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We consider the Multiprocessor Scheduling Problem with Communication Delays, where the delay
is proportional to both the amount of exchanged data between pairs of dependent tasks and the
distance between processors in the multiprocessor architecture. Although scheduling problems are
usually solved by means of heuristics due to their large sizes, we propose methods to identify
optimal solutions of small and medium-scale instances. A set of instances with known optima is a
useful benchmarking tool for new heuristic algorithms. We propose two new Mixed-Integer Bilinear
Programming formulations, we linearize them in two different ways, and test them with CPLEX
8.1. To decrease the time needed by CPLEX for finding the optimal solution, we use Variable
Neighborhood Search heuristic to obtain a good approximation for the initial solution.
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1 Introduction

In this paper we propose formulation-based and combinatorial methods to find optimal solutions
to the Multiprocessor Scheduling Problem with Communication Delays (MSPCD). This consists in
finding a minimum makespan schedule to run a set of tasks with fixed lengths Li on an arbitrary
network of homogeneous processors. The task precedence is modelled by a directed acyclic graph
G = (V, A) where V is the set of tasks and an arc (i, j) exists if task i has to be completed
before task j can start. If i and j are executed on different processors h, k ∈ P , they incur a
communication cost penalty γhk

ij dependent on the distance dhk between the processors, and on the

amount of exchanged data cij between tasks (γhk
ij = Γcijdhk, where Γ is a known constant).

Since this problem is a super-class of the classic scheduling problem, it is NP-hard. Its natural
application field is in compiler design [13] and robotics [14]. The size of real-life instances is almost
always too large to be solved to optimality, so heuristic algorithms are used to find good solutions.
When designing new heuristic methods, it is necessary to validate them and benchmark them on a
set of instances with known optimal solutions. The motivation of this study (and purpose of this
paper) is to provide a tool to accomplish this, i.e. finding optimal solutions of the MSPCD. Of
course, our methods are prohibitively computationally expensive to be applied to real-life MSPCD
instances, so our numerical experiments were carried out on a set of small- and medium-sized
instances.



In the literature one can find mathematical formulations for different variants of scheduling
problems. For example, in [12] the formulation for scheduling independent tasks is given. Schedul-
ing of dependent tasks without communication is modelled in several different ways [1, 10, 15]. In
[9] the authors considered the problem of scheduling dependent tasks onto heterogeneous multi-
processor architecture, but neglected communication time. To the best of our knowledge, up to
now no mathematical programming model involving communications was developed and solved
to optimality. Moreover, in existing models targeting similar problems, the processor topology is
assumed to be a complete graph.

The main contributions of this paper are: (a) an adaptation of the classic scheduling formula-
tion with ordering variables to the MSPCD, and a compact linearization of the resulting bilinear
program; (b) a new formulation based on packing rectangles into a larger rectangle, which consid-
erably reduces the number of variables; (c) comparative computational experiments on CPLEX 8.1
solving the two formulations with the impact of good, heuristic-based initial solution for the search
process.

The rest of this paper is organized as follows. The two formulations are presented in Section 2.
In Section 3 we discuss the comparative computational results. Section 4 concludes the paper.

2 Problem formulation

In this section we present two new formulations for the MSPCD. One is an adaptation of the
“classic” scheduling model with variables expressing both assignment and ordering, and the other
is derived from the idea of identifying tasks with rectangles and packing rectangles into a larger
rectangle representing the total makespan and processor set. The parameters for both models are:
the set of task lengths Li (i ∈ V ), the task precedence graph G = (V, A), the costs cij on the arcs
(i, j) ∈ A, the processor distance matrix (dkl) for k, l ∈ P . We let δ−(j) be the set of precedents of
task i, that is δ−(j) = {i ∈ V | (i, j) ∈ A}.

2.1 Classic formulation

The classic scheduling formulation employs a set of binary variables which control both assignment
of task to processor and position in the order of tasks executed by the given processor, and a set
of continuous variables indicating the starting time for each task. Thus, we let:

∀i, s ∈ V, k ∈ P ys
ik =

{

1 task i is the s-th task on processor k

0 otherwise,

and ti ∈ R+ be the starting time of task i for all i ∈ V .
The MSPCD can be formulated as follows:
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∀k ∈ P, s ∈ V \{n}, i, j ∈ V tj ≥ ti + Li − M
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∀i, s ∈ V, k ∈ P ys
ik ∈ {0, 1} (7)

∀i ∈ V ti ≥ 0, (8)

where M ≫ 0 is a sufficiently large penalty coefficient and γhk
ij represent the delay between tasks i

and j as mentioned in Section 1.
Equations (2) ensure that each task is assigned to exactly one processor. Inequalities (3)-

(4) state that each processor can not be simultaneously used by more than one task. (3) means

that at most one task will be the first one at k, while (4) ensures that if some task is the sth

one (s ≥ 2) scheduled to processor k then there must be another task assigned as (s − 1)-th to
the same processor. Inequalities (5) express precedence constraints together with communication
time required for tasks assigned to different processors. Constraints (6) define the sequence of the
starting times for the set of tasks assigned to the same processor. They express the fact that task
j must start at least Li time units after the beginning of task i whenever j is executed after i on
the same processor k; the M parameter must be large enough so that constraint (6) is active only
if i and j are executed on the same processor k and r > s.

2.1.1 Linearization of the classic formulation

The mathematical formulation of MSPCD given by (1)-(8) contains linear terms in the continuous
t variables and linear and bilinear terms in the binary y variables. It therefore belongs to the class
of mixed integer bilinear programs. It is possible to linearize this model by introducing a new set
of (continuous) variables ζsr

ijhk ∈ [0, 1] which replace the bilinear terms ys
ihyr

jk in Eq. (5) [4, 5].
The linearizing variables ζsr

ijhk have to satisfy the following linearization constraints:

ys
ih ≥ ζsr

ijhk (9)

yr
jk ≥ ζsr

ijhk (10)

ys
ih + yr

jk − 1 ≤ ζsr
ijhk (11)

∀i, j, s, r ∈ V, ∀h, k ∈ P , which guarantee that ζsr
ijhk = ys

ihyr
jk. We call this reformulation the usual

linearization.
The number of variables and constraints in the linearized model is O(|V |4|P |2). Solving the

formulation with a Branch-and-Bound method, we need to solve a linear relaxation at each node.
Thus, it is important to obtain formulations with a small number of constraints. Since the constraint
size is due to the linearization constraints (9)-(11), we propose a different linearization technique,
called compact linearization, which reduces the size of the problem. This consists in multiplying
each assignment constraints (2) by yr

jk; the resulting bilinear terms are successively linearized by
substituting them with the appropriate ζ variable: thus, we obtain valid linear relationships between
the ζ and the y variables [8]. The compact linearization also assumes that ζsr

ijhk = ζrs
jihk, which holds

by commutativity of product. Thus, the compact linearization for the MSPCD is as follows:

∀i, j, r ∈ V, l ∈ P

p
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ijhk = yr

jk (12)

∀i, j, s, r ∈ V, h, k ∈ P ζsr
ijhk = ζrs

jikh (13)



Notice that although there are still O(|V |4|P |2) constraints (13), these can be used to eliminate
half of the linearizing variables and deleted from the formulation (any decent MILP pre-solver will
actually perform this reformulation automatically). Hence, there are only O(|V |3|P |) constraints
in the compact linearization.

2.1.2 Bounds to the objective function

Simply feeding the classic formulation to a MILP solver was found to be inefficient. To speed up
the search, we artificially set lower and upper bounds to the objective function value.

Load Balancing (LB) and the Critical Path Method (CPM) are two fast alternatives to compute
cheap lower bounds. The optimal solution cannot have a shorter execution time than the ideal load
balancing case, i.e. when there is no idle time intervals and all the processors complete the execution
exactly at the same time. In other words, if we let Tmax = maxj≤n{tj + Lj} denote the objective
function, we have Tmax ≥ 1

p

∑n
i=1 Li = TLB. Furthermore, the length of final schedule can not be

smaller that the length of the critical path, the longest path connecting a node with no predecessors
to a node without successors. Let us denote by δ+(j) the set of immediate successors of task j, i.e.
δ+(j) = {i ∈ V : (j, i) ∈ A}. By using CPM the corresponding lower bound TCP can be defined as
TCP = maxj≤n CP (j) where

CP (j) =







Lj , if δ+(j) = ∅,
Lj + max

j′∈δ+(j)
CP (j′), otherwise,

Let T be the greatest of the bounds obtained by LB and CPM; a constraint of the form Tmax ≥ T

is then also added to the formulation. Notice that this lower bound is valid throughout the whole
solution process and does not depend on the current Branch-and-Bound node being solved.

Several efficient heuristics and meta-heuristics can provide upper bounds. These heuristics
are seldom applicable to a Branch-and-Bound algorithm because at any given Branch-and-Bound
iteration, some of the variables are fixed — and it is usually difficult to force the graph-based
heuristics to constrain the parts of the graph structure which correspond to the fixed variables. At
the first iteration, however, no variables are fixed, which makes it possible to apply some efficient
graph-based heuristics as a kind of pre-processing step to the whole Branch-and-Bound run. In our
tests, we used Variable Neighborhood Search (VNS) [3] to compute tight upper bounds T to the
objective function value, and a constraint Tmax ≤ T was added to the formulation prior to starting
the solution process.

2.2 Packing formulation

The idea on which this model is based is to liken task i to a rectangle of length Li and height 1,
and to pack all the rectangles representing the tasks into a larger rectangle of height |P | and length
W , where W is the total makespan to be minimized [6].

For each task i ∈ V let ti ∈ R be the starting execution time (or alternatively, the horizontal
coordinate of the bottom left corner of the rectangle representing task i) and pi ∈ N be the ID of
the processor where task i is to be executed (alternatively, the vertical coordinate of the bottom
left corner of the rectangle representing task i). Let W be the total makespan (alternatively, the
length of the larger rectangle where we want to pack the task-rectangles). Let xik be 1 if task i

is assigned to processor k, and zero otherwise. In order to enforce non-overlapping constraints, we
define two sets of binary variables:

∀ i, j ∈ V σij =

{

1 task i finishes before task j starts
0 otherwise



∀ i, j ∈ V ǫij =

{

1 the processor index of task i is strictly less than that of task j

0 otherwise.

The formulation is as follows:

min
t,p,σ,ǫ

W (14)

∀ i ∈ V ti + Li ≤ W (15)

∀ i 6= j ∈ V tj − ti − Li − (σij − 1)Wmax ≥ 0 (16)

∀ i 6= j ∈ V pj − pi − 1 − (ǫij − 1)|P | ≥ 0 (17)

∀ i 6= j ∈ V σij + σji + ǫij + ǫji ≥ 1 (18)

∀ i 6= j ∈ V σij + σji ≤ 1 (19)

∀ i 6= j ∈ V ǫij + ǫji ≤ 1 (20)

∀ j ∈ V : i ∈ δ−(j) σij = 1 (21)

∀ j ∈ V : i ∈ δ−(j) ti + Li +
∑

h,k∈P

γhk
ij xihxjk ≤ tj (22)

∀ i ∈ V
∑

k∈P

kxik = pi (23)

∀ i ∈ V
∑

k∈P

xik = 1 (24)

W ≥ 0 (25)

∀ i ∈ V ti ≥ 0 (26)

∀ i ∈ V pi ∈ {1, . . . , |P |} (27)

∀ i ∈ V, k ∈ P xik ∈ {0, 1} (28)

∀ i, j ∈ V σij , ǫij ∈ {0, 1}, (29)

(30)

where Wmax is an upper bound on the makespan W , e.g.

Wmax =
∑

i∈V

Li +
∑

i,j∈V

cij max{dhk | h, k ∈ P}.

We minimize the makespan in (14) and (15), we define the time order on the tasks in terms of
the σ variables in (16), and similarly we define the CPU ID order on the tasks in terms of the ǫ

variables in (17). By (18), the rectangles must have at least one relative positioning on the plane.
By (19) a task cannot both be before and after another task; similarly, by (20) a task cannot
be placed both on a higher and on a lower CPU ID than another task. Constraints (21) enforce
the task precedences; constraints (22) model the communication delays. Constraints (23) link the
assignment variables x with the CPU ID variables p, and (24) are the assignment constraints.

Formulation (14)-(29) is also a bilinear MINLP where the bilinearities arise because of the
communication delay constraints. Observe, however, that this formulation has variables with only
two indices, as opposed to the formulation of Section 2.1 whose variables have three indices. Since
linearization squares the size of the variable set, it appears clear that the packing formulation size
is much smaller than the classic one.



2.2.1 Linearization of the packing formulation

We linearize formulation (14)-(29) by introducing variables 0 ≤ z ≤ 1 as follows:

∀ j ∈ V, i ∈ δ−(j), h, k ∈ P (zhk
ij = xihxjk).

Integrality on the linearizing variables z follows from the usual linearization constraints:

∀ j ∈ V, i ∈ δ−(j), h, k ∈ P (xih ≥ zhk
ij ∧ xjk ≥ zhk

ij ∧ xih + xjk − 1 ≤ zhk
ij ) (31)

The above linearization constraints are equivalent to the following compact linearization:

∀ i 6= j ∈ V, k ∈ P (
∑

h∈P

zhk
ij = xjk). (32)

∀ i 6= j ∈ V, h, k ∈ P (zhk
ij = zkh

ji ). (33)

Although the set of compact linearization constraints (33)-(32) is smaller than the set of usual
linearization constraints (31), the difference is not as dramatic as for the classic formulation
(O(|V |2|P |) against O(|V |2|P |2). Experimentally, we found that the compact linearization is ben-
eficial when the precedence graph is dense. For sparse graphs the usual linearization sometimes
yields shorter solution times. This is in accordance with the observation that a more precise eval-
uation of the magnitude order of the usual linearization constraint size is O(|A||P |2) rather than
O(|V |2|P |2), and that |A| decreases with respect to |V |2 as the sparsity of the graph increases.

3 Computational results

In this section we describe and discuss the computational experiments performed to test the ideas
presented in this paper. All our computations were carried out on an Intel PIV 2.66GHz CPU with
1GB RAM running Linux. We used CPLEX v. 8.1 [7].

3.1 Instances

Several small size test instances known from the literature (like [11]) were used in our experiments.
In addition, we tested a few examples with known optimal solutions (named with the prefix ogra)
generated as in [2]. We scheduled small-sizes instances on: p = 2 and p = 3, completely connected
processors.

For ogra examples the optimal solution is obtained when the tasks are well packed (as in ideal
schedule) in the order defined by the task indices. For these task graphs it is always the case that
Tmax = TLB = TCP . This means that they have a special structure which makes them very hard
instances for heuristic methods. In other words, in the cases when the task graph density is small,
i.e. the number of mutually independent tasks is large, it is hard to find the task ordering which
yields the optimal schedule.

Medium-size instances (with 30 and 40 tasks) are generated randomly, as it was proposed in
[2]. These instances names are generated with the prefix t followed by the number of tasks, density
and index distinguishing graphs with the same characteristics. They are scheduled on a ring of
p = 4 processors.



3.2 Resulting tables

Here we present some selected computational results. In Table 1 comparative results for both
formulations are given for small test instances. First four columns contain the task graph char-
acteristics (name, number of processors, number of tasks, edge densities). The length of the op-
timal schedule is given in the fifth column, while the last two columns contain the time required
by CPLEX to solve classical and packing formulation respectively. The time is represented by
¡hours¿:¡minutes¿:¡seconds¿.¡hundreds of seconds¿ with zero values in front omitted.

Table 1: Results for small task graph examples

example p n ρ Tmax Classic Packing

ogra 1 3 9 13.89 20 2:14:51 0.41
ogra 2 3 9 27.78 20 34:31 0.22
ogra 3 3 9 41.67 20 16:34 0.13

mt91 2 10 31.11 53 46:05 0.08

ogra 4 3 10 13.33 25 15:42:27 30.72
ogra 5 3 10 26.67 25 1:13:14 0.20
ogra 6 3 10 40.00 25 1:12:31 0.18

gra12 3 12 16.67 135 — 20:48.92

ogra 7 4 12 20 50 — 0.67

t20 10 4 20 8.95 110 — 45:43:51.52
t20 25 4 20 23.68 151 — 29:29.86
t20 50 4 20 53.16 221 — 17.06
t20 75 4 20 76.32 241 — 51:56.79
t20 90 4 20 80.52 242 — 11.72

As we can see, with all improvements (artificial lower bounds, VNS heuristic initial solution) we
were not able to solve to the optimality graphs with more that 10 tasks using classical formulation.
On the other hand, with packing formulation 20 tasks represent no significant difficulty.

Medium-size examples seem to be difficult even for packing formulation. Results given in the
Table 2 show that more that 24 hours are needed for most of them to be solved to the optimality.
Namely, for these examples we set time limit of 24 hours for the CPLEX execution. In the fourth
column of Table 2 we put the required execution time to obtain the optimal solution (if it has
been reached) or the given time limit (if the optimal solution remind unfound). The last columns
contains the gap between the final solution and the obtained lower bound.

The average CPU time improvement of the packing formulation over the best variant of the
classic formulation is experimentally proved to be about 5000 times. Therefore, we believe that the
packing formulation represents a valuable tool for solving small MSPCD instances to optimality.

4 Conclusion

In this paper two linear programming formulations for scheduling dependent tasks onto homoge-
neous multiprocessor architecture of an arbitrary structure with taking into account communication
delays is proposed. The models are used within the commercial software for solving Mixed-Integer
Linear Programs CPLEX. To reduce the execution time required by CPLEX to solve test examples



Table 2: Results for medium-size task graph examples

example p T ∗
max Time Gap

t30 50 2 4 470 24:00:00 7.12%
t30 60 1 4 467 06:44:23 0.00%
t30 60 2 4 451 24:00:00 5.31%
t30 75 1 4 544 23:11:21 0.00%

t40 10 1 4 233 24:00:00 2.15%
t40 10 2 4 245 24:00:00 25.31%
t40 25 1 4 270 01:24:08 0.00%
t40 25 2 4 369 24:00:00 24.39%
t40 30 1 4 457 24:00:00 7.98%

to the optimality, we added heuristic limitations to the upper bound and the lower bound and
introduce reduction constraints to the original model.
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