore be seen as black boxes. However, if we know that a certain coalgebra is
final, then we can actually form elements in its state space by this finality principle. The next
example contains some illustrations. Besides a means for constructing elements, finality also allows
us to define various operations on final coalgebras, as will be shown in a series of examples below.
(In fact, in this way one can put certain algebraic structure on top of a coalgebra, see [67] for a
systematic study in the context of process algebras.)

Now that we have seen the definitions of initiality (for algebras, see Definition 5.3) and finality
(for coalgebras) we are in a position to see the formal similarities. At an informal level we can
explain these similarities as follows. A typical initiality diagram may be drawn as:

TU)= = = = = — = — — — - - T(V)

itial | _ ba;ehfstep

algebra next step
U-—-——-——-—\"——7-5~—— >V

“and-so-forth”

23

The map “and-so-forth” that is defined in this diagram applies the “next step” operations repeat-
edly to the “base step”. The pattern in a finality diagram is similar:

“and-so-forth”

V- === === U
observe final
plus ~
next step coalgebra
TV)-—-——=—-=-—-———— >T(U)

In this case the “and-so-forth” map captures the observations that arise by repeatedly applying
the “next step” operation. This captures the observable behaviour.

The technique for defining a function f:V — U by finality is thus: describe the direct obser-
vations together with the single next steps of f as a coalgebra structure on V. The function f
then arises by repetition. Hence a coinductive definition of f does not determine f “at once”, but
“step-by-step”. In the next section we shall describe proof techniques using bisimulations, which
fully exploit this step-by-step character of coinductive definitions.

But first we identify a simply coalgebra concretely, and show how we can use finality.

Example 6.3 For a fixed set A, consider the functor T(X) = A x X. We claim that the final
coalgebra of this functor is the set AN of infinite lists of elements from A, with coalgebra structure

(head, tail): AN —— A x AN

given by
head(a) = a(0) and tail(a) = Az.a(z+ 1).

Hence head takes the first element of an infinite sequence (a(0), a(1), @(2),...) of elements of A,
and tail takes the remaining list. We notice that the pair of functions (head, tail): AN 5 A x AV s
an isomorphism.

We claim that for an arbitrary coalgebra (value, next): U — A x U there is a unique homomor-
phism of coalgebras f: U — AY; it is given for u € U and n € N by

f(u)(n) = value (next(")(u)) .

Then indeed, head o f = value and tail o f = f o next, making f a map of coalgebras. And f is
unique in satisfying these two equations, as can be checked easily.

Earlier in this section we saw that what we can observe about an element u € U is an infinite
list of elements of A arising as value(u), value(next(u)), value(next(next(u))), ... Now we see that
this observable behaviour of u is precisely the outcome f(u) € AN at u of the unique map f to
the final coalgebra. Hence the elements of the final coalgebra give the observable behaviour. This
is typical for final coalgebras.

Once we know that AN is a final coalgebra—or, more precisely, carries a final coalgebra
structure—we can use this finality to define functions into AN. Let us start with a simple ex-
ample, which involves defining the constant sequence const(a) = (a,a,a,...) € AN by coinduction
(for some element a € A). We shall define this constant as a function const(a): 1 — AN where
1 = {x} is a singleton set. Following the above explanation, we have to produce a coalgebra
structure 1 — T'(1) = A x 1 on 1, in such a way that const(a) arises by repetition. In this case the
only thing we want to observe is the element a € A itself, and so we simply define as coalgebra
structure 1 — A x 1 the function * — (a,). Indeed, const(a) arises in the following finality
diagram.

const(a
] @
* > (a, *)l El(head,tail)
Ax1 A x AN

id x const(a)

24

It expresses that head(const(a)) = a and tail(const(a)) = const(a).

We consider another example, for the special case where A = N. We now wish to define
(coinductively) the function from: N — N¥ which maps a natural number n € N to the sequence
(n,n+1,n+2n+3,...) € N This involves defining a coalgebra structure N — N x N on the
domain N of the function from that we are trying to define. The direct observation that we can
make about a “state” n € N is n itself, and the next state is then n 4+ 1 (in which we can directly
observe n+1). Repetition then leads to from(r). Thus we define the function from in the following

diagram.

N from NN
An. (n,n+ 1)l El(head,tail)
N
N id x from AR

Tt is then determined by the equations head(from(n)) = n and tail(from(n)) = from(n + 1).

We are now in a position to provide the formal background for the examples of coinductive
definitions and proofs in Section 3. For instance, the function merge: A™ x AY — AN which merges
two infinite lists into a single one arises as unique function to the final coalgebra AN in:

merge

AN x AN AN
/\(a,[)’).(head(a),([)’,tail(a)))l EJ(head,tail}
Ax (AT AT) — A x AN
id X merge

Notice that the coalgebra structure on the left that we put on the domain AN x AN of merge
corresponds to the defining “coinduction” clauses for merge, as used in Section 3. It expresses the
direct observation after a merge, together with the next state (about which we make a next direct
observation).

It follows from the commutativity of the above diagram that

head(merge(a, #)) = head(a) and tail(merge(a, 3)) = merge(f, tail(a)).

The function odd : AN — AN can similarly be defined coinductively, that is, by finality of AN,
as follows:

AN odd AN

Aa. (head(a),tail(tail(a)))l El(head,tail)

N N
A T saa A
The coalgebra structure on AN on the left gives by finality rise to a unique coalgebra homomor-
phism, called odd. By the commutatitivity of the diagram, it satisfies:
head (odd(a)) = head(a) and tail(odd(a)) = odd(tail(tail(a))).

As before, we define

even(a) = odd(tail(a)).

Next we prove for all o in AN: merge(odd(a), even(a)) = a, by showing that mergeo (odd, even)
is a homomorphism of coalgebras from (AN, (head, tail)) to (AN, (head, tail)). The required equality
then follows by uniqueness, because the identity function id: AN — AN is (trivially) a homomor-
phism (AY, (head, tail)) — (AY, (head, tail)) as well. Thus, all we have to prove is that we have a
homomorphism, i.e. that

(head, tail) o (merge o (odd, even)) = (id x (merge o (odd, even))) o (head, tail).

This follows from the following two computations.

head(merge(odd (), even(a))) = head(odd(«))
= head(a).
And: _ _
tail(merge(odd(a), even(a))) = merge(even(a), tail(odd(a)))

n
n

(
merge(even (), odd(tail(tail(«))))
(

merge(odd (tail(a)), even(tail(a)))
= (merge o (odd, even))(tail(a)).

In Section 7, an alternative method for proving facts such as the one above, will be introduced,
which is based on the notion of bisimulation.

Clearly, there are formal similarities between algebra maps and coalgebra maps. We leave it
to the reader to check that coalgebra maps can be composed as functions, and that the identity
function on the carrier of a coalgebra is a map of coalgebras. There is also the following result,
which is dual—including its proof—to Lemma 5.5.

Lemma 6.4 (i) Final coalgebras, if they exist, are uniquely determined (up-to-isomorphism).

(ii) A final coalgebra W — T(W) is a fized point W 5 T (W) of the functor T |

Final coalgebras are generalizations of greatest fixed points of monotone functions. As for
initial algebras, the existence of final coalgebras is more important than their actual (internal)
structure. Their use is determined entirely by their finality property, and not by their structure.
Often, the existence of a final coalgebra follows from general properties of the relevant functor
(and of the underlying category), see e.g. [43, 66].

The unique existence of a map of coalgebras into a final coalgebra has two aspects: existence,
which gives us a principle of definition by coinduction, and uniqueness, which gives us a principle
of proof by coinduction. This will be further illustrated in a series of examples, which will occupy
the remainder of this section.

Example 6.5 Tt is not hard to show that the final coalgebra of the functor T(X) =1+ (4 x X)
has as carrier the set A® = A* + AN of finite and infinite lists of A’s. The associated “possible
next” coalgebra structure

. foo o K (*) if a = ()
pn.A —=1+Ax A 18 a‘_){n’(a,a’) fa=a- o
is final: for an arbitrary coalgebra g:U — 1+ (A x U) of the functor T there is a unique homo-
morphism of coalgebras f:U — A®. Earlier in this section we identified such lists in A as the
observable behaviour for machines whose signature of operations is described by 7'

We give some examples of coinductive definitions for such finite and infinite lists. First an
easy one, describing an empty list nil: 1 — A* as the unique coalgebra homomorphisms in the
following situation.

nil

AOO

1
I{l Elpn
1 Ax])—m =1 A x A®
+)id-|-(z'd><nil) +)

1 1

This determines nil as pn~' o k. We define a prefix operation cons: A x A — A® as pn~' o k’.
We can coinductively define a list inclusion function list_incl: A* — A via the coalgebra
structure list_incl_struct: A* — 1 + (A x A*) given by

ou—){ K(*) if @ = nil
k'(a,B) if @ = cons(a, §)

26

We leave it to the reader to (coinductively) define an infinite list inclusion AN — A%,

A next, more serious example, involves the concatenation function conc: A x A® — A
which yields for two lists 2,y € A® a new list cons(z,y) € A which contains the elements
of & followed by the elements of y. Coinductively one defines conc(z,y) by laying down what
the possible observations are on this new list conc(z,y). Concretely, this means that we should
define what pn(conc(z,y)) is. The intuition we have of concatenation tells us that the possible
next pn(conc(z,y)) is the possible next pn(z) of x if z is not the empty list (i.e. if pn(z) #
k(*) € 1), and the possible next pn(y) of y otherwise. This is captured in the coalgebra structure
conc_struct: A® x A% — 1+ (A x (A% x A%)) given by:

k() ! p
(@, B) = ’(ZL,(B)) ifpn(a) =«

(b, (o, ")) if pn(a) = k(%) and pn(B) = &'(b, 7).

The concatenation function conc: A% x A® — A% that we wished to define arises as unique
coalgebra map resulting from conc_struct.
The interested reader may wish to prove (by uniqueness!) that:

conc(z, nil) = & = conc(nil, z)

conc(conc(z,y), z) = conc(z, conc(y, z)).

One may also wish to prove that conc(cons(a, z),y)) = cons(a,conc(z,y)). The easiest way is to
show that applying pn on both sides yields the same result. Then we are done, since pn is an
isomorphism.

Example 6.6 Consider the functor T(X) = 1 + X from Example 5.4. Remember that its initial
algebra is given by the set N = {0, 1,2, ..., } of natural numbers with cotuple of zero and successor
functions as algebra structure [0,S5]: 1 + N =N

The final coalgebra N =51+ N of T is the set

N=1{0,1,2,...,}U{oc}

of natural numbers augmented with an extra element co. The final coalgebra structure N — 14+ N
is best called a predecessor pred because it sends

0 — K(*), n+ 1+ «'(n), 00+ k' (00)

where we have written the coprojections k, k' explicitly in order to emphasise the +-component
to which pred(z) € 1+ N belongs. This final coalgebra may be obtained by taking as the constant
set A a singleton set 1 for the functor X — 1 4 (A x X) in the previous example. And indeed,
the set 1°° = 1* 4+ 1V is isomorphic to N. The “possible next” operations pn: 1% — 1 + (I x1%)
is then indeed the predecessor.

The defining property of this final coalgebra pred: N — 1 + N says that for every set U with a
function f: U/ — 1 + U there is a unique function g: 7 — N in the following diagram.

U-——-—==-=-- >N
fl Elpred
Ll ——— —
+U id 4 >1 4+

This function g gives us the behaviour that one can observe about systems with one button
X — 1+ X, as mentioned in the first (coalgebra) example in Section 2.
Consider now the function f:N x N — 1 4 (N x N) defined by

K(*) %f pred(z) = pred(y) = x(%)
k' ((z',y)) if pred(z) = &' (z)
k' ({(x,y")) if pred(z) = k(x), pred(y) = &'(¥).

This f puts a coalgebra structure on N x N, for the functor X +— 1+ X that we are considering.
Hence it gives rise to a unique coalgebra homomorphism &: N x N — N in the following situation.

flz,y) =

Nx W & N
l =~ | pred
) g N
Hence @ is the unique function N x N — N with
k(%) if pred(z) = k(*) = pred()
pred(z @ y) = | #'(z @) il pred(r) = r(x), pred(y) = w'(y/)

k' (x' @y) if pred(z) = &' (z').

It is not hard to see that ndm = n4+m for n,m € Nand nGoo = co = coén, so that @ behaves like
addition on the “extended” natural numbers in N. One easily verifies that this addition function
@®:N x N — N is the special case (for A = 1) of the concatenation function conc: A% x A® — A
that we introduced in the previous example. This special case distinguishes itself in an important
aspect: it can be shown that concatenation (or addition) @:N x N — N on the extended natural
numbers is commutative—e.g. by uniqueness, or by bisimulation (see [65] for details)—whereas
concatenation conc: A® x A® — A% in general is not commutative. If A has more than two
elements, then conc(z,y) # conc(y,z), because they give rise to different observations, e.g. for
both z, y singleton sequence containing different elements.

Example 6.7 We consider the functor T'(X) = list(A x X), for a constant set A. On a func-
tion f: X — Y it yields a function list(A x X) — list(A x V') sending ((a1,z1),..., (an,zn)) to
((a1, F(z1)),-- -, (an, f(2n))). A coalgebra X — list(A x X) of this functor is a function which
maps a state & € X to a finite list of pairs (a;, #;) consisting of a label a; € A and a successor
state z; € X. Since this passage to next states can be repeated, such a coalgebra describes a tree
of possibly infinite depth, with finitely many ordered branches, each provided with a label from
A.
For example, the following tree with infinite set (a,)nen of labels:

2 o'}
ag/ ap
3 [e%e] [e%e]
as ap
/ \a1
as S
[e%e] [e%e] [e%e]

can be described as a coalgebra t: N — list(A x N) on the state space N = NU {co} as:

t(o0) = () = nil and t(n) = {(an,n+ 1), (an-1,00),..., (ag, 00)).

28

Our aim in this example is to define for an arbitrary T-coalgebra t: X — list(A x X) two
classical traversal “algorithms” bf(—) and df(—) for breadth-first and depth-first, yielding functions
bf(t): X — A and df(¢): X — A* which describe the elements occurring in the tree ¢ as element
in a possibly infinite list, either in breadth-first or in depth-first order. These functions bf(t)
and df(t) are defined using the finality of A® = A* + AN which is the (carrier of the) final
coalgebra of the functor X — 14 (A x X) (see Example 6.5). This is done in two steps: we first
put two coalgebra structures bfs(?): list(A x X) — 14 (A x list(A x X)) and dfs(¢):list(A x X) —
1+ (Axlist(Ax X)) on list(Ax X). By finality, these will give rise to two coalgebra homomorphisms
bfh(¢): list(A x X) = A% and dfh(¢):list(4A x X) — A°°. Then we define:

bf(t) = bfh(t) o t: X — A and df(t) = dfh(t) o t: X — A™.

So the only thing we should do is define two coalgebra structures bfs(t) and dfs(t) on list(A x X),
as functions list(A x X) = 14 (A x list(A x X)). We take:

Et’)ﬂ) * if £ = nil gcm) * if £ = nil
(a, 0 -t(x)) if £ = cons((a,z),?) (a,t(z)-£') if £ = cons((a,z),t)

where - is concatenation on list(A4 x X).
We illustrate the resulting functions bf(t),df(¢): X — A in an example. Consider therefore

the tree
2N
“3/ ! \f‘* “5/ ? \fﬁ
3 3 3 3
on the state space X = {0,1,2,3} with coalgebra structure t: X — list(A x X) given as

t(O) = <(a1, l)a (a2,2)>, t(l) = <(a3,3), (a4,3)>, t(Q) = <(’15a3)a (a6a3)>) t(3) = <>

Then we can compute the two resulting breadth-first and depth-first traversals of the tree ¢ as:

bf(t)(0) = bfh(t)((0))
bth(?)(((a1,1), (a2,2)))
= .bfh()((12,2), (as, 3), (a4,3)))
~ay - bfh(t)(((as,3), (aa,3), (as, 3), (a6, 3)))
df(t)(0) = dfh(t)({(a1,1), (az,2)))
= a; -dfh(t)((as,3), (aa,3), (a2,2)))
= a1 -az-aq-dfh(t)(((az,2)))
= a1 -a3- 04" Qa3 dfh(t)(<((15,3), (a6’3)>)

= a1 -0a3-0ad4 04y dy - ag.

These calculations rely on the maps bfh(z) and dfh(t) being homomorphisms of coalgebras (of
the functor X +— 1 4 (A x X)). Defining “algorithms” like these by initiality or finality thus
yields certain canonical equations, which can be used for reasoning, e.g. in correctness proofs.
This has been developed into a programming methodology by Bird and Meertens, see the recent
reference [12] for more information (mostly involving initiality) and further references. In this
context, finality was first used in [47].

Actual programming purely on the basis of initiality and finality can be done in the language
CHARITY, see [15] and the references mentioned there.

29

7 Proofs by coinduction and bisimulation

In this section, we shall give an alternative formulation for one of the earlier proofs by coinduction.
The new proof does not (directly) exploit (the uniqueness aspect of) finality, but makes use of the
notion of bisimulation. We also present one new examples and then formulate the general case,
allowing us to proof equalities on final coalgebras via bisimulations.

We recall from Example 6.3 that the final coalgebra of the functor T(X) = A x X is the set
of infinite lists A™ of elements of A with coalgebra structure (head, tail). A bisimulation on this
carrier AV is a relation R on AN satisfying

head(a) = head(f), and
R(a.p) = { R(tail(a), tail ().
Now AN satisfies the following coinductive proof principle, or cpp for short: For all a and 3 in AY,
if R(a, B), for some bisimulation R on AY, then a = g. (cpp)

Before we give a proof of the principle, which will be based on the finality of AN, we illustrate its
use by proving, once again, for all a in AY,

merge(odd(a), even(a)) = a.
To this end, define the following relation on A™:
R = {(merge(odd(a), even(a)), a) | a € AN}

In order to prove the above equality it is, by the coinductive proof principle (cpp), sufficient to
show that R is a bisimulation. This follows by proving the two requirements mentioned above.
First, for each pair (merge(odd(a),even(a)),) in R we have equal head’s:

head(merge(odd (), even(a))) = head(odd(«))
= head(a).

And secondly, if we have a pair (merge(odd(a),even(a)), @) in R, then applying tail on both sides
yields a new pair in R, since we can rewrite, using that even = odd o tail,

tail(merge(odd(a), even(a))) = merge(even(a), tail(odd(a)))
= merge(odd(tail(a)), odd(tail(tail(a))))
= merge(odd(tail(a)), even(tail(a)).

For a proof of the cpp, let R be any bisimulation on AN, If we consider R as a set (of pairs),
then it can be supplied with a A x (—)-coalgebra structure by defining a function

vR——=AXR by (a, B) — (head(«), (tail(e), tail(3))).

Note that v is well-defined since (tail(a),tail(f)) is in R, because R is a bisimulation. Now it is
straightforward to show that the two projection functions

T R —— AN and Ty R — AN
are homomorphisms of coalgebras from (R,7) to (AY, (head, tail)). Therefore it follows from the

(uniqueness aspect of the) finality of AN that m = m5. That is, if R(a, 8) then a = g.
We proceed by considering bisimulations for another functor.

30

Example 7.1 We define a functor B as
B(X)=P(Ax X)={V|VCAx X}

As we saw in the fifth coalgebra example in Section 2, a labeled transition system (X, A, — x) can
be identified with a B-coalgebra ax: X — B(X), where (a,s’) € ax(s) ifand only if s 25 x s'. In
other words, the class of all labeled transition systems coincides with the class of all B-coalgebras.
Let (X, A, —x) and (Y, A, —y) be two labeled transition systems with the same set A of labels.
An interesting question is what a coalgebra homomorphism between these two transition systems
(as coalgebras arx and ay) is, in terms of the transition structures — x and —y. Per definition,
a B-homomorphism f:ax — ay is a function f: X — Y such that B(f) o ax = ay o f, where
the function B(f), also denoted by P(A x f), is defined by

B(HV) =PAx N)(V) = {(a, f(s)) | (a,5) € V}.

One can easily prove that the equality B(f) o ax = ay o f is equivalent to the following two
conditions:

1. for all s in X, if s 5 x s’ then f(s) —Dy f(s');
2. for all £ in Y, if f(s) %5y t then there is s’ in X with s —»x s’ and f(s") =t.

Thus a homomorphism is a function that preserves and reflects transitions. This notion is quite
standard, but sometimes only preservation is required, see e.g. [39].

There is the following well-known notion of bisimulation for transition systems [50, 53]: a
bisimulation between between transition systems X and Y (as above) is a relation R C X x Y
satisfying, for all {(s,t) € R,

1. for all s’ in X, if s —5x s’ then there is ¢/ in Y with ¢ -5y ' and (s',#') € R;
2. for all #/ in Y, if t =3y #' then there is s’ in X with s ——»x s’ and (s',#') € R.

A concrete example of a bisimulation relation between two transition systems X and Y is the
following. Consider two systems X and Y:

Sg —> 8] ——> - -+) b
X = al “l Yy = al
86 8’1 tl

The relation {(s;,s;) [1,5 > 0} U {(s},s%) [i,j > 0} is then a bisimulation on X. And {(s;,?) |
i>0}U{(s},t") | i > 0} is a bisimulation between X and Y. Note that the function f: X —» Y
defined by f(s;) =t and f(s;) =t' is a homomorphism, and that there exists no homomorphism
in the reverse direction from Y to X.

For cardinality reasons, a final B-coalgebra cannot exist: by Lemma 6.4 (ii), any final coalgebra
is a fixed point: X = P(A x X), and such a set does not exist because the cardinality of the latter
set is strictly greater than that of X (for non-trivial sets of labels A). Therefore we restrict to
so-called finitely branching transition systems, satisfying, for all states s,

{{a,s)|s —sx &'} is finite,
Such systems can be identified with coalgebras of the functor
Bf(X) =Pi(Ax X)={V C Ax X |V is finite}.

For this functor, a final coalgebra does exist. The proof, which is a bit technical, is due to Barr [§]
(see also [64, 65]), and is omitted here (cf. the discussion on Section 2).

31

In what follows, let (P, 7) be a final By-coalgebra. Borrowing the terminology of concurrency

theory, we call the elements of P processes. As before, let p == p' < (a,p') € 7(p). We show
that, similarly to the example of infinite lists, (P, m) satisfies a coinductive proof principle:

if R(p,p’), for some bisimulation R on P, then p = p'. (cpp)

The essence of the proof of this principle is again the observation that any bisimulation R C P x P
can be supplied with a coalgebra structure: just define y: R — P¢(A x R) on (p,q) in R, by

v({p,q)) = {{a,(p',¢)) | p == p' and ¢ - ¢'}.

It follows from the bisimulation property of R that the two projection functions 71: R — P and
my: R — P are homomorphisms of coalgebras. Then by finality of P, both homomorphisms must
be equal, which proves the cpp.

The present example is concluded by a definition, by coinduction, of a non-deterministic merge
operation on processes, and a proof, by (cpp), of some of its properties. To this end, we supply
P x P with the following B;-coalgebra structure:

(P x P) p Pi(Ax (P x P))

pa)————{a, (v,) |p =PI U{{a,{p.q)) | 47}

By finality of P, there exists a unique By-homomorphism merge: P x P — P. It follows from the
fact that merge is a homomorphism of transition systems (i.e. P(A x merge) o § = m o merge) that
it satisfies the following rules:
a ! a 1
p—p and g —4q
merge(p, ¢) — merge(p’, q) merge(p, ¢) — merge(p, ¢’

The function merge satisfies a number of familiar properties. Let pg be the terminated process:
formally, pg = 7~ '(@), for which no transitions exist. The following equalities

1. merge(po, p) = p;
2. merge(p, q) = merge(q, p);
3. merge(merge(p, q),) = merge(p, merge(q, 1)),
are a consequence of (cpp) and the fact that the following relations are bisimulations on P:
1. {(merge(po,p), p) | p € P};
2. {(merge(p, q), merge(q, p)) | p,q € P};
3. {(merge{merge(p, g),), merge(p, merge(q, 1)) | p.4,7 € P},
For instance, the first relation is a bisimulation because we have transitions, for any p in P:
merge(po, p) — merge(po, p') if and only if p - 9,

and (merge(po, p’), p’) is again in the relation. For the second relation, consider a pair of processes
(merge(p, q), merge(q, p)), and suppose that we have a transition step

merge(p, q) 57,

for some process r in P. (The other case, where a first step of merge(q, p) is considered, is proved in
exactly the same way.) Tt follows from the two rules above that one of the following two situations

applies: either there exists a transition p —— p’ and r = merge(p', q), or there exists a transition

32

¢ — ¢' and r = merge(p,¢'). Let us consider the first situation, the second being similar. If
p — p' then it follows again from the rules above that there exists also a transition

merge(q, p) LR merge(q, p').

But then we have mimicked the transition step of merge(p, ¢) by a transition step of merge(q, p),
in such a way that the resulting processes are again in the relation:

(merge(p’, q), merge(q, p’))

is again a pair in relation 2. This shows that also relation 2 is a bisimulation. For 3, the same
kind of argument can be given.

The notion of bisimulation was originally introduced in the semantics of concurrency [50, 53].
It has been used as a proof principle for final coalgebras by Aczel in his work on a theory of
non-wellfounded sets [1]. Later a categorical definition of bisimulation was given in [2], by which
bisimulation can be seen to be the coalgebraic dual of the notion of congruence on algebras, see
the next section. The above definitions of a bisimulation (on infinite sequences AN and finitely
branching processes P) are special instances of this categorical definition, which is reproduced
below.

Definition 7.2 Let T be a functor, and e: U — T(U) a T-coalgebra. A bisimulation on U is a
relation R on U for which there exists a T-coalgebra structure y: R — T(R) such that the two
projection functions m: R — U and m3: R — U are homomorphisms of T-coalgebras:

™)

U R U

T(U) <T(T T(R) W T(U)

The general formulation of the coinduction proof principle is then as follows.

Theorem 7.3 Let ¢: Z —» T(Z) be the final T-coalgebra. For all z and z' in P,
if R(z,z'), for some bisimulation R on Z, then z = z'. (cpp)

As in the examples above, the proof of this principle is immediate by finality. The reader is
referred to [65] for further examples of definitions and proofs by coinduction. There exist other
formalisations of the notion of bisimulation. Tn [28, 29] a bisimulation is described as a coalgebra in
a category of relations, for a suitably lifted functor (associated with the original functor 7). And
in [39] bisimulations occur as suitable spans. But in a set-theoretic context, the above definition
seems to be most convenient.

8 Predicates and relations on algebras and coalgebras

The logical arguments that we used so far involved:

o “Inductive” predicates on algebras for induction arguments. What we mean by “inductive”
is that these predicates satisfy the induction assumptions for the underlying algebra. For
example, an inductive predicate P C N on the natural numbers (see Example 5.4) satifies
the assumptions P(0) and P(z) = P(S(z)) for an induction argument. Such inductive
predicates are suitably closed under the constructors of the algebra. One could also say:
these predicates, as subsets, are subalgebras.

33

¢ Bisimulation relations on coalgebras. These are binary predicates which are closed under
the destructors (or transitions) of the coalgebra. Or also, as subsets, they carry a coalgebra
structure, as indicated in Definition 7.2. Such relations are used in coinduction arguments,
of the following sort, see Theorem 7.3:

Every bisimulation on a terminal coalgebra is contained in the equality relation.

Seeing this use of unary predicates on algebras and of binary predicates on coalgebras, one
wonders if there is also a role for binary predicates on algebras and for unary predicates on
coalgebras. The aim of this last section is to indicate that this is indeed the case.

A congruence relation R on an algebra is usually defined as a relation which is both (1) an
equivalence relation, and (2) closed under the algebra’s constructors. This second condition is
equivalent to: R, as a subset, carries an algebra structure which makes both projection functions
homomorphisms of algebras (dual to Definition 7.2, see also [64, 65]). Here we shall use “congru-
ence” for a relation satisfying requirement (2), but not necessarily (1). Then we can formulate the
binary induction principle as:

Every congruence relation on an initial algebra contains the equality relation. ‘

Notice the perfect duality with the coinduction principle as formulated above. We note that a
relation R contains the equality relation if and only if R is reflexive, i.e. if and only if R(z, z) holds
for all z.

For example, the binary induction principle on the natural numbers says that R(z,z) holds
for for a relation R C N x N if both R(0,0) and R(z,y) = R(S(z), S(y)) hold (for all z,y € N.
It is easy to see that this binary induction principle is equivalent to the usual induction principle
(on the natural numbers). This was first noted in [64], and proved subsequently for more general
data types in [29] in an abstract categorical setting.

The situation for unary predicates on coalgebras is not fully settled yet. Of relevance are pred-
icates which are closed under the coalgebra’s destructors (or transitions). Equivalently, predicates
which carry (as subsets) a subcoalgebra structure. They were first called “mongruences” in [32]
(in analogy with congruences), but “invariants” [38] appears to be a better name, since if such
a predicate holds for a state x, then it also holds for all successors of z. Such predicates are
described as “subsystems” in [65].

Greatest invariants appear to be of interest: if P is a suitable property on a coalgebra, then the
greatest invariant inv(P) C P is the final subcoalgebra in which P holds. This gives us a certain
proof principle: if Q C P and @ is an invariant, then @ C inv(P). Applications of this principle
may be found in [32], where the final coalgebra satisfying certain constraints C' is characterised
as inv(C') (for C interpreted in the final coalgebra of the operations), and in [38] for proving the
correctness of refinements between coalgebraic specifications (in an object-oriented setting).

The following table gives a summary of the predicates of interest on algebras and coalgebras.

H algebra ‘ coalgebra

unar inductive predicate invariant
y (subalgebra) (subcoalgebra)
binary congruence bisimulation

Acknowledgements. Our thanks go to Ulrich Hensel, Marieke Huisman and Horst Reichel for
their comments on an earlier version.

References

[1] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14, Stanford, 1988.

34

[2] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, A. Poigné, and D.E.
Rydeheard, editors, Category Theory and Computer Science, number 389 in Lect. Notes
Comp. Sci., pages 357-365. Springer, Berlin, 1989.

[3] P. America and J. Rutten. Solving reflexive domain equations in a category of complete

metric spaces. Journ. Comp. Syst. Sci, 39(3):343-375, 1989.

[4] M.A. Arbib and E.G. Manes. Arrows, Structures and Functors. The Categorical Imperative.
Academic Press, New York, 1975.

[65] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly constrained pa-
rameters. Inf. & Contr., 52:139-158, 1982.

[6] J.W. de Bakker and E. Vink. Control Flow Semantics. The MIT Press, Cambridge, MA,
1996.

[7] H.P. Barendregt. The Lambda Calculus. Its Syntar and Semantics. North-Holland, Amster-
dam, 2" rev. edition, 1984.

[8] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci., 114(2):299-315,
1993. Corrigendum in Theor. Comp. Sci. 124:189-192, 1994.

[9] M. Barr and Ch. Wells. Category Theory for Computing Science. Prentice Hall, 1990.

[10] J. Barwise and L.S. Moss. Vicious Circles: On the Mathematics of Non-wellfounded Phe-
nomena. CSLI Lecture Notes, Stanford, 1996.

[11] M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. Report IGM 96-18, Univ.
de Marne-la-Vallée, 1996.

[12] R. Bird and O. de Moor. Algebra of Programmming. Prentice Hall Int. Series in Comput.
Sci., 1996.

[13] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia of
Mathematics. Cambridge Univ. Press, 1994.

[14] R. Burstall and R. Diaconescu. Hiding and behaviour: an institutional approach. In A.W.
Roscoe, editor, A Classical Mind. Essays in honour of C.A.R. Hoare, pages 75—92. Prentice
Hall, 1994.

[15] J.R.B. Cockett and D. Spencer. Strong categorical datatypes I. In R.A.G. Seely, editor,
Category Theory 1991, number 13 in CMS Conference Proceedings, pages 141-169, 1992.

[16] J.R.B. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for categorical
programming. Theor. Comp. Sci., 139:69-113, 1995.

[17] P.M. Cohn. Universal Algebra, volume 6 of Mathematics and its Applications. D. Reidel Publ.
Comp., 1981.

[18] R.L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge Univ.
Press, 1993.

[19] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and Initial
Semantics. Number 6 in EATCS Monographs. Springer, Berlin, 1985.

[20] M.P. Fiore. A coinduction principle for recursive data types based on bisimulation. Inf. &
Comp., 127(2):186-198, 1996.

[21] V. Giarrantana, F. Gimona, and U. Montanari. Observability concepts in abstract data
specifications. In A. Mazurkiewicz, editor, Mathematical Foundations of Computer Science,
number 45 in Lect. Notes Comp. Sci., pages 576—587. Springer, Berlin, 1976.

[22] J.A. Goguen and R. Diaconescu. Towards an algebraic semantics for the object paradigm.
In H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specification, number 785 in
Lect. Notes Comp. Sci., pages 1-29. Springer, Berlin, 1994.

[23] J.A. Goguen and G. Malcom. Proof of correctness of object representations. In A.W. Roscoe,
editor, A Classical Mind. FEssays in honour of C.A.R. Hoare, pages 119-142. Prentice Hall,
1994.

35

[24]

[27]

[28]

[29]
[30]

[31]

[32]

[37]

J.A. Goguen and G. Malcom. An extended abstract of a hidden agenda. In J. Meystel,
A. Meystel, and R. Quintero, editors, Proceedings of the Conference on Intelligent Systems:
A Semiotic Perspective, pages 159-167. Nat. Inst. Stand. & Techn., 1996.

J.A Goguen and J. Meseguer. Universal realization, persistent interconnection and imple-
mentation of abstract modules. In M. Nielsen and E.M. Schmidt, editors, Automata, Lan-
guages and Programming (ICALP’82), number 140 in Lect. Notes Comp. Sci., pages 263-281.
Springer, Berlin, 1982.

J.A. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specification,
correctness and implementation of abstract data types. In R. Yeh, editor, Current Trends in
Programming Methodology, pages 80-149. Prentice Hall, 1978.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proving environment for
higher order logic. Cambridge Univ. Press, 1993.

C. Hermida and B. Jacobs. An algebraic view of structural induction. In L. Pacholski and
J. Tiuryn, editors, Computer Science Logic 1994, number 933 in Lect. Notes Comp. Sci.,
pages 412-426. Springer, Berlin, 1995.

C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Full

version of [28], 1996.

M. Hofmann and B.C. Pierce. A unifying type-theoretic framework for objects. Journ. Funct.
Progr., 5(4):593-635, 1995.

F. Honsell and M. Lenisa. Final semantics for untyped A-calculus. In M. Dezani-Ciancaglini
and G. Plotkin, editors, Typed Lambda Calculi and Applications, number 902 in Lect. Notes
Comp. Sci., pages 249-265. Springer, Berlin, 1995.

B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors, Algebraic
Methods and Software Technology, number 936 in Lect. Notes Comp. Sci., pages 245-260.
Springer, Berlin, 1995.

B. Jacobs. Parameters and parametrization in specification using distributive categories.
Fund. Informaticae, 24(3):209-250, 1995.

B. Jacobs. Coalgebraic specifications and models of deterministic hybrid systems. Tn M. Wirs-
ing and M. Nivat, editors, Algebraic Methods and Software Technology, number 1101 in Lect.
Notes Comp. Sci., pages 520-535. Springer, Berlin, 1996.

B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, Furopean Conference
on Object-Oriented Programming, number 1098 in Lect. Notes Comp. Sci., pages 210-231.
Springer, Berlin, 1996.

B. Jacobs. Object-oriented hybrid systems of coalgebras plus monoid actions. Full version
of [34]. Techn. Rep. CSI-R9614, Comput. Sci. Inst., Univ. of Nijmegen, 1996.

B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer,
and H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83-103.
Kluwer Acad. Publ., 1996.

B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic refinements. Techn.

Rep. CSI-R9704, Comput. Sci. Inst., Univ. of Nijmegen, 1997.

A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Inf. & Comp.,
127(2):164-185, 1996.

S. Kamin. Final data types and their specification. ACM Trans. on Progr. Lang. and Systems,
5(1):97-123, 1983.

J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic. Number 7 in Studies
in Adv. Math. Cambridge Univ. Press, 1986.

S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.

D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic approach.
Math. Systems Theory, 14:97-139, 1981.

36

[44] G. Malcolm. Behavioural equivalence, bisimulation and minimal realisation. In M. Haveraaen,
0. Owe, and O.J. Dahl, editors, Recent Trends in Data Type Specification, number 1130 in
Lect. Notes Comp. Sci., pages 359-378. Springer, Berlin, 1996.

[45] E.G. Manes. Algebraic Theories. Springer, Berlin, 1974.

[46] E.G. Manes and M.A. Arbib. Algebraic Appoaches to Program Semantics. Texts and Monogr.
in Comp. Sci.,. Springer, Berlin, 1986.

[47] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In J. Hughes, editor, Functional Programming Languages and

Computer Architecture, number 523 in Lect. Notes Comp. Sci., pages 215-240. Springer,
Berlin, 1991.

[48] K. Meinke and J.V. Tucker. Universal algebra. In S. Abramsky, Dov M. Gabbai, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages 189-411. Oxford
Univ. Press, 1992.

[49] T.F. Melham. Automating recursive type definitions in higher order logic. In G. Birtwistle
and P.A. Subrahmanyam, editors, Current Trends in Hardware Verification and Automated
Theorem Proving, pages 341-386. Springer, 1989.

[50] R. Milner. A Calculus of Communicating Systems. Lect. Notes Comp. Sci. Springer, Berlin,
1989.

[51] R. Milner and M. Tofte. Co-induction in relational semantics. Theor. Comp. Sci., 87:209-220,
1991.

[62] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining specification,
proof checking, and model checking. In R. Alur and T.A. Henzinger, editors, Computer Aided
Verification, number 1102 in Lect. Notes Comp. Sci., pages 411-414. Springer, Berlin, 1996.

[53] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Pro-
ceedings 5th GI Conference on Theoretical Computer Science, number 104 in Lect. Notes
Comp. Sci., pages 15-32. Springer, Berlin, 1981.

[54] Ch. Paulin-Mohring. Inductive definitions in the system Coq. Rules and properties. In
M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, number 664 in
Lect. Notes Comp. Sci., pages 328-345. Springer, Berlin, 1993.

[55] L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and
computer science, pages 361-386. Academic Press, London, 1990. The APIC SERIES, vol.
31.

[56] L.C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. Journ. of Logic
and Computation, 1997, to appear.

[57] B.C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press, Cambridge,
MA, 1991.

[58] A.M. Pitts. A co-induction principle for recursively defined domains. Theor. Comp. Sci.,
124(2):195-219, 1994.

[59] A.M. Pitts. Relational properties of domains. Inf. & Comp., 127(2):66-90, 1996.

[60] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Aarhus
Univ., 1981.

[61] H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct.
Comp. Sci., 5:129-152, 1995.

[62] W.C. Rounds. Feature logics. In J. van Benthem and A. ter Meulen, editors, Handbook of
Logic and Language. Elsevier, 1996.

[63] J. Rutten and D. Turi. On the foundations of final semantics: non-standard sets, metric
spaces and partial orders. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Semantics: Foundations and Applications, number 666 in Lect. Notes Comp. Sci., pages

477-530. Springer, Berlin, 1993.

37

[64] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency. In J.W.
de Bakker, W.P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency, number
803 in Lect. Notes Comp. Sci., pages 530-582. Springer, Berlin, 1994.

[65] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. CWI Report CS-R9652, 1996.

[66] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain equations.
SIAM Journ. Comput., 11:761-783, 1982.

[67] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis, Free Univ.

Amsterdam, 1996.

[68] R.F.C. Walters. Categories and Computer Science. Carslaw Publications, Sydney, 1991. Also
available as: Cambridge Computer Science Text 28, 1992.

[69] M. Wand. Final algebra semantics and data type extension. Journ. Comp. Syst. Sci, 19:27-44,
1979.

[70] W. Wechler. Universal Algebra for Computer Scientists. Number 25 in EATCS Monographs.
Springer, Berlin, 1992.

[71] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, pages 673-788. Elsevier/MIT Press, 1990.

38

