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Abstract 

 

Granular powders can be successfully treated with kinetic theory and statistical mechanics that 

are typically applicable to thermal systems, though the granular powders are athermal systems 

and the conventional environmental temperature is too weak to drive particles to move. Once the 

granular temperature is analogously defined in line with that in thermodynamics, viscosity 

concept of thermal systems is naturally borrowed to describe the flowability of granular powders 

in this article. Eyring’s rate process theory and free volume concept, which have been proved to 

be very powerful in dealing with many thermally activated phenomena in a wide variety of fields, 

are utilized to derive viscosity equations of granular powders under a simple shear. The obtained 

viscosity equations are examined only with empirical experimental observations in describing 

powder flowability, due to the lack of instruments and methodology for directly determining the 

viscosity of granular materials. The continuous shear thickening rather than the discontinuous 

shear thickening are predicted and found to be dependent on shear rate, the cohesive energy 

between particles, and the particle volume fraction, though the discontinuous shear thickening 

may still occur if certain conditions are met during shear, such as local particle volume fractions 

approach to the jamming point created by the shear induced inhomogeneity. A fundamental 

mechanism on how dry granular powders flow is proposed on the basis of what are demonstrated 

from the viscosity equations.The work presented in this article may lay a foundation to scale 

powder flowability in a more fundamental and consistent manner, at least providing an approach 

to consistently define the viscosity of granular powders. Since the same approaches are 

employed to derive the viscosity equations of granular powders as used to derive viscosity 

equations of liquids, colloidal suspensions, and polymeric materials, both athermal and thermal 

systems are thus unified with a single methodology.    
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I. Introduction 

 

Granular powders are widely recognized as athermal systems where the conventional 

environmental temperature is too weak to drive particles to move. However, there are many 

theoretical and experimental evidences indicate that granular powders could be successfully 

treated with the kinetic theory and statistic mechanics extracted from thermal systems 
1,2,3,4,5,6,7,8,9,10 11,12,13,14,15,16,17,18,19

. Under proper analogous definition of granular temperatures, 

thermodynamics is found to be a powerful tool for understanding the very common and 

important jamming phenomena in granular systems
 18,19,20,21

. The jamming points can be 

analogously considered as the frozen phase transition points, where liquids loose the flowability 

when temperatures drop below the melting points and the whole systems turn into solids.  

 

Flowability of granular powders is extremely important in powder handling processes in many 

industrial areas like food, pharmaceutical, mineral, and civil engineering, etc.
 22,23,24

. Objectively 

describing the flowability of granular powders is relatively difficult due to the complexity of 

granular materials: Granular powders are usually non-continuum media and also compressible, 

thus the regular fluid mechanics that works for continuum and incompressible thermal fluids 

may not be applicable to granular powder systems 
25,26

.  Nonetheless, under a shear field 

externally applied or induced by the gravity of particles, the frictional rheology of granular 

powders can be uniformly described with that of liquids or colloidal suspensions 
27,28

, though the 

unification leans more on the empirical and phenomenological levels. The rheological profile 

similarities between liquids or colloidal suspensions and granular powders further demonstrate 

that both these two systems are fundamentally connected.  If the temperature of granular 

powders can be properly defined in the way that it can attain same functionalities as the thermal 

environmental temperature, the viscosity and other rheological parameters of granular powders 

may be easily defined analogously for better describing powder flowability.  

 

For granular powders of relatively fast moving particles, granular temperatures are usually 

defined with the kinetic energy connection between the temperature and the velocity, 
 

 
     

 

 
   , where    is the Boltzmann constant, m is the mass of the particle, and v is the velocity of 

particles 
29,30,31,32,33

. In this manner, the granular temperature remains a same original meaning as 

that in thermal systems and thus other thermodynamic principles may easily be applied to 

granular powders.  In my previous work, both the granular temperature and the jamming 

temperature are defined with this method and the jamming phenomena are profoundly elucidated 

with new insights 
21

. Those successes definitely drive me to believe that the analogous viscosity 

concept could be introduced to granular powders and thus the flowability of granular powders 

could be potentially described in more clear and fundamental levels.  

  

For defining the viscosity of granular systems in analogy with that of thermal systems like 

liquids and colloidal suspensions, the analogous granular temperature instead of traditional 

temperature must be employed. As we already know, the viscosity concept of liquids and 

colloidal suspensions has been successfully used to describe the flow property and the viscosity 

can be accurately measured via proper viscometers or rheometers. However, the currently 

available dry powder rheometers or other flowability characterization instruments are unable to 

provide same level scientific data as we have experienced with rheometers/viscometers 
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for liquids, colloidal suspensions, and solids
 34

. The big challenge in dry granular powders area is 

that we cannot use conventional rheometers/viscometers to characterize granular powders, 

simply due to the non-continuum and compressible nature of granular materials. A more deep 

reason could be the disappearance of Brownian motions and the measured properties couldn’t 

represent the statistically averaged macroscopic properties of whole systems. There is no a 

systematic way to define and measure viscosity of granular powders,  as the traditional 

temperature and associated viscosity concepts are no longer working any more, and a new 

analogous temperature must be re-defined before the viscosity concept can be used for granular 

powders. The intrinsic athermal nature of granular materials requires a completely new 

framework for scaling the flowability. Although highly concentrated colloidal suspensions 

containing non-Brownian particles can be considered as athermal systems too as indicated in the 

literature 
35

. However, such an athermal system is still different from granular powder athermal 

systems, as highly concentrated colloidal suspensions can still be characterized with regular 

rheometers with proper design of experiments
 36

, though the measured properties may not truly 

reflect the rheologial behaviors due to the athermal nature resulted from non-Brownian particles. 

Fundamentally, both granular powders and highly concentrated colloidal suspensions containing 

non-Brownian particles may be very similar, as the frictional contacts between particles, in 

addition to the geometrical confinement 
37,38

, should play a critical role in continuous and 

discontinuous shear thickening even jamming phenomena widely observed in both systems
 

28,35,39,40
. The puzzling issues in highly concentrated colloidal suspensions are that the 

discontinuous shear thickening phenomenon is not captured in the unified frictional rheology
 28,39

 

and the predicted viscosity independence of shear rate is untrue
 36,39

. As suggested in literature
 39

, 

the “absence of shear rate dependence hints a missing force (or time) scale in the description of 

dense suspensions”, indicating that a new approach incorporating those parameters are necessary. 

The traditional temperature that is still used in highly concentrated athermal colloidal 

suspensions containing non-Brownian particles may reach its limitations and must be replaced 

with analogous granular temperature.  

 

The viscosities of liquids including both pure and mixtures, colloidal suspensions, and polymeric 

materials with and without an external electric field have been extensively addressed in my 

previous publications 
41,42

, with the aid of Eyring’s rate process theory
 43

 and free volume 

concept 
44,45,46

. The obtained viscosity equations of liquids, colloidal suspensions, and polymeric 

solutions and melts, are consistent with experimental results. The Eyring’s rate process theory 

has been proved to be very powerful in revealing physical mechanisms of chemical reactions, 

dielectric relaxations, resonance energy transfer and many other thermally activated motions 
47

. 

The free volume concept has been widely used to determine various equilibrium properties of 

both solid and liquids 
48,49

. The popular empirical tap density equations of granular powders, the 

logarithmic and stretched exponential laws, are successfully derived with the Eyring’s rate 

process theory and free volume concept 
50,51

.  All those evidences suggest that the Eyring’s rate 

process theory and free volume concept are very useful tools in dealing with both thermal and 

athermal systems. Therefore, the Eyring rate process theory and the free volume concept will be 

employed again for defining the analogous viscosity of granular powders in this article.  The 

success of this attempt will potentially lead to the unification of obtaining viscosity equations 

across both thermal and athermal systems from liquids, colloidal suspensions, polymeric 

materials, to granular powders with a single methodology.  
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The article is arranged as follows: First, the viscosity equations of granular powders will be 

analogously derived only with Eyring’s rate process theory. In next section, Eyring’s free 

volume concept will be introduced in and the viscosity equations will be derived with both the 

Eyring’s rate process theory and Eyring’s free volume concept. The free volume calculated with 

my own method will be introduced from my previous article afterwards, and the viscosity 

equations of granular powders will be derived with the Eyring’s rate process theory and my own 

free volume calculation. All those newly obtained viscosity equations will be compared with 

with empirical experimental observations. Since there is no a method available for 

experimentally measuring the viscosity of granular powders, direct even semi-quantitative 

comparison with experimental results is unfortunately not provided. The discussions and 

conclusions will be given in the end. This is just an initial step of introducing analogous viscosity 

to granular powders based on analogous granular temperature, the focus will thus be placed on 

the viscosity of granular systems for simplicity reason and other rheological concepts will be 

minimized.  

 

II. Theory 

1. Viscosity equation derived directly from Eyring’s rate theory 

 

Flow as a rate process was proposed by Eyring 
52

 and summarized in the book 
43

. Eyring’s theory 

is originally for molecular systems, and is proved that this rate process theory can be used to 

predict the viscosity of colloidal suspensions and polymeric materials, too 
41,42

. We may move 

one step further to use this theory for granular powders, for the reason that the colloidal 

suspensions are the particles dispersed in a continuous liquid medium, while the granular 

systems are the particles dispersed in continuous air medium, if an analogy really has to be made 

between those two systems. Consider two layers of particles in a powder bed have a distance d 

apart and relative velocity between those two layers is v, see Figure 1.  Under a shear stress f, the  

 

 
 

 
Figure1. Distance between two layers of particles in a powder bed under a shear force f. de is 

the distance between two equilibrium positions under a shearing flow.  

 

viscosity, ,  according to the definition, can be expressed as 

f

d
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v

fd

dv

f


/
                                                                                       (1) 

In analogy with Eyring’s rate process theory, one may assume that a particle moves from one 

equilibrium position to another needs to overcome the energy barrier, the activation energy, E0, 

as shown in Figure 2. The applied shearing force will reduce the height of the energy barrier in 

the flowing direction by ∆E, while it will raise the height of the energy barrier in the opposite 

direction by the same amount. The number of times a particle passes over the barrier per second 

may be given by 
43

: 

gpBTkE

i

agpB
e

F

F

h

Tk
k

/0
                                                                       (2) 

where Tgp is granulotemperature, kB is Boltzmann constant, h is Planck constant, Fa and Fi are the 

partition functions for unit volume of the particles in activated and initial states, E0 is the 

activation energy. In the original treatment, Tgp in Eq. (2) is the conventional temperature T. Tgp 

is defined in the way that it has the conventional temperature functionalities and thus can replace 

T in an analogous manner. Since the energy barrier of the flowing direction is lowered, so the 

specific rate in the flowing direction, kf 

fk gpBgpB TkETkEE

i

agpB
kee

F

F

h

Tk //)( 0 
                                         (3) 

The specific rate in the backward direction kb 

 

Figure 2. Potential energy barrier for viscous flow with and without a shearing force. From Hao, 

T., The electrorheological fluids: Non-aqueous suspensions, 2005, Amsterdam: Elsevier. 

 

gpBTkE

b kek
/

                                                                                   (4) 
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The net rate in the flowing direction (kf - kb) times by the distance between two equilibrium 

positions de should be the velocity of flowing 

gpBe

TkETkE

ebfe

TkEkd

eekdkkdv gpBgpB

/sinh2

)()(
//






                                           (5) 

Combining Eq.(1) with Eq.(5) yields  

gpBe TkEkd

fd

/sinh2 
                                                                       (6) 

Both d and de have the particle size dimension, and 1)/(  gpBTkE  in a granular system. Eq. (6) 

may be simplified as (d≈de, sinh x ≈ x for small x) 

gpBTkE

a

igpB
e

F

F

E

hf

Ek

Tfk /0

22






                                                          (7) 

Suppose that the particle moves from one equilibrium position to another is a kind of rate 

controlled reaction, the equilibrium constant ke 

gpBTkE

i

a
e e

F

F
k

/0
                                                                            (8) 

and the thermodynamic relationship between the equilibrium constant and the Gibbs free energy 

gpRTG
e

e
k

/
                                                                           (9) 

∆G is the standard Gibbs free energy, and R is gas constant.  Thus Eq. (7) is therefore rewritten 

as: 

gpgp RTHRSRTG
ee

E

hf
e

E

hf ///
)

2
(

2







                                      (10) 

∆H is the enthalpy and ∆S is entropy. Since ∆E is dependent on f,   f/∆E thus can be taken as a 

constant. ∆S can also be taken as a constant under the assumption that the molar volume of a 

granular system does not largely change with granulotemperature. Eq. (10) may be written as: 

gpRTE
Ae

/
                                                                                (11) 

A is a constant. Eq. (11) is the commonly used Arrhenius equation 
53

. From Eq. (11), one may 

obtain several viscosity equations after replacing the granulotemperature Tgp defined in my 

another article 
21

. For a granular powder under a simple shear, the granulotemperature may be 

expressed as 
21

: 

bB

t
gp

k

tr
T







3

9

8
                                                                           (12) 
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where r is the particle radius,  is the shear stress, 


  is the shear rate, t and b are the true and 

bulk density of the granular powder, t is time, and kB is the Boltzmann constant. Substituting Eq. 

(12) into Eq. (11), one may obtain the viscosity of a granular powder under a simple shear: 




trN

E

tA

b

Ae





38

9

                                                                          (13) 

where 1231002.6  molNA , the Avogadro's number. Eq. (13) indicates that the viscosity of a 

granular powder under a simple shear is dependent on the shear stress applied to the powder, 

shear rate created in the system, the true and bulk densities, and the sizes of particles. It is much 

more sensitive to the size of particles: the logarithm viscosity is inversely proportional to the 

cube of particle radius.  In other words, anything that can induce particle size change, such as the 

humidity and electrostatic charge that control particle aggregation or agglomeration, will 

dramatically change the viscosity of a granular system. For granular powders under a vibration 

or on a slope, one may easily obtain the viscosity equations via simply substituting the 

correspondent granulotemperatures from my other article 
21

 into Eq. (11). The viscosities under a 

vibration or on a slope are obviously different from that of same powders under a simple shear 

due to the different granulotemperatures, further indicating that granular powders don’t have a 

fixed viscosity. The measured viscosity should change with the applied shear stresses and shear 

rates.  

2.  Viscosity equation derived from Eyring’s rate theory and Eyring’s free volume 

estimation. 

 

As mentioned earlier, the free volume concept was introduced by Eyring 
52

 in dealing with the 

viscosity of liquids in analogy with gases that can be assumed to consist of molecules made up of 

“holes” moving about in matter. The free volume is the space unoccupied by molecules and is 

probably smaller than that occupied by the molecules.  It is reasonable to assume that there are a 

lot of holes in a liquid and the free volume Vf  of a liquid molecule is related to the molar volume 

of the liquid V, the molecules packing contant c, and the energy of vaporization per molecule per 

mole, ∆Evap. According to Eyring, the free volume may be expressed as 
43

: 

Avap
f

N

V

E

cRT
V

3
















                                                                   (14)                                                        

NA is the Avogadro number. Note that the gas constant R= ABNk , so RT is the molar thermal 

energy in a liquid. The constant c is the number of molecules in a packing unit cell, thus the term 

vapEcRT / scales the energy needed to separate the molecules per unit cell in relative to the 

energy needed to bind those molecules together. Since V is the molar volume of a liquid, ANV /

may be considered as the average volume per molecule and 
3/1

fV thus may scale how difficult to 

separate the molecules per unit cell in a distance of 3/1)/( ANV . Based on above analysis, one 

would rather name Vf as the “energy” needed to create a “holes” in a liquid, instead of its original 

name, free volume. The partition function of a molecule of liquid may be expressed as 
46

: 
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RTE
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3
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


                                            (15) 

where bl is the combined vibrational and rotational contribution, and m is the mass of a liquid 

molecule. Since at the activated state a molecule has one degree of translational freedom less 

than that at the initial state 
43

: 

3/1

2/1)2(
f

a

i V
h

Tmk

F

F
B


                                                          (16) 

Note that in the original definition, Fi and Fa are partition functions at initial and activated states 

per unit volume.  However, Vf is merely the free volume of an individual molecule. The total free 

volume per unit volume should be the number of molecules per unit volume multiplied by the 

free volume of a molecule. Since we concentrate on the ratio between Fi and Fa, the factor of the 

number of molecules are omitted from Eq. (15) and (16). Substituting Eq. (14) and (16) into Eq. 

(7) and replacing T with Tgp yields 

 

gpB
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f
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2
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2
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


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                              (17)   

Eq. (17) seems to be reasonable in term of the relationship with 
3/1

fV , as the viscosity should 

proportionally increase with the “energy” needed to create “holes” or so-called free volume.  
3/1

fV  is apparently related to the “free distance” that a particle can move freely in the system. 

Intuitively, the viscosity should decrease with the increase of the free volume. In other words, a 

system of a larger free volume should have a lower viscosity as molecules may easily move to 

one equilibrium position to another under a shear force. The shear stress f multiplied by the 

molar volume V and then divided by Avogadro number NA should be the energy applied to each 

molecular, ∆E  

V

N

E

f

ENfV

A

A




 ,/
                                                                                   (18) 

Substituting Eq. (18) into Eq. (17) leads 

gpBTkE

gpB
A

vap

eTmk
V

N

E

cR /2/32/13/2 0)2()(
2




                                        (19) 

Eq. (19) shows how the viscosity of a granular powder changes with the granulotemperature and 

other physical parameters. It also indicates that the constant A in Eq. (13) is dependent on 

granulotemperature, too. Taking the granular powder under a simple shear as an example, one 

may obtain the viscosity of a granular powder by simply substituting Tgp with Eq. (12) and m 

with tr  3

3

4
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V is the mole volume of particles and thus may be represented as: 

b

t
ANrV



 3

3

4
                                                                                          (21) 

Substituting Eq. (21) into Eq. (20) yields 
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where c is a constant dependent on how particles pack in the system and equals to 2 for the cubic 

packing structure. Originally, vapE is the molar vaporization energy required for a liquid 

transferred into a gas, and may be considered as the energy that overcomes the binding 

interactions between molecules in liquid states.  In a granular system, vapE  may be considered 

as the energy required for separating particles to such a large distance that there is no interaction 

force between particles, i.e., the particles reach the granular gas state. The cohesive forces 

responsible for the interactions between particles should be directly related to the vaporization 

energy. Since the energy of activation for the viscous flow is related to the work required to form 

holes in the liquid, the activation energy E0 may be expected to be some fraction of the 

evaporation energy 
43

: 

n

E
NE

vap

A


0                                                                               (23) 

where n is a number factor that gives an indication of the size of the holes necessary for a 

viscous flow and is of the values from 2 to 5 
43

. Note that E0 is the activation energy required for 

a molecule and vapE  is the molar vaporization energy, thus the Avogadro constant NA is needed 

to reflect the difference between E0 and vapE  in the calculation. According to Eyring, for most 

liquids of symmetrical molecular structure like water, n=2.45, nearer 3, and for polar molecules 

with non-spherical symmetry like long-chains hydrocarbons, n is about 4. For simplicity reason, 

one may take n=3 for granular materials. Under those assumptions and renaming vapE as cohE , 

the cohesive energy between particles,  Eq. (22) may be rewritten as:  
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3
                           (24) 

Eq. (24) clearly shows that viscosity of a granular powder is a function of particle size, true and 

bulk densities, packing structure, cohesive forces scaled with the separation energy, the applied 

shear stress, shear rate, and amazingly the time. Qualitatively, this equation makes sense, as 

powder flowability is empirically found to be complicated and is dependent on those properties. 
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This equation will be evaluated in more details below for acquiring some basic ideals on how 

those parameters will change the analogous viscosity in granular powders.  

 

First, let’s acquire some ideas on the scale of the cohesive energy between particles, Acoh NE / , 

based on the experimental results. The direct Atomic Force Microscopy (AFM) measurements of 

interparticle forces indicate that the median cohesive and/or adhesive forces between 

Paracetamol and common pharmaceutical excipients like Povidone, Crospovidone, 

Pregelatinized Starch, Stearic Acid, and Magnesium Stearate  ranges 1.2 to 50 nN 
54

. Suppose 

that under a shear force particles may move in a distance of the order of the particle size, 100 m, 

then the cohesive energy between a pair of particles ranges from 1.210
-13

 ~ 5010
-13

 J, which 

scales the cohesive energy per particle Acoh NE / . According to Eq. (24), this estimation may be 

reasonable as Acoh NE / should be quite close to the value expressed in the following equation:  

 
1
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Otherwise, the term At

bvap

tNr

E

e







38

3

could become too large and Eq. (24) becomes invalid. Taking 100 

m particles as an example and assuming that 2.0/,1.0 


tbt  ,  the typical values for a 

powder system, thus 
13

1087.41/



Avap

NE  J, in the range of the cohesive energy obtained with AFM 

measurement. Once gaining an idea on the ranges of cohesive energy between particles, one may 

easily compute the viscosity of a granular powder with Eq. (24) against 
Avap

NE / , which is shown 

in Figure 3, under the conditions of c=2, r=100 m, 2.0/,1.0 


tbt  . It is interesting to  
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Figure 3 The viscosity vs. the cohesive (or adhesive) energy between particles predicted with Eq. 

(24).  Particle radius  r=100 m, c=2,  

 
2.0/,1.0 



tbt 
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see that the viscosity doesn’t monotonically change with the cohesive energy. Instead, there is a 

minimum viscosity occurring at JNE
Avap

12
105/


 . When the cohesive energy is very small, the 

viscosity is surprisingly high, seemingly contradicting to commonsenses but actually reasonable 

as the particles are hard to move with an external shearing field due to the lack of “stickiness” 

between particles.  In other words, a sticky particle moving under a shearing field could induce 

another particle to move together if the cohesive force between them is strong enough. This is 

the reason that the viscosity decreases with the further increase of cohesive force, as it is 

relatively easier for particles to move together as those particles are cohesively bonded. This 

trend continues to the point where the cohesive force is so strong that it starts to compete with 

the shearing force. At such cases the viscosity increases with further increase of the cohesive 

forces, as the cohesive forces between particles create a resistant force to the shearing force. In 

contrast to the slow viscosity decrease before the minimum turning point, the viscosity abruptly 

increases once the cohesive forces exceed JNE
Avap

12
105/


 . Note that the predicted viscosity at 

the minimum point is only over two times higher than the viscosity of water at 20
o
C, 3101  Pa.s. 

As mentioned earlier the typical cohesive and/or adhesive energy of drug and commonly-used 

excipients measured with AFM is in the range 1.210
-13

 ~ 5010
-13

 J, the corresponded viscosity 

predicted with Eq. (24) is about 2106.3  ~ 31032.2  Pa.s, which seems to be consistent with 

experience of pouring and stirring those powders when comparing with water.  

 

It would be curious to see how the viscosity is going to change with the shear rates. The viscosity 

predicted with Eq. (24) vs. the shear rates under conditions r=100 m, 

1,105/,5/,/1000 133   tJNEmkg Avapbtt  Pa•s, is shown in Figure 4. The  
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Figure 4.  The predicted viscosity with Eq. (24) vs. shear rate under conditions r=100 m, 

1,105/,5/,/1000 133   tJNEmkg Avapbtt   Pa•s.  

 

predicted flowing profile is quite similar to the shear-thickening phenomenon observed in 

concentrated aqueous suspensions of solid particles 
55,56

. In all known cases of shear-thickening 

phenomena observed in aqueous colloidal suspensions, there is a region of shear-thinning at 
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lower shear rates 
57

, which corresponds to the region below the shear rate of 0.01s
-1

 in Figure 4. 

In literature
 58,59

, the shear thinning and shear thickening phenomena could be explained with the 

following physical picture: (a) the formation of sliding layers; (b) the breakdown of these layers 

and large enough aggregates formed by the fragments of those broken layers as shear rate 

increases; The shear thinning phenomenon can be readily attributed to the slipping of layers 

passing each other, while the shear-thickening phenomenon is resulted from the breakdown of 

layers and formation of large aggregates at high shear rates; There is a critical shear rate at which 

the shear thinning gives away and shear-thickening starts to occur as the shear rate continues to 

increase beyond this critical point; If the average dimensions of shear-induced aggregates are 

large enough in flow-gradient direction to jam the flowing gap, an abrupt shear-thickening would 

occur, typically called colloidal jamming phenomenon 
58,59,60,61,62,63

, or called the discontinuous 

shear thickening
 38

; Jamming means that an amorphous system develop a yield stress and it could 

be unjammed if the applied shear stress is strong enough. The granular powders behave exactly 

same as concentrated colloidal suspensions in term of how viscosity changes with shear rates: At 

low shear rates granular systems display a shear thinning phenomenon; there is also a critical 

shear rate at which the shear thinning gives away to the shear thickening. The critical shear rate 

at current calculation conditions is 810
-3

 s
-1

, a relatively low shear rate in comparison with 

colloidal suspensions 
55,57

. As the shear rate increases further to the point where the generated 

shear stress (


 ) is larger than the applied shear stress , the granular systems become 

“jammed”, which is marked in Figure 4. The only different feature from colloidal jamming is 

that the viscosity of jammed granular systems doesn’t abruptly increases as shear rate increases 

further. In other words, in granular powders the jammed states may be easily melt under a higher 

shear rate and then jam again, relatively slowly pushing the viscosity higher and higher, which is 

addressed in detail in my another article 
21

.  

 

It is worth mentioning that the shear thickening predicted with Eq. (24) and demonstrated in 

Figure 4 is dependent of shear rate. As indicating in the introduction section, non-Brownian 

hard-sphere suspensions are expected to have viscosity independent of shear rate and shouldn’t 

show the discontinuous shear thickening phenomena, due to the disappearance of the Brownian 

motions. However, the experimental results just give opposite evidences. The discontinuous 

shear thickening phenomena are not captured with Eq. (24) either, but the shear rate dependence 

is predicted.  

 

The jamming phenomenon in granular systems has been extensively addressed in literature. The 

common assertions both theoretically and experimentally is that the jamming is a true second-

order critical phenomenon 
64,65

, in analogy with the glass-transition in molecular systems
 66

. A 

thermodynamic unification of jamming phenomena observed in both granular systems and 

molecular systems of glass transition was claimed to be established 
32

. Unlike molecular glasses 

where increasing temperatures would melt the glasses and make the systems unjammed, 

increasing granulotemeprature but keeping the applied shear stress same would cause the 

granular systems jammed. This apparent paradox may come from the way that the calculation is 

done: keeping shear stress unchanged but simply increasing the shear rates. Practically, one may 

be unable to freely increase shear rate if the applied shear stress is too small. This may only 

happen if the shear stress is strong enough to yield any resistant forces from the granular 

materials during shearing. Nevertheless, if the granulotemperature increase is resulted from the 

applied shear stress increase, the jammed granular systems would definitely melt, or called 
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unjammed. For molecular glasses like polymer glasses, both heating (increase temperature) and 

strong shear stress may melt glasses 
67,68

, while for granular systems, those two approaches of 

unjamming methods merge into one rout, as the granulotemperature is defined to linearly 

increase with applied shear stress, see Eq. (12).  

 

The applied shear stress plays an exact same role as shear rate in the viscosity equation, Eq. (24), 

and one may obtain a same viscosity profile against shear stress as shown in Figure 4 for 

viscosity against shear rates.  The viscosity calculated with Eq. (24) against shear stress is shown 

in Figure 5, under conditions r=100 m, 1,5/,/1000 3 


tmkg btt   for two cohesive  
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Figure 5. The predicted viscosity with Eq. (24) vs. shear stress calculated under conditions 

r=100 m, 1,5/,/1000 3 


tmkg btt   for two cohesive energies JNE Acoh

13105/   

and  JNE Acoh

13109/  . 

 

energies, JNE Avap

13105/  , and  JNE Avap

13109/  . There is a very steep decrease 

of viscosity at very low shear stresses, and there is no a plateau before that, implying that 

granular materials don’t have a yield stress, different from concentrated colloidal suspensions 
59,69,70

. At very low shear stresses the viscosity of granular materials is about 10
7
 Pa.s, quite close 

to that of Bitumen, 10
8
 Pa.s.  However, the viscosity steeply decreases even a very small shear 

stress is applied on the system, signaling that granular materials seem to be very “soild” but 

actually very weak. As the shear stress continues to increase the viscosity decreases until reaches 

a minimum point. Beyond this critical point, the viscosity would increases with the applied shear 

stresses, indicating that a strong shear-thickening phenomenon occurs in this region. Neither 

Bingham yield stress model 
71

 nor its modified forms like Herschel-Bulkey 
72

  and Casson 

equations 
73

 can describe the relationship between viscosity and shear stress after the critical 

shear stress point, an apparent yield-dilatant behavior ubiquitously spotted in many granular 

systems 
74,75,76,77

. An interesting phenomenon is that when one system of higher cohesive energy 

than another, its viscosity at very low shear stresses within the shear thinning region is higher 

than that of the low cohesive energy system; however, the viscosity becomes lower in shear-
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thickening region once shear stress is beyond the critical point. This may be because the 

dilatancy is resulted from the easy rearrangement of particles. A strong cohesive force between 

particles may increase difficulty for particles to re-arrange the configurational structures. Note 

that for a granular system with a higher cohesive energy the critical shear stress point shifts to a 

higher value, implying that a higher shear stress is needed to fully break down the particle 

structures in the powder bed.  

 

It would be very insightful to see how the viscosity is going to change with the true density of 

granular powders based on Eq. (24), as we empirically know that metallic particles usually flow 

much better than polymeric particles due to the true density difference. This topic is extensively 

discussed in my other article 
78

. For avoiding the redundancy, only the main results are presented 

here and please refer the literature 
78

 for detailed information. The predicted viscosity with Eq. 

(24) sharply decreases with the true density varying from about one to three, in line with 

empirical observations: Organic or polymeric materials of a true density about 1 g/cm
3
 typically 

have a poor flowability in comparison with metallic particles of a true density above 6 g/cm
3
. 

Even the interparticle cohesive energy between particles and particle sizes are same for both 

organic or polymeric and metallic particles, metallic particles are predicted to have a lower 

viscosity, thus flowing much better than low density particles. Another interesting prediction is 

that particles of higher cohesive energy give larger viscosity initially at low density regions, but 

show lower viscosity at high density regions. This seems to be intuitive and reasonable, as 

particle with stronger interaction forces are hard to move at the beginning; Once they start to 

flow, particles may flow together collectively due to strong cohesive forces, showing lower 

viscosities. More importantly, Eq. (24) provides theoretical bases for two most popularly used 

empirical flowability indicators 
54,79

, Carr index 
80

 and Hausner ratio 
81

 , which are defined as: 

 

b
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                                                                               (26) 

 

where CI is Carr index and Hr is Hausner ratio, tap is the ultimate (equilibrium) tap density that 

will not change with the further increase of tap numbers. Obviously, rHCI /11 , and tap 

should be smaller than but quite close to the true density,           , where      is the 

maximum packing fraction at the equilibrium tapping state. One may reach:  

b

t
m

b

tap








                                                                               (27) 

Empirically, a Carr's Index greater than 0.18 (Hr is about 1.22) is considered to be an indication 

of poor flowability, and below 0.15 (Hr is about 1.18) of good flowability 
82,83

, though many 

experimental evidences substantiate that Hausner ratio and Carr index are quite scarce and 

inaccurate flowability indicators
 84

. This criterion implies that high Hausner ratio leads to a high 

viscosity, which is obvious on the basis of Eq. (24), though Eq. (24) provides a much more 

complicated relationship between the viscosity of powders and the Carr index or Hausner ratio. 

Most pharmaceutical active ingredients and excipients are either small molecular organic 
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materials or polymers, and the true densities of those materials are quite similar and close to 1 

g/cm
3
. It would be reasonable to assume that the true density is a constant. Differentiating the 

viscosity expressed in Eq. (24) against  bt  /  under an assumption that t is a constant yields: 
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Suppose 
 

0
/


btd

d



 , one may readily obtain 
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or 

A
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b
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when 1

8

3

3






A

mcoh

tNr

E



, i.e. 131037.8/  Avap NE J under conditions r=100 m and 072.0


t  

Pa, m =0.72, then 2.1/ btap  , quite close to the empirical criterion value, 1.22, as mentioned 

earlier.  This point should be a critical turning point as it is obtained by assuming 
 

0
/


btd

d




, 

implying that the viscosity would most likely have a minimum at this point. Strictly speaking, 

the minimum viscosity point should occur at the point where Hausner ratio is expressed with Eq. 

(30), not a fixed value and varying with systems; Only at a special case, 1

8

3

3






A

mcoh

tNr

E



, the 

minimum viscosity point occurs at 2.1/ btap  . Eq. (24) together with Eq. (30) solves a long 

time controversial mystery in literature why Hausner ratio could be used as a flowability index 

for some materials but fails to work for others.  

In a word, the viscosity equation of granular systems obtained with Eyring’s rate process theory 

and Eyring’s free volume estimation seems to show that viscosity may go through a minimum 

against the cohesive energy, the shear rate, the shear stress, and Hausner ratio. The competition 

between the shearing forces and the interparticle energy is believed to be responsible for this 

kind of phenomena. The empirical flowability criteria expressed with the popular Carr index and 

Hausner ratio may be reasoned with the obtained viscosity equation under a special circumstance. 

A long time confusion and controversy associated with Carr index and Hausner ratio for 

indicating powder flowability is thus cleared out with this new viscosity equation. One may be 
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unable to numerically plot viscosity vs. particle size at same cohesive energy, as the cohesive 

energy typically changes with particle sizes. One important parameter missing in this viscosity 

equation is the particle volume fraction, which should play an important role in viscosity 

determination. Another parameter missing in this viscosity equation is the particle shape: 

spherical shape particles are definitely flow much better than needle-shape particles. However, 

this shape information should be indirectly included in bulk density data, as spherical shape 

particles tend to have higher bulk density than needle-shaped particles of same materials. Higher 

bulk densities mean lower Hausner ratios, thus lower viscosities before the critical points and 

higher viscosities after the critical points. A new approach to build up viscosity equations will be 

provided in next section for correlating the particle volume fraction information.  

3. Viscosity equation derived from Eyring’s rate theory and Hao’s free volume estimation 

 

In last section viscosity of granular materials is derived on the basis of Eyring’s free volume 

equation, Eq. (14). In this section, Eyring’s rate theory and Hao’s free volume calculation will be 

used to derive viscosity equations of granular materials. The inter-particle spacing (IPS) that 

scales the distance between two particle surfaces would be used for estimating the free volume of 

whole system, as used by Hao for deriving the viscosity equations of colloidal suspension 

systems 
41,42

 and tap density equations of granular powders 
50

. The free volume of an individual 

particle may be expressed as the space where an individual particle travels three dimensionally in 

a distance two times as long as the IPS 
41,42,50

:  

 
3333 )1/(64)2( rIPSV mfp                                           (31) 

 

where m  is the maximum packing fraction that the particles can reach under a shear and  is the 

particle volume fraction under current shear conditions. Theoretically, bttaptm   , , 

therefore, 
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Eq. (31) represents the free volume of a single particle. The total free volume in a system should 

be 
41,42

: 
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where Vw is the volume of the system. The free volume per unit volume of the whole system may 

be expressed as: 

33

_

)1/(29.15/   mwtfpf VVV                                               (34) 

If we still want to use Eq. (17) to derive the viscosity of granular materials with the free volume 

of particles per unit volume expressed in Eq. (34), one may need to modify Eq. (17), for the 

reason that the term fV in Eq. (17) may be considered as the energy needed to separate molecules 

per unit cell in the distance of 3/1)/( ANV , rather than the total free volume available in the 
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system. As mentioned earlier, the viscosity cannot be directly proportional to the free volume of 

the whole system. Instead, it should play in an opposite way, as the more the free volume is, the 

less the viscosity should be. When a granular system is under a shear stress and shear rate 


 , 

according to the literature 
21

, the shear force applied to the system per free volume, f, over a 

time period of t may be expressed as: 
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where Vtfp is the total free volume in the system expressed in Eq. (33) and  
_

fV is the total free 

volume per unit volume and expressed in Eq. (34). So the energy needed for moving one particle 

per free volume unit in a distance of the inter-particle spacing may be written as: 
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Replacing 
3/1

fV with Ef  expressed above in Eq. (17) yields 
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 Again, taking the simple shear as an example, using VNEf A //  , trm  3
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4
  and 

substituting Tgp with Eq. (11) yields 
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Note V is the molar volume of particles expressed in Eq. (21). Substituting Eq. (21) for V and Eq. 

(23) for E0 into Eq. (38) yields 
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Note tb   , replacing 
vap

E  with 
coh

E  and re-arranging Eq. (39) leads 
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Eq. (40) represents how viscosity changes with particle volume fraction, a very important 

parameter if a granular system is considered as particles dispersed in air, in analogy with 

colloidal suspensions where particles are dispersed into a liquid medium. Anything that may 
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change particle volume fraction, like granulotemperature, shear stress, air pressure inside a 

powder system, interparticle forces, moisture, etc., could have an impact on viscosity. Note that 

Eq. (40) should be identical to Eq. (24), if the particle volume fraction in Eq. (40) is properly 

related to the granulotemperature. The big difference between Eq. (24) and Eq. (40) is that the 

viscosity in Eq. (24) is proportional to the quartic power of the particle radius, while it only has a 

linear relationship with the particle radius in Eq. (40); the cohesive energy per particle is 

included in Eq. (24) outside of the exponential term, however, it is missing in Eq. (40) besides 

that it appears in the exponential term. Keep in mind that the cohesive energy may be 

proportional to the molar volume of particles, thus both these two equations are essentially 

identical: it is linearly proportional to the particle radius if the cubic power of particle radius is 

taken away from the cohesive energy in the denominator of Eq. (24). Furthermore, Eq. (40) 

assumes that there is a maximum packing fraction for granular systems at which the interparticle 

spacing is zero and the whole system is completely jammed. In such a case the viscosity of 

whole system according to Eq. (40) turns to infinity. Figure 6 shows the predicted viscosity with 

Eq. (40) plotted against the particle volume fraction under a simple shearing with conditions  

1


t  Pa, 
13105/  Avap NE J, r=100 m, particle true density, 1000t  3/ mkg , and the 

random close packing is assumed with 63.0m . The viscosity increases several orders of 

magnitudes when the particle volume fraction changes from 0.01 to 0.63. A dramatic increase of 

viscosity seems to start at the particle volume fraction about 0.4 and viscosity finally reaches to 

infinity once the particle volume fraction approaches to the maximum packing fraction, 0.63, at 

random close packing assumption. This is very similar to a percolation process where the 

physical properties of the whole system are dependent on how the system is percolated from one 

end to another due to the crowding effect. The infinity viscosity implies that the granular system 

is jammed and could not flow any more.  

 

Eq. (40) shows that the viscosity apparently is dependent on the shear rate and shear stress, too, 

and the dependence should be very similar to what is shown in Fig. 4 and 5.  Figure 7 shows the 

predicted viscosity against the shear rate under conditions r=100 m, 

1,105/,/1000 133   tJNEmkg Acoht   Pa•s, and 63.0m , with two different particle 

volume fractions, =0.2 and =0.6, respectively. A similar shearing thinning phenomenon 

followed by shear thickening phenomenon is predicted. Again, when the viscosity times the 

shear rate is higher than the shear stress, the system starts to jam even when the particle volume 

fraction is much less than the maximum volume fraction. This conclusion seems qualitatively 

consistent with the computer simulation results that the jammed states may be diagramed with 

both shear stress and particle volume fraction 
85

.  The curves of viscosity vs. shear rate shown in 

Figure 7 are very similar to that of Figure 4, indeed, and a same trend will be observed for shear 

stress, too. Again, Figure 7 demonstrates that the shear thickening is dependent on shear rate, 

which is a puzzling issue in highly concentrated colloidal suspensions containing non-Brownian 

particles, as shear rate independence is predicted but untrue.  Eq. (40) resolves the shear rate 

dependence issue, but again predicts a continuous shear thickening rather than discontinuous 

shear thickening. Intuitively, once the Brownian motion disappears in colloidal suspensions, 

those systems should behave identically like granular powders. In this scenario, particles will 

start to jam at a shear rate where the generated shear stress is larger than the applied shear stress, 

as indicted previously; A higher applied shear stress will force the jammed state to melt, until 

reach the next jamming state. The jamming-melting-jamming cycle will continue for a long time 
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of period, creating a continuous shear thickening phenomena; The discontinuous shear 

thickening should never directly happened in this framework, however, have been observed in 

many highly concentrated colloidal suspensions. The discrepancy could be resulted from 

concurrences induced by shear that will be addressed by the end of this section, or from extrinsic 

factors during measurements such as the geometric confinement or space constraints 
36 37
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Figure 6.  The predicted viscosity with Eq. (40) vs. the particle volume fraction under a simple 

shearing 1


t Pa, 13105/  Acoh NE J, r=100 m and particle true density, 1000t  

3/ mkg ,   The random close packing is assumed with 63.0m .  
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Figure 7.  The predicted viscosity with Eq. (40) vs. shear rate under conditions  r=100 m, 

1,105/,/1000 133   tJNEmkg Acoht   Pa•s, and 63.0m .  
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The viscosity dependence on the cohesive energy predicted with Eq. (40) should be quite 

different than Eq. (24). Figure 8 shows the viscosity against the cohesive (or adhesive) energy 

between particles predicted with Eq. (40), under assumptions that particle radius r=100 m, 

1000t  kg/m
3
, 63.0m , 1



t , obtained when particle volume fractions are 0.2 and 0.6, 

respectively.   The system of particle volume fraction 0.6 is predicted to have a higher viscosity 

than that of particle volume fraction 0.2, which intuitively makes sense. For both particle volume 

fractions, the viscosity doesn’t change with the cohesive energy, until the cohesive energy 

reaches a critical point, about 10
-10

 J. Then the viscosity dramatically increases with the cohesive 

energy. This transition could be resulted from the particle jamming where the cohesive energy 

between particles is comparable or larger than the shear forces applied to the system and the 

system start to jam.  Such a jamming transition even happens for particle volume fraction as low  
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Figure 8 The viscosity vs. the cohesive (or adhesive) energy between particles predicted with Eq. 

(40).  Particle radius  r=100 m, 1000t  kg/m
3
, 63.0m , 1



t .  

 

as 0.2. This type of viscosity jump is again very similar to the discontinuous shear thickening 

observed in many highly concentrated colloidal suspensions. For the purpose of seeing clearly 

how the shear forces will impact on the viscosity when the cohesive energy varies, the predicted 

viscosity with Eq. (40) is plotted against the cohesive energy under two shearing conditions in 

Figure 9. When the shear force indicated by t


  is as low as 0.1 Pa, the system shows a lower 

viscosity in comparison with an identical system at the high shear force condition,  1


t . With 

the increase of the cohesive energy, the viscosity of the system under a low shear force condition 

dramatically increases, again similar to the discontinuous shear thickening. In contrast, at a high 

shear force the viscosity only increases a little bit. Clearly, this is resulted from the competition 

between the shear force and the cohesive energy. If the applied shear force is larger than the 

cohesive energy between particles, the system yields and shows a low viscosity; otherwise, the 

system shows a very high viscosity, a very reasonable prediction.   
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It is worth noting that although Eq. (40) doesn’t directly predict a discontinuous shear thickening 

behaviors as shown in Figure 7, Figures 6, 8 and 9 show that the discontinuous thickening like 

behaviors may still happen, when the particle volume fractions approach to the maximum 

packing fraction, when the cohesive energy between particles exceeds certain values, and when 

the applied shear energy ( t


 ) is small enough. If any those three conditions are met during the 

increase of shear rates, the discontinuous shear thickening phenomenon will be observed. Recent 

numerical simulation work 
35,39

 indicates that the discontinuous shear thickening phenomenon 

will be generated once the interparticle frictional coefficient is larger than zero, supporting the 

derivation from Eq. (40) that the large enough cohesive energy will lead to abrupt viscosity 

increase, as the cohesive energy between particles could simply come from the frictional 

interactions, electrostatic attractions, or other forces. The discontinuous shear thickening studied 

in cornstarch/water suspensions using a rheometer coupled with local Magnetic Resonance 

Imaging (MRI) measurements reveals that the discontinuous shear thickening only occurs when 

an inhomogeneity is induced during shear and the suspension is separated into a low-density 

unjammed and a high-density jammed region
 86

. Again, the high-density jammed region means 

that the particle volume fraction in this region could very likely approach to the maximum 

packing fraction, consistent with what is demonstrated in Figure 6. Two of three conditions 

proposed for discontinuous shear thickening are evidenced experimentally, and the third 

condition related to the applied shear energy could be easily understood, as the shear thinning 

and thickening should be determined by the competition between the applied shear energy and 

the cohesive energy between particles: a weaker shear energy in comparison with the cohesive 

energy between particles will lead to the shear thickening, otherwise shear thinning. 
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Figure 9 The viscosity vs. the cohesive (or adhesive) energy between particles predicted with Eq. 

(40).  Particle radius  r=100 m, 1000t  kg/m
3
, 63.0m ,=0.2.  

 

 

III Discussion 

The viscosity concept of granular powders looks really odd at the beginning, as granular powder 

systems are athermal systems and there is no molecular level frictional forces resulted from the 
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movements of particles. However, under the proper definition of granular temperature, granular 

powders will gain an analogous and meaningful flowability indicator as usually used in thermal 

systems, the viscosity. Defining the viscosity in an uniformed manner and deriving viscosity 

equations using the same uniformed approaches that have been proved to work for the liquids, 

colloidal suspensions, and polymeric systems, could provide an easy and comprehensible means 

to understand granular powder systems. Eyring’s rate process theory and free volume concept are 

two very powerful tools widely employed to treat many problems in physical chemistry, physics, 

and material sciences. They are borrowed again to treat granular powders and the obtained 

viscosity equations definitely provide many insightful clues on powder flowability. Together 

with my early publications employing the rate process theory and the free volume concept for 

deriving viscosity equations of pure liquids, colloidal suspensions, and polymeric melts and 

solutions
 41,42

, both thermal and athermal systems are therefore unified with a single approach.  

The approach presented in this article distinguished from others lies on analogously defining 

viscosity of dry granular powders after granular temperature is defined consistently with the 

traditional temperature. However, this is my first attempt and it wouldn't resolve every issue in 

dry granular powders area. Since there is no a systematical way to experimentally measure the 

viscosity of granular powders as we usually do for liquids, colloidal suspensions, and solids, the 

obtained viscosity equations may only be compared with empirical macroscopic observations of 

dry granular powders, which are demonstrated across my article whenever possible. An example 

of those successes is that the equation (24) provides a theoretical basis for widely used empirical 

powder flowability indicators in many industrial areas, Hausner ratio or Carr index. Another 

successful example is that the predicted shear thickening from my viscosity equations, Eq. (24) 

and (40), is dependent on shear rate, the cohesive energy between particles, the particle volume 

fractions, as demonstrated from Figures 3 to 9. Both Eq. (24) and (40) predict a continuous shear 

thickening rather than the discontinuous shear thickening, which is reasonable as the jamming-

melting-jamming cycles should always happen in granular powders. Nonetheless, the 

discontinuous shear thickening may still happen, if one of the three conditions below could be 

induced and met during shear: the particle volume fractions approach to the maximum packing 

fraction; the cohesive energy between particles exceeds certain values; and the applied shear 

energy ( t


 ) is small enough. It is those concurrences induced by shear that indirectly 

contribute to the discontinuous shear thickening.   

From viscosity equations and all figures presented in this article, it looks like the fundamental 

mechanisms of how dry granular particles flow may be concisely described with the following 

scenario. If the applied shear energy even is slightly larger than the cohesive energy between 

particles, particles start to flow and an immediate shear thinning phenomena should be always 

observed due to a cascade of structural unbalances in powder beds. Once the applied shear field 

is strong enough capable of driving particles to move, the induced particle-particle interaction 

may create resistance to the flow and thus the shear thickening starts to appear. Initially the 

generated resistance should be smaller than the applied shear force, the system should freely 

flow. Further increase of shear rates may make the resistance force larger than the applied shear 

force, the system starts to jam. After this the system enters jamming-melting-jamming cycles as 

described earlier. In such a scenario, the continuous shear thickening is therefore expected, as 

jamming-melting-jamming cycles may last a long period of time. During vigorous shear, particle 

segregation
 87,88

 may occur, creating inhomogeneities in the system where some regions have 

more particles than others; If the particle volume fractions in these regions are high enough that 
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the particle interaction forces or called the cohesive energy between particles are much stronger 

than the applied shear forces, or the particle volume fraction approaches to the maximum 

packing fractions and a strong locking effect is generated due to the geometric constraints, the 

system is jammed and the discontinuous shear thickening thus occurs. It looks like that the 

discontinuous shear thickening is the indirect effect induced by the shear rate.  

 

IV Summaries and conclusions 

Using the analogous temperature defined in granular powders, the viscosity equations of granular 

powders are derived on the basis of Eyring’s rate process theory and free volume concept. The 

viscosity equations are obtained with three different ways: 1) derived with Eyring’s rate process 

theory only; 2) derived with Eyring’s rate process theory and Eyring’s free volume method; 3) 

derived with Eyring’s rate process theory and Hao’s free volume calculation approach. The first 

approach leads to a similar Arrhenius viscosity equation with unknown parameter A. The second 

approach leads to a very successful viscosity equation, showing that viscosity may go through a 

minimum against the cohesive energy, the shear rate, the shear stress, and Hausner ratio.  It also 

can clearly tell why the Carr index or the Hausner ratio can be used to empirically scale powder 

flowability and provide a theoretical basis for the empirical criteria widely used in many 

industrial fields. The third approach correlate viscosity with particle volume fractions and clearly 

demonstrate the viscosity of granular powders is strongly dependent on the competition between 

the shear force and the cohesive energy between particles.  

 

The obtained viscosity equations show that the viscosity of granular powders are complicatedly 

dependent on powder densities both true and bulk densities, the applied shear stress and shear 

rate, the shear time, the cohesive energy between particles, the particle volume fractions, and the 

particle size. Although the derived viscosity equations, Eq. (24) and (40), predict a continuous 

shear thickening rather than the discontinuous shear thickening, they clearly tell that the 

discontinuous shear thickening may still occur when one of the following three cases are induced 

and met during shear: the cohesive energy between particles exceeds a critical value; the applied 

shear force is small enough in comparison with the cohesive energy; and the particle volume 

fraction approaches to the maximum packing fraction. It is those concurrences induced by shear 

that indirectly contribute to the discontinuous shear thickening.  

 

A fundamental mechanism on how dry granular powders flow may be described below: particles 

may easily flow even under a small shear due to the weak structural nature of powder systems.  

A cascade of unbalanced structural failures due to particles moving of supportive positions leads 

to an initial shear thinning phenomena. Continuous increase shear energy brings granular 

powders into free flowing regime, until the generated shear resistance is larger than the applied 

shear force and the systems start to jam.  After that the systems enter jamming-melting-jamming 

cycles, displaying the continuous shear thickening or discontinuous shear thickening, dependent 

on if local particle volume fractions or the interparticle forces are high enough to cause 

systematical jamming. All predictions are consistent with experimental evidences, empirical 

observations, and general intuitions. The current work may lay a foundation for quantitatively 

scaling the flowability of granular powder, thus has a significant impact on industrial 

applications, too.   
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