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Chapter 10 – Digital PID 

Goals 

 To show how PID control can be implemented in a digital computer program 

 To deliver a template for a PID controller that you can implement yourself on the micro-processor 

platform of your choice 

 To consider practical constraints on digital control 

 To present a quick description of pulse-width modulation 

Introduction 

In most books on digital control one is quickly introduced to the z-transform and the z-plane, as opposed 

to the s-plane, which we have used primarily for the root locus in designing PID controllers.  I have 

chosen not to use the z-transform here to explain digital controls.  Rather the explanation here is more 

practical.  It explains digital controls more directly, discusses how to implement a digital PID, and 

describes several phenomena to be aware of when implementing digital control systems. 

Analog vs. digital world 

With digital control we are interfacing a computer (micro-controller) with the outside (analog) world.  

Figure 10.1 shows a control loop with the boundary demarcated between the two different regimes. 

 

Figure 10.1 – Control loop, showing boundary between the outside (analog) world and the digital 

world inside the micro-processor 

The actuator, plant, and sensor are real devices in the real (analog) world.  The actual value being 

controlled (C) is sensed by a sensor that, here, is modelled as a simple gain.  Usually the sensor produces 

an electrical signal—often a voltage—which then is sent into the computer via an analog-to-digital 

converter (A/D).  There the original signal, whether it be temperature, pressure, position, velocity, or 

whatever, is recovered in digital form inside the computer by dividing the representative voltage 

through by the sensor gain.  This is shown as Cd in the diagram, with the “d” indicating that it is the 

digital representation of the real, sensed variable C.  At this point the computer algorithm for the 

comparison with the desired value (R) can take place, the error determined in digital format, and the 

controller algorithm executed to come up with Ud , the digital version of the analog value to be sent out 

to the actuator.  This is converted by the D/A converter into a real signal (U, usually a voltage), which 

starts the actuation chain. 
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Of course the A/D and D/A converters should have a value of 1, so that the voltage or current sensed is 

converted accurately into and out of the computer, respectively.  Figure 10.1 also shows why, with 

computer-controlled loops, they generally become unity-feedback loops.  What can happen is that one 

of the converters can malfunction, and it ceases to have 1 as its transfer function. 

The analog world is a smear; values can change continuously; the size of the smallest change from one 

value to another is infinitesimal.  The digital world, on the other hand, is a collection of values that are 

used to model the outside world discreetly.  Digital bits are either off or on.  To model a changing 

voltage, for example, a group of bits is used to model an analog voltage.  These bits are either off or on, 

and that status represents the level at which the analog signal has arrived.  For example, if a sensing 

device only recorded increments of 1 volt, to the micro-processor, there would be no difference 

between 3.2 volts, 3.5 volts, and 3.9 volts.  All would be 3.0 volts. 

A more detailed example of this:  Take the first-order response shown in Figure 10.2.  The t-axis is 

segmented into instances, each t, the scan rate, apart.  A scheme can be devised to model the level 

arrived at using three bits, for example.  Three bits can be used to represent eight different levels of 

voltage.  Counting in the binary number system from 0 to 7, these values are 000, 001, 010, 011, 100, 

101, 110, 111.  An analog-to-digital (A/D) converter senses the voltage coming in and turns on the bits 

lower than the voltage that it senses. 

 

0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t9 t > t10 

000 001 010 011 100 101 101 110 110 110 111 111 

 

Figure 10.2 – Time slices and voltage-level slices 

As can be seen with a careful comparison, at the time instances shown, the bits will be turned on to 

represent that the real, analog voltage has arrived at the voltage level that corresponds to a particular 

bit.  Thus the sensed voltage has the values represented in the table; this is graphically shown as the 

stairstep curve shape shown under the analog voltage curve. 

Of course 3 bits does not give a good resolution of the analog curve.  Three binary bits gives 23 = 8 

possible values.  Typically more bits are used to give a higher resolution of analog values.  Ten, for 

instance, would give 210 = 1024 different levels, and it is easy to see that 1024 levels would allow the 

curve to be represented with much better fidelity.  Three bits were used here simply to show the nature 
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of the problem of making a digital representation of an analog curve.  Here the three bits would be 

mapped to a range, where 111 represented the maximum value of voltage measured by the sensor.  To 

capture values above this range, yet another bit would be needed, as shown at the top of the 3-digit 

values. 

Of course a continuously changing signal can be better captured by making the time increments smaller 

and smaller and by making the resolution of the bits representing the signal ever finer.  And, indeed, 

over the decades-long history of digital control, this is exactly what has happened.  Micro-controllers 

have become ever faster and more and more bits have been assigned to capture analog quantities.  This 

has always been accompanied by greater cost, but as digital-control technology has progressed, these 

costs have dropped dramatically too.  Thus we have today the happy circumstance that for a great many 

applications in the control of physical systems, one is not even aware of this discretization of time and of 

the digital representation of the quantity either being measured or controlled. 

The structure of digital control 

Digital control is implemented in specialized micro-controllers developed for hardened industrial use.  

With the coming of the electronic hobbyist movement, small, inexpensive micro-processors have 

become available that are fast enough to provide adequate PID control for many mechanical, thermal, 

or fluid systems.  These micro-controllers are designed to be user-friendly, even for novice 

programmers.  Thus you can program your own PID.  Here's how. 

The control program in the micro-controller often runs in a fixed time-step loop.  This loop is very fast, 

especially compared with the reaction times of most mechanical systems.  Typical loops execute once 

every 1-10 milliseconds.  Generally this is adequate for controlling most mechanical systems.  A 

problem, called latency, does exist if the loop is too slow for the process it’s controlling.  This is 

discussed at the end of this chapter along with other problems that can accompany digital control.  

Digital control has many advantages over analog control (control with standard electrical components 

and op-amps).  But analog control still beats digital control in that one critical area of speed.  Analog 

controllers respond virtually with no delay, and that is necessary for very fast systems. 

As was stated above, digital controllers run a looping computer program that provides the control.  A 

rough layout of this computer program’s structure is given in Figure 10.3.  These three steps are carried 

out, one after the other, whenever the controller is running in automatic mode.  With this broad 

structure in mind, let’s look at the details of writing a PID controller within this structure. 
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Figure 10.3 – Digital control loop structure 

Implementation of PID control in a computer program 

The following description of a PID controller is general and is not computer-language specific.  This 

should allow you to implement a controller, whether it be in C, Java, Python, Matlab m-code, Arduino 

code, or whatever computer language you wish.  The code is pseudo-code−that is, code that just gives 

the ideas that make up the implementation.  The pseudo-code is interspersed with explanations.  Then 

at the end the entire pseudo-code controller is given as it would appear in a micro-controller.  You 

should be able to use this as a template for your implementation in whatever computer language. 

Some variables are needed: 

Vs the voltage coming from the sensor 
VsPrev the voltage from the sensor in the previous pass through the loop 
KSens Sensor gain (volts/physical quantity) 
BSens Sensor bias (units:  physical quantity) 
KP the controller’s proportional gain 
KI the controller’s integral gain 
KD the controller’s derivative gain 
dt the controller scan rate 
err the error (input to the controller) 
errPrev the error on the previous pass through the loop 
errDot d(err)/dt, the change in the error with time 
errAccum the accumulated area under the error curve 
r the desired value 
cd the digital version of the actual value (c) 
pAction the proportional action from the controller 
iAction the intergral action from the controller 
dAction the derivative action from the controller 
u the action out of the controller in % of actuator capability 
Vu the voltage out from the controller to the actuator 
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VRange the voltage range of the actuator 
AUTO a constant set up to denote that the loop is in automatic mode 

 

The following code reads the sensor and calculates the proportional action of the controller.  Note that 

the sensor has a gain but a bias as well.  Bias is an additive constant, because the voltage from the 

sensor may not be 0 when the physical quantity measured is 0. 

Vs = getV(); 

cd = Vs / KSens; 

cd = cd + BSens; 

err = r – cd; 

pAction = err * KP; 

For the other two control actions—I and D—one needs to calculate errAccum and errDot.  errDot is 

just the change in the error with time.  We need the error from the previous pass through the loop to 

calculate this.  We also need the scan rate of the controller, that is the time between consecutive passes 

through the loop. 

errDot = (err – errPrev)/dt; 

dAction = errDot * KD; 

errAccum is the accumulated area under the error curve since the controller was put into service.  It is 

accumulated slice by slice with each time step.  We’ll use the Trapezoidal Rule to calculate the slice of 

error under the error curve between the previous and the present time steps. 

errAccum = errAccum + (err + errPrev)/2*dt; 

iAction = errAccum * KI; 

Now we have all the actions calculated.  The action out of the controller is simply the sum of the three 

actions. 

u = pAction + iAction + dAction; 

Vu = u * VuRange; 

putActuator(Vu); 

Prior to restarting the loop, we need to preserve the previous values for next time. 

VsPrev = Vs; 

errPrev = err; 

Now the loop is finished and goes back to the beginning for another pass.   

We need to set the loop up properly to execute until it’s commanded to stop.  A command to stop is a 

command for the loop to go into manual mode.  Thus during each pass through the loop, the operation 

mode (automatic or manual) needs to be checked to see if we need to exit the loop.  We need also to 

set errAccum to 0 prior to entering the loop.  Thus the loop should be bracketed by the statements 
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errAccum = 0; 

while (getAutoManStatus() == AUTO) { 

 Put loop here 

}; 

Thus the entire loop is 

errAccum = 0; 

while (getAutoManStatus() == AUTO) { 

Vs = getVs(); 

cd = Vs / KSens; 

cd = cd + BSens; 

err = r – cd; 

pAction = err * KP; 

errDot = (err – errPrev)/dt; 

dAction = errDot * KD; 

errAccum = errAccum + (err + errPrev)/2*dt; 

iAction = errAccum * KI; 

u = pAction + iAction + dAction; 

Vu = u * VuRange; 

putActuator(Vu); 

VsPrev = Vs; 

errPrev = err; 

}; 

Problems encountered with digital control 

As was explained at the first of this chapter, a problem inherent to digital control is that the scan rate of 

the controller can be too slow for the process it is trying to control.  Thermal processes usually are slow, 

so this problem is not encountered there.  But hydraulic-actuation processes can be very quick, and the 

controller must keep pace with the changing nature of the process.  If the scan rate of the controller is 

too slow, up and down changes in the process can be missed in between sampling instances of the 

sensor.  Figure 10.4 illustrates a possible scenario of this type. 

 

Figure 10.4 - Slow sampling rate misses changes in measured variable 
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In this case, even though the variable being sampled is changing up and down, it looks as if it is at a 

steady level because the sampling instances just happen to catch it as it crosses a steady value.  An 

instrument panel displaying the value of V would thus show no change in V, even though V is actually 

experiencing quite an active excursion from V0 .  Though this is somewhat of a contrived example, it is 

easy to see that the first peak value would be missed or measured to be lower unless the sampling 

instance just happened to coincide with the occurrence of the peak.  Obviously the solution to this 

problem is to reduce t , the scan rate of the micro-processor. 

Pulse-Width Modulation 

In the digital world it is easy to turn things on and off, harder to modulate them, i.e. to adjust them to 

values between on and off.  A digital board will usually work with standard voltage levels—0 to 5 volts, -

5 to +5 volts, -10 to +10 volts.  So in a 0 to 5 volt system, you can produce an ON (5 volts) by telling the 

board controller to write put that system voltage on a particular output pin on that board.  But if instead 

you want a voltage level of, say 3.2 volts, it is not as easy to produce this as you might think. 

The standard way of doing this is to use pulse-width modulation (PWM).  An output signal is produced 

that is a square wave, a sequence of ONs and OFFs as shown in Figure 10.5.  This figure shows three 

different PWM signals, all for a processor that works with 0-5 volts as its output. 

 

Figure 10.5 - Pulse-width modulated signals 

The signal is a sequence of pulses.  The frequency of the pulses is fixed and depends on the 

microprocessor being used to generate it.  The faster the microprocessor, the faster the PWM frequency 

can be.  The top signal exhibits a duty cycle of 50%.  This means that the output voltage is on 50% of the 

PWM period and off 50% of the period.  This would correspond to an equivalent output voltage of 2.5 

volts.  The middle signal shows a signal with a duty cycle less than 50%.  This would correspond with an 

output voltage of less that 2.5 volts.  The bottom figure shows a signal with a duty cycle of more than 

50%, so an output voltage of somewhere between 2.5 and 5 volts.  To get 5 volts out, the duty cycle 

needs to be 100%.  For 0 volts, the duty cycle is 0%.  The width of the pulse can be modulated, that is 

adjusted, to give any output voltage between 0 and 5 volts.   
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Obviously the device that this pulsed signal is fed into will “feel” the pulses.  An LED will blink on and off 

very quickly.  A motor will be subjected to this pulsed signal.  A valve will be commanded to open and 

close very rapidly.  But physical reality, especially mechanical parts, cannot react so rapidly due to their 

inertia.  Thus they behave as if the signal they receive actually is a steady analog voltage with the value 

that corresponds to the modulated pulse width.  An LED which can switch on and off to follow the pulse 

is perceived to be brighter the higher the duty cycle.  The human eye perceives the modulation of pulses 

to an LED to be brightening and dimming of the LED. 

Problems 

10.1 Take the digital representation of the curve of Figure 10.1 and change the algorithm so that the 

voltage level represented by a measurement is increased automatically by half the V to the next 

voltage level.  Draw on the chart below the digital representation of the curve with this 

modification in the algorithm. 

 

 Is this an improvement over the original algorithm, illustrated in Figure 10.1? 

10.2 Sometimes a user wants to flush out the accumulated error used in the integral-action calculation 

and start over from zero.  Let’s modify the existing loop to allow this.  Define a logical variable 

named reset.  Right after the sensor voltage is gotten, use a function getReset()to set reset.  

Then check this with an if statement and reset the accumulator to 0.0 if reset is true.  To test a 

logical variable, the syntax is if(a) {…}; . 

10.2   A micro-controller can only output a limited range of voltage.  That is, VuMin < Vu < VuMax.  

Modify your loop to include a check of output voltage and set up statements to enforce these 

limits. 

10.3   Anti-wind-up for integral control is explained in Chapter 9.  But briefly, the way it works is that, if 

the controller output is saturated, then the accumulation of error is suspended.  Modify the PID 

algorithm given in this chapter to include anti-wind-up. 

10.4   Implement manual-mode operation of the controller.  Include a check each time through the loop 

to getMode().  Store this into a variable called mode.  Then let there be two constants MAN and 
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AUTO, so that the algorithm goes into the right place to either have Vu calculated by the controller 

or to have it increased, decreased, or left alone manually.  Implement this by having a call to 

getIncr() which returns either 1, 0, or -1.  Then increase or decrease Vu by 1% of the range 

either up or down. 

 You will need to have an outer loop that checks the controller status with getCntlStatus().  

This will return either the value ON or OFF.  If it returns OFF, then the loop is exited. 

10.5   Whatever Vu is, it is some percentage of the range of output of the controller.  Use VuMin and 

VuMax to calculate UPercent.  Then display this percent output with a call to 

displayUPercent(). 

10.6 Let’s say that we have a motion-control application where we want to move a robot arm from 

point A to point B.  The motor that drives the arm receives a PWM signal from a microprocessor 

for the motion.  The signal is generated with a period of 0.1 seconds.  To get from point A to point 

B, the signal has the time profile shown below. 

 

Make a plot of the PWM signal for this cycle of motion, showing the signal from 0 to 6 seconds. 

 


