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Abstract

This technical report describes discrete convolution with a multidimen-
sional kernel. Convolution implements matrix multiplication by a sparse
matrix with several elements constrained to be equal to each other. To
implement a convolutional autoencoder, the gradients of this operation,
the transpose of this operation, and the gradients of the transpose are all
needed. When using standard convolution, each of these supplementary
operations can be described as a convolution on slightly modified argu-
ments. When the output is implicitly downsampled by moving the kernel
in more than one pixel at each step, we must define two new operations
in order to compute all of the necessary values.

1 Definitions

Let L be our loss function, W our weights defining the kernel, d a vector of
strides, H our hidden units, and V our visible units. H.;;indexes position ¢
(an N-dimensional index) within feature map ¢ for example j. V is of the same
format as H. W,;; indexes the weight at position c within the kernel, connecting
visible channel ¢ to hidden channel j.

Convolution with downsampling is performed (assuming W is pre-flipped)
by

Hcij = § kainoc+k,7rz,j

k.m

(Where o is elementwise product)

In the following sections, I derive all of the necessary operations to use this
operation in an autoencoder. You may want to skip directly to the summary of
results, section 7.

2 Basic gradient

The gradient of the loss function with respect to the weights is given by
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With a few dimshuffles, the gradient can be computed as a convolution
provided that d is all 1s. However, if d is not 1 for any element, then we have a
problem because during forward prop, the index into the output is multiplied by
the stride, while during computation of the gradient, the index into the kernel
is multiplied by the stride.

3 Transpose

We can think of strided convolution as multiplication by a matrix M. Let h be
H reshaped into a vector and v be V reshaped into a vector. Then

h=Mv

Let hr(c,i,j) be a reshaping function that maps indices in H to indices in
h. Let vr(c,i,j) be the same for V' and v.

Then

hhr(c,i,j) = § kaivvr(dochk,m,j)

k.m

Thus Myy(c.i,5),0r(doct+k,m,j) = Wrmi where all the relevant indices take on
appropriate values, and 0 elsewhere.

Suppose we want to calculate R, a tensor in the same shape as V, such that
Reij = Tyr(c,i,yj) and 7 = MTh.

Ta = Z Maphy
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To sum over the correct set of values for ¢ and k, the we will need a modulus
operator or saved information from a previous iteration of a for loop, unless
d = 1. So this is not a convolution in the large stride case.

In the case where d = f, we have

Rgm,; = E , E :mu—p,mJHq—U%IM,j
P 7

where w = W.shape — 1.
Changing some variable names, we get

Rc,i,j = E Ww—k,i,ch—w+k,m,j
k,m

Recall that a stride 1 convolution is given by:

Hej = E Wimi Vetk,m,j

k,m

So our transpose may be calculated by padding d — I zeros to H (each
dimension of the vector gives the number of zeros to pad to each dimension of
the hidden unit tensor), flipping all the spatial dimensions of the kernel, and
exchanging the input channel and output channel dimensions of the kernel.

4 New notation

I'm going to make up some new notation now, since our operation isn’t really
convolution (downsampling is built into the operation, we don’t flip the kernel,
etc). From here on out, I will write

Hcij = § kai‘/cod—&-k,'rn,j

k.m

as
H=waQ,V

and
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as
R=walH
and
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VwL(H = W@QuV) = (Vi L)#4V

5 Autoencoder gradients

To make an autoencoder, we’ll need to be able to compute
R = g,(by + W, Q g, (b, + We@QqV))

This means we’re also going to need to be able to take the gradient of
L(WQT H) with respect to both W (so we know how to update the encoding
weights) and H, so we’ll be able to propagate gradients back to the encoding
layer. Finally, when we stack the autoencoders into a convolution MLP, we’ll
need to be able to propagate gradients back from one layer to another, so we
must also find the gradient of L(W@QV') with respect to V.

5.1 Gradients of the loss applied to the transpose
5.1.1 With respect to the weights
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Changing some variable names, we get
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Recall that the gradient of L(W@QV') with respect to the kernel is:
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This has the same form as the gradient we just derived, ie both use the new

#operation. Thus we can write that the gradient of L(W@T H) with respect to
the kernel is given by

VwL(R=WQYH) = H#,VrL

5.1.2 With respect to the inputs
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Changing some variable names, we get
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Remember that
czg Z kaszoc-‘rk m,j
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SO we can write

VuL(R=WQIH)=Wa@uVgL

5.2 Gradient of the loss applied to @, with respect to the
inputs

The above is sufficient to make a single layer autoencoder. To stack on top of
it, we also need to compute:
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Changing variable names around, we get
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6 The rest of the gradients

We now know enough to make a stacked autoencoder. However, there are still
some gradients that may be taken and it would be nice if our ops supported
all of them. The @ op’s gradient can be expessed in terms of @"and #, and
the @Top’s gradient can be expressed in terms of @ and #. Thus if we add
a gradient method to the # op, our ops will be infinitely differentiable for all
combinations of variables.

6.1 # with respect to kernel
Let A = B#4C. Then
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Renaming variables, we get
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6.2 # with respect to input
Let A = B#4C. Then
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Renaming variables, we get
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7 Summary

We have defined these operations:
Strided convolution:

H= W@dv = Hcij = Z Wk7ni‘/cod+k,m,j

k.m

Transpose of strided convolution:

R=WQJH= Rymj= >, > WimiHe;
c,k|doc+k=q i

Gradient of strided convolution with respect to weights:

A= B#dC = Acij = Z Bkjmcdok:+c,i7m

k,m

We have observed that, if and only if if and only if d = I. @Tand #
may both be expressed in terms of @ by modifying their arguments with the
operations of zero padding, exchanging tensor dimensions, or mirror imaging
tensor dimensions. More specifically, @ 'and #I may be expressed in this way
in terms of @Q;.

We have shown that the following identities are sufficient to compute any
derivative any of the three operations:

VwL(H = W@uV) = (VyL)#4V

VyL(H=WQ,V)=WalvyL
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