Differential Equations with Linear Algebra:
Mathematica Help

Matthew R. Boelkins
Grand Valley State University

J. L. Goldberg
University of Michigan

Merle C. Potter
Michigan State University

(©2009 All rights reserved
October 13, 2009

Preface to Mathematica Help

The purpose of this supplement to Differential Equations with Linear Algebra is to provide some basic
support in the use of Mathematica, analogous to the subsections of the text itself that offer similar
guidance in the use of Maple. In the following pages, the user will find parallel sections to those in the
text titled “Using Maple to ...”. In particular, the following sections can be found here:

1.2.1 Row Reduction using Mathematica page 3
1.3.2 Matrix Products using Mathematica page 5
1.7.1 Matrix Algebra using Mathematica page 6
1.8.2 Matrix Inverses using Mathematica page 8
1.9.1 Determinants using Mathematica page 9
1.10.2 Using Mathematica to Find Eigenvalues and Eigenvectors page 10
2.2.1 Plotting Slope Fields using Mathematica page 12
3.4.1 Plotting Direction Fields for Systems using Mathematica page 14
3.7.1 Applying Variation of Parameters Using Mathematica page 16
4.6.1 Solving Characteristic Equations using Mathematica page 18
5.4.3 The Heaviside and Dirac Functions in Mathematica page 19
5.6.1 Laplace Transforms and Inverse Transforms using Mathematica page 20
6.2.1 Plotting Direction Fields of Nonlinear Systems using Mathematica page 22

1.2.1 Row Reduction using Mathematica

Obviously one of the problems with the process of row reducing a matrix is the potential for human
arithmetic errors. Soon we will learn how to use computer software to execute all of these computa-
tions quickly; first, though, we can deepen our understanding of how the process works, and simulta-
neously eliminate arithmetic mistakes, by using a computer algebra system in a step-by-step fashion.
In this supplement to the text, we use the software Mathematica. For now, we only assume that the
user is familiar with Mathematica’s interface, and will introduce relevant commands with examples as
we go. Recall that Mathematica provides a user prompt such as In[1] : =, and upon our entering code
and pressing SHIFT+ENTER, generates output at the prompt Out [1] : =. In what follows, we will not
include the prompts In[1] := and Out [1] : =, nor will we remind the reader that holding the shift
key while pressing the ENTER key is required.

To demonstrate various commands, we will revisit the system from Example 1.2.1. The reader
should explore this code actively by entering and experimenting on his or her own. Recall that we
were interested in row reducing the augmented matrix

3 2 -1 8
1 -4 2 -9
—2 1 1 -1

Mathematica stores vectors and matrices as lists and lists of lists, respectively. We enter the aug-
mented matrix, say A, row-wise in Mathematica with the command

A ={{3, 2, -1, 8}{1, -4, 2, -9}, { -2, 1, 1, -1}}
to which the program responds with the somewhat unenlightening output
{{3, 2, -1, 8}{1, -4, 2, -94,{-2, 1, 1, -1}}
To see the output in matrix format, enter
MatrixForm[A]
The above can be accomplished in a single command line by entering

a={{3, 2, -1, 8h{1, -4, 2, -94,{-2, 1, 1, -1}};
MatrixForm[A]

We can access row 1 of the matrix A with the syntax A[[1]], and similarly work with any other
row of the matrix. This allows us to execute elementary row operations.

To work on the row reduction in the desired example, we first want to swap rows 1 and 2; this is
accomplished by using a temporary variable “temp” in the following way:

Al = A;

temp = AL[[1]];
A1[[1]] = A1[[2]];
Al[[2]] = temp;
MatrixForm[Al]

>

Note that this stores the result of this row operation in the matrix A1, which is convenient for use in the
next step. The semicolon (;) suppresses the output of the command that precedes it. After executing
the most recent set of commands, the following matrix will appear on the screen:

1 -4 2 -9
3 2 -1 8
—2 1 1 -1

To perform row replacement, our next step is to add (—3) - R; to Ry (where rows 1 and 2 are denoted
R; and R») to generate a new second row; similarly, we will add 2 - R; to R3 for an updated row 3. The
commands that accomplish these steps are

A2 = Al;
A2[[2]] = -3*A1[[1]] + AL[I[2]];
A2[[3]] = 2*«A1[[1]] + AL1[[3]];

MatrixForm[A2]

and lead to the following output:
1 -4 2 -9
0 14 -7 35
0 -7 o5 -19

Next we will scale row 2 by a factor of 1/14 and row 3 by —1/7 using the commands

A3 = A2;
A3[[2]] = 1/14 » A2[[2]];
A3[[3]] = -1/7 = A2[[3]];

MatrixForm[A3]

to find that A3 has the entries
1 -4 2 =9
1 5
0 1 -5 3
0 -7 5 -19
The remainder of the computations in this example involve slightly modified versions of the three
versions of the commands demonstrated above, and are left as an exercise for the reader. Recall that
the unique solution to the original system is (1,2, —1).
Mathematica is certainly capable of performing all of these steps at once. After completing each
step-by-step command above in the row-reduction process, the result can be checked by executing the
command

RowReduce [A];
MatrixForm[%]

The corresponding output should be

which clearly reveals the unique solution to the system, (1,2, —1).

1.3.2 Matrix Products using Mathematica

After becoming comfortable with computing elementary matrix products by hand, it is useful to see
how Mathematica can assist us with more complicated computations. Here we demonstrate the relevant
command.

Revisiting Example 1.3.2, to compute the product Ax, we first enter A and x using the familiar
commands

A
X

{1, -3h{-4, 1}, {2, 5}}
{-5, 2}

Next, we use the “period” symbol to inform Mathematica that we want to multiply. Entering

b = A.x;
MatrixForm[b]

yields the expected output that
—11
22
0

Note: Mathematica will obviously only perform the multiplication when it is defined. If, say, we
were to attempt to multiply A and x where

A = {{1, -4, 2},{-3, 1, 5}}

x = {-5, 2},
then Mathematica would report the following:

Dot::dotsh: Tensors{{1l,-4,2},{-3,1,5}} and {-5,2} have incompatible shapes.

1.7.1 Matrix Algebra using Mathematica

While it is important that we first learn to add and multiply matrices by hand to understand how these
processes work, just like with row reduction it is reasonable to expect that we’ll often use available
technology to perform tedious computations like multiplying a 4 x 5 and 5 x 7 matrix. Moreover, in
real world applications, it is not uncommon to have to deal with matrices that have thousands of rows
and columns, or more. Here we introduce a few Mathematica commands that are useful in performing
some of the algebraic manipulations we have studied in this section.

Let’s consider some of the matrices defined in earlier examples!:

1 3 —4 —6 10 —6 10 -1
A‘[o ~7 2]’B_[3 2}’M_[3 2 11]

After defining each of these three matrices with the usual commands in Mathematica, such as

A = {{1, 3, -4},{0, -7, 2}}

we can execute the sum of A and M and the scalar multiple —3B and see the results in matrix form
with the commands

MatrixForm[A + M]
MatrixForm[—3*B]

for which Mathematica will report the outputs

-5 13 -5 and 18 =30
3 =5 13 -9 -6

We have previously seen that to compute a matrix-vector product, the “period” is used to indicate mul-
tiplication, as in A. x; . The same syntax holds for matrix multiplication, where defined. For example,
if we wish to compute the product BA, we enter

MatrixForm[B.A]
which yields the output
—6 —88 44
3 -5 -8
If we try to have Mathematica compute an undefined product, such as AB through the command

MatrixForm[A.B], we get the error message

Dot::dotsh: Tensors {{1,3,-4},{0,-7,2}} and {{-6,10},{3,2}} have incompatible
shapes.

In the event that we need to execute computations involving an identity matrix, rather than te-
diously enter all the 1’s and 0’s, we can use the built-in Mathematica command IdentityMatrix[n];
where n is the number of rows and columns in the matrix. For example, entering

Id := IdentityMatrix[4];

'We use M rather than C because “C” is a protected symbol in Mathematica.

results in the output

1 000
0100
0 010
0 0 01

Note: “Id” is the name we are using to store this identity matrix. We do not use the letter “I” because

"

in Mathematica “i” is reserved to represent \/—1.
Finally, if we desire to compute the transpose of a matrix A, such as

1 3 —4
A‘{o —7 2}

the relevant command is
Transpose [A] // MatrixForm

which generates the output

1 0
3 =7
-4 2

1.8.2 Matrix Inverses using Mathematica

Certainly we can use Mathematica’s row reduction commands to find inverses of matrices. However,
an even simpler command exists that enables us to avoid having to enter the corresponding identity
matrix. Let us consider the two matrices from Examples 1.8.2 and 1.8.3. Let

2 1 -2
A= 1 1 -1
-2 -1 3

be defined in Mathematica. If we enter the command
Inverse[A] // MatrixForm

we see the resulting output which is indeed A1,

For the matrix
2 1
A =
()
executing the command Inverse [A] produces the output
Inverse::sing: Matrix {{2,1},{-6,-3}} is singular.

which is Mathematica’s way of saying “A is not invertible.”

1.9.1 Determinants using Mathematica

Obviously for most square matrices of size greater than 3 x 3, the computations necessary to find deter-
minants are tedious and present potential for error. As with other concepts that require large numbers
of arithmetic operations, Mathematica offers a single command that enables us to take advantage of the
program’s computational powers. Given a square matrix A of any size, we simply enter

Det [A]

As we explore properties of determinants in the exercises of this section, it will prove useful to be able
to generate random matrices. In Mathematica, one accomplishes this for a 3 x 3 matrix with integer
entries between —99 and 99 by the command

A = Table[Random[Integer, -99, 991, 3, 3]
From here, we can compute the determinant of this random matrix simply by entering
Det [A];

See Exercise 11 in Section 1.9 for a particular instance where this code will be useful.

1.10.2 Using Mathematica to Find Eigenvalues and Eigenvectors

Due to its reliance upon determinants and the solution of polynomial equations, the eigenvalue prob-
lem is computationally difficult for any case larger than 3 x 3. Sophisticated algorithms have been
developed to compute eigenvalues and eigenvectors efficiently and accurately. One of these is the
so-called QR algorithm, which through an iterative technique produces excellent approximations to
eigenvalues and eigenvectors simultaneously.

While Mathematica implements these algorithms and can find both eigenvalues and eigenvectors,
it is essential that we not only understand what the program is attempting to compute, but also how
to interpret the resulting output.

Given an n x n matrix A, we can compute the eigenvalues of A with the command

Eigenvalues[A]

Doing so for the matrix

2 1
a=[i]
from Example 1.10.2 yields the Mathematica output
3,1}

and thus the two eigenvalues of the matrix A are 3 and 1. If we desire the eigenvectors, we can use the
command

Eigenvectors[A]

which leads to the output
{{17 1}a {17 _1}}

which tells us the eigenvectors are [1 1]7 and [~1 1]7. It is likely best in these computations to use a
command that links the eigenvectors explicitly to the corresponding eigenvalues. To accomplish this,
we use the syntax

Eigensystem[A]

which results in the output
{{37 1}7 {{17 1}7 {_17 1}}}

where we see the eigenvalues listed first, and then the corresponding eigenvectors listed in order.

Mathematica is extremely powerful. It is not at all bothered by complex numbers. So, if we enter
a matrix like the one in Example 1.10.3 that has no real eigenvalues, Mathematica will find complex
eigenvalues and eigenvectors. To see how this appears, we enter the matrix

SR

S-S
S-S

and execute the command

Eigensystem(R)

10

The resulting output is

{{1j;, 15}, [0, 1) {0, 111}

Note that here Mathematica is using “i” to denote v/—1. Just as we saw in Example 1.10.3, R does
not have any real eigenvalues. We can use familiar properties of complex numbers (most importantly,
i? = 1) to actually check that the equation Ax = Ax holds for the listed complex eigenvalues and
complex eigenvectors above. However, at this point in our study, these complex eigenvectors are
of less importance, so we defer further details on them until later work with systems of differential
equations.

One final example is relevant here to see how Mathematica deals with repeated eigenvalues and
“missing” eigenvectors. If we enter the 3 x 3 matrix A from Example 1.10.4 and then execute the

Eigensystemcommand, we receive the output

{{-4,3,3},{{-6,8,3},{5,—2,1},{0,0,0} } }

Here we see that 3 is a repeated eigenvalue of A with multiplicity 2. The first vector in the output
matrix is the eigenvector corresponding to A = —4. The final vector of all zeros indicates that A has
only one linearly independent eigenvector corresponding to the eigenvalue A = 3. This vector of all
zeros also demonstrates that R® does not have a linearly independent spanning set that consists of
eigenvectors of A.

11

2.2.1 Plotting Slope Fields using Mathematica

Mathematica does not have a single command that we can use to plot the slope field for a differential
equation; however, with a bit of effort, we can manipulate its ability to plot a general vector field
to generate the visual representation of a slope field that we week. It is first necessary to load the
VectorFieldPlots package with the command

Needs ["VectorFieldPlots "]

To plot a vector field, we need a function of two variables x and y with two components u and v that
will generate the direction of a vector in the field at any point. Said differently, given a point (z,y),
we want to generate a vector [u v]T to plot emanating from the point (z,y). This is precisely what the

differential equation
dy

accomplishes. With f(z,y) being the slope of the tangent line at point (z,y), we can realize a vector at
that point by considering the vector [1 f(x,y)]?, whose slope will be exactly f(x,y).

Thus, to plot the direction field associated with a given differential equation, say % = xy, on the
window [—1,1] x [—1, 1], first introduce variables z and y with

var ('t’)
and then use the syntax
VectorFieldPlot [{1, xxy},{x, -1, 1}, {y, -1, 1}]

which generates the output.

_aﬁ//////
NN N e e e A
N A A v
e w T TR e e T P Pl
N e 4
»»»»»»»»»»»»»» -
»»»»»»»»»»»»»» -
D A ~ ~
PP g o — S
;////v 4444 - N
/;/// ///// NN

ST e e e SO

It is often ideal to have all vectors in the slope field of the same length. If we normalize the vector
field by making the function that generates it one whose output is a unit vector, Mathematica will take
care of the rest. We do this in the command below, plus name the plot “SlopeField” for use in a
moment:

SlopeField = VectorFieldPlot[1/Norm[{1l, xxy}] * {1, xxvy}, {x, -1, 1}, {v,
_11 l}]

Also, it is often helpful to have axes included. To do so, we plot (and store) axes with the command

axes = Plot[0, {x, -1, 1}, PlotRange -> {-1,1}, AxesLabel -> {x,y}]

12

Finally, we can show the slope field with the axes present via the Show command as follows:
Show[axes, SlopeField]

which results in the output shown next.

Without a well-chosen window selected by the user, the plot Mathematica generates may not be
very insightful. For example, if the above command were changed so that the range of y values is
-10 .. 10, almost no information can be gained from the slope field. As such, we will strive to
learn to analyze the expected behavior of a differential equation from its form so that we can choose
windows well in related plots; we may often have to experiment and explore to find graphs that are
useful.

Finally, if we are interested in one or more related initial-value problems, some additional effort
enables us to sketch the graph of each corresponding solution. Say we are interested in the IVP solution
that satisfies the given DE along with the initial condition y(0) = —0.5. We may use Mathematica to
solve the IVP and then plot this result using the following syntax:

soln = DSolve[{y’[x] == x*y[x], y[0] == -0.5}, yIx], x];
solnPlot = Plot[y[x] /. soln[[1]], {x, -1, 1}, PlotStyle —-> Thick];
show[axes, solnPlot, SlopeField]

This results in the image shown below that demonstrates the slope field, the coordinate axes, and the
curve that represents the solution to the IVP.

It is often easier for the user to simply plot an IVP’s solution by hand, just by using the initial condition
and following the “directions” provided by the slope field.

13

3.4.1 Plotting Direction Fields for Systems using Mathematica

As we noted in section 2.2.1, Mathematica does not have a single command that we can use to plot the
slope field for a differential equation; however, with a bit of effort, we can manipulate its ability to
plot a general vector field to generate the visual representation of a slope field that we week. It is first
necessary to load the VectorFieldPlots package with the command

Needs ["VectorFieldPlots ‘"]

To plot a vector field, we need a function f(z,y) with two components u and v that will generate the
direction of a vector in the field at any point. Said differently, given a point (x, y), we want to generate
a vector [u v]T to plot emanating from the point (x,y).

In the context of plotting the direction field for the system of DEs given by x’ = Ax, the vector we
wish to plot at (z,y) is x'. Viewing x = [z(t) y(t)], it follows x’ = [2/(t) v'()]T. Thus, the vector field
we desire is given by u = 2’ and v = y/. This precisely is the vector given by taking the product Ax.

Therefore, to plot the direction field associated with the system of DEs x’ = Ax given by the matrix

A=|3?2 } from Example 3.4.1, we use the following syntax:

2 3

A= {3, 2}, {2, 3}

VectorFieldPlot [A.{x, v}, {x, -4, 4}, {y, -4, 4}]

This command produces the output shown below.

»-.144/////////
v A d A A A A
B VR R A A A A A A
P U VR I AP SR A S
P B A 2 A A A A A
AAAAA -,,4441////
,,,,,, N A A
D A
P -
PV VAV S SR S
///‘,,,,rl«..,,v
P A A A A AR A A e
P A A A N A A
////////rrvv“‘
oSS A A A A A s

Because Mathematica does not automatically scale the vectors in the vector field to be of consistent
length, it is more helpful to make each vector in the field of the same length. This is accomplished by

the command

VectorFieldPlot [1/Norm[A.{x,v}] * A.{x, v}, {x, -4, 4}, {y, -4, 4}]

which produces the output

14

NV rr s
~ NNV
NNV
NN
NV
NI
I N
oo oad //iﬁi;;
Sossss sy N T
LSS N
LSS NTTT
LSS
S]]
AN
ST NN

Mathematica does object slightly to this command, since at the origin, the zero vector is generated; since
the length of the zero vector is zero, in the command above when we divide by Norm[A.{x, y}], we
are technically dividing by zero. The program reports this, but generates the resulting plot anyway.

From here, itis a straightforward exercise to sketch trajectories by hand; while one can also generate
these trajectories in Mathematica, doing so is relatively complicated. The user is instead encouraged to
think about how the direction field aligns with the eigenvalues and eigenvectors of the matrix of the
system, to plot the straight-line solutions by hand, and then think about how the nonlinear trajectories
should appear, especially as t — oo. As shown in section 2.2.1, it is also possible to superimpose
the coordinate axes on the plot, and the directions stated in 2.2.1 apply in the exact same way in this
context.

As always, the user can experiment some with the window in which the plot is displayed: the
range of z- and y-values will affect how clearly the direction field is revealed.

15

3.7.1 Applying Variation of Parameters Using Mathematica

Here we address how Mathematica can be used to execute the computations in a problem such as the
one posed in Example 3.7.2, where we are interested in solving the nonhomogeneous linear system of

equations given by
;2 -1 1/(et 4+ 1)
X —»[3 9]X—%[1

Because we already know how to find the complementary solution, we focus on determining x, by
variation of parameters. First, we use the complementary solution,

xh:cleft 1 —i—czet 1
3 1

to define the fundamental matrix ®(¢). To define and view this matrix in Mathematica, we enter

Phi := {{Exp[-t], Expltl},{3 Expl-tl, Expltl}};
MatrixForm[Phi]

We next use the ITnverse command to find &1 by entering

PhiInv := Simplify[Inverse[Phi]];
MatrixForm[PhiInv]

The Simplify command will be used repeatedly in this context to help ensure that the program
doesn’t unnecessarily complicate the algebraic expressions. At this stage, the resulting output (® 1) is

et et
2 2
3e”t et

2 2

Next, in order to compute ®~!(#)b(t), we must enter the function b(t). We enter

b := {1/(Exp[t] + 1), 1}
and then
y := Simplify[PhiInv.b];

MatrixForm[y]

At this point, y is a 2 x 1 array that holds the vector function ®~1(¢)b(t). Specifically, the output for y
displayed by Mathematica is
th
< 2+2¢t >
_1-2e7t
242t

To access the components in y, we reference them with the commands y [[1]] and y [[2]]. In partic-
ular, since we have to integrate ® 1 (¢)b(t) component-wise, we enter

Y := { Integrate[y[[1]], t], Integratel[y[[2]], tl};
MatrixForm[Y]

16

These last commands produce the output

(%i—%ln(l—l—et))

—et+3In(l+et)

and obviously stores ® 1 (¢)b(¢) in Y. We add that we write “In” where Mathematica writes “Log.” The
second component is slightly different, but algebraically equal, to what Maple reports, and thus what
is presented here (and below) appears different from what is reported in Section 3.7 of the textbook.
The reader can verify that the functions present, however, are in fact the same.

Finally, in order to compute ®(t) [®71(t)b(t) dt, we need to enter Phi.Y. Of course, we again
want to simplify, so we use

Simplify[Phi.Y];
MatrixForm[%]

which produces the output

—4 (1 43ef (1 +e7t) —e (1 + &)
(1 +3e'In(1+e ") —3e ' In(1 + €))

This last result is an equivalent version of the particular solution x,, to the original system of nonho-
mogeneous equations given in Example 3.7.2.

17

4.6.1 Solving Characteristic Equations using Mathematica

While solving linear differential equations of order n requires nearly identical methods to DEs of order
2, there is one added challenge from the outset: solving the characteristic equation. The characteristic
equation is a polynomial equation of degree n; while every such equation of degree 2 can be solved
using the quadratic formula, equations of higher order can be much more difficult, and (for equations
of degree 5 and higher) often impossible, to solve by algebraic means.

Computer algebra systems like Mathematica provide useful assistance in this matter with com-
mands for solving equations exactly and approximately. For example, say we have the characteristic
equation

= T+ r+6=0

To solve this exactly in Mathematica, we enter
Solve[r"4 — r"3 - 7 r"2 + r + 6 == 0, r]

Mathematica produces the output

{r =24 {r— -1} {r =1}, {r = 3}}

showing that these are the four roots of the characteristic equation.
Of course, not all polynomial equations will have all integer solutions, much less all real solutions.
For example, if we consider the equation

4 +1=0
and use the Solve command, we see that
Solve[r"4 + r"3 + r"'2 + r + 1 == 0, r]

results in the output

{{r = (=1} {r — DY} {r — =(=D)*°} {r — (=1)/*}}

which is not very helpful.

In this case, rather than having exact results in terms of roots of negative numbers, we might prefer
a decimal approximation to the zeros of the equation. One way to achieve this is to use the NSolve
command:

NSolve[r™4 + r"3 + r"2 + r + 1 == 0, r]
which generates the result
{{r — —0.809017 — 0.587785i}, {r — —0.809017 4- 0.587785i}, {r — 0.309017 — 0.9510574},

{r — 0.309017 + 0.951057i}}

For polynomial equations of degree 5 or more, the NSolve command is always the appropriate tool to
use to determine accurate approximations of the equation’s solutions.

18

5.4.3 The Heaviside and Dirac Functions in Mathematica

Both the Heaviside and Dirac functions belong to Mathematica’s library of basic functions. The syntax
for the Heaviside function is UnitStep[t] (or equivalently, HeavisideTheta[t]). Similarly the
Dirac function is given by Diracbelta[t].

For work with the Heaviside function, we often denote the function by u(t). In Mathematica, this
can be accomplished with the command

ult_] := UnitStep[t]
Then, to enter and plot a piecewise-defined function such as
Ft) = tult) = u(t = 2)) + (6 = 2t)(u(t — 2) —ult - 3))
we may use the syntax

> £[t_] := t(ult]-ult-2]) + (6-2t) (u[t-2]-ult-3])
> Plot[f[t], {t, -1, 5}, PlotStyle -> Thick]

to generate the plot shown below.

20¢
15 7
10 f
05 7

-1 1 2 3 4 5

More on both the Heaviside function and the Dirac function in Mathematica, particularly related to
their roles in solving initial-value problems with Laplace transforms, can be found in Section 5.6.1.

19

5.6.1 Laplace Transforms and Inverse Transforms using Mathematica

As we have noted, while we have computed Laplace transforms for a range of functions, there are
many more examples we have not considered. Moreover, even for familiar functions, certain combina-
tions of them can lead to tedious, involved calculations. Computer algebra systems such as Mathemat-
ica are fully capable of computing Laplace transforms of functions, as well as inverse transforms. Here
we demonstrate the syntax required in the solution of the initial-value problem from Example 5.5.4:

v + 4y + 13y = 2u(t — m)sin3t, y(0) =1, y'(0) =0 (1)

If, for example, we desire to use Mathematica to compute the Laplace transform of 2u(t —) sin 3t,
we use the syntax

LaplaceTransform[2 UnitStep[t-Pi] Sin[3t], t, s]

“"_ 7
S

Note particularly that the in the sine function must be capitalized, as is standard for any basic
library function in Mathematica. The above command results in the output

66—871'
s2+9
which is precisely the transform we expect.

After computing by hand the transform of the left-hand side of (1) and solving for Y (s), as shown
in detail in Example 5.5.4, we have

s+4 s 3
= —2¢
s +4s+13 (s249)(s? +4s+ 13)

Y(s)
Here we may use Mathematica’s InverseLaplaceTransform command to determine £~[Y (s)].
While we could choose to do so all at once, for simplicity of display we do so in two steps. First,
yl = InverselaplaceTransform[(s+4)/(s"2 + 4s + 13), s, t]

results in the output

ée(—2—3i>t((3 + 2i) 4 (3 — 2i)e8))

which is somewhat surprising, for we expect a real, not a complex, solution to the differential equation.
It turns out that Mathematica is disguising the real solution here. Using the ComplexExpand and
Simplify commands as follows,

ComplexExpand[yl]
Simplify[%]

results in the more expected output of
1oy .
3¢ (3 cos 3t + 2sin 3t)

Similarly, for the second term in Y (s), we compute

y2 = InverselLaplaceTransform[2 exp(-Pi s) 3/((s"2 + 9) (s"2 + 4 s +
13)), s, t]

20

Here, Mathematica produces the complex output

HeavisideTheta|—7 + ¢] ((%}IO — 210) e(—2-3))(=m+t) ((1 +2i) + (2+ i)eﬁi(—w+t)>> 3)

120

From here, if we again perform the ComplexExpand and Simplify commands, we find that y2 is
the function

+ HeavisideTheta|—m +] <1(—3 cos[3(—m +t)] + sin[3(—m + t)])>

—%e‘QtHeaVisideTheta[—ﬂ +1(3(2™ — ¢2) cos[3t] + (2 +) sin[31])
which (after a bit more algebraic rearrangement) corresponds to our work in Example 5.5.4. The sum of
the two functions of ¢ that have resulted from inverse transforms in (2) and (3) is precisely the solution
to the IVP.
Note that in computing the inverse transform (3), Mathematica has implicitly executed the partial
fraction decomposition of the expression

3
(s249)(s? +4s+ 13)

If we wish to find this explicitly, we can use the command
Apart[3/((s"2 + 9)*(s"2 + 4s + 13))]

which produces the output
_3(—1+s) 3(3+s)
40(9 + s2) 40(13 + 4s + s?)

In general, we see that to compute the Laplace transform of f(¢) in Mathematica we use the syntax

LaplaceTransform[f(t), t, s]
whereas to compute the inverse transform of F'(s), we enter

InverselaplaceTransform[F (s), s, t]

21

6.2.1 Plotting Direction Fields of Nonlinear Systems using Mathematica

The Mathematica syntax used to generate the plots in this section is essentially identical to that dis-
cussed for direction fields for linear systems in section 3.4.1.

Consider the system of differential equations from Example 6.2.1 given by
¥ = sin(y)

y/ = y— x2

We use x and y in place of 1 and x5 to simplify the syntax in Mathematica.

As in 3.4.1, we use the VectorFieldPlot command to plot the vector {2/, ¢}, and thus use the
syntax

Needs ["VectorFieldPlots "]
VectorFieldPlot [{Sin[y], v - x°2}, {x, -3, 3}, {v, -1, 8}]

which produces the somewhat difficult-to-interpret output

PR [P

tot tot
ottt fr o,
oot [

[Yoy,

[\
\

[N

1 N
.
+

We thus again scale the vectors being plotted to be of consistent length, using the syntax

VectorFieldPlot [1/Norm([{Sin[y]l, v — x°2}] * {Sinlyl, v - x"2}, {x, -3,
3}/ {YI _1/ 8}]

which results in the more helpful plot

22

NN
VN
/

-—

—
\
//’\\\
~

S

~ N
— N\

P
[G G G
—_— T 7 = . -, -
—_ 7 7 — . —
—_—_ T 7 — — s - -
_ T 7 — . . -
R S G
R g g

A e

/

— A\

NN
1)/

e e e e e v T T T =
Tt e e e e o T

— e e o o

i e i e

As we can see, while the plot provides some useful information, it principally shows that there is
something interesting happening at some points along the parabola y = 22, specifically at the equilib-
rium points discussed in Example 6.2.1. Further analysis to accompany the work of the computer is
merited; some possibilities for this exploration are considered in Sections 6.3 and 6.4 of the text, after
which it will be easier to plot trajectories by hand.

It is worth noting that while Mathematica has many excellent traits and capabilities, some other
computer algebra systems are far easier to work with for plotting meaningful direction fields and
trajectories. For example, see the discussion in the text regarding Maple.

23

