
TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 1

Automatic Content Generation
in the Galactic Arms Race Video Game

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley
School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816
{hastings, guha, kstanley}@cs.ucf.edu

Abstract—Simulation and game content includes the levels,
models, textures, items, and other objects encountered and
possessed by players during the game. In most modern video
games and in simulation software, the set of content shipped with
the product is static and unchanging, or at best, randomized
within a narrow set of parameters. However, ideally, if game
content could be constantly and automatically renewed, players
would remain engaged longer. This paper introduces two novel
technologies that take steps toward achieving this ambition: (1) A
new algorithm called content-generating NeuroEvolution of Aug-
menting Topologies(cgNEAT) is introduced that automatically
generates graphical and game content while the game is played,
based on the past preferences of the players, and (2)Galactic
Arms Race(GAR), a multiplayer video game, is constructed to
demonstrate automatic content generation in a real online gaming
platform. In GAR, which is available to the public and playable
online, players pilot space ships and fight enemies to acquire
unique particle system weapons that are automatically evolved
by the cgNEAT algorithm. A study of the behavior and results
from over 1,000 registered online players shows that cgNEAT
indeed enables players to discover a wide variety of appealing
content that is not only novel, but also based on and extended
from previous content that they preferred in the past. Thus GAR
is the first demonstration of evolutionary content generation in
an online multiplayer game. The implication is that with cgNEAT
it is now possible to create applications that generate their own
content to satisfy users, potentially reducing the cost of content
creation and increasing entertainment value from single player
to massively multiplayer online games (MMOGs) with a constant
stream of evolving content.

Index Terms—content-generating NeuroEvolution of Augment-
ing Topologies, cgNEAT, Galactic Arms Race, GAR, particle sys-
tems, collaborative content generation, CCE, NEAT, interactive
evolutionary computation, IEC

I. I NTRODUCTION

CONTENT creation requires the dedicated effort of artists
and engineers to produce the models, levels, textures,

and other content that populate and bring life to the virtual
worlds of video games and simulations. Especially in mul-
tiplayer settings such asmassive multiplayer online games
(MMOGs), the constant demand for novel content to keep
players interested requires significant time and expense to
meet [1], [2]. A recent trend motivated by this problem is
to provide the players themselves tools to generate their own
content and share it with others [3], [4], [5] or to randomize
content (e.g. through random map generators). However, such
tools force the player to confront the architecture of the game
itself, potentially pulling them out of its fictional context.

They also require the players to attain a level of expertise and
specialized design knowledge. Furthermore,content random-
ization requires tight constraint to avoid undesirable results
and does not intrinsically take into account the preferences
of the players. To address the demand for perpetual novel
content, this paper argues that evolutionary computation (EC)
is a potential solution to the content-generation problem. The
aim is to demonstrate that it is indeed possible to generate
novel content as the game is played, based on the behavior
and interests of the players.

EC methods have proven effective at evolving diverse media
such as two-dimensional art images [6], [7], [8], [9], [10], [11],
three-dimensional forms [12], [13], [14], and even music [15],
[16], [17], [18], [19], [20]. However, the feasibility of such
methods for creating video game content is little explored.
Currently, machine learning techniques are beginning to be
applied in mainstream games (e.g. popular genres such as RTS,
RPG, racing, shooters, etc.), but only for non-player character
(NPC) controllers [21].

The ability of evolutionary methods to evolve media and
NPC controllers provides the basis for the idea ofcollaborative
content evolution(CCE) for games. The idea of CCE is
that the system automatically generates graphical and game
content that is extended from and elaborates upon content
players preferred in the past. Content that players like (i.e.
use often) is evolved to produce new content, whereas content
that players dislike is not evolved. Thus, a continuous stream
of novel content is produced that potentially (1) keeps players
engaged longer and (2) reduces the content creation burden
on developers. The first implementation of CCE in a game is
described in this paper.

To make such content generation possible, two novel tech-
nologies are introduced: (1) thecontent-generating NeuroEvo-
lution of Augmenting Topologies(cgNEAT) algorithm, and
(2) Galactic Arms Race (GAR), a multiplayer video game
in which unique particle system weapons are automatically
evolved based on content players preferred in the past.

The cgNEAT algorithm aims to automatically generate com-
plex graphic and game content in real-time through an evo-
lutionary algorithm based on the content players liked in the
past. To show that automatic content generation is genuinely
possible in mainstream games, cgNEAT is implemented in this
paper in the novel video game calledGalactic Arms Race.
In GAR, compositional pattern producing networks(CPPNs),
which are a variant of artificial neural networks (ANNs),



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 2

genetically encode and control particle system weapons. The
CPPNs evolve and increase in complexity though cgNEAT,
which tracks which weapons the players fire the most. That
way, during the game, weapon behavior becomes increasingly
sophisticated while consistently evolving to suit player tastes.
Thus, it is theplayer rather than the designer who ultimately
implicitly determines what kind of content will populate the
game.

A. Main Contributions

The major contribution of this work is to show how col-
laborative content evolution based on player preferences can
run seamlessly across a multiplayer client-server architecture,
thereby suggesting the potential for eventual implementation
of CCE technology across the spectrum of games ranging
from single-player to MMOGs. In GAR, novel weapons are
evolved on the server and distributed to clients, which collect
usage statistics and send them back to the server for further
evolution. In the public experiment described in this paper,
literally hundreds of thousands of weapons were evolved and
over one million virtual aliens killed by players across the
world participating online. In principle, such a process can
evolve any class of parameterized content. Thus the generality
of the approach means it can impact future commercial game
production and increase the longevity of games that might
otherwise become repetitive. In this way, the results in this
paper open up a promising new direction in video game design
and research.

The paper proceeds as follows. First, Section II covers
background material related to the technologies developed
in this paper. Next, the cgNEAT algorithm is described in
detail in Section III. Then, Section IV demonstrates cgNEAT
in practice through evolving weapons in the Galactic Arms
Race video game, and the outcome of both single player and
multiplayer weapon evolution experiments are described in
Section V. Finally, overall implications are discussed and the
paper is concluded in Sections VI and VII.

II. BACKGROUND

This section reviews background material that inspired and
enabled the main contributions of this paper (cgNEAT and
GAR).

A. Interactive Evolutionary Computation (IEC)

IEC is an approach to evolutionary computation (EC) in
which human evaluation replaces the fitness function [22].
A typical IEC application presents to the user the current
generation of content. The user then interactively determines
which members of the population will reproduce and the
IEC application automatically generates the next generation of
content based on the user’s input. Through repeated rounds of
content generation and fitness assignment, IEC enables unique
content to evolve that suits the user’s preferences. In some
cases such content would be otherwise difficult to discover.

IEC aids especially in evolving content for which fitness
functions would be difficult or impossible to formalize (e.g.

x y

output pattern

(a) ANN

x y

output pattern

(b) CPPN
Fig. 1. ANNs and CPPNs. Unlike traditional ANNs (a), which typically
only have sigmoid or Gaussian activation functions, CPPNs (b) may have
sigmoids, Gaussians, and many other activation functions in the same network.
The ability of CPPNs to encode patterns makes them useful for representing
graphical content.

for aesthetic appeal). Thus, graphical content generation is a
common application of IEC [13], [14], [23], [24], [25].

IEC was first introduced by Dawkins in Biomorphs [26],
which aims to illustrate theories about natural evolution with
interactively evolved abstract figures that resemble animals
or plants. Since then, representations ingenetic art(i.e. IEC
applied to art [6], [7], [8], [9], [10], [11]) have varied widely,
including L-systems, linear or non-linear functions, fractals,
and automata, to produce a broad variety of appealing two-
dimensional and three-dimensional images and animations.

IEC is demonstrably effective for evolving graphical con-
tent. An important prerequisite to evolving such content is that
it must be represented by evolvable structures. The evolvable
structures utilized in this paper are CPPNs, a specialized type
of ANN.

B. Compositional Pattern-Producing Networks (CPPNs)

CPPNs are a variation of artificial neural networks (ANNs)
that differ in their set of activation functions and how they
are applied [27], [28] (figure 1). While CPPNs are similar to
ANNs, the different terminology originated because CPPNs
were introduced as pattern-generators rather than as con-
trollers. This section explains the difference in implementation
and application between CPPNs and ANNs.

While ANNs often contain only sigmoid or Gaussian ac-
tivation functions, CPPNs can include both such functions
and many others. The choice of CPPN functions can be
biased toward specific patterns or regularities. For example,
periodic functions such as sine produce segmented patterns
with repetitions, while symmetric functions such as Gaussian
produce symmetric patterns. Linear functions can be employed
to produce patterns with straight lines. In this way, CPPN-
based systems can be biased toward desired types of patterns
by carefully selecting the set of available activation functions.

Additionally, unlike typical ANNs, CPPNs are usually ap-
plied across a broad space of possible inputs so that they
can represent a complete image or pattern. Because they are
compositions of functions, CPPNs in effect encode patterns at
infinite resolution and can be sampled at whatever resolution
is desired.



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 3

Successful CPPN-based applications such as Picbreeder
[24], in which users from around the Internet collaborate to
evolve pictures, and NEAT Drummer [20], which evolves
drum track patterns to accompany songs, demonstrate that
CPPNs can evolve diverse content. The approach in this paper
evolves particle systems encoded by CPPNs with the NEAT
algorithm.

C. NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method was originally developed to solve control
and sequential decision tasks. The ANNs evolved with NEAT
control agents that select actions based on their sensory inputs.
While previous methods that evolved ANNs (i.e. neuroevolu-
tion methods) evolved either fixed topology networks [29],
[30], or arbitrary random-topology networks [31], [32], [33],
NEAT begins evolution with a population of small, simple
networks andcomplexifiesthe network topology into diverse
species over generations, leading to increasingly sophisticated
behavior. A similar process of gradually adding new genes
has been confirmed in natural evolution [34], [35] and shown
to improve adaptation in a few prior evolutionary [36] and
neuroevolutionary [37] approaches. This section briefly re-
views the NEAT method; Stanley and Miikkulainen [21], [38]
provide complete introductions.

To keep track of which gene is which while new genes
are added, ahistorical markingis uniquely assigned to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Traditionally, speciation in NEAT protects
new structural innovations by reducing competition between
differing structures and network complexities. However, in the
work in this paper, because a human performs selection rather
than an automated process, the usual speciation procedure in
NEAT is unnecessary.

Most importantly, complexification, which resembles how
genes are added over the course of natural evolution [34],
allows NEAT to establish high-level features early in evolution
and then later elaborate on them. For evolving content, com-
plexification means that content can become more elaborate
and intricate over generations.

In this paper, particle system weapons are controlled by
CPPNs evolved by NEAT. NEAT is chosen because (1) it is
proven effective for evolving ANNs and CPPNs in a diversity
of domains [38], [39], [40], and (2) it is fast enough to run in
real time (in the NERO video game [21]), which is required
for an interactive system. Because NEAT is a strong method
for evolving controllers for dynamic physical systems, it can
naturally be extended to evolve the motion of particle effects
as well, such as those featured in GAR.

D. Machine Learning in Existing Games

The impact of machine learning so far on the video game
industry has been limited, although some games are beginning
to incorporate learning techniques. However, content gener-
ation continues to be absent from applications of machine
learning in commercial games. The most common application

of machine learning is to optimize the policy that controls non-
player characters (NPCs) (figure 2). For example, the ANN
race car controllers in Colin McRae Rally 2.01 and Forza Mo-
torsport 22, and the creature brains in Creatures 33 and Black
and White 24 are learned. Generally, the NPC behavior in
such games is trained by developers before release. Recently,
although it is not a commercial game, NeuroEvolving Robotic
Operatives (NERO [21]; http://nerogame.org/) enabled players
to evolve the tactics for a squad of virtual soldiers in real-time,
while the game is played, demonstrating the potential viability
of evolution in commercial gaming.

The success of these games suggests the potential to apply
machine learning to create content beyond NPC behavior (e.g.
maps, items, weapons, etc.). In fact, automatically generating
content could further open the video game industry to the
possibilities created by machine learning.

E. Procedural Game Content in Existing Games

Since the early days of interactive digital entertainment,
games such as Rogue5 [41] and NetHack6 have featured
randomized map and content placement. These games inspired
an entire sub-genre of RPGs known asRoguelikes[42],
which later directly influenced randomized map and item
generation in more modern games, such as the popular Diablo7

series and Dwarf Fortress8, which features complex interaction
among hundreds of different objects placed in a procedurally-
generated game world.

While the path of content generation in these games is
determined before the game starts, recent research has in-
vestigated enabling players to directly influence the path of
content generation during the game. Examples of released such
games include Charbitat [43], which traces player behavior and
translates it into seed values for future game space generation,
and Facade9 [44], which generates interactive stories based on
player choices throughout the game.

These contributions demonstrate successful content gener-
ation, but they do not attempt to discern whether the player
enjoys the content generated, nor do they obviously extend to
a shared multiplayer environment. However, the are successful
online collaborative IEC art services [24] that incorporate both
features, suggesting the potential of an evolutionary approach
to multiplayer procedural game content generation.

F. Evolving Game Content

Evolving procedural game content is an emerging research
area with great potential to contribute to the mainstream
gaming industry. Some of the few current examples of evolved
game content include race tracks [45] and even the rules of
the game itself [46], [47].

1Copyright 2001 Codemasters, http://www.codemasters.com/
2Copyright 2007 Microsoft Game Studios, http://forzamotorsport.net/
3Copyright 2004 Creature Labs, http://www.gamewaredevelopment.co.uk/
4Copyright 2005 Lionhead Studios, http://www.lionhead.com/
5Copyright 1983 Artificial Intelligence Design
6Copyright 1983 Stichting Mathematisch Centrum
7Copyright 1996, 2000 Blizzard Entertainment, http://blizzard.com/
8Copyright 2002 Bay 12 Games, http://bay12games.com/
9Copyright 2005 Procedural Arts, http://proceduralarts.com/



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 4

(a) (b) (c) (d) (e)
Fig. 2. Evolving NPC Behavior in Existing Games. Learned policies enable race car controllers to navigate tracks with complex physics in (a) Colin
McRae Rally 2.0 and (b) Forza Motorsport 2. Learned policies also control decision making for a variety of characters in (c) Creatures 3 and (d) Black and
White 2. In (e) NERO [21], players evolve a squad of virtual soldiers to fight other players. NERO introduced rtNEAT, which demonstrated the viability of
NPC evolution in real time. Building on the success of these games, cgNEAT aims to evolve other forms of game content, outside of NPC behavior.

To evolve the race track [45], ANN drivers are evolved by
comparing their performance to human controllers on the same
track. Then new tracks are generated and the ANN controllers
are evaluated on those tracks. The selected tracks are those
upon which the ANN controllers perform similarly to how they
perform on other tracks, under the assumption that they will
provide an appropriate level of challenge to human players.

In a different example [46], the rules of the game itself,
rather than NPC controllers that play a specific game well,
are evolved. Evolution begins with a grid-like environment
containing random sets of walls, an ANN-controlled NPC
representing the player, and various game objects that can
alter state when the ANN-controlled NPC collides with them.
State changes include death, teleportation, bonuses, goals, and
other typical two-dimensional game effects. The fitness of
the evolved games is based upon the amount of learning the
controller must undergo to beat the game. This idea was shown
to successfully evolvePac-Man-like games.

Recent works begin to bridge the gap between evolutionary
art and games. In Avera [47], [48], the system evolves inter-
active art pieces for simple puzzle games. In another example
[49], players interact with complex swarm systems through
an IEC interface, enabling search for well-performing swarm
configurations.

These investigations thus represent the cutting edge of an
exciting new research direction. Inspired by these works, the
aim of cgNEAT is to evolve game content in real time, based
on tracked player preferences in a multiplayer setting through
a process calledcollaborative content evolution(CCE), as
illustrated in figure 3.

CCE is a new concept that has not, until this paper, been
implemented in a game. In short, players begin the game with
an initial set of content. If players use some of the content
often, it is inferred that they enjoy that content, and the game
produces new content that extends from or elaborates on that
preferred content. However, if players are unhappy with certain
content, they will not use it (or may discard it); thus the
game will not produce more content of that type. The aim
of this process is to continually evolve content based on the
preferences of the players. The main type of content evolved
in this paper is particle systems.

G. Particle Systems

The first computer-generated particle system in commercial
computer graphics, called theGenesis Effect, appeared in Star

Trek II: The Wrath of Khan [50]. Soon after, particle system
effects became widespread on television as well. Nearly all
modern video games include a particle system engine [51],
[52]; special effects in games such as magical spells and futur-
istic weapons are usually implemented with particle systems.

In addition to diffuse phenomena such as fire, smoke,
and explosions, particle systems can also model concrete
objects such as dense trees in a forest [53], folded cloth
and fabric [54], [55], and simulated fluid motion [56], [57].
Realistic particle movement is often achieved by simulating
real-world physics [58]. At a more abstract level, particle
systems can simulate animal and insect flocking behavior [59].
The prevalence and diversity of particle system applications
demonstrates their importance to computer graphics in modern
media and games.

The evolving particle system weapons in this paper (detailed
later in Section IV) are based on previous experiments first
reported in Hastings, Guha, and Stanley [60], namely, NEAT
Particles, an IEC tool that enables users to evolve complex
particle effects, and NEAT Projectiles, an IEC tool that evolves
effects intended specifically for video game weapons. In both
applications, CPPNs represent and control particles and an IEC
interface enables the user to guide evolution.

The next section introduces the algorithm for evolving
content in this paper.

III. C ONTENT GENERATING NEUROEVOLUTION OF

AUGMENTING TOPOLOGIES(CGNEAT)

The aim of the cgNEAT algorithm is to automatically gen-
erate computer graphics and video game content based on user
behavior as the game is played. While there are technologies
for evolving content like pictures [6], [7], [8], [24] or three-
dimensional models [12], [13], [14], these technologies are
not designed to work in real time during a game; rather they
require users to explicitly designate which items are the best,
which is something that a user playing a game does not want
to do. That is, constantly answering questions about what they
like and what should be produced in the future would disrupt
players’ experience. In contrast, the cgNEAT method makes
these decisions automatically based on implicit information
within usage statistics.

A. Algorithm Overview

The main principles of cgNEAT follow:



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 5

(a) Players try different content

Current content in game:

(b) Players keep what they like and 
drop or stop using what they don't

Current content in game:

(c) Players keep looking for 
something new or better

Game content evolves based on
player preferences:

Fig. 3. Illustrating Collaborative Content Evolution (CCE) in Games. The main idea in CCE is that content evolution in games begins with a diverse
population of randomized content (left). As players explore the world and discover new content, they likely keep content with which they are satisfied and
discard that with which they are not (center). As evolution continues, content that is widely disliked filters out of the game (right) and content that players
enjoy becomes the parents of new generations of content. In this way, players continually explore a succession of changing content. Note that, at the time of
writing, no published game has implemented CCE evolution except Galactic Arms Race, which is detailed in this paper.

1) Each content item is represented by a CPPN. Different
types of content can be represented by different CPPN
input/output configurations (the specific representation
for particle weapons is described later). In principle, a
different representation than CPPNs can also be evolved.

2) During the game, each content item is assigned a fitness
that is computed based on how often players actually
usethe content. That way, the system knows the relative
popularity of each content item currently in the game.

3) Players begin the game with either (1) random content or
(2) content from thestarter pool, which is a special pool
of content appropriate to beginners in the game. Starter
pool contentdoes notcontribute to evolution and cannot
be selected for reproduction.

4) Content is spawned in the game world, which means
that it is placed in parts of the world where users can
obtain it. However, unlike in most evolutionary systems,
spawned content is not eligible for reproduction until
players pick it up.

5) Content is reproduced in cgNEAT as follows: The al-
gorithm selects content items from among content that
players in the worldalready possessas parents that
reproduce to form new content, which is spawned as
described in step 4. The content items that are chosen
as parents are selected probabilistically based on a
roulette wheel scheme in which the chance of being
chosen as a parent is proportional to the popularity (i.e.
fitness) of the item. Reproduction, including mutation
and crossover, is performed in accordance with the
NEAT algorithm. Thus, there is a chance that CPPNs
may become more complex than their parents.

6) For any new content that is spawned, there is a probabil-
ity (selected by the designer) that it will be chosen from
a spawning pool, which is a collection of pre-evolved
content, instead of being reproduced from parents. This
pool ensures that diversity is not lost and that good types

of content from the past (i.e. those that users liked)
might reappear. Additionally, it ensures an initial seed
of good content when the game first starts and players’
preferences are unknown. The game designers initially
select content, which may be pre-evolved before the
game is released, to include in the spawning pool.

7) Content that obtains a very high fitness (i.e. is popular
with players) may optionally be saved to thecontent
archive. There are several ways game designers can use
archive material including (1) data analysis, (2) cycling
it back into the game by adding it to the spawning pool,
or (3) giving it to NPCs for use against players.

Finally, note that for cgNEAT in a multiplayer environment,
although all players’ preferences directly contribute to the
course of evolution, the content generated is not an “average”
of all player preferences. Rather, unique content is reproduced
on a individual basis from individual items that are popular.
Thus several diverse trends can flourish simultaneously.

B. Unique Features

The cgNEAT algorithm incorporates some mechanics of
NEAT and standard evolutionary computation (EC), yet ex-
hibits several major differences. Unlike in normal EC, the
population size (i.e. those items that are eligible at any given
time to reproduce) is variable and depends entirely on the num-
ber of users in the system. Furthermore, when an offspring is
produced, unlike in normal evolutionary computation, it is not
immediately placed into the population eligible to reproduce.
Instead, it is in a special temporary state (placed somewhere
in game world) in which it may join the population only if
a user chooses to acquire it. Also unlike normal evolutionary
computation, instead of fitness determining which items are
eliminated from the population, users entirely determine which
items leave the population simply by discarding them.

Unlike standard interactive evolutionary computation (IEC
[22]), users never explicitly communicate to the system which



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 6

content they like. Instead, the preferred content is induced by
the system implicitly from natural human behavior. That is,
users do not need to know that they are interacting with an
evolutionary algorithm yet evolution still works anyway.

Unlike regular NEAT, speciation is not necessary because
users determine what is popular and the diversity of the
population reflects the diversity of user preferences. Every step
of the cgNEAT algorithm is asynchronous. At any time players
may cause content to join the population or be eliminated.

C. Starter Pool, Spawning Pool, and Archive Pool

At the beginning of the game or simulation, players must
often be provided content with which to start. One approach is
to give players randomized content when they start; however,
if high-quality content is not a sufficient proportion of the
search space, new players might then begin with ineffective
content, thereby creating a poor first impression of the game.

The cgNEAT approach is to define astarter poolof known
effective content items with which players begin the game.
Because all players begin the game with it, starter pool
content does not contribute to evolution and cannot be selected
for reproduction. However, starter pool content does gain
fitness, and if during evolution a starter pool item is selected
for reproduction, a spawning pool content item is randomly
selected instead to spawn into the game world.

The spawning poolis a pre-evolved set of content that is
known to be effective and can be distributed with the game
or application. The primary reason for including the spawning
pool is that, at the beginning of the game, there is no past
data on player preferences. Thus the spawning pool content
effectively jump starts evolution on a promising course. Like
the starter pool, the spawning pool helps guarantee a good
initial impression of the game to new players, which could be
difficult to accomplish with purely random starting content.
Additionally, if NPCs in the game are equipped with evolved
content, arming them with spawning pool content can ensure
an appropriate level of NPC difficulty.

Finally, thearchive poolconsists of all content in the game
that achieves a high level of fitness. When such content reaches
a certain level of fitness (which by necessity varies among
applications), it is automatically saved to the archive pool.

D. Applying cgNEAT

The general approach of cgNEAT described in this paper
can be applied to evolving many types of content (e.g.
images, models, shader effects, etc.) through other forms of
representation (i.e. evolvable structures other than CPPNs).
Thus the algorithm is not exclusive to the type of content
presented in this paper. Note that the starter pool, spawning
pool, archive pool, and roulette parameters can give game
designers considerable control of over the course of evolution,
should they so desire it. The next section details the first
application of cgNEAT in practice, which is to evolve weapons
in the Galactic Arms Race video game.

IV. GALACTIC ARMS RACE (GAR)

This section introduces the Galactic Arms Race multiplayer
video game (available at http://gar.eecs.ucf.edu), which applies
cgNEAT to evolve an endless array of unique particle system
weapons, with which players can fight space enemies and up
to 31 other simultaneous players online. GAR is the first game
to enable CCE of novel game content.

A. Development

GAR is intentionally designed to look and feel like a near-
commercial quality video game so that it can convincingly
demonstrate the promise of automatic content generation for
mainstream games. To reach that level of quality, it took
over a year to build by a nine-member mostly student team.
GAR was first released on June 2, 2009 and is available
online at http://gar.eecs.ucf.edu. TheGAR Client 1.1contains
36,820 source lines of code (SLOC) and over 90MB of three-
dimensional models, two-dimensional texture art, music, and
sound effects. Additionally, for multiplayer modes, theGAR
Server 1.1contains 6,796 SLOC and theGAR Master Server
1.1 contains 873 SLOC.

B. Game Mechanics Overview

In GAR (figure 4), the goal is to pilot a space ship to defeat
enemies, gain experience, earn money, and most importantly,
to find advantageous new weapons that are automatically
generated by cgNEAT.

GAR contains both a single player game and a full multi-
player game (figure 5), in which weapons evolve based on the
aggregate usage of all players online. In GAR’s single-player
mode, evolution is directed by the actions of a single player
battling NPC aliens in the game, which are controlled by
scripted steering behaviors [58] and the BOIDS algorithm [59].
The GAR multi-player game enables up to 32 players to fight
cooperative online battles against NPCs, or competitive battles
against each other. GAR multiplayer evolution is substantially
more diverse because the evolutionary population consists of
the weapons currently possessed by all players in the game
(i.e. it is CCE).

Every weapon found in GAR that is the offspring of
other weapons is unique, that is, no more than one copy of
any offspring is spawned. Players can continually find novel
weapons with characteristics evolved from those weapons
players favored in the past. It is important to note that weapons
evolved in GAR all fire particle bursts with the same strength
and number. Thus it is not sheer power that is evolving, but
rather the pattern in which particles spray from the gun, which
has complex tactical implications. Therefore, the space of
weapons is not a total order from worst to best, but rather
a complex multi-objective coevolutionary landscape.

Players are limited to threeweapon slots, each of which
holds a single weapon. Destroyed enemies and enemy bases
may drop aweapon pickupthat contains a novel weapon
evolved by cgNEAT. Players choose in which weapon slot
to place the new weapon, but doing so drops the existing
weapon in that slot. Thus players must be selective about



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 7

Fig. 4. GAR Client . Players in GAR pilot their space ship (screen center) from a third-person perspective. This picture demonstrates a player destroying
enemies with an evolved weapon. Left of the player ship is a weapon pickup dropped from a destroyed enemy base. A particle system preview emits from
the weapon pickup (i.e. “neuralium isotope,” left of player) to visually indicate how the weapon will function before the player picks it up. GAR is designed
to look and feel like a near-commercial quality video game to effectively demonstrate the potential of automatic content generation in mainstream games.
The GAR Client software is available online at http://gar.eecs.ucf.edu and runs on any Windows PC.

GAR Master 
Server

GAR Server

GAR Client

(1) game server 
advertise

(2) list of active 
game servers

(3) game data

Fig. 5. GAR Multiplayer Architecture . This diagram illustrates the
networked communication between the GAR Client, Server, and Master
Server. (1) When GAR Servers are online, they periodically advertise to the
Master Server that indexes all currently active game servers. (2) When a player
wishes to join an Internet game, a list of all active game servers is retrieved
from the Master Server. (3) The player then chooses from the list of active
Internet games and connects to the desired Game Server.

which weapons to keep. In this context, an important goal for
any game that generates unpredictable content is to indicate
what that content will be like before it is taken. To give
players an idea of how a weapon functions before picking it
up, weapon pickups emit a miniature particle system preview
that behaves exactly as the actual weapon does. In the game
this preview is called aneuralium isotope(figure 4, left side).

As with most video games, GAR relies on graphical user
interfaces (GUIs) for many of its functions. While there are
many GUIs in GAR, the major interfaces through which
players interact with weapon evolution are the in-gameHUD
(head-up display) and theWeapons Screen.

The GAR in-game HUD (bottom of figure 4) is always
displayed while the player is in space. The HUD displays
(1) current player ship armor, shield, and hull strengths, (2)
teleport cooldown status, (3) current target and its status, (4)
the weapons bank (which enables selecting an active CPPN
weapon), and (5) a radar that displays objects in the local star
system. The HUD also offers buttons to access to the following
screens: (1) the ship screen for detailed ship statistics, (2) the
weapons screen with the player’s currently equipped CPPN
weapons, (3) the galactic map screen, (4) the logoff screen,
which exits the current game, (5) the help screen, (6) a music
button that toggles the background music on or off, and finally,
(7) the mission menu, which displays the player’s current
mission.

The in-game weapons screen(figure 6) displays statistics
and CPPNs for the three weapons currently held by the
player. In the game’s lore, CPPNs are called “neuralium
isotopes,” each representing a unique isotope of the strange
neuralium element that powers weapons and ships. The CPPNs
are displayed in three dimensions and slowly rotate. Taking
advantage of the three-dimensional rendering view, CPPN
inner nodes are aligned in a circle, making viewing them
easy and aesthetically pleasing. In effect, players can actually



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 8

visualize the real CPPNs that realize their weapons.

Fig. 6. GAR Weapons Screen. The GAR weapons screen displays
information on the player’s three current weapons, including fitness and
number of shots fired. The actual CPPNs for the weapons are displayed as
three-dimensional graphs (known in the game as “neuralium isotopes”).

C. Particle System Weapon CPPNs

Particle system CPPNs in GAR are based on the techniques
developed in NEAT Particles and NEAT Projectiles [61].
Each player weapon contains a single evolved CPPN (figure
7). Every frame of animation, each particle issued from the
weapon inputs its current position relative to the ship(px, pz)
and distance from the ship(dc) into the CPPN. There are two,
rather than three, spatial inputs because the game is entirely
situated on they = 0 plane. The CPPN is activated and
outputs the particle’s velocity(vx, vz) and color(r, g, b) for
that animation frame. Representing particle velocity and color
in this manner produces a wide of variety of vivid patterns
[61]. It is important to note that because CPPNs are a superset
of ANNs, which can approximate any function [62], particle
weapons in GAR can theoretically evolve any conceivable
pattern.

When GAR was first released, it imposed a forward force
on all projectiles (as in NEAT Projectiles) to ensure that all
weapons shoot only forwards. However, after further exper-
imentation, it was determined that weapons with particles
that move backwards can create compelling patterns (e.g.
hurricanes), so the constraint was later lifted.

D. Calculating Weapon Fitness

Two potential challenges to calculating fitness based on
usage are that (1) certain weapons, by their nature, require
more shots to be effective (e.g. wall guns for blocking incom-
ing projectiles) and (2) players that participate in the game
more often might disproportionately influence evolution (i.e.
by firing their weapons more often). To address these two
issues fitness is calculated in GAR in the following manner.

When a player fires a weapon, that weapon (which is a
unique member of the population) gains fitness at a constant
rate and the other weapons in that player’s arsenal lose fitness

p
x

p
z

d
c bias

v
x

v
z

r g b

hidden nodes
(topology evolved by cgNEAT)

Fig. 7. How CPPNs Represent Particle Weapons. For each frame of
animation, every particle separately inputs the position(px, pz) and distance
(dc) from where it wasinitially fired into the CPPN (py is ignored because
the game is situated entirely on they = 0 plane). (b) The CPPN is activated
and particle velocity(vx, vz) and color(r, g, b) are obtained from CPPN
outputs. This method provides GAR with smooth particle animations and a
wide variety of possible evolved weapons.

at the same rate. Thisfitness decaymechanism for unused
weapons emphasizes emerging new weapon trends and ensures
that weapons that require more firing do not come to dominate.
Furthermore, theminimum fitnessis 1 and themaximum fitness
is 1,000, which means that older players do not create a
disproportionate effect.

E. Evolving New Weapons

When players destroy an enemy station or space blob (a
kind of boss enemy), a new weapon is spawned in one of the
following ways: (1) reproduction within the current weapon
population selected by roulette [63], (2) from the spawning
pool, or (3) random generation. The probabilities for each to
occur in GAR are:

1) 80%. A roulette based on weapon fitness is spun to
determine which specific weapon will reproduce. If
a starter weapon is selected by the roulette, then a
spawning pool weapon is reproduced instead. Higher
fitness weapons have a higher chance of producing
offspring, thereby enabling players to directly affect the
course of evolution. Note that there is no recombination
(e.g. combining guns), although in principle it could be
implemented in a future version.

2) 10%. The spawning pool is a set of pre-evolved weapons
chosen by the game designers.

3) 10%. Random weapons have between one and four
hidden nodes and random weights.

Novel weapons created by cgNEAT are evolved from the
currentweapon population. In single-player GAR, the weapon
population is only the three weapons the player currently
possesses. In multiplayer GAR, the weapon population in-
cludes the weapons currently held by all players. Thus single-
player evolution is to some extent greedy; however, it is



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 9

not equivalent to a normal evolutionary algorithm with a
population of three because the player encounters a significant
number of weapon previewsin addition to the weapons in
the ship’s current arsenal. Therefore, the player is in effect
judging such previews by taking them or not. Furthermore,
the spawning pool ensures a diverse set of jumping-off points
are injected at regular intervals.

As results in this paper show, the net effect is that a
single player can genuinely discover a diverse array of highly
specialized and effective weapons. Because in multiplayer
mode the population includes every weapon held by every
player in the game, multiplayer mode in GAR is genuine
CCE. Figure 8 illustrates weapon evolution in GAR with
two genealogies of related weapons. To give a sense of the
changes produced through mutations from one generation to
the next, figure 9 presents a chronological lineage with its
corresponding CPPNs.

F. Starter Weapons, Spawning Pool, and Archive Pool

The starter weapons (Section III-C) in GAR shoot only in a
straight line and are not eligible to reproduce during evolution
(figure 10). Thus new players are guaranteed to begin with
viable weapons. Because starter weapons cannot reproduce
and players begin the game with only starter weapons, a
method is needed to start evolution. For this purpose, the
spawning poolis a diverse collection of good weapons evolved
by the game developers. If cgNEAT selects a starter weapon
to reproduce because it is fired often, a random spawning pool
weapon is spawned instead. Finally, thearchive poolis where
popular weapons are saved. In GAR weapons are saved to the
archive if they have been fired over 800 times. In multiplayer
mode they are saved to the host server, creating a history of
popular weapons in the game.

V. AUTOMATIC CONTENT GENERATION RESULTS IN GAR

The results presented in this section demonstrate the variety
of weapons that are evolved by players in GAR. All weapons
displayed are created by the cgNEAT algorithm itself, i.e. not
by the game developers. The results of both single player and
multiplayer weapon evolution are presented.

Results reported in this paper would not have been possible
without public interest in such a project, which attracted
players to the game. Since before GAR was released, the
http://gar.eecs.ucf.edu website (where GAR can now be down-
loaded for free) has attracted over 30,000 visitors from over
100 different countries. On July 8th, 2009, GAR appeared
on the popular Internet news site Slashdot10, highlighting the
public’s general interest in automated content generation and
attracting many players to GAR from around the world.

Two versions of the GAR client were released: GAR 1.0
on June 2, 2009 and GAR 1.1, which addressed many feature
requests by players, on July 6th 2009. GAR (mostly version
1.1) has been downloaded over 8,500 times. The results
presented in this section are based on evolution data generated
by actual players who downloaded and played the game.

10http://games.slashdot.org/story/09/07/08/1419242/Experimental-Video-
Game-Evolves-Its-Own-Content

A. Automatic Content Generation Results in GAR Single
Player Mode

To investigate the content generation abilities of cgNEAT
in collaboration with human players, before the public release
of the game a group of over twenty test players piloted space
ships in single-player mode for at least one hour each. The
results in this section (figure 11) are from these test sessions.
Of course, single-player evolution is inherently more limited
than multiplayer. However, the main result is that players
indeed discovered a variety of genuinely unique weapons with
differing tactical implications and aesthetics, suggesting that
even the behavior of a single player is sufficient to produce
content evolution.

As the weapons showcased in this section will show, the
gameplay implications of evolved content sometimes seem
intentional, as if designed purposely to create a specific
capability. In many cases guns were invented that were unlike
anything the developers had seen or imagined before. Yet of
course these guns are not the result of random luck either; just
as in other evolutionary algorithms, they result from selection
pressure, which is wrought by the preferences of the player
in GAR. In this way, GAR is a credible demonstration of the
potential of this approach.

In GAR it is possible for player projectiles to intercept
enemy projectiles. Therefore, several key tactical trade-offs
are explored by evolution. Slow projectiles make it easier
to block incoming fire whereas fast projectiles are easier to
aim at distant enemies. Weapons with a wide spread are
more effective at blocking incoming projectiles; however,
concentrated patterns more effectively destroy distant targets
quickly. Hybrid weapons with variable spread pattern and
speed over time evolve as well. Yet these tactical principles are
only the beginning. In fact, figure 11 presents samples of the
wide range of generated single-player weapons and describes
some of their tactical implications. To highlight the creativity
of cgNEAT, we have assigned descriptive names to each such
gun to help to more easily appreciate their concept. Two
especially interesting evolved weapon types arewallmakers
(figure 11c), which literally create a wall of particles in front
of the player, andtunnelmakers(figure 11e), which create a
line of particles on either side of the player. Both weapon types
are defense-oriented, enabling players to switch between them
and more offense-oriented weapons, as the tactical situation
dictates. These examples demonstrate that cgNEAT evolves
unique and tactically diverse weapons as the game is played.

It is important to point out that it does not take long for
players to begin to find effective weapons. As figure 11 shows,
compelling weapons often arise within the first ten generations
(e.g. thetunnelmakerin figure 11e is from generation two).
Furthermore, weapons continue to evolve into novel forms
over dozens of generations, such as theblue ladder (figure
11f) from generation 42.

Finally note that, although the population eligible for repro-
duction is only three in the single-player game, cgNEAT is still
capable of generating a large variety of novel content for two
reasons. First, players are exposed to many weapons (aside
from those they currently possess) by previews of weapons



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 10

(a) (b) (c)

(d) (e) (f)
Fig. 8. Weapon Evolution Examples. As weapons evolve over the course of the game, players are likely to find weapons with qualities similar to those
they favored in the past. In this example from actual single-player gameplay, the player often fired a spread weapon (a). Later in the game, new spread gun
variations (b,c) evolved. Another interesting spread gun (d) fires two slower-firing outer projectiles and a fast inner projectile. Later descendants of this weapon
(e,f) exaggerated the speed difference between the inner and outer projectiles, diversified the color pattern, and modified the spread width. These examples
illustrate how cgNEAT evolves novel content based on past user preferences.

p
x

p
z

d
c bias

v
x

v
z

r g b

spike cos tanh

3.29

-0.46
3.72

-1.79
2.59-2.94

3.38
0.22

1.37

(a) 4 generation genotype

p
x

p
z

d
c bias

v
x

v
z

r g b

spike cos tanh

1.39

-0.46

-4.08
-1.93

2.470.48

-2.57
0.22

2.06

1.70

(b) 5 generation genotype

p
x

p
z

d
c bias

v
x

v
z

r g b

spike cos tanh

2.97

1.34

6.10
-1.02

1.995.34

-2.36
-0.69

0.16

3.16

(c) 6 generation genotype
Fig. 9. Weapon Genotype Examples. This figure displays three weapons from the same lineage and their CPPN genotypes. The blue wavy pattern exhibited
by Weapon (a) is the result of four generations of evolution. Weapon (b) is the direct offspring of Weapon (a), and has a tighter pattern and yellow color,
which results from gaining a connection and altered weights from mutation. Weapon (c) is the direct offspring of Weapon (b). Mutation only changed weights,
and it strongly resembles Weapon (a), but with a tighter pattern. These examples illustrate how mutation creates offspring weapons with similar characteristics
to their parents.



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 11

Fig. 10. GAR Starter Weapons. When the game begins, players are
equipped with straight-shooting starter weapons that do not contribute to
evolution. Starter weapons ensure that players begin the game with effective
weapons (which would not be guaranteed by randomization) and additionally
act as a control to which the effectiveness of evolved weapons is compared.
Starter weapons do earn fitness by being fired; however, if a starter weapon
is selected by a roulette roll during evolutionary selection, a spawning pool
weapon is created instead.

dropped in the game world. Second, for every new weapon
generated, there is always a chance of either encountering a
random weapon or a weapon from the spawning pool. Thus, a
variety of content is possible even with a limited population.

B. Automatic Content Generation Results in GAR Multiplayer
Mode

In total, the GAR client was downloaded over 8,500 times.
The experimental data in this section is from the “GAR Offi-
cial” 32-player public game server hosted by the Evolutionary
Complexity Research Group (Eplex) on the University of
Central Florida (UCF) campus. The server began collecting
multiplayer data from players across the world on June 2nd,
2009. The data presented in tables 1, 2, and 3 is a snapshot
in time on July 30th 2009.

In total, 1,007 unique player accounts (table 1) were created
on the server in approximately two months. Excluded from
this data are an additional 236 invalid accounts that registered
but were lost because of a database error caused by a large
simultaneous influx of players from the GAR article on
Slashdot.org (the accounts were registered but never fired a
shot, nor picked up a weapon in game). At the time of the
sample, over 73% of valid player accounts progressed past
level 20, indicating substantial time (i.e. at least two or three
hours) invested. A substantial proportion of players progressed
to much higher levels, which takes several days in-game.

The primary method of obtaining new weapons in GAR is
to defeat enemies. The aggregated player kill counts for the
snapshot are displayed in table 2. The 1,007 players on the
server scored 9,038 PVP kills, 721,456 Alien kills, 714,274
Pirate kills, and 22,670 Space Blob kills. Such a large kill
total (over 1.46million) hints at the intensity of game play.

Snapshot data for weapon evolution on the GAR official
server is presented in table 3. In total, 379,081 weapons were
evolved (note that about 10% of these are from the spawning

Player Accounts Data
Total Player Accounts 1,007
Level 1-20 274
Level 21-40 186
Level 41-60 175
Level 61-80 81
Level 81-100 87
Level 101-120 36
Level 121-140 44
Level 141-160 11
Level 161-180 12
Level 181-200 89

Table 1.Official Server Player Accounts. A summary of a snapshot
of player accounts on the GAR 1.1 Official 32-player server taken on
July 30th, 2009 is shown. Over 73% of players progressed past level
20, indicating substantial time invested. A large number of players
progressed to higher levels, which could take several days in-game.

Kill Data
Total Kills 1,467,438
Total PVP Kills 9,038
Total Alien Kills 721,456
Total Pirate Kills 714,274
Total Blob Kills 22,670
Total Player Deaths 38,409
Max PVP Kills by a Player 1,147
Max Alien Kills by a Player 10,325
Max Pirate Kills by a Player 10,478
Max Blob Kills by a Player 402

Table 2.Official Server Kill Counts . Aggregate kill counts and the
maximum kill counts for a single player are shown for the 1,007
player accounts on the GAR 1.1 Official 32-player server snapshot
taken on July 30th, 2009. Such totals demonstrate the playability of
the weapons evolved by cgNEAT in GAR.

pool) by players destroying enemies, their bases, and other
players. This number is remarkably high for an IEC system.
On average, each player encountered over 375 weapon drops.
Additionally, players fired over23.6 million shots with the
evolved weapons they discovered. These results indicate that
cgNEAT is capable of exposing players to a large variety of
content quickly.

Of the 379,081 weapons dropped, 132,722 were picked up
by players, which is roughly 35%. The reasons that players
do not always pick up weapons are either (a) the weapon is
deemed inferior to those in their arsenal, or (b) the weapon
is similar to a weapon they already possess. In this context,
that 35% of all weapons are picked suggests that players
indeed decide whether or not to pick up content based on the
previews. That is, players do not need to pick up every weapon
they see. At the same time, it suggests that a considerable
proportion of weapons evolved (about one third) are attractive
enough to pick up, even with only three weapon slots available.

The starter weapons in GAR (which shoot in a straight line)
act as an experimental control to compare with the weapons
evolved by cgNEAT. During the snapshot, the number of
starter weapons possessed by players above level 50 was 70,
which is only 4% of the total weapons held by those players.



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 12

(a) Multispeed (7 gens) (b) Ultrawide (13 gens) (c) Wallmaker (14 gens)

(d) Corkscrew (3 gens) (e) Tunnelmaker (2 gens) (f) Blue Ladder (42 gens)
Fig. 11. Weapons Evolved During Single Player Gameplay. GAR players discovered many useful and aesthetically pleasing weapons. The number of
generations of reproduction taken to evolve each weapon is shown next to its name. Themultispeed(a) fires two slow outer projectiles, which are useful for
blocking incoming enemy fire, and a fast center projectile for quickly striking distant targets. Theultrawide (b) emits a wide particle pattern that are effective
for fighting many enemies at once. Thewallmaker (c) literally creates a defensive wall of particles in front of the player. Thecorkscrew(d) emits a pattern
that is initially wide, for blocking, but later converges for concentrated damage at a distance. Thetunnelmaker(e) creates a defensive line of particles as well,
but on both sides of the player, yielding a defensive sheath. Theladder gun(f) fires a wide wave-like pattern that can swivel around obstacles like asteroids.

Note that in GAR players are able to obtain starter weapons
at any time during the game by selling unwanted isotopes in
exchange for starter weapons. In fact, because such a sale also
yields several credits of game currency for the player, in effect
there is an incentive to sell evolved weapons in exchange for
starter weapons. Nevertheless, of the over 1.46 million kills
of players and NPCs on the GAR official server, only 22,935
were by starter weapons (roughly 1.5%). From these results
it can be inferred through player behavior that they preferred
evolved weapons to starter weapons.

The total number of combinedgenerationsof all weapon
lineages in the snapshot is 50,646, and the highest generation
weapon is 98, suggesting that weapons continue to be used
even into later generations. Additionally, the average number
of generations per weapon in the population sample is 16,
indicating that it does not take many generations for players
to find weapons that they want to keep.

Overall, players in the GAR multiplayer experiments dis-
covered a wide variety of both aesthetically and tactically
diverse weaponry evolved through their implicit preferences.

Additional server data that was stored includes theweapon
archive, where all weapons that were fired at least 800 times
(i.e. highly fit weapons) are saved, and thePVP archive, where
all weapons that score PVP kills are stored. By the time of the
snapshot, these archives contained 5,209 and 1,662 weapons,
respectively. The weapons presented in this section from those
archives were evolved by players on the official server from
around the world.

Figures 12 through 20 present the visual results of weapon
evolution in the form ofweapon trendson the server. That
is, they present general styles of weapons that proved popular

with many players on the server. Note that all weapons in
the same trend are not necessarily related to each other, but
could be members of separate lineages that followed a similar
evolutionary path. All weapons displayed are from the GAR
server archive (i.e. fired by their owners at least 800 times)
or the PVP archive (i.e. scored kills in PVP). Therefore, it is
likely that players found all of these weapons either effective
or worth keeping for their novelty. The following is a sampling
of trends that were discovered:

1) Fork Guns (figure 12): The fork trend produces ex-
tremely wide triple shots that are good for firing into
crowds of enemies or for hitting fast moving enemies.

2) Goop Guns (figure 13): The goop trend drops masses
of slowly moving particle clouds. Goop guns create
effective “space mines” that block incoming bullets and
can be dropped while fleeing.

3) Multi-speed Guns (figure 14): The multi-speed trend
fires fast inner shots and slower outer shots. The fast
inner shot can easily hit distant targets, while the slower
outer shots act as a shield.

4) Plasma Guns (figure 15): The plasma trend fires
random-looking bursts of particles that resemble plasma.
Plasma guns are good for blocking and their chaotic
patterns make them hard to dodge in PVP combat.

5) Shield Guns (figure 16): Shield guns create a particle
shield that completely encases the player ship.

6) Spread Guns (figure 17): The spread gun trend fires
tight streams that widen as they travel away from the
player. Spread guns deliver concentrated fire at close
range but spread later to make distant targets easier to



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 13

Weapon Evolution Data
Total Evolved CPPNs 379,081
Total Looted Weapons 132,722
Total Shots by All Players 23,657,178
Total Evolved Gun Kills 1,444,503
Total Starter Gun Kills 22,935
Total Guns Currently Owned by Players Above Level 50: 1,641
Total Starter Guns Currently Owned by Players Above Level 50: 70
Max Generation 98
Total Generations of All Lineages Combined 50,646
Average Shots Fired Per Gun 178
Average Generations Per Gun 16
Guns Shot Over 800 Times 5,209
Guns That Scored PVP kills 1,662

Table 3.Official Server Weapon Evolution. Aggregate weapon evolution data is shown for the GAR 1.1 Official 32-player server snapshot
taken on July 30th, 2009. Millions of shots were fired and over one million enemies were killed. The vast majority (98.5%) were killed with
evolved weapons.

hit.
7) Squiggle Guns(figure 18): Squiggle guns fire curving

multi-colored patterns that resemble hand-drawn figures.
8) Vortex Guns (figure 19): The vortex trends creates pat-

terns that resemble cyclones. Their wide pattern makes
it easy to hit enemies and block projectiles.

9) Wall Guns (figure 20): The wall gun trend creates a
literal wall of particles in front of the player that can be
used as a defensive shield.

To assess viability of evolved weapons against other players,
all weapons that scored PVP kills were saved in the PVP
archive, examples of which are presented in figure 21. The
popular PVP weapons displayed as much variety as the
non-PVP weapons; however, one major additional trend that
occurred among the PVP weapons is that players significantly
more often favored weapons that shoot a particle to a fixed
distance at which point it stops and remains stationary, leaving
a hazard for other players.

GAR also produces weapons that are not picked up or fired
often (e.g. weapons that fire very slowly or in undesirable
directions such as due left). Of course, because players do not
use such guns, they do not develop into their own evolutionary
trends.

The weapon trends demonstrate the variety of tactically
diverse weapons automatically generated by cgNEAT. Like
trends in the real world, certain weapon trends were popular
for a time before their popularity waned and new weapon
trends replaced them. Thus an important lesson is that the
main contribution of CCE is not necessarily to find the “best”
content, but to continually offer new alternatives as once-
popular fads lose their luster. Interestingly, while the difference
between two weapons from one generation to the next is often
small (as in figure 9), occasionally a mutation such as a new
connection or node yields a substantial qualitative change,
which may become the basis for a new trend.

VI. D ISCUSSION ANDFUTURE WORK

The cgNEAT-evolved weapons in GAR demonstrate that
automatic content generation is a viable new technology. The

main application is in simulations and games wherein the
designers want users to be able to discover and experience
a continual stream of new content beyond what the original
artists and programmers are able to provide. For players, the
main implication is a new kind of experience in which not
only is novelty a constant, but the pursuit of novelty itself is
an integral part of the game.

For some game designers, this loss of control will be viewed
as a risky sacrifice; yet others will see it for its potential, just as
any new frontier opens up an unknown world of possibilities.
In fact, the interactive evolutionary dynamic automatically
creates a kind of implicit game balance because, as soon as a
player acquires a weapon that tips the equilibrium, variants of
that weapon become available to other players in proportion
to its use, thereby continually balancing the game. Just as
evolutionary arms races in nature lead to a continual balancing
and rebalancing of opposing powers [26], the arms race among
contentto satisfy its users can yield a long-term homeostatic
force towards equilibrium.

Note that the benefit of cgNEAT is also potentially a
drawback for some game types because content outside of
that which the developers envisioned may be discovered.
Therefore, for genres such as linear FPS games like Half-
Life 211, in which it is integral to the story that the player
possessesweapon xat time y, evolutionary content generation
would likely not be a good fit.

Nevertheless, for those games that can benefit, in ad-
dition to weapons, a wide variety of other game content
could potentially be generated by cgNEAT including two-
dimensional textures, three-dimensional models, many other
types of particle effects, and programmable shader effects.
Video games that automatically generate their own content
(e.g. characters, clothing, weapons, houses, vehicles, music,
special effects, etc.) could keep players engaged much longer
in such a constantly evolving game world than in a static
one. Thus the potential future applications of cgNEAT for
automated content generation are broad, especially in virtual

11Copyright 2004 Valve Software, http://valvesoftware.com/



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 14

(a) 2 gens (b) 3 gens (c) 5 gens
Fig. 12. Fork Weapon Trend. Fork guns fire a wide triple-shot that is effective at firing into crowds of enemies or for hitting distant fast-moving enemies.

(a) 6 gens (b) 7 gens (c) 13 gens
Fig. 13. Goop Weapon Trend. Goop guns drop animated clouds of particles resembling liquids. They create effective “space mines” that can block incoming
bullets and that can be dropped as obstacles while fleeing.

(a) 4 gens (b) 7 gens (c) 12 gens
Fig. 14. Multispeed Weapon Trend. Multispeed guns, which proved highly popular on the test server, have a fast center projectile and slower outer
projectiles that move in a variety of patterns. Example (a) is also called a “tunnelmaker” because it creates a defensive tunnel of near-stationary particles.

(a) 11 gens (b) 12 gens (c) 18 gens
Fig. 15. Plasma Weapon Trend. Plasma guns, which also were popular on the server, fire chaotic streams of colorful particles resembling plasma. Plasma
guns fire fast and erratic particles that are excellent for blocking incoming projectiles and are difficult for other players to dodge in PVP mode.



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 15

(a) 9 gens (b) 17 gens (c) 38 gens
Fig. 16. Shield Weapon Trend. Shield guns are excellent defensive weapons that create a particle shield completely encasing the player ship.

(a) 3 gens (b) 3 gens (c) 4 gens
Fig. 17. Spread Weapon Trend. Spread guns fire a tight stream that widens as it travels; thus these weapons deliver concentrated fire at close range but
spread later to make distant targets easier to hit. Some spread guns (b) are also calledtunnelmakersbecause of the lines of stationary particles created on
either side of the player ship.

(a) 21 gens (b) 22 gens (c) 36 gens
Fig. 18. Squiggle Weapon Trend. Squiggle guns create diverse curved patterns that resemble hand-written script. Squiggle guns display some of the unique
color and shape patterns possible through cgNEAT weapon evolution.

(a) 3 gens (b) 50 gens (c) 51 gens
Fig. 19. Vortex Weapon Trend. Vortex weapons produce spinning patterns similar to tornadoes. The seemingly-random wide patterns are effective for
blocking incoming projectiles and make it easy to hit targets.



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 16

(a) 9 gens (b) 13 gens (c) 27 gens
Fig. 20. Wall Gun Weapon Trend. Wall guns create a literal wall of defensive particles in front of the player, useful for blocking or dropping behind while
fleeing. Some wall guns such as (c) create multiple lines of particles.

(a) 15 gens (b) 27 gens (c) 14 gens

(d) 21 gens (e) 27 gens (f) 16 gens
Fig. 21. PVP Archive Weapons. This example displays PVP archive weapons with which players scored PVP kills on the GAR Official 32-player server.
Overall, the popular PVP weapons display as much variety as those used solely against NPCs; thus players employed many evolved weapon tactics to defeat
each other.

worlds or MMOGs in which unique content creates value in
the virtual economy.

In practice, any class of content that is intended to be
evolved must beparameterizedin some fashion first. In GAR,
the CPPN-based particle system representation is the parame-
terization of the particle weapon class. Ideal parameterizations
areopen-endedin the sense that it should be possible for con-
tent to evolve that exceeds the foresight of the game designers.
The weapons evolved by GAR satisfy this criterion because
many of them represent new concepts (e.g. wallmakers and
tunnelmakers) that are novel even to the designers of the game
and also that became popular among its players. However,
the effort required to parameterize other classes of content
will likely vary significantly. For example, parameterizing the
space ofcars or housesmay require a priori understanding
of the most important ways in which such content can vary.
At the same time, the potential for open-ended discovery
should not be limited by too much constraint. Yet the up-front
effort and expense of parameterizing a class of content can
pay off in unlimited dividends down the line. While such an

effort represents a new kind of investment for developers, this
paper shows that it can indeed succeed, bringing the potential
for much-needed novelty to future games. That GAR players
invested enough time to defeat over one million enemies on
a single server suggests the tantalizing potential for much
more ambitious such projects. The possibilities for evolving
vast classes of content with the full resources and talent of a
commercial game company behind the initial parameterization
are yet to be imagined.

An interesting future study is to more rigorously assess the
perceived value of the procedural content created by the game
from the perspective of the players. Potential experiments
include (1) two separate versions of a game, one containing
only fixed hand-coded content and the other with fully evolved
content, or (2) a hidden flag for each player within the game
that determines who will be provided with evolved content and
who with only a fixed amount of static content. Player behavior
in both such scenarios would provide more analytical insight
into player evaluation of procedural content. For example, is
there any correlation between the types of weapons players



TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 17

find and how long they stay interested in the game?
Another possibility is to seek insight into how much value

players place on novelty. This issue could be investigated
through an experiment in which players are able to rate their
weapons. Then, results would be compared among (1) a subset
of players who receive weapons from normal GAR evolution,
(2) a second subset of players that receive weapons completely
randomly, and (3) a third subset that receives evolved weapons
exclusively through novelty search [64].

An additional issue for future research is the role of pure
aesthetics in bringing value and entertainment to game content.
To what extent do players value aesthetics above tactical
value? While many players and game designers maythink
that players ultimately care about the effectiveness of usable
content, it is possible that players sometimesbehaveotherwise.
That is, players may sometimes choose content that looks nice
over content that is more powerful. One appeal of CCE is that
it addresses this issue implicitly without requiring designers
to ascertain the answer. If players do prefer aesthetic qualities
to utility, that will be reflected in their behavior and thereby
amplified by cgNEAT. If they do not, the same is true. Thus,
by its implicit nature, cgNEAT can potentially transcend tricky
philosophical design questions that are difficult to answer
explicitly.

The main goal for the near-term future of GAR is to
continue developing the game by adding new levels, ship
modifications, star systems, and other types of evolvable
content. A wider release of future GAR versions could yield a
significantly broader explosion of content. Potentially, GAR
may be open-sourced, enabling others to utilize GAR for
research or game development. In the long term, GAR will be
hosted permanently by the Evolutionary Complexity Research
Group at UCF, and continue to function as a platform for
experimental game development.

VII. C ONCLUSIONS

This paper presented two novel works that together establish
that automated content generation in mainstream games is
possible. First, cgNEAT is an algorithm created explicitly to
automatically generate game content based on perceived user
preferences in real time, as games are played. The cgNEAT
algorithm, unlike standard evolutionary algorithms, selects
content for reproduction implicitly through player behavior
within the game. That is, content players utilize often is
more likely to reproduce. The result is a constant stream of
novel content suited to players’ tastes. Second, cgNEAT is
implemented in Galactic Arms Race, a 32-player persistent
online game in which particle system weapons evolve based
on the preferences of players.

The GAR client was downloaded by thousands of players
and over 1,000 players from around the world participated on
the gar.eecs.ucf.edu server hosted at UCF. Experimental results
from the official multiplayer server, on which overone million
enemies were killed and hundreds of thousands of weapons
were evolved, suggest that cgNEAT is capable of automatically
creating effective content based on player preferences.

The success of the initial GAR release suggests the potential
of cgNEAT, and automatic content generation in general, to

generate many other types of game content. For players,
continual introduction of such novel content may significantly
increase game replay value, and enhance the experience of
MMOGs. For the game industry, it demonstrates the possibil-
ity of building games that automatically generate their own
content to satisfy users by leveraging the collective behavior
of multiple players, hinting at a promising new paradigm in
game design.

ACKNOWLEDGMENT

Special thanks to the Galactic Arms Race (GAR) volunteer
team: Nathan Sriboonlue (BOIDs and steering), Jaruwan Mesit
(soft-body Space Blobs), Fabian Moncada (music and sound
effects), John Martin (testing, balance, and additional server
code), Derrick Janssen (additional design, testing, and game
balance), Kristen Martin (additional database and file process-
ing), Eric Isles (additional music and sound effects), Gordon
Hart (additional music and sound effects), Jonathan “Zarcath”
Chan (additional design), FourTwoOmega (additional music),
and JRWR (web stats and hosting).

The GAR multiplayer game engine was developed by
Erin Hastings with the Microsoft XNA Game Studio SDK
available from http://creators.xna.com. GAR multi-player net-
working code was developed with Lidgren Network Library
by Michael Lidgren which is open source and available from
http://code.google.com/p/lidgren-network.

Finally, special thanks to our anonymous reviewers for
helping us to improve the text substantially.

Galactic Arms Race is available online at
http://gar.eecs.ucf.edu and the project’s official email
address is gar@eecs.ucf.edu.

REFERENCES

[1] R. Edwards, “The economics of game publishing,” May 2006. [Online].
Available: http://games.ign.com/articles/708/708972p1.html

[2] M. J. Irwin, “Game developers’ trade off,” May
2008. [Online]. Available: http://www.forbes.com/2008/05/27/
videogame-art-money-tech-personal-cxmji 0528vgames.html

[3] Valve Software, “Source engine SDK,” 2009. [Online]. Available:
http://developer.valvesoftware.com

[4] EpicGames, “Unreal engine SDK,” 2009. [Online]. Available: http:
//www.unrealtechnology.com/

[5] IdSoftware, “Quake wars SDK,” 2009. [Online]. Available: http:
//www.idsoftware.com/

[6] K. Sims, “Artificial evolution for computer graphics,”Proceedings
of the ACM Special Interest Group on Graphics and Interactive
Techniques, pp. 319–328, 1991. [Online]. Available: http://www.
karlsims.com/papers/siggraph91.html

[7] S. Todd and W. Latham, Evolutionary Art and
Computers. Orlando, FL, USA: Academic Press,
Inc., 1992. [Online]. Available: http://www.amazon.com/
Evolutionary-Art-Computers-Stephen-Todd/dp/012437185X

[8] L. World, “Aesthetic selection: The evolutionary art of Steven Rooke,”
IEEE Computer Graphics and Applications, vol. 16, no. 1, pp. 4–5,
1996. [Online]. Available: http://www.computer.org/portal/web/csdl/doi/
10.1109/MCG.1996.481558

[9] P. Machado and A. Cardoso, “All the truth about NEvAr,”
Applied Intelligence Special Issue on Creative Systems, vol. 16,
no. 2, 2002. [Online]. Available: http://www.springerlink.com/content/
tv79723876wr723x/

[10] J. Romero and P. Machado, Eds.,The Art of Artificial Evolution: A
Handbook on Evolutionary Art and Music. Springer, 2007. [Online].
Available: http://art-artificial-evolution.dei.uc.pt/

http://games.ign.com/articles/708/708972p1.html
http://www.forbes.com/2008/05/27/videogame-art-money-tech-personal-cx_mji_0528vgames.html
http://www.forbes.com/2008/05/27/videogame-art-money-tech-personal-cx_mji_0528vgames.html
http://developer.valvesoftware.com
http://www.unrealtechnology.com/
http://www.unrealtechnology.com/
http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.karlsims.com/papers/siggraph91.html
http://www.karlsims.com/papers/siggraph91.html
http://www.amazon.com/Evolutionary-Art-Computers-Stephen-Todd/dp/012437185X
http://www.amazon.com/Evolutionary-Art-Computers-Stephen-Todd/dp/012437185X
http://www.computer.org/portal/web/csdl/doi/10.1109/MCG.1996.481558
http://www.computer.org/portal/web/csdl/doi/10.1109/MCG.1996.481558
http://www.springerlink.com/content/tv79723876wr723x/
http://www.springerlink.com/content/tv79723876wr723x/
http://art-artificial-evolution.dei.uc.pt/


TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 18

[11] D. A. Hart, “Toward greater artistic control for interactive evolution of
images and animation,”Proceedings of the 2007 Evoworkshops 2007 on
Evocomnet, Evofin, Evoiasp,Evointeraction, Evomusart, EvoSTOC and
Evotranslog: Applications of Evolutionary Computing, vol. 4448, pp.
527–536, 2009. [Online]. Available: http://www.dahart.com/research.
html

[12] K. Sims, “Evolving virtual creatures,” in Proceedings
of the ACM Special Interest Group on Graphics and
Interactive Techniques, 1994, pp. 50–62. [Online]. Available:
http://www.karlsims.com/evolved-virtual-creatures.html

[13] P. Husbands, G. Germy, M. McIlhagga, and R. Ives, “Two
applications of genetic algorithms to component design,”Evolutionary
Computing, pp. 50–61, 1996. [Online]. Available: http://citeseer.ist.psu.
edu/husbands96two.html

[14] H. Nishino, H. Takagi, S. Cho, and K. Utsumiya, “A 3D modeling
system for creative design,” inProceedings of the 15th International
Conference on Information Networking. IEEE Press, 2001, pp.
479–487. [Online]. Available: http://www.computer.org/portal/web/csdl/
doi/10.1109/ICOIN.2001.905468

[15] G. Nelson, “Sonomorphs: An application of genetic algorithms to growth
and development of musical organisms,”Proceedings of the 4th Biennial
Art and Technology Symposium, pp. 155–169, 1993. [Online]. Available:
http://timara.con.oberlin.edu/∼gnelson/PapersPDF/morph93.pdf

[16] B. Johansen and R. Poli, “GP-music: An interactive genetic
programming system for music generation with automated fitness
raters,” Proceedings of the Third Annual Conference: Genetic
Programming, pp. 181–186, 1998. [Online]. Available: http://graphics.
stanford.edu/∼bjohanso/papers/gp98/johanson98gpmusic.pdf

[17] N. T. nd H. Iba, “Music composition with interactive evolutionary
computation,” Proceedings of 3rd International Conference on
Generative Art, 2000. [Online]. Available: http://www.iba.t.u-tokyo.ac.
jp/papers/2000/tokuiGA2000.pdf

[18] J. McCormack, “Open problems in evolutionary music and art,”
Applications on Evolutionary Computing, vol. 3449, pp. 428–
436, 2005. [Online]. Available: http://www.springerlink.com/content/
rh40xp73vecbqb20/

[19] P. Husbands, P. Copley, A. Eldridge, and J. Mandelis, “An introduction
to evolutionary computing for musicians,”Evolutionary Computer
Music, pp. 1–27, 2007. [Online]. Available: http://www.cogs.susx.ac.
uk/users/philh/pubs/IntroECforMusiciansv3.pdf

[20] A. Hoover and K. O. Stanley, “Exploiting functional relationships
in musical composition,” Connection Science Special Issue on
Music, Brain, and Cognition, 2009. [Online]. Available: http:
//eplex.cs.ucf.edu/publications/2009/hoover.connectionscience09.html

[21] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time
neuroevolution in the NERO video game,”IEEE Transactions on
Evolutionary Computation Special Issue on Evolutionary Computation
and Games, vol. 9, no. 6, pp. 653–668, 2005. [Online]. Available:
http://nn.cs.utexas.edu/?stanley:ieeetec05

[22] H. Takagi, “Interactive evolutionary computation: Fusion of the
capacities of EC optimization and human evaluation,”Proceedings of
the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001. [Online]. Available:
http://www.design.kyushu-u.ac.jp/∼takagi/TAKAGI/IECsurvey.html

[23] M. Fagerlund, “DelphiNEAT-based genetic art homepage,” 2005.
[Online]. Available: http://www.cambrianlabs.com/mattias/GeneticArt/

[24] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,
and K. O. Stanley, “Picbreeder: Evolving pictures collaboratively
online,” in Proceedings of the Computer Human Interaction Conference,
2008. [Online]. Available: http://eplex.cs.ucf.edu/publications/2008/
secretan.chi08.html

[25] T. Unemi, “Genetic algorithms and computer graphic arts,”Journal of
Japan Society for Artificial Intelligence, vol. 9, no. 4, pp. 518–523,
1994. [Online]. Available: http://www.intlab.soka.ac.jp/∼unemi/sbart/
Document.html

[26] R. Dawkins, The Blind Watchmaker. Essex, U.K.:
Longman, 1986. [Online]. Available: http://www.amazon.com/
Blind-Watchmaker-Evidence-Evolution-Universe/dp/0393315703

[27] K. O. Stanley, “Exploiting regularity without development,” in
Proceedings of the AAAI Fall Symposium on Developmental Systems.
AAAI Press, 2006. [Online]. Available: http://eplex.cs.ucf.edu/papers/
stanley aaaifs06.pdf

[28] ——, “Compositional pattern producing networks: A novel abstraction
of development,” Genetic Programming and Evolvable Machines
Special Issue on Developmental Systems, vol. 8, no. 2, pp. 131–
162, 2007. [Online]. Available: http://www.springerlink.com/content/
804411v3703ph210/

[29] F. Gomez and R. Miikkulainen, “Solving non-Markovian control
tasks with neuroevolution,” inProceedings of the International Joint
Conference on Artificial Intelligence, 1999, pp. 1356–1361. [Online].
Available: http://nn.cs.utexas.edu/downloads/papers/gomez.ijcai99.pdf

[30] N. Saravanan and D. B. Fogel, “Evolving neural control systems,”IEEE
Expert: Intelligent Systems and Their Applications, vol. 10, pp. 23–27,
1995. [Online]. Available: http://portal.acm.org/citation.cfm?id=631355

[31] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between
cellular encoding and direct encoding for genetic neural networks,”
in Genetic Programming 1996: Proceedings of the First Annual
Conference. MIT Press, 1996, pp. 81–89. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1595547

[32] B. Zhang and H. Muhlenbein, “Evolving optimal neural networks
using genetic algorithms with Occam’s razor,”Complex Systems,
vol. 7, no. 3, pp. 199–220, 1993. [Online]. Available: http:
//eprints.kfupm.edu.sa/38471/1/38471.pdf

[33] X. Yao, “Evolving artificial neural networks,”Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999. [Online]. Available:
http://www.cs.bham.ac.uk/∼xin/papers/publishediproc sep99.pdf

[34] A. Martin, “Increasing genomic complexity by gene duplication and
the origin of vertebrates,”The American Naturalist, vol. 154, no. 2, pp.
111–128, 1999. [Online]. Available: http://www.jstor.org/pss/2463906

[35] J. Watson, N. Hopkins, J. Roberts, J. Steitz, and A. Weiner,Molecular
Biology of the Gene Fourth Edition. The Benjamin Cummings
Publishing Company, Inc., 1987. [Online]. Available: http://www.
amazon.com/Molecular-Biology-Gene-James-Watson/dp/0805396144

[36] L. Altenberg, “Evolving better representations through selective genome
growth,” in Proceedings of the IEEE World Congress on Computational
Intelligence. IEEE Press, 1994, pp. 182–187. [Online]. Available:
http://dynamics.org/Altenberg/PAPERS/EBR/

[37] I. Harvey, “The artificial evolution of adaptive behavior,” Ph.D.
dissertation, School of Cognitive and Computing Sciences, University
of Sussex, Sussex, 1993. [Online]. Available: http://www.cogs.susx.ac.
uk/users/inmanh/inmanthesis.html

[38] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,”Evolutionary Computation, vol. 10, pp.
99–127, 2002. [Online]. Available: http://nn.cs.utexas.edu/?stanley:ec02

[39] M. E. Taylor, S. Whiteson, and P. Stone, “Comparing evolutionary
and temporal difference methods in a reinforcement learning
domain,” in GECCO 2006: Proceedings of the Genetic and
Evolutionary Computation Conference, July 2006, pp. 1321–
1328. [Online]. Available: http://www.cs.utexas.edu/∼pstone/Papers/
bib2html-links/GECCO06-matt.pdf

[40] T. Aaltonen et al., “Measurement of the top quark mass with
dilepton events selected using neuroevolution at CDF,”Physical
Review Letters, vol. 102, no. 15, 2009. [Online]. Available: http:
//www-cdf.fnal.gov/physics/preprints/cdf9235dil mtop nn.pdf

[41] G. Wichman, “A brief history of rogue,” 1997. [Online]. Available:
http://www.wichman.org/roguehistory.html

[42] M. Barton and B. Loguidice, “The history of rogue: Have you, you
deadly zs,” 1997. [Online]. Available: http://www.gamasutra.com/view/
feature/4013/thehistory of rogue have you .php

[43] M. Nitsche, C. Ashmore, W. Hankinson, R. Fitzpatrick, J. Kelly,
and K. Margenau, “Designing procedural game spaces: A case
study,” Proceedings of the Future Play Conference, 2006.
[Online]. Available: http://www.lcc.gatech.edu/∼nitsche/download/
Nitsche DesigningProcedural06.pdf

[44] M. Mateas and A. Stern, “Procedural authorship: A case-study
of the interactive drama faade,”Proceedings of the Digital Arts
and Culture: Digital Experience: Design, Aesthetics, Practice, 2005.
[Online]. Available: http://users.soe.ucsc.edu/∼michaelm/publications/
mateas1-dac2005.pdf

[45] J. Togelius, R. D. Nardi, and S. M. Lucas, “Towards automatic
personalised content creation for racing games,” inProceedings of
the IEEE Symposium on Computational Intelligence and Games.
IEEE Press, 2007. [Online]. Available: http://julian.togelius.com/
Togelius2007Towards.pdf

[46] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games. IEEE Press, 2008. [Online]. Available:
http://julian.togelius.com/Togelius2008An.pdf

[47] S. Colton and C. Browne, “Evolving simple art-based games,”
Applications of Evolutionary Computing, vol. 5484, 2009. [Online].
Available: http://www.springerlink.com/content/p6p0746n86j7328l/

[48] M.Hull and S. Colton, “Towards a general framework for program
generation in creative domains,”Proceedings of the 4th International

http://www.dahart.com/research.html
http://www.dahart.com/research.html
http://www.karlsims.com/evolved-virtual-creatures.html
http://citeseer.ist.psu.edu/husbands96two.html
http://citeseer.ist.psu.edu/husbands96two.html
http://www.computer.org/portal/web/csdl/doi/10.1109/ICOIN.2001.905468
http://www.computer.org/portal/web/csdl/doi/10.1109/ICOIN.2001.905468
http://timara.con.oberlin.edu/~gnelson/PapersPDF/morph93.pdf
http://graphics.stanford.edu/~bjohanso/papers/gp98/johanson98gpmusic.pdf
http://graphics.stanford.edu/~bjohanso/papers/gp98/johanson98gpmusic.pdf
http://www.iba.t.u-tokyo.ac.jp/papers/2000/tokuiGA2000.pdf
http://www.iba.t.u-tokyo.ac.jp/papers/2000/tokuiGA2000.pdf
http://www.springerlink.com/content/rh40xp73vecbqb20/
http://www.springerlink.com/content/rh40xp73vecbqb20/
http://www.cogs.susx.ac.uk/users/philh/pubs/IntroECforMusiciansv3.pdf
http://www.cogs.susx.ac.uk/users/philh/pubs/IntroECforMusiciansv3.pdf
http://eplex.cs.ucf.edu/publications/2009/hoover.connectionscience09.html
http://eplex.cs.ucf.edu/publications/2009/hoover.connectionscience09.html
http://nn.cs.utexas.edu/?stanley:ieeetec05
http://www.design.kyushu-u.ac.jp/~takagi/TAKAGI/IECsurvey.html
http://www.cambrianlabs.com/mattias/GeneticArt/
http://eplex.cs.ucf.edu/publications/2008/secretan.chi08.html
http://eplex.cs.ucf.edu/publications/2008/secretan.chi08.html
http://www.intlab.soka.ac.jp/~unemi/sbart/Document.html
http://www.intlab.soka.ac.jp/~unemi/sbart/Document.html
http://www.amazon.com/Blind-Watchmaker-Evidence-Evolution-Universe/dp/0393315703
http://www.amazon.com/Blind-Watchmaker-Evidence-Evolution-Universe/dp/0393315703
http://eplex.cs.ucf.edu/papers/stanley_aaaifs06.pdf
http://eplex.cs.ucf.edu/papers/stanley_aaaifs06.pdf
http://www.springerlink.com/content/804411v3703ph210/
http://www.springerlink.com/content/804411v3703ph210/
http://nn.cs.utexas.edu/downloads/papers/gomez.ijcai99.pdf
http://portal.acm.org/citation.cfm?id=631355
http://portal.acm.org/citation.cfm?id=1595547
http://eprints.kfupm.edu.sa/38471/1/38471.pdf
http://eprints.kfupm.edu.sa/38471/1/38471.pdf
http://www.cs.bham.ac.uk/~xin/papers/published_iproc_sep99.pdf
http://www.jstor.org/pss/2463906
http://www.amazon.com/Molecular-Biology-Gene-James-Watson/dp/0805396144
http://www.amazon.com/Molecular-Biology-Gene-James-Watson/dp/0805396144
http://dynamics.org/Altenberg/PAPERS/EBR/
http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html
http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html
http://nn.cs.utexas.edu/?stanley:ec02
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/GECCO06-matt.pdf
http://www.cs.utexas.edu/~pstone/Papers/bib2html-links/GECCO06-matt.pdf
http://www-cdf.fnal.gov/physics/preprints/cdf9235_dil_mtop_nn.pdf
http://www-cdf.fnal.gov/physics/preprints/cdf9235_dil_mtop_nn.pdf
http://www.wichman.org/roguehistory.html
http://www.gamasutra.com/view/feature/4013/the_history_of_rogue_have__you_.php
http://www.gamasutra.com/view/feature/4013/the_history_of_rogue_have__you_.php
http://www.lcc.gatech.edu/~nitsche/download/Nitsche_DesigningProcedural_06.pdf
http://www.lcc.gatech.edu/~nitsche/download/Nitsche_DesigningProcedural_06.pdf
http://users.soe.ucsc.edu/~michaelm/publications/mateas1-dac2005.pdf
http://users.soe.ucsc.edu/~michaelm/publications/mateas1-dac2005.pdf
http://julian.togelius.com/Togelius2007Towards.pdf
http://julian.togelius.com/Togelius2007Towards.pdf
http://julian.togelius.com/Togelius2008An.pdf
http://www.springerlink.com/content/p6p0746n86j7328l/


TO APPEAR IN: IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOLUME 1. ISSUE 4. DECEMBER 2009. 19

Joint Workshop on Computational Creativity, 2007. [Online]. Available:
http://www.doc.ic.ac.uk/∼sgc/papers/hullcc07.pdf

[49] S. von Mammen, “Swarming for games: Immersion in complex
systems,”Applications of Evolutionary Computing, vol. 5484, 2009.
[Online]. Available: http://vonmammen.org/science/SwarmGames.pdf

[50] W. Reeves, “Particle systems: A technique for modeling a class
of fuzzy objects,” ACM Transactions on Computer Graphics,
vol. 17, no. 3, pp. 91–108, 1983. [Online]. Available: http:
//design.osu.edu/carlson/history/PDFs/reeves-particles.pdf

[51] J. Lander, “The ocean spray in your face,”Game Developer Magazine,
pp. 13–20, July 1997. [Online]. Available: http://www.double.co.nz/
dust/col0798.pdf

[52] J. V. der Berg, “Building an advanced particle system,”Game
Developer Magazine, pp. 44–50, March 2000. [Online]. Available:
http://www.mysticgd.com/misc/AdvancedParticleSystems.pdf

[53] W. Reeves, “Approximate and probabilistic algorithms for shading and
rendering structured particle systems,”ACM Transactions on Computer
Graphics, vol. 19, no. 3, pp. 313–322, 1985. [Online]. Available:
http://portal.acm.org/citation.cfm?id=325250&dl=&coll=

[54] D. Breen, “A particle based model for simulating draping behavior of
woven cloth,” Textile Research Journal, vol. 64, no. 11, pp. 663–685,
1994. [Online]. Available: http://portal.acm.org/citation.cfm?id=193840

[55] B. Eberhardt, A. Weber, and W. Strasser, “A fast, flexible, particle-
system model for cloth draping,”IEEE Transactions on Computer
Graphics and Applications, vol. 16, no. 5, 1996. [Online]. Available:
http://portal.acm.org/citation.cfm?id=618378

[56] D. Obrien, S. Fisher, and M. Lin, “Automatic simplification of particle
system dynamics,” inProceedings of the 14th Annual Conference
on Computer Animation, 2001, pp. 210–257. [Online]. Available:
http://gamma.cs.unc.edu/SLOD/images/slod.pdf

[57] M. Muller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” inProceedings of the 2003 ACM
Eurographics Symposium on Computer Animation, 2003, pp. 154–159.
[Online]. Available: http://www.matthiasmueller.info/publications/sca03.
pdf

[58] C. Reynolds, “Steering behaviors of autonomous characters,” in
Proceedings of the Game Developers Conference, 1999, pp. 763–782.
[Online]. Available: http://www.red3d.com/cwr/papers/1999/gdc99steer.
html

[59] ——, “Flocks, herds, and schools: A distributed behavioral model,”
in Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, 1987, pp. 25–34. [Online]. Available:
http://www.red3d.com/cwr/papers/1987/boids.html

[60] E. Hastings, R. Guha, and K. Stanley, “Interactive evolution of particle
systems for computer graphics and animation,”IEEE Transactions on
Evolutionary Computation, vol. 13, no. 2, 2009. [Online]. Available:
http://eplex.cs.ucf.edu/publications/2007/hastings.cig07.html

[61] E. Hastings, R. Guha, and K. O. Stanley, “Interactive evolution
of particle systems for computer graphics and animation,”IEEE
Transactions on Evolutionary Computation, 2009. [Online]. Available:
http://eplex.cs.ucf.edu/publications/2009/hastings.cig09.html

[62] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–
314, 1989.

[63] K. DeJong,Evolutionary Computation: A Unified Approach. The MIT
Press, 2006. [Online]. Available: http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=3749

[64] S. Risi, S. Vanderbleek, C. Hughes, and K. Stanley, “How novelty
search escapes the deceptive trap of learning to learn,”Proceedings of
the Genetic and Evolutionary Computation Conference, 2009. [Online].
Available: http://eplex.cs.ucf.edu/publications/2009/risi.gecco09.html

Erin J. Hastings earned a Ph.D. in Computer Sci-
ence at the University of Central Florida in 2009. He
received a B.S. in Computer Science from University
of Florida in 2001 and an M.S. in Computer Science
from University of Central Florida in 2004. His
research interests include automatic graphics and
game content generation, interactive evolutionary
computation, particle systems, spatial subdivision,
and networking. He has recently published papers in
the IEEE Symposium on Computational Intelligence
and Games and IEEE Transactions on Evolutionary

Computation.

Ratan K. Guha received the B.S. degree with hon-
ors in Mathematics and the M.S. degree in Applied
Mathematics from the University of Calcutta. He
received the Ph.D. degree in Computer Science from
the University of Texas at Austin in 1970. He is
a Professor of Computer Science at the University
of Central Florida, Orlando. His research interests
include distributed systems, networks, security pro-
tocols, modeling, simulation, and graphics. His re-
search has been supported by grants from ARO,
NSF, STRICOM, PM-TRADE, NASA, and the State

of Florida. Dr. Guha is a member of ACM, IEEE, SCS, and served on the
Board of Directors of SCS. He is currently serving on the editorial board
for the International Journal of Internet Technology and Secured Transactions
and the editorial board for Modelling and Simulation in Engineering.

Kenneth O. Stanley is an assistant professor in
the School of Electrical Engineering and Computer
Science at the University of Central Florida. He re-
ceived a B.S.E. from the University of Pennsylvania
in 1997 and received a Ph.D. in 2004 from the Uni-
versity of Texas at Austin. He is an inventor of the
Neuroevolution of Augmenting Topologies (NEAT)
and HyperNEAT algorithms for evolving complex
artificial neural networks. His main research contri-
butions are in neuroevolution (i.e. evolving neural
networks), generative and developmental systems,

coevolution, machine learning for video games, and interactive evolution. He
has won best paper awards for his work on NEAT, NERO, NEAT Drummer,
HyperNEAT, and novelty search. He is the chair of the IEEE Task Force on
Computational Intelligence and Video Games, and chaired the Generative and
Developmental Systems track at GECCO for the last three years.

http://www.doc.ic.ac.uk/~sgc/papers/hull_cc07.pdf
http://vonmammen.org/science/SwarmGames.pdf
http://design.osu.edu/carlson/history/PDFs/reeves-particles.pdf
http://design.osu.edu/carlson/history/PDFs/reeves-particles.pdf
http://www.double.co.nz/dust/col0798.pdf
http://www.double.co.nz/dust/col0798.pdf
http://www.mysticgd.com/misc/AdvancedParticleSystems.pdf
http://portal.acm.org/citation.cfm?id=325250&dl=&coll=
http://portal.acm.org/citation.cfm?id=193840
http://portal.acm.org/citation.cfm?id=618378
http://gamma.cs.unc.edu/SLOD/images/slod.pdf
http://www.matthiasmueller.info/publications/sca03.pdf
http://www.matthiasmueller.info/publications/sca03.pdf
http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://www.red3d.com/cwr/papers/1987/boids.html
http://eplex.cs.ucf.edu/publications/2007/hastings.cig07.html
http://eplex.cs.ucf.edu/publications/2009/hastings.cig09.html
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3749
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3749
http://eplex.cs.ucf.edu/publications/2009/risi.gecco09.html

	Introduction
	Main Contributions

	Background
	Interactive Evolutionary Computation (IEC)
	Compositional Pattern-Producing Networks (CPPNs)
	NeuroEvolution of Augmenting Topologies (NEAT)
	Machine Learning in Existing Games
	Procedural Game Content in Existing Games
	Evolving Game Content
	Particle Systems

	Content Generating NeuroEvolution Of Augmenting Topologies (cgNEAT)
	Algorithm Overview
	Unique Features
	Starter Pool, Spawning Pool, and Archive Pool
	Applying cgNEAT

	Galactic Arms Race (GAR)
	Development
	Game Mechanics Overview
	Particle System Weapon CPPNs
	Calculating Weapon Fitness
	Evolving New Weapons
	Starter Weapons, Spawning Pool, and Archive Pool

	Automatic Content Generation Results in GAR
	Automatic Content Generation Results in GAR Single Player Mode
	Automatic Content Generation Results in GAR Multiplayer Mode

	Discussion and Future Work
	Conclusions
	References
	Biographies
	Erin J. Hastings
	Ratan K. Guha
	Kenneth O. Stanley


