
GLOBAL
EDITION

Kip R. Irvine

Assembly Language
for x86 Processors
SEVENTH EDITION

Vice President and Editorial Director, ECS:
Marcia Horton

Executive Editor: Tracy Johnson

Executive Marketing Manager: Tim Galligan

Marketing Assistant: Jon Bryant

Program Management Team Lead: Scott Disanno

Program Manager: Clare Romeo

Project Manager: Greg Dulles

Head, Learning Asset Acquisition, Global Edition:
Laura Dent

Assistant Acquisitions Editor, Global Edition:
Murchana Borthakur

Assistant Project Editor, Global Edition:
Mrithyunjayan Nilayamgode

Associate Print & Media Editor, Global Edition:
Anuprova Dey Chowdhuri

Senior Manufacturing Controller, Production,
Global Edition: Trudy Kimber

Cover Art: © Michelangelus/Shutterstock

Cover Designer: PreMediaGlobal

Senior Operations Specialist: Nick Sklitsis

Operations Specialist: Linda Sager

Permissions Project Manager: Karen Sanatar

IA-32, Pentium, i486, Intel64, Celeron, and Intel 386 are trademarks of Intel Corporation. Athlon, Phenom, and Opteron
are trademarks of Advanced Micro Devices. TASM and Turbo Debugger are trademarks of Borland International.
Microsoft Assembler (MASM), Windows Vista, Windows 7, Windows NT, Windows Me, Windows 95, Windows 98,
Windows 2000, Windows XP, MS-Windows, PowerPoint, Win32, DEBUG, WinDbg, MS-DOS, Visual Studio, Visual
C++, and CodeView are registered trademarks of Microsoft Corporation. Autocad is a trademark of Autodesk. Java is a
trademark of Sun Microsystems. PartitionMagic is a trademark of Symantec. All other trademarks or product names are
the property of their respective owners.

Pearson Education Limited

Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Kip R. Irvine to be identified as the author of this work has been asserted by him in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Assembly Language for x86 Processors, 7th edition, ISBN

978-0-13-376940-1, by Kip R. Irvine, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written per-
mission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

Previously published as Assembly Language for Intel-Based Computers.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the devel-
opment, research, and testing of the theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in
this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of these programs.

ISBN 10: 1-292-06121-9

ISBN 13: 978-1-292-06121-4

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

14 13 12 11 10

Typeset in Times by Pavithra Jayapaul, Jouve

Printed and bound by Courier/Westford in The United States of America

ISBN 13: 978-1-292-06 -4655

 (Print)
 (PDF)

5.7 Key Terms

5.7.1 Terms

arguments

console window

file handle

global label

input parameter

label

last-in, first-out (LIFO)

link library

nested procedure call

precondition

pop operation

push operation

runtime stack

stack abstract data type

stack data structure

stack pointer register

ENDP

POP

POPA

POPAD

POPFD

PROC

PUSH

PUSHA

PUSHAD

PUSHFD

RET

USES

5.7.2 Instructions, Operators, and Directives

5.8 Review Questions and Exercises

5.8.1 Short Answer

1. Why is the stack of the x86 processor designated as a descending stack?

2. Which instruction pushes the 32-bit EFLAGS register on the stack?

3. Which instruction pops the stack into the EFLAGS register?

4. Challenge: Another assembler (called NASM) permits the PUSH instruction to list multiple

specific registers. Why might this approach be better than the PUSHAD instruction in

MASM? Here is a NASM example:

PUSH EAX EBX ECX

5. List the steps involved in pushing data into, and popping data from, the stack of the

processor.

6. (True/False): The RET instruction pops the top of the stack into the instruction pointer.

7. (True/False): Nested procedure calls are not permitted by the Microsoft assembler unless

the NESTED operator is used in the procedure definition.

8. (True/False): A stack is just a data structure created by the action of the stack pointer.

9. (True/False): The ESI and EDI registers cannot be used when passing 32-bit parameters to

procedures.

5.8 Review Questions and Exercises 215

216 Chapter 5 • Procedures

10. (True/False): The ArraySum procedure (Section 5.2.5) receives a pointer to any array of

doublewords.

11. In the context of procedures, what does it mean to pass a parameter?

12. (True/False): The USES operator only generates PUSH instructions, so you must code POP

instructions yourself.

13. (True/False): The register list in the USES directive must use commas to separate the regis-

ter names.

14. Which statement(s) in the ArraySum procedure (Section 5.2.5) would have to be modified so

it could accumulate an array of 16-bit words? Create such a version of ArraySum and test it.

15. What will be the value of the stack pointer after these instructions execute?

mov sp,6800
push ax
push bx
push cx

16. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: push 10
 3: push 20
 4: call Ex2Sub
 5: pop eax
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex2Sub PROC
10: pop eax
11: ret
12: Ex2Sub ENDP

a. EAX will equal 10 on line 6

b. The program will halt with a runtime error on Line 10

c. EAX will equal 20 on line 6

d. The program will halt with a runtime error on Line 11

17. Find the contents of CX and DX after each of the following three sets of instructions exe-

cutes. Assume that AX and BX have been initialized to 3600h and 0D07h respectively.

a. push ax
push bx
pop cx
pop dx

b. push ax
push bx
pop dx
pop cx

c. push bx
push ax
pop cx
pop dx

5.8 Review Questions and Exercises 217

d. push bx
push ax
pop dx
pop cx

18. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov eax,40
 3: push offset Here
 4: jmp Ex4Sub
 5: Here:
 6: mov eax,30
 7: INVOKE ExitProcess,0
 8: main ENDP
 9:
10: Ex4Sub PROC
11: ret
12: Ex4Sub ENDP

a. EAX will equal 30 on line 7

b. The program will halt with a runtime error on Line 4

c. EAX will equal 30 on line 6

d. The program will halt with a runtime error on Line 11

19. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov edx,0
 3: mov eax,40
 4: push eax
 5: call Ex5Sub
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex5Sub PROC
10: pop eax
11: pop edx
12: push eax
13: ret
14: Ex5Sub ENDP

a. EDX will equal 40 on line 6

b. The program will halt with a runtime error on Line 13

c. EDX will equal 0 on line 6

d. The program will halt with a runtime error on Line 11

20. What values will be written to the array when the following code executes?

.data
array DWORD 4 DUP(0)
.code
main PROC

mov eax,10
mov esi,0

218 Chapter 5 • Procedures

call proc_1
add esi,4
add eax,10
mov array[esi],eax
INVOKE ExitProcess,0

main ENDP

proc_1 PROC
call proc_2
add esi,4
add eax,10
mov array[esi],eax
ret

proc_1 ENDP

proc_2 PROC
call proc_3
add esi,4
add eax,10
mov array[esi],eax
ret

proc_2 ENDP

proc_3 PROC
mov array[esi],eax
ret

proc_3 ENDP

5.8.2 Algorithm Workbench

The following exercises can be solved using either 32-bit or 64-bit code.

1. Write a procedure to calculate the sum of the squares of the first N natural numbers, where

the value of N is to be entered by the user.

2. Write a program to find the sum of the factorials of three numbers. The numbers must be

passed to a procedure, which must then compute the factorials recursively.

3. Functions in high-level languages often declare local variables just below the return address

on the stack. Write an instruction that you could put at the beginning of an assembly language

subroutine that would reserve space for two integer doubleword variables. Then, assign the

values 1000h and 2000h to the two local variables.

4. Write a sequence of statements using indexed addressing that copies an element in a double-

word array to the previous position in the same array.

5. Write a sequence of statements that display a subroutine’s return address. Be sure that whatever

modifications you make to the stack do not prevent the subroutine from returning to its caller.

5.9 Programming Exercises

When you write programs to solve the programming exercises, use multiple procedures when

possible. Follow the style and naming conventions used in this book, unless instructed otherwise

by your instructor. Use explanatory comments in your programs at the beginning of each proce-

dure and next to nontrivial statements.

5.9 Programming Exercises 219

1. Draw Text Colors

Write a program that displays the same string in four different colors, using a loop. Call the Set-

TextColor procedure from the book’s link library. Any colors may be chosen, but you may find

it easiest to change the foreground color.

2. Linking Array Items

Suppose you are given three data items that indicate a starting index in a list, an array of char-

acters, and an array of link index. You are to write a program that traverses the links and

locates the characters in their correct sequence. For each character you locate, copy it to a new

array. Suppose you used the following sample data, and assumed the arrays use zero-based

indexes:

start = 1
chars: H A C E B D F G
links: 0 4 5 6 2 3 7 0

Then the values copied (in order) to the output array would be A,B,C,D,E,F,G,H. Declare the

character array as type BYTE, and to make the problem more interesting, declare the links array

type DWORD.

3. Simple Addition (1)

Write a program that clears the screen, locates the cursor near the middle of the screen, prompts

the user for two integers, adds the integers, and displays their sum.

4. Simple Addition (2)

Use the solution program from the preceding exercise as a starting point. Let this new program

repeat the same steps three times, using a loop. Clear the screen after each loop iteration.

5. BetterRandomRange Procedure

The RandomRange procedure from the Irvine32 library generates a pseudorandom integer between

0 and N � 1. Your task is to create an improved version that generates an integer between M and

N�1. Let the caller pass M in EBX and N in EAX. If we call the procedure BetterRandomRange, the

following code is a sample test:

mov ebx,-300 ; lower bound
mov eax,100 ; upper bound
call BetterRandomRange

Write a short test program that calls BetterRandomRange from a loop that repeats 50 times.

Display each randomly generated value.

6. Random Strings

Create a procedure that generates a random string of length L, containing all capital letters.

When calling the procedure, pass the value of L in EAX, and pass a pointer to an array of byte

that will hold the random string. Write a test program that calls your procedure 20 times and dis-

plays the strings in the console window.

★

★★

★

★★

★

★★

