
1. The fluid velocity along the x axis shown in figure 
changes from 6 m/s at point A to 18 m/s at point B. 
It is also known that the velocity is a linear 
function of distance along the streamline. 
Determine the acceleration at points A, B, and C. 
Assume steady flow. 

 
 
 
 
Sol) From the definition of acceleration ar ,  
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Since u is a linear function of x,  baxu +=  where a and b are constant 
 
At point A,  6)0( ==+= bbauA  (m/s) 
 
At point B,  1861.0)1.0( =+=+= abauB  (m/s)   120=a  
 
Thus,  6120 += xu  (m/s) 
 
From the equation of acceleration,  
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Finally,  
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2. A nozzle is designed to accelerate the fluid from 1V  to 2V  in a linear fashion. That is, 
baxV += , where a and b are constants. The flow is constant with 101 =V  m/s at 01 =x  and 

252 =V  m/s at 12 =x .  
      (a) Determine the local acceleration, the convective acceleration, and the acceleration at 

points (1) and (2). 
      (b) Repeat Prob. (a) with the assumption that the flow is not steady, but at the time when 

101 =V  m/s and 252 =V  m/s, it is known that 20/1 =∂∂ tV  m/s2 and 60/2 =∂∂ tV  m/s2. 
 
 
Sol)  
 
a) With baxu += , 0=v , and 0=w ,   (V
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the acceleration can be written as 
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Since   1011 == uV  m/s at 0=x   ba += )0(10     10=b  
 
and   2522 == uV  m/s at 1=x   10)1(25 += a     15=a  
 
That is, 1015 += xu  m/s, so that the acceleration becomes 
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b) The acceleration 
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In addition,  
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3. Water flows steadily through the funnel shown in figure. 
Throughout most of the funnel the flow is approximately 
radial (along rays from O) with a velocity of 2/ rcV = , 
where r is the radial coordinate and c is a constant. If the 
velocity is 0.4 m/s when 1.0=r m, determine the 
acceleration at points A and B. 

 
 
 
Sol)  From the equation of acceleration in the streamline coordinates,  
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Since 4.0=V  m/s  when 1.0=r m,  
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4. Air flows from a pipe into the region between a circular disk and a cone as shown in figure. 
The fluid velocity in the gap between the disk and the cone is closely approximated by 

22
0 / rRVV = , where R is the radius of the disk, r is the radial coordinate, and 0V is the fluid 

velocity at the edge of the disk. Determine the acceleration for 5.0=r  and 2 ft if 50 =V  ft/s 
and 2=R  ft.  

 
 
 
 
 
 
 
 
 
 
 
 
Sol)  From the equation of acceleration in the streamline coordinates,  
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5. Water is squirted from a syringe with a speed of 5=V m/s by pushing in the plunger with a 
speed of 03.0=pV m/s as shown in figure. The surface of the deforming control volume 
consists of the sides and end of the cylinder and the end of the plunger. The system consists of 
the water in the syringe at 0=t  when the plunger is at section (1) as shown. Make a sketch to 
indicate the control surface and the system when 5.0=t . 

 
 
 
 
 
 
 
 
 
 
 
Sol) During the 5.0=t s time interval the plunger moves 015.0)5.0)(03.0( === tVl pp δ m and 

the water initially at the exit moves 5.2)5.0)(5( === tVlw δ m.  The corresponding control 
surfaces and the systems at 0=t  and 5.0=t s shown in the figure below.  
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