
Executive Summary

Network Functions Virtualization (NFV) provides a way to take fundamental
network services (such as load balancing, firewall services, network address
translation, caching, and intrusion prevention) and implement them in software
on standard high-volume servers (SHVSs), rather than using expensive, complex
hardware switches, special-purpose appliances, and routers. Initiated by the
European Telecommunications Standards Institute (ETSI) Industry Specification
Group (ISG) in 2012, the specification for NFV defines a network infrastructure
model that supports virtualized scalable applications—running on a commodity
hardware platform—rather than the traditional model that relies on monolithic,
vertically integrated, discrete applications.

Intel® architecture-based servers offer capabilities to optimize and accelerate
the deployment of virtualized NFV applications. These capabilities include:

• Intel® Virtualization Technology (Intel® VT) for IA-32

• Intel® 64 and Intel® Architecture (Intel VT-x)

• Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d)

• Intel® Virtualization Technology (Intel® VT) for Connectivity (Intel® VT-c).

Additionally, a set of configuration capabilities on Intel architecture-based
servers help deliver improved performance and enhanced predictability for
NFV applications.

OpenStack*, a leading open-source software suite for creating private and public
clouds, can be used to fill the role of the Virtualized Infrastructure Manager in the
ETSI-NFV reference architecture. To do this, a number of feature additions are
required to deliver on the performance and predictability demands required for
NFV applications. Embedding innate knowledge of NFV applications in OpenStack
is not necessary. OpenStack extensions are required to offer sufficient tuning
capabilities necessary to deploy a high-performance NFV workload.

Lab tests of a reference NFV application, the Intel® Data Plane Performance
Demonstrator, showed that by leveraging Enhanced Platform Awareness features,
such as Single Root I/O Virtualization (SR-IOV), Non-Uniform Memory Architecture
(NUMA), huge pages, and CPU pinning, line-rate NFV application deployment is
facilitated.

Adrian Hoban

Przemyslaw Czesnowicz

Sean Mooney

James Chapman

Igor Shaula

Ray Kinsella

Christian Buerger

Leveraging Enhanced
Platform Awareness

features—such as SR-IOV,
NUMA, huge pages, and CPU
pinning—facilitates line-rate

NFV application deployment.

white paper

A Path to Line-Rate-Capable
NFV Deployments with Intel®
Architecture and the OpenStack*
Kilo Release

Table of Contents

Executive Summary . 1

 New Features and Fixes: OpenStack Kilo . 3

Introduction . 4

 Network Functions Virtualization . 4

 OpenStack . 4

 Broadband Network Gateway . 5

 Intel® Data Plane Performance Demonstrator . 5

 Document Scope . 6

OpenStack Extensions That Benefit NFV . 6

 CPU Feature Request . 6

 PCIe* Pass-Through . 6

 SR-IOV Extensions . 7

 NUMA Extensions . 7

 I/O-Aware NUMA Scheduling . 8

 CPU Pinning . 8

 Huge Pages . 9

 VLAN Trunking API Extension . 9

 Service VM Port Security (Disable) Extension . 9

Sample NFV Performance Results . 9

Intel® Technologies for Optimal NFV . 11

 Intel® Virtualization Technology for IA-32 and Intel® 64 Processors . 11

 Intel® Virtualization FlexPriority (Intel® VT FlexPriority) . 11

 Intel® Virtualization FlexMigration (Intel® VT FlexMigration) . 11

 Virtual Processor Identifiers (VPID) . 11

 Extended Page Tables . 11

 VMX Preemption Timer . 11

 Pause Loop Exiting . 12

 Intel® Virtualization Technology for Directed I/O . 12

 Address Translation Services . 12

 Large Intel VT-d Pages . 12

Interrupt Remapping . 12

 Intel® Virtualization Technology for Connectivity . 12

 Virtual Machine Device Queues . 12

 PCI-SIG Single Root I/O Virtualization . 12

 Non-Uniform Memory Architecture . 13

 CPU Pinning . 13

 Huge Pages . 14

Conclusion . 15

Acronyms . 15

Authors . 16

Acknowledgements . 16

Keywords . 16

2A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

New Features and Fixes: OpenStack Kilo

The new features of OpenStack Kilo and the value proposition of each within NFV environments are shown in Table 1.

Table 1 . Added OpenStack* Kilo Features and Fixes

FEATURE NAME DESCRIPTION INTEL® ARCHITECTURE VALUE KEy CHARACTERISTIC

CPU pinning Supports the pinning of virtual
machines (VMs) to physical
processors.

Improves the performance of
applications supporting the Data Plane
Development Kit (DPDK); workloads
can be assigned (pinned) to specific
physical CPU cores.

Delivers higher performance
through Enhanced Platform
Awareness capabilities.

I/O-based, NUMA-aware
scheduling (for PCIe*
operations)

Creates an affinity that
associates a VM with the same
NUMA nodes as the PCI* device
passed into the VM.

Delivers optimal performance when
passing through NICs and QA devices.

Improves performance.

Code fixes to NUMA
topology

Fixes an issue with the consume_
from_instance method
generating an exception if an
instance has NUMA topology
defined.

Stabilizes operations involving NUMA
topology.

Improves stability.

Code fixes to NUMA I/O
scheduling

Fixes an issue that prevented the
scheduling of VMs with NUMA
topology and a PCI device.

Supports VM scheduling of PCI devices
within NUMA topology.

Improves stability.

Support for VFIO Through the Devstack plug-in
to OpenStack provides support
for VFIO.

VFIO was added in DPDK 1.7; this
epic makes SRT use VFIO instead
of UIO.

VFIO was added in DPDK 1.7; this epic
makes SRT use VFIO instead of UIO.

VFIO provides a more secure user
space driver environment that UIO.

Improves the security of the user
space driver environment.

PCI pass-through bug fix Fixes a bug that generated an
exception if a host is without PCI
devices.

Supports hosts regardless of whether
PCI devices are connected.

Improves stability.

3A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Introduction

This paper introduces Network Functions Virtualization and some of the activities related to OpenStack*
that are helping to enable deployment of high-performance workloads on industry-standard, high-
volume servers for use in telecommunications environments.

This is an update of a previous version of this paper that focused on the Juno release. Content updates
reflect advances incorporated into the OpenStack Kilo release.

Network Functions Virtualization

Network Functions Virtualization (NFV) is a European Telecommunications Standard Institute (ETSI)
Industry Specification Group (ISG).1 A number of the world’s leading operators met in 2012 to form this
specifications group within ETSI. The role of this ISG is to foster collaboration between a wide spectrum
of the telecommunications industry to create specifications that could be used to accelerate the
research, development, and deployment of telecommunications workloads on industry-standard, high-
volume servers.

As a result of this activity, three whitepapers have been published. The first paper2 is introductory and
sets the stage for work to come. The second3 and third4 papers offer the network operators perspectives
on the industry progress against the stated NFV goals.

After just 10 months of existence, a number of draft specifications were published and have
subsequently been updated and are available publicly.5 The specification on NFV Performance &
Portability Best Practices6 is particularly relevant to the scope of this paper. A number of platform
capabilities were identified that should be configured or leveraged correctly in the platform to enable
high-performance networking applications.

OpenStack

OpenStack is a leading open-source
software suite for creating private
and public clouds.7 The functionality
provided can be, for the most part,
classified under similarly intentioned
names such as Cloud Operating
System or Virtualized Infrastructure
Manager (VIM). OpenStack is used to
manage pools of compute, networking,
and storage infrastructure. These
infrastructure resources are typically
based on industry-standard, high-
volume servers and can be partitioned
and provisioned for the user in an on-
demand style by means of a Command
Line Interface (CLI), RESTful API, or a

Web interface. OpenStack was released
to the open-source community in 2010
and has since grown in popularity
with an active community of users
and contributors. The code is released
under an Apache 2.0 license.

The OpenStack compute service is
called Nova*. It is responsible for
managing all compute infrastructure in
an OpenStack managed cloud. Multiple
hypervisor drivers are supported
including QEMU*/KVM* (by means of
libvirt), Xen*, and VMware vSphere*
Hypervisor (VMware ESXi*). Nova
contains the scheduling functionality
that is used to select which compute
host runs a particular workload. It filters

all available platforms to a suitable
subset of platforms based on the
input requirements, and then selects
a platform from the subset based on a
weighting routine.

The OpenStack Networking service is
called Neutron*. Neutron is designed
to be a scalable service offering many
different plug-in solutions to help
with network management for the
provider and to offer a self-service
interface to the consumer to create
their own networks. Several network
models are available such as a flat
network, Virtual LAN (VLAN), VXLAN,
and others. IP Address Management

4A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

(IPAM) support includes static IP
address allocation, Dynamic Host
Configuration Protocol (DHCP), and
Floating IP support, the latter allowing
for traffic to be dynamically rerouted
in the infrastructure to different
compute nodes. In addition, some
advanced networking services such
as Load Balancers (LBs), Firewalls and
Virtual Private Networks (VPNs) can be
managed.

There are a number of other services
that come together to form an
OpenStack release. The OpenStack
Dashboard service is called Horizon*.
It offers users the ability to manage
their infrastructure through a web
interface. The OpenStack Storage
service supports both block storage
and object storage. Storage support is
available through the Cinder*, Swift*,
and Ceph* projects. There is a set of
shared services, such as the Image
Service (Glance*) that is used for image
import, registration, snapshotting,
and so on, and the Identity Service
(Keystone*) that is used as a common
authentication system and for inter-
service message authorization.

Broadband Network Gateway

The Broadband Network Gateway
(BNG) is a component in service
providers’ networks that is used to
route traffic between the Internet and
remote access devices such as Digital
Subscriber Line Access Multiplexers
(DSLAM), a Cable Modem Termination
System (CMTS) or Multi-Service Access
Nodes (MSAN). It is sometimes referred
to as a Broadband Remote Access
Server (BRAS).

The BNG is an enforcement point in
the service providers’ network for
policy-based Quality of Service (QoS)
and is a logical termination point of
the consumers’ link access protocols
such as Point-to-Point Protocol over

Ethernet (PPPoE), and Point-to-
Point Protocol over ATM (PPPoA). It
is typically the first IP hop that the
user equipment (remote access client
device) sees when making a connection
to the Internet. The BNG requires high-
performance network connectivity
combined with low packet latency and
low packet delay variation in order to
run effectively.

Intel® Data Plane Performance
Demonstrator

A Virtualized Network Function (VNF)
was needed to demonstrate how
OpenStack could be used to configure
high-performance network connectivity
to a VNF and enable high-performance
behavior of the VNF itself. The Intel®
Data Plane Performance Demonstrator
(Intel® DPPD)8 is a Data Plane
Development Kit (DPDK) v1.7 based
application.9 The Intel DPPD is a user
space application that was designed
for benchmarking purposes in order to
demonstrate how high-density network
traffic similar to real BNG traffic can
be handled using DPDK and to study
platform performance under such a
workload. The Intel DPPD implements
many typical BNG functionalities, such
as handling properly constructed
BNG packets; however, exception path
processing has not been implemented.
The software is released under a BSD
3-Clause License.10 The Intel DPPD
was deployed in a virtual environment
based on QEMU/KVM.

CPE +
DSLAMV…

CPE +
DSLAMV…

802.1ad
(QinQ)

GRE
Tunnel

CGNAT
BRAS MPLS Internet

Figure 1 . The Broadband Network Gateway deployment in a service provider network.

This sample BNG should be considered
a protocol conversion application.
The BNG reference architecture is
shown in Figure 2. The BNG is based
on a pipelined software architecture
where different parts of the packet
processing workload are separated out
and allocated to different threads. The
workloads in the various pipeline stages
were balanced to minimize as much

as possible waiting between stages.
The cpe 0 and cpe 1 are the network
interfaces connected to the Customer
Premise Equipment (CPE) side network,
and inet 0 and inet 1 are the network
interfaces connected to the (Internet)
core side. For the uplink path, a CPU-
core LB processes the incoming traffic
from cpe 0 and distributes it to one of
eight Worker Threads (WT). After the
chosen WT processing completes, the
traffic is directed to an Aggregation
Thread (A) that transmits the data to
the dedicated egress interface. The
downlink data path followed a similar
pattern.

Note: A detailed analysis of packet
processing performance related to
this sample application is available in
the Network Function Virtualization:
Virtualized BRAS with Linux* and Intel®
Architecture white paper.11

5A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

WT

LB
cpe0

LB
cpe1

A
cpe0

A
cpe1

cpe1

cpe0

WT

LB
cpe0

LB
inet1

A
cpe0

A
inet1

inet1

inet0

Figure 2 . Intel® Data Plane Performance Demonstrators (Broadband Network Gateway)
software architecture.

Document Scope

This paper focuses on Network
Functions Virtualization and discusses
how OpenStack extensions help
deploy NFV workloads efficiently on
Intel architecture-based processors.
Refer to the specific processor product
documentation for determining how
the processor features described in this
paper apply to a chosen processor.

OpenStack Extensions That
Benefit NFV

From an NFV perspective, OpenStack
does not need to be innately aware of
the NFV applications or their functions.
However, OpenStack does need the
ability to provide a suitably advanced
selection of tuning capabilities that
enable a service provider to deploy NFV
with the necessary performance and
efficiency characteristics.

OpenStack features and capabilities
are developing rapidly. This section
describes some of the features that
have a particular applicability to
deploying NFV workloads effectively.

CPU Feature Request

Some NFV applications may have
been developed to make specific
use of certain CPU instructions. For
example, a VPN appliance that requires
a high-performance cryptography
library could be coded to leverage
specific instructions such as the Intel®
Advanced Encryption Standard New
Instructions (Intel® AES-NI).12 Best
practice guidelines would recommend
that software developers check for the
availability of instruction set extensions
by means of the cpuid instruction
before invoking code that leverages
them.

In the OpenStack Icehouse release
a change was made to the Nova
libvirt driver to expose all of the CPU
instruction set extensions to the Nova
scheduler. This correlated with a
related change in libvirt to make this
data available by means of the libvirt
API. These changes made it possible
to create Nova flavors that contained
specific feature requests by adding
these to the flavor as extra_specs.

 �nova�flavor-key�<flavor-
name>�set�capabilities:cpu_
info:features=<feature�name,�
e.g.�aes>

During scheduling, the compute_
capabilities_filter in Nova compares
requirements on the host CPU as
specified by the flavor extra_specs
with a database of hosts and their
respective CPU features.

For CPU feature requests to work,
configure libvirt to expose the host CPU
features to the guest. The following
setting in /etc/nova/nova.conf
enables this.

 [libvirt]�

 cpu_mode=host-model�or�
host-passthrough

PCIe* Pass-Through

The OpenStack Havana release
included support for full device
pass-through and SR-IOV for non-
networking devices and networking
devices not managed by Neutron. This
included the ability to allocate Physical
Functions (PFs) or Virtual Functions
(VFs) to the virtual machine (VM) from
PCIe cryptographic accelerators such
as Intel® QuickAssist Technology. To
pass through the full PF device, the
PF device driver must not have VFs
configured. In the case of networking
devices, the networking configuration
is the responsibility of the VM. It is
not intended for integration with an
OpenStack Neutron managed network.

The Nova configuration file, nova.conf,
on the host needs the alias set up,
the white list configured to enable
the VF identifiers to be shared
with the Nova scheduler, and the
PciPassthroughFilter�enabled.

� �pci_alias={“name”:”niantic”,
”vendor_id”:”8086”,�“product_
id”:”10fd”}

� �pci_passthrough_whitelist={“
address”:”0000:08:00.0”}

� �scheduler_default_filters�
=�<default�list>,�Pci-
PassthroughFilter

6A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

SR-IOV Extensions

In the OpenStack Juno release, the
SR-IOV capability was extended to
include support for network devices.
By doing so, the highest performing I/O
path from physical NIC to the VM was
enabled.

The steps required to use the SR-IOV
extensions for NICs follow:

• On the host, the device driver for the
NICs must be configured to enable the
NIC VFs, and the IOMMU needs to be
enabled.

� Edit�/etc/default/grub
� �GRUB_CMDLINE_LINUX=”intel_

iommu=on”

• A recommended practice is to create a
host aggregate for the platforms that
have additional tuning for NFV and an
aggregate for platforms not tuned to
NFV.

� �nova�aggregate-create�
nfv-aggregate

� �nova�aggregate-set-metadata�
nfv-aggregate�nfv=true

� �nova�aggregate-create�
default-usage

� �nova�aggregate-set-metadata�
default-usage�nfv=false

Update all other flavors to capture the
metadata for the nfv-aggregate as
being disabled.

� �nova�flavor-key�<flavor-name>�
set�aggregate_instance_
extra_specs:nfv=false

• In the Nova configuration file, nova.
conf, the white list needs to be
configured to enable the VF identifiers
to be shared with the Nova scheduler,
and the PciPassthroughFilter
needs to be enabled. Note: The PCI
alias is not required when managing
the SR-IOV networking device with
Neutron.

 pci_passthrough_whitelist={“
address”:”0000:08:00.0”,”physi
cal_network”:“physnetNFV”}

� �scheduler_default_
filters�=�<default�list>,�
PciPassthroughFilter

• Neutron requires that the SR-IOV
mechanism driver be used and the VF
vendor and device IDs be set up.

� �Configure�/etc/neutron/
plugins/ml2/ml2_conf.ini

� [ml2]

� ��tenant_network_types�=�vlan

� ��type_drivers�=�vlan

� ���mechanism_drivers�=�
openvswitch,sriovnicswitch

� [ml2_type_vlan]

� ���network_vlan_ranges�=�
physnetNFV:50:100

� �Configure�/etc/neutron/
plugins/ml2/ml2_conf_sriov.ini

� [ml2_sriov]

� ���supported_pci_vendor_devs�
=�8086:10fb

� ��agent_required�=�False

� [sriov_nic]

� ���physical_device_mappings�=�
physnetNFV:eth1

• With the Neutron API, the tenant must
create a port with a Virtual NIC type
(vnic_type) of macvtap or direct.
The latter means that the VF will be
allocated directly to the VM.

� �neutron�net-create�–
provider:physical_
network�=physnetNFV�
-provider:network_type=vlan�
NFV-network

� �neutron�subnet-create�
NFV-network�<CIDR>�–name�
<Subnet_Name>�–allocation-
pool=<start_ip>,�end=<end_ip>

� �neutron�port-create�NFV-
network�--binding:vnic-type�
direct

• The port ID that is returned from the
Neutron port-create command must
be added to the Nova boot command
line. Note: During the boot process,
Nova will check the validity of this
port ID with Neutron.

� �nova�boot�--flavor�<flavor-
name>�--image�<image>�--nic�
port-id=<from�port-create�
command>�<vm�name>

NUMA Extensions

Awareness of NUMA topology in the
platform was added in the OpenStack
Juno release with the Virt driver
guest NUMA node placement and
topology extension.13 This feature
allows the tenant to specify its desired
guest NUMA configuration. The Nova
scheduler was extended with the
numa_topology_filter to help match
guest NUMA topology requests with the
available NUMA topologies of the hosts.

 �scheduler_default_
filters�=�<default�list>,�
NUMATopologyFilter

Tenants can specify their request
by means of a Nova flavor-based
mechanism. An example of such a
command is:

� �nova�flavor-key�<flavor-name>�
set�hw:numa_mempolicy=strict�
hw:numa_cpus.0=0,1,2,3�
hw:numa_cpus.1=4,5,6,7�
hw:numa_mem.0=1024�hw:numa_
mem.1=1024

Tenants also have the option to specify
their guest NUMA topology request by
means of an image-property-based
mechanism. An example of such a
command is:

 glance image-update image_
id –property hw_numa_
mempolicy=strict –property
hw_numa_cpus.0=0,1,2,3
–property hw_numa_
cpus.1=4,5,6,7 –property
hw_numa_mem.0=1024 –property
hw_numa_mem.1=1024

7A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

These commands result in OpenStack
configuring the guest virtual CPUs 0, 1,
2, and 3 to be mapped to socket 0 (also
known as cell 0 in libvirt terminology),
and virtual CPUs 4, 5, 6, and 7 to be
mapped to socket 1.

I/O-Aware NUMA Scheduling

The previous section on OpenStack
NUMA configuration shows how to
request the guest NUMA topology.
This configuration does not take into
account the locality of the I/O device
providing the data to the processing
cores. For example, if an application
requires that vCPU cores are allocated
to a particular NUMA cell, but the NIC
transferring the data is local to another
NUMA cell, this will result in reduced
application performance.

The OpenStack Kilo release enables
I/O-aware NUMA scheduling. To use
this capability with PCIe pass-through,
the flavor must be updated to request
the particular PCIe device.

 nova�flavor-key�<flavor-
name>�set�“pci_
passthrough:alias”=”niantic:1”

In this example, the alias is the same
as was configured in the PCIe Pass-
Through section, and the number 1
represents the number of VFs that
must be allocated.

The PciPassthroughFilter finds
hosts with the requested PCIe devices.
If the I/O device is a network device
and the vnic-type set during network
port create is direct or macvtap, then
the physical_network setting that
was used during the neutron net-
create command is also taken into
account by the scheduler to identify
a suitable set of hosts. Next, the
NUMATopologyFilter filter selects
the NUMA node and once the node is
selected it checks to confirm that the
NIC is locally attached.

CPU Pinning

The previous section on OpenStack
NUMA configuration shows how
the guest NUMA topology can be
requested. In the example given, the
guest vCPUs 0, 1, 2, and 3 are mapped
to socket 0 (also known as “NUMA
Cell 0”). However, this does not mean
that vCPU 0 maps to the physical CPU
(pCPU) 0 or that vCPU 1 maps to pCPU
1, and so on.

The host scheduler still has the
flexibility to move threads around
within that NUMA cell. This impacts
NFV applications such as the virtual
BNG that requires that the threads
are pinning to pCPUs to comply

with particular application design
constraints, or to deliver on particular
latency or predictability metrics.

The Kilo release of OpenStack adds
a CPU pinning capability, enabled
by specifying the CPU policy as an
extra spec. The default is a “shared”
CPU policy; this is a behavior also
implemented in the Juno release. A
“dedicated” CPU policy enables one of
the CPU thread policies to be applied.

� hw:cpu_policy=shared|dedicated

Four CPU thread policies are approved
for inclusion in OpenStack. Each
CPU thread policy relates to the
configuration of guest vCPU to host
pCPU mapping in the context of a
Simultaneous Multi-Threading (SMT)
enabled system. An SMT-enabled,
Intel® architecture-based platform
has two CPU hardware threads that
can execute simultaneously on each
core execution unit’ To the kernel, this
appears to be twice as many cores in
the system as are actually available.

The CPU Threads Policy “prefer” has
been implemented in Kilo as the default
behavior. The prefer setting places
the guest vCPUs onto the host pCPU
siblings.

� hw:cpu_threads_policy=prefer

Server

Processor Socket 0 Processor Socket 1

Execution Unit

pCPU 0 pCPU 0

Guest OS A

vCPU 0 vCPU 1

Guest OS B

vCPU 0 vCPU 1

Execution Unit

pCPU 1 pCPU 5

Execution Unit

pCPU 2 pCPU 6

Execution Unit

pCPU 3 pCPU 7

Execution Unit

pCPU 8 pCPU 12

Execution Unit

pCPU 9 pCPU 13

Execution Unit

pCPU 10 pCPU 14

Execution Unit

pCPU 11 pCPU 15

Figure 3 . OpenStack* “Prefer” Virtual CPU to Physical CPU Threads Policy Mapping.

8A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

When using a dedicated CPU Policy,
isolate CPUs from the host operating
system (OS) on the platform to prevent
the guest and the host from contending
for resources on the same cores. To
prevent the host from using specific
cores, use the isolcpus setting on
the grub command line. To avoid any
contention on execution units from
shared CPU siblings, such as between
pCPU 0 and pCPU 4 in Figure 3, isolate
sibling CPUs from the host. Based on
the CPU numbering shown in Figure 3,
if it is necessary to dedicate one entire
execution unit from each socket to the
host, then a possible isolation strategy
would be to allocate pCPUs 0, 4, 8, and
12 to the host and isolate the other
pCPUs.

 Edit�/etc/default/grub

� �GRUB_CMDLINE_
LINUX=”isolcpus=�1,�2,�3,�5,�
6,�7,�9,�10,�11,�13,�14,�15”

Three other settings for the CPU Thread
Policy are defined in the approved
blueprint, expected to be implemented
in the Liberty release. The “separate”
setting ensures that the vCPUs from the
same guest are not placed on physical
CPU siblings. The “isolate” setting
ensures that the vCPUs from the same
guest are not allocated to a pCPU that
already has a sibling allocated. The
“avoid” setting ensures guest vCPUs
are not allocated to platforms that have
SMT enabled.

Huge Pages

The OpenStack Kilo release supports
huge page capabilities on hosts. To
leverage huge pages, the host OS must
be configured to define the huge page
size and the number to be created. As
shown in the following example, the
default huge page setting is 2 MB, with
eight 1 GB pages allocated.

 Edit�/etc/default/grub

� �GRUB_CMDLINE_LINUX=”default_
hugepagesz=2MB�hugepagesz=1G�
hugepages=8”

In addition, libvirt on the host must
be configured to allow the use of Huge
Pages. In the /etc/libvirt/qemu.
conf file, uncomment the hugetlbfs_
mount line and make a change similar
to the following statement:

� hugetlbfs_mount�=�“/mnt/
huge”

The OpenStack Nova scheduler has
been updated to track and allocate
these huge pages to guest OSs. The
flavor definition should contain the
page size that is required for the VM.
The following example shows a request
for 1 GB page size.

 �nova�flavor-key�<flavor�name>�
set�hw:mem_page_size=1048576

VLAN Trunking API Extension

The OpenStack Kilo release supports
a new network property that indicates
the requirement for transparent Virtual
Local Area Networks (VLANs) (defined
as a network configuration that allows
VLAN tagged traffic to be passed into
the guest). When a transparent VLAN-
enabled network is requested, those
ML2 drivers flagged as not supporting
transparent VLANs or without the
attribute will not create the transparent
network.

This setting does not provide greater
support for transparent networks with
the Kilo release but does make it more
obvious to the user whether or not
transparent VLAN network requests
can be fulfilled.

 �neutron�net-create�–
provider:physical_network�
=<physical�network�name>�
-provider:network_type=vlan�
–vlan-transparent=true�
<tenant�network�name>

Service VM Port Security (Disable)
Extension

In the Juno release, Neutron security
groups would routinely apply anti-
spoofing rules on the VMs. These rules
allow traffic to originate and terminate
at the VM as expected, but prevent
traffic from passing through the VM, as
can be required by the Virtual Network
Function. The Kilo release adds the
ability to disable port security for use
cases that require the VM to pass traffic
through it.

 �neutron�port-create�
<network>�--port_security_
enabled�False

Sample NFV Performance Results

The Intel DPPD was instantiated on
Intel® Server Board S2600GZ (code-
named Grizzly Pass), BIOS version
SE56600.86B.02.03.000, with two
Intel® Xeon® processor E5-2690 v2 @
3.0 GHz, with 10 cores (20 threads)
each, 64 GB of DDR3-1333 RAM, one
Intel® Ethernet Server Adapter X520-
SR2, and two physical networks.

The OpenStack Juno release was used
to instantiate the VM with the sample
BRAS/BNG application on the platform.
Fedora* 20 x86_64 was used for both
the host OS and the guest OS on the
compute nodes.

 Note: The demo was not updated to
the Kilo environment as the isolate
CPU Thread Policy is required for
this test and the test code had not
been updated to support Neutron-
managed SR-IOV connections.

The Intel DPPD application handles
network traffic generated by the Intel
Packet Generator application running
on a separate system. During each test
the volume of the traffic generated by
the Packet Generator was increased
until the BNG application started to
report packet loss. The maximum BNG
throughput without a packet loss was
considered a valid data point.

9A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Intel® Packet Generator

OpenStack

Port 0
RX Mbit/s

72

Port 1
RX Mbit/s

83

Port 2 Port 3

nic
nic

nic
nic

Other
workload

Other
workload

nic
nic

nic
nic

RX Mbit/s
73

RX Mbit/s
80

RX Mbit/s
93

RX Mbit/s
85

RX Mbit/s
99

RX Mbit/s
85

LB = Load Balancing
WT = Worker Thread
RT = Routing Thread

ETH1

ETH2

CPE

ETH3

ETH4

Core

LB1

LB3 RT

4*WT

RT

LB2

LB44*WT

Figure 4 . Test setup.

To study the effect of the new
functionality we conducted tests of four
different configurations:

1. OpenStack Juno without huge pages
support.

2. Patched OpenStack enabling huge
pages.

3. OpenStack with huge pages and
enforced CPU affinity to ensure
correct NUMA placement.

4. The same configuration as 3 with
manually enforced 1:1 mapping of
virtual CPU threads to logical CPU
cores.

At the time of writing, the Intel DPPD
had not been updated to interoperate
with the OpenStack Juno SR-IOV
capability so the SR-IOV results
are based on setting up the SR-IOV
connections outside of Neutron control.

The huge page capability is a feature for
OpenStack Kilo so this capability was
enabled by leveraging the OpenStack
Juno patches on www.01.org.14

The Intel DPPD application required
that the 16 virtual CPU cores be
allocated to the application. For the
best performance, all these vCPUs must
be from the same socket on the server.

The OpenStack NUMA placement
capability was leveraged to help deploy
the required guest vCPU topology
on the host. The OpenStack Juno
functionality does not include support
for I/O awareness as part of the NUMA
placement decision. This means that
the guest topology cannot be specified
to include I/O device locality. (For
more information, refer to the I/O-
Aware NUMA Scheduling section.) To
work around this lack of functionality,
the test environment was set up and
checked to ensure that the platform I/O
device was local to the chosen NUMA
cell the VM was deployed on.

It is expected that future versions of
OpenStack will include support for the
isolate CPU Thread Pinning policy that
was not supported in OpenStack Juno.
For the test setup, the CPU pinning was
performed using Linux primitives.

Figure 5 shows the cumulative
gains achieved by applying
these configuration changes to
the environment. The relative
improvements are dependent on
the order in which the features were
enabled, so these relative value data
points should not be interpreted as
absolutes. Instead the reader should
consider the cumulative value of
enabling these four features and
how this reference NFV workload
was enabled to deliver line-rate
performance with 256-byte packets
on a 10 Gbps Ethernet link with zero
packet loss.

Latency and Packet Delay Variance
characteristics are other aspects
of performance improvement that
are not displayed in Figure 5 but are
relevant for NFV workloads. Specific
measurements were not made during
this test, but significantly notable
improvements in the predictability
and stability of throughput readings
were observed in successive test runs,
particularly after enabling CPU pinning.

10A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Some related studies that include
latency measurements have been
conducted with DPPD. The paper
on QoS in Broadband Remote
Access Servers with Linux and Intel
architecture16 presents a number
of results focusing on latency
characteristics. Latency and PDV for
Intel DPPD deployed with OpenStack
are likely to be areas of analysis in a
future paper.

Intel® Technologies for Optimal NFV

To efficiently deploy virtualized, high-
performance networking applications
on industry-standard, high-volume
servers, a number of processor and
platform capabilities can be leveraged
to significant effect.

Intel® Virtualization Technology for
IA-32 and Intel® 64 Processors

Intel VT-x adds extensions to enable
high-performance virtualization
solutions that help to increase server
utilization and reduce costs. The
extensions are called Virtual Machine
Extensions (VMX). VMX introduces 10
instructions specific for virtualization to
the instruction set.

Deploying DPDK Based Virtual BRAS with OpenStack
(Cumulative Gains as a Percentage of 10 Gbps*)

0% 20% 40% 60% 80% 100%

OpenStack Juno
(Includes SR-IOV NIC Support)

Huge Pages Extension
(01.org) (Best Effort NUMA)

Specific NUMA Placement

Specific Virtual CPU to Physical
CPU Pinning (Planned for Kilo)

Source: Intel Internal Analysis

Figure 5 . Cumulative performance impact on Intel® Data Plane Performance Demonstrators
from platform optimizations.

Intel® Virtualization FlexPriority
(Intel® VT FlexPriority)

The local Advanced Programmable
Interrupt Controller (APIC) has a
register for tracking the current running
process priority called the Task Priority
Register (TPR). The VMM is required to
track guest writes to the virtualized TPR
to know when is safe to inject interrupts
to the VM. This implies that every time
the guest writes to the virtualized TPR,
usually on task context switch, a VM
exit is generated. Intel VT FlexPriority
support removes the need for the VMM
to track writes to the virtualized TPR
register thereby reducing the number
of VM exits.

Intel® Virtualization FlexMigration
(Intel® VT FlexMigration)

The CPUID instruction is used to
report the feature set of a processor.
When an application initializes, it
typically uses the CPUID instruction to
check feature availability. To support
live migration—that is, migration
with minimal downtime and without
restarting the VM—the destination
processor must support the same
feature set as the source processor.
Intel VT FlexMigration enables the VMM

to virtualize the CPUID instruction.
This puts the VMM in control of what
features are exposed to the guest and
hence enables the VMM to manage
the features exposed in a pool of
processors. The processors may have
different feature sets, but the VMM can
make them look the same to guests
by means of the virtualized CPUID
instruction.

Virtual Processor Identifiers (VPID)

The MMU has a Translation Look-
aside Buffer (TLB) to cache address
translations from virtual to physical
memory. The TLB was extended with
a Virtual Processor ID (VPID) field.
This field enables VM-related address
translation entries to persist in the TLB
between context switches, removing
the need for the TLB to be repopulated
after a context switch This enables VM
context switches to happen without
the previously associated TLB flush
operation.

Extended Page Tables

Extended Page Tables (EPT) is a feature
of the MMU. The EPT feature improves
performance by removing the need for
the hypervisor to trap VM updates to
page tables, a feature known as page
table shadowing. EPT supersedes
page table shadowing by maintaining a
second level of page tables in the VMM
that describe guest-physical address to
host physical address mappings.

VMX Preemption Timer

The VMX Preemption Timer is an
additional platform timer intended
to enable the hypervisor to preempt
VM execution after a specific amount
of time. This removes the need to use
another platform timer to facilitate
context switches.

11A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

VM

HYPERVISOR

SR-IOV INC

VF0 VF1 VFn

PF

Guest OS0

VF Driver

PF Driver

Intel®
Chipset

I/O data transmit
and receive

Address Translation
done by Intel VT-d
configured by the

Hypervisor

Mailbox system
for PF VF

Communication

Figure 6 . High-level Single Root I/O Virtualization architecture.

Pause Loop Exiting

Pause Loop Exiting (PLE) is a hardware
feature that forces a VM exit when the
spinlock loop duration expiry event
is detected. This enables the VMM
to schedule another vCPU and help
to reduce the impact of lock holder
preemption.

Intel® Virtualization Technology
for Directed I/O

Address Translation Services

The Peripheral Component
Interconnect Special Interest Group
(PCI-SIG) defined the Address
Translation Services (ATS) specification
as part of the I/O Virtualization (IOV)
Specifications. ATS specifies a set
of transactions that PCI Express
components can use to support I/O
Virtualization thereby enabling a PCIe*
device to perform a Direct Memory
Access (DMA) directly into the VM
memory.

Intel VT-d is an implementation
in hardware that can perform the
address translation needed for DMA
transactions in virtual environments. In
essence this translates between guest
physical addresses and host physical
addresses to help ensure that the DMA
transaction targets the correct physical
page with protection mechanisms to
prevent memory pages related to other
VMs being affected.

Large Intel VT-d Pages

The Large Intel VT-d Pages feature
enables large 2 MB and 1 GB pages
in Intel VT-d page tables. Leveraging
these huge page table entries in the I/O
Memory Management Unit (IOMMU)
helps to reduce I/O Translation Look-
Aside Buffer (IOTLB) misses which
in turn helps to improve networking
performance, particularly for small
packets. (For more information see the
Huge Pages section.)

Interrupt Remapping

Interrupt Remapping enables the
routing and isolation of interrupts to
CPUs assigned to VMs. The remapping
hardware forces the isolation by
tracking the interrupt originator ID,
and can also cache frequently used
remapping structures for performance
enhancements.

Intel® Virtualization Technology for
Connectivity

Intel VT-c enables improved
networking throughput with lower CPU
utilization and reduced system latency.
This technology is a feature in Intel’s
range of Ethernet Server Adapters such
as the Intel® 82599 10 Gigabit Ethernet
controller.

Virtual Machine Device Queues

Virtual Machine Device Queues (VMDQ)
is a feature of Intel Ethernet Server
Adapters that accelerates network
performance by filtering Ethernet
frames into VM specific queues based
on the VLAN ID and destination MAC
address. The VM specific queues can

then be affinitized with specific cores
improving cache hit rates and overall
performance.

PCI-SIG Single Root I/O Virtualization

PCI-SIG SR-IOV allows partitioning
of a single Intel® Ethernet Server
Adapter port, also known as the
Physical Functions (PF). This PF is a
full PCIe function that includes the
SR-IOV Extended Capability (used
to configure and manage the SR-IOV
functionality) into multiple VFs. These
VFs are lightweight PCIe functions that
contain the resources necessary for
data movement but minimize the set
of configuration resources. They may
be allocated to VMs each with their
own bandwidth allocation. They offer
a high-performance, low-latency data
path into the VM.

Figure 6 shows a high-level view of an
SR-IOV implementation on an Intel
architecture-based platform. It depicts
how SR-IOV can be used to bypass
the hypervisor to deliver the high-
performing, low-latency path into the
VM.

12A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Non-Uniform Memory Architecture

Uniform Memory Architecture
(UMA) refers to a design where
every processor core in the system
has the same memory performance
characteristics such as latency and
throughput, typically as a result of
having a shared interconnect to get to
the memory.

In many modern multiprocessor
systems such as Intel Xeon processors,
NUMA design is commonly used. With
this model, processor cores have
access to locally attached memory
with higher performing memory access
characteristics. Processor cores also
have access to “remote” memory
over some shared interconnect that is
“locally” attached to another processor
core.

A NUMA topology is depicted in Figure
7. The green arrows represent the
highest performing memory access
paths where a process executing on a
CPU core is accessing locally attached
memory. The orange arrows represent
a suboptimal memory access path
from the processor cores to “remote”
memory.

The use of a NUMA-based design
facilitates very high performance
memory characteristics. However to
leverage the resources in the platform
in the most efficient way, the memory
allocation policy and the process/
thread affinities with processor cores
must be taken into consideration. The
memory allocation policy can typically
be controlled with OS APIs. The OS can
be instructed to allocate memory for a
thread that is local to a processor core
that it is executing on or is local to a
specified core. The latter is particularly
useful when a software architecture
is used that leverages memory
management threads that allocate
memory for other worker threads in the
system. The section below describes
the core affinity consideration.

CPU Pinning

The OSs have a scheduler that is
responsible for allocating portions
of time on the processor cores to the
threads that are running in the system.
In a multicore processor, the scheduler
generally has the flexibility and

Server

Processor
Socket 0

M
em

or
y M

em
ory

Processor
Socket 1

CORECORECORE

CORECORECORE

Application
Process

Application
Process

… …

CORE

CORE

Application
Process

Application
Process

Figure 7 . Non-Uniform Memory Architecture.

capability to move threads between
processor cores. It does this to help
load balance the workloads across
all of the cores in the system. In the
context of a NUMA-based system, this
capability can mean that a thread that
was executing on a processor core and
accessing local memory could find
itself executing on another core during
a subsequent time-slice, accessing
the same memory locations, but the
memory is now at a remote location
relative to the processor core.

CPU pinning is a technique that allows
processes/threads to have an affinity
configured with one or multiple cores.
By configuring a CPU affinity, the
scheduler is now restricted to only
scheduling the thread to execute
on one of the nominated cores. In a
NUMA configuration, if specific NUMA
memory is requested for a thread, this
CPU affinity setting will help to ensure
that the memory remains local to the
thread. Figure 8 shows a logical view
of how threads that can be pinned to
specific CPU cores and memory can be
allocated local to those cores.

13A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Server

Processor
Socket 0

M
em

or
y M

em
ory

Processor
Socket 1

CORECORECORE

CORECORECORE

… …

CORE

CORE

Application
Process

Application
Process

Application
Process

Application
Process

Figure 8 . CPU affinity with optimal placement of Non-Uniform Memory Architecture.

Figure 9 . Conceptual view of memory address translation with small page table entries.

Figure 10 . Conceptual view of memory address translation with huge page table entries.

Huge Pages

Huge page support in the MMU TLB
helps the TLB cache a greater range
of memory translations. A subset of
steps involved in a memory address
translation request is shown in Figure
9. In this example, the use of the small
page table entries (4 KB) results in less
coverage of the memory address space
in the TLB. This can potentially lead to
a greater number of TLB misses. A TLB
miss causes a memory access to read
the page table to get the requested
address translation entry. A large
number of TLB misses adds a greater
number of memory accesses. This
can result in suboptimal performance
for the application that required the
memory address translation.

In Figure 10, huge page table entries are
being used. In this case, the 1-GB page
table entry sizes result in far greater
coverage of the memory space in the
TLB, which in turn helps to minimize the
burden of TLB cache misses.

Memory
Address

Translation
Request

TLB

Fetch Page Table
from Memory

If translation not in cache fetch
page table from memory

Check TLB
Cache

Small Page
Entries (4 KB)

Memory
Address

Translation
Request

TLB

Fetch Page Table
from Memory

If translation not in cache fetch
page table from memory

Check TLB
Cache Huge Page

Entries (1 GB)

More memory
space covered
by TLB cache

14A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Conclusion

The ETSI-NFV ISG is making significant progress developing specifications to guide network transformation, influence
industry standards bodies, and create open-source software stacks.

Intel architecture-based platforms offer a number of capabilities that can provide benefits when deploying virtualized
workloads with high performance demands. The Intel VT-x, Intel VT-d, and Intel VT-c capabilities all come together to offer
an exceptional experience with virtualized applications. Combining these capabilities with a range of tuning facilities in the
platform helps workloads to deliver incredible performance.

OpenStack is a leading open-source software suite for creating and managing private and public clouds infrastructure. For
OpenStack to be suitable for deploying high-performance NFV workloads there are a number of additional features that are
required to enable an Enhanced Platform Awareness and unleash the performance potential of the NFV applications.

Using the Intel DPPD as a reference NFV application, it was shown that by leveraging SR-IOV connectivity, NUMA-aware
quest OS configuration, huge page table configuration, and CPU pinning could help to deliver 10-Gbps line-rate capable
performance.

Some of these features have already landed in the OpenStack Juno and Kilo releases. Intel and other members of
the OpenStack community are working on actively contributing other NFV-enabling capabilities into subsequent
OpenStack releases.

Acronyms

API Application
Programming Interface

APIC Advanced Programmable
Interrupt Controller

ATS Address Translation Services

BNG Broadband Network Gateway

BRAS Broadband Remote
Access Server

CLI Command Line Interface

CPE . . . Customer Premise Equipment

CPUCentral Processing Unit

DHCP Dynamic Host
Configuration Protocol

DMA Direct Memory Access

DSLAM Digital Subscriber
Line Access Multiplexer

EPT Extended Page Tables

ETSI . . . European Telecommunications
Standards Institute

FW. Firewall

IOMMU Input/Output Memory
Management Unit

IOTLBInput/Output Translation
Look-Aside Buffer

IP. Internet Protocol

IPAM. Internet Protocol Address
Management

ISG. Industry Specification Group

KVM Kernel Virtual Machine

LAN Local Area Network

LBLoad Balancer

MMU Memory Management Unit

MSAN Multi-Service Access Nodes

NFVNetwork Functions
Virtualization

NIC. Network Interface Card

NUMA Non-Uniform Memory
Architecture

OPNFV . . . Open Platform for Network
Functions Virtualization

OS Operating System

PCI-SIG Peripheral Component
Interconnect Special Interest Group

pCPU Physical Central
Processing Unit

PLE Pause Loop Exiting

PPPPoint-to-Point Protocol

PPPoA Point-to-Point Protocol
over ATM

PPPoE. Point-to-Point Protocol
over Ethernet

QEMU Quick EMUlator

QoS Quality of Service

SR-IOV . . Single Root I/O Virtualization

RT Routing Thread

SDN . . . Software Defined Networking

SMT . . . Simultaneous Multi-Threading

TLB Translation Look-aside Buffer

TPR Task Priority Register

UMA . . . Uniform Memory Architecture

vCPU . . Virtual Central Processing Unit

VF Virtual functions

VIF Virtual Interface Function

VIM Virtualized Infrastructure Manager

VLAN Virtual Local Area Network

VMVirtual Machine

VMDQVirtual Machine
Device Queues

VMM. Virtual Machine Monitor

VMX Virtual Machine Extensions

VNF Virtualized Network Function

VPIDVirtual Processor Identifiers

VPNVirtual Private Network

VT Virtualization Technology

VXLAN Virtual Extensible
Local Area Network

WT. Worker Thread

15A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

Authors

Adrian Hoban, Przemyslaw Czesnowicz, Sean Mooney, James Chapman, Igor Shaula, Ray Kinsella, and Christian Buerger are
software architects and engineers with the Network Platforms Group at Intel Corporation. They focus on Network Functions
Virtualization and software-defined networking extensions in open-source components such as OpenStack.

Acknowledgements

This work could not have been completed without the significant effort and innovation by the teams that developed DPDK and
Intel DPPD.

Keywords

Orchestration, OpenStack, Network Functions Virtualization, Software-Defined Networking

A Path to Line-Rate-Capable NFV Deployments with Intel® Architecture and the OpenStack* Kilo Release

 1 European Telecommunications Standards Institute Network Functions Virtualization. http://www.etsi.org/technologies-clusters/technologies/nfv
 2 “Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges & Call for Action.” Introductory white paper. http://portal.etsi.org/NFV/NFV_White_Paper.pdf
 3 “Network Functions Virtualisation: Network Operator Perspectives on Industry Progress.” Update white paper. http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
 4 “Network Functions Virtualization – White Paper #3, Network Operator Perspectives on Industry Progress.” http://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
 5 ETSI NFV specifications. http://www.etsi.org/technologies-clusters/technologies/nfv
 6 ETSI GS NFV-PER 001 V1.1.1. “Network Functions Virtualisation (NFV); NFV Performance & Portability Best Practises.” http://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.01_60/gs_NFV-PER-

001v010101p.pdf
 7 OpenStack. www.OpenStack.org
 8 Intel® Data Plane Performance Demonstrators. https://01.org/intel-data-plane-performance-demonstrators
 9 Data Plane Development Kit. www.dpdk.org.
 10 BSD 3-Clause License. http://opensource.org/licenses/BSD-3-Clause
 11 “Network Function Virtualization: Virtualized BRAS with Linux* and Intel® Architecture” white paper. http://networkbuilders.intel.com/docs/Network_Builders_RA_vBRAS_Final.pdf
 12 “Using Intel® AES New Instructions and PCLMULQDQ to Significantly Improve IPSec Performance on Linux.”

http://www.intel.com/content/www/us/en/intelligent-systems/wireless-infrastructure/aes-ipsec-performance-linux-paper.html
 13 Virt driver guest NUMA node placement & topology. https://blueprints.launchpad.net/nova/+spec/virt-driver-numa-placement
 14 Huge Page and I/O NUMA scheduling patches for OpenStack Juno. https://01.org/sites/default/files/page/OpenStack_ovdk.l.0.2-907.zip
 15 “OpenStack* Networking with Intel® Architecture: Getting Started Guide.” https://01.org/sites/default/files/page/accelerating_openstack_networking_with_intel_architecture_rev008.pdf
 16 “Network Function Virtualization: Quality of Service in Broadband Remote Access Servers with Linux* and Intel® Architecture.”

https://networkbuilders.intel.com/docs/Network_Builders_RA_NFV_QoS_Aug2014.pdf

 By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You may not use or facilitate the use of this document in connection with any infringement or other
legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF
EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING
OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in
this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: www.intel.com/design/literature.htm.

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with
your system manufacturer or retailer or learn more at www.intel.com.

 Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express or implied, by estoppel or otherwise, to any of the
reprinted source code is granted by this document.

 Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.
Go to: www.intel.com/products/processor_number/.

 Intel, the Intel logo, Look Inside., the Look Inside. logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

 Copyright © 2015 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
 * Other names and brands may be claimed as the property of others. Printed in USA 0715/LB/MESH/PDF Please Recycle 332169 002US

	Executive Summary
	New Features and Fixes: OpenStack Kilo

	Introduction
	Network Functions Virtualization
	OpenStack
	Broadband Network Gateway
	Intel® Data Plane Performance Demonstrator
	Document Scope

	OpenStack Extensions That Benefit NFV
	CPU Feature Request
	PCIe* Pass-Through
	SR-IOV Extensions
	NUMA Extensions
	I/O-Aware NUMA Scheduling

	CPU Pinning
	Huge Pages
	VLAN Trunking API Extension
	Service VM Port Security (Disable) Extension

	Sample NFV Performance Results
	Intel® Technologies for Optimal NFV
	Intel® Virtualization Technology for IA-32 and Intel® 64 Processors
	Intel® Virtualization FlexPriority (Intel® VT FlexPriority)
	Intel® Virtualization FlexMigration (Intel® VT FlexMigration)
	Virtual Processor Identifiers (VPID)
	Extended Page Tables
	VMX Preemption Timer
	Pause Loop Exiting

	Intel® Virtualization Technology
for Directed I/O
	Address Translation Services
	Large Intel VT-d Pages
	Interrupt Remapping

	Intel® Virtualization Technology for Connectivity
	Virtual Machine Device Queues
	PCI-SIG Single Root I/O Virtualization

	Non-Uniform Memory Architecture
	CPU Pinning
	Huge Pages

	Conclusion
	Acronyms
	Authors
	Acknowledgements
	Keywords

