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Preface

An approximate analysis is often more useful than an exact solution!

This counterintuitive thesis, the reason for this book, suggests two ques-
tions.

One question is: If science and engineering are about accuracy, how can
approximate models be useful? They are useful because our minds are a
small part of the world itself. When we represent a piece of the world in
our minds, we discard many aspects — we make a model — in order that
the model fit in our limited minds. An approximate model is all that we
can understand. Making useful models means discarding less important
information so that our minds may grasp the important features that
remain.

This perhaps disappointing conclusion leads to a second question: Since
every model is approximate, how do we choose useful approximations?
The American psychologist William James said [10, p. 390]: ‘The art of
being wise is the art of knowing what to overlook.” This book therefore
develops intelligence amplifiers: tools for discarding unimportant aspects
of a problem and for selecting the important aspects.

These reasoning tools are of three types:

1. Organizing complexity
— Divide and conquer
— Abstraction
2. Lossless compression
— Symmetry and conservation
— DProportional reasoning
— Dimensions

3. Lossy compression
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— Easy cases

— DProbabilistic reasoning
— Lumping

— Spring models

The first type of tool helps manage complexity. The second type helps
remove complexity that is merely apparent. The third type helps discard
complexity.

With these tools we explore the natural and manmade worlds, using ex-
amples from diverse fields such as quantum mechanics, general relativity,
mechanical engineering, biophysics, recreational mathematics, and cli-
mate change. This diversity has two purposes. First, the diversity shows
how a small toolbox can explain important features of the manmade and
engineered worlds. The diversity provides a library of models for your
own analyses.

Second, the diversity separates the tool from the

details of its use. A tool is difficult to appreciate

abstractly, without an example. However, if you

see only one use of a tool, the tool is difficult to

distinguish from the example. An expert, familiar with the tool, knows
where the idea ends and the details begin. But when you first learn a
tool, you need to learn the boundary.

An answer is a second example. To the extent that
the second example is similar to the first, the tool A
plus first use overlaps the tool plus second use.
The overlap includes a penumbra around the tool. ‘
The penumbra is smaller than it is with only one

example: Two uses delimit the boundaries of the
tool more clearly than one example does.
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More clarity comes using an example from a dis-
tant field. The penumbra shrinks, which separates
the tool from examples of its use. For example,
using dimensional analysis in a physics problem
and an economics analysis clarifies what part of
the illustration is specific to physics or economics
and what part is transferable to other problems.
Focus on the transferable ideas; they are useful in
any career!

This book is designed for self study. Therefore, please try the problems.
The problems are of two types. The first type are problems marked with
a wedge in the margin. They are breathers during an analysis: a place to
develop your understanding by working out the next steps in an analysis.
Those problems are answered in the subsequent text where you can check
your thinking and my analysis — please let me know of any errors! The
second type of problem, the numbered problems, give practice with the
tools, extend a derivation, or develop a useful or enjoyable model. Most
numbered problems have answers at the end of the book.

I hope that you find the tools, problems, and models useful in your career.
And I hope that the diversity of examples connects with and aids your
curiosity about how the world is put together.

Bon voyage!






Part 1

Organizing
complexity

1| Divide and conquer 3

2| Abstraction 27

The first solution to the messiness and complexity of the world, just as
with the mess on our desks and in our living spaces, is to organize the
complexity. Two techniques for organizing complexity are the subject of
Part 1.

The first technique is divide-and-conquer reasoning: dividing a large
problem into manageable subproblems. The second technique is abstrac-
tion: choosing compact representations that hide unimportant details in



order to reveal important features. The next two chapters illustrate these
techniques with many examples.



1
Divide and conquer

1.1 Example 1: CDROM design 4
1.2 Theory 1: Multiple estimates 8
1.3 Theory 2: Tree representations 11
1.4 Example 2: Oil imports 15
1.5 Example 4: The UNIX philosophy 18

How can ancient Sumerian history help us solve problems of our time?

From Sumerian times, and maybe before, every empire solved a hard
problem —how to maintain dominion over resentful subjects. The obvious
solution, brute force, costs too much: If you spend the riches of the empire
just to retain it, why have an empire? But what if the resentful subjects
would expend their energy fighting one another instead of uniting against
their rulers? This strategy was summarized by Machiavelli [16, Book VI]:

A Captain ought. .. endeavor with every art to divide the forces of the enemy,
either by making him suspicious of his men in whom he trusted, or by giving
him cause that he has to separate his forces, and, because of this, become weaker.
[my italics]

Or, in imperial application, divide the resentful subjects into tiny tribes,
each too small to discomfort the empire. (For extra credit, reduce the
discomfort by convincing the tribes to fight one another.)

Divide and conquer! As an everyday illustration of its importance, imag-
ine taking all the files on your computer — mine claims to have 2,789, 164
files — and moving them all into one directory or folder. How would
you ever find what you need? The only hope for managing so much
complexity is to place the millions of files in a hierarchy. In general,



1.1

divide-and-conquer reasoning dissolves difficult problems into manage-
able pieces. It is a universal solvent for problems social, mathematical,
engineering, and scientific.

To master any tool, try it out: See what it can do and how it works, and
study the principles underlying its design. Here, the tool of divide and
conquer is introduced using a mix of examples and theory. The three
examples are CDROM design, oil imports, and the UNIX operating system;
the two theoretical discussions explain how to make reliable estimates
and how to represent divide-and-conquer reasoning graphically.

Example 1: CDROM design

The first example is from electrical engineering and information theory.
How far apart are the pits on a compact disc (CD) or CDROM?

Divide finding the spacing into two subproblems: (1) estimating the CD’s
area and (2) estimating its data capacity. The area is roughly (10cm)?
because each side is roughly 10cm long. The actual length, according
to a nearby ruler, is 12cm; so 10cm is an underestimate. However, (1)
the hole in the center reduces the disc’s effective area; and (2) the disc
is circular rather than square. So (10cm)? is a reasonable and simple
estimate of the disc’s pitted area.

The data capacity, according to a nearby box of CDROM’s, is 700 megabytes
(MB). Each byte is 8 bits, so here is the capacity in bits:

8 bits

. 9 hi
Thyte 5-10° bits.

700-10° bytes x

Each bit is stored in one pit, so their spacing is a result of arranging them
into a lattice that covers the (10cm)? area. 10'° pits would need 10° rows
and 10° columns, so the spacing between pits is roughly




That calculation was simplified by rounding up the number of bits from
5-10” to 10'0. The factor of 2 increase means that 1 um underestimates the
spacing by a factor of V2, which is roughly 1.4: The estimated spacing is
1.4 ym.

Finding the capacity on a box of CDROM’s was a stroke of luck. But fortune
favors the prepared mind. To prepare the mind, here is a divide-and-
conquer estimate for the capacity of a CDROM — or of an audio CD, because
data and audio discs differ only in how we interpret the information. An
audio CD’s capacity can be estimated from three quantities: the playing
time, the sampling rate, and the sample size (number of bits per sample).

Estimate the playing time, sampling rate, and sample size.
Here are estimates for the three quantities:

1. Playing time. A typical CD holds about 20 popular-music songs each
lasting 3 minutes, so it plays for about 1 hour. Confirming this estimate
is the following piece of history. Legend, or urban legend, says that
the designers of the CD ensured that it could record Beethoven’s Ninth
Symphony. At most tempos, the symphony lasts 70 minutes.

2. Sampling rate. I remember the rate: 44 kHz. This number can be made
plausible using information theory and acoustics.

First, acoustics. Our ears can hear frequencies up to 20kHz (slightly
higher in youth, slightly lower in old age). To reproduce audible
sounds with high fidelity, the audio CD is designed to store frequencies
up to 20kHz: Why ensure that Beethoven’s Ninth Symphony can be
recorded if, by skimping on the high frequencies, it sounds like was
played through a telephone line?

Second, information theory. Its fundamental theorem, the Nyquist-
Shannon sampling theorem, says that reconstructing a 20kHz signal
requires sampling at 40 kHz — or higher. High rates simplify the an-
tialias filter, an essential part of the CD recording system. However,
even an 80 kHz sampling rate exceeded the speed of inexpensive elec-
tronics when the CD was designed. As a compromise, the sampling-
rate margin was set at 4kHz, giving a sampling rate of 44 kHz.

3. Sample size. Each sample requires 32 bits: two channels (stereo) each
needing 16 bits per sample. Sixteen bits per sample is a compromise
between the utopia of exact volume encoding (infinity bits per sample



per channel) and the utopia of minimal storage (1 bit per sample per
channel). Why compromise at 16 bits rather than, say, 50 bits? Be-
cause those bits would be wasted unless the analog components were
accurate to 1 part in 2°). Whereas using 16 bits requires an accuracy
of only 1 part in 2! (roughly 10°) - attainable with reasonably priced
electronics.

The preceding three estimates — for playing time, sampling rate, and sam-
ple size — combine to give the following estimate:

3600s 4.4 x 10*samples  32bits

capacity ~ 1 hr x The s X7 sample’

This calculation is an example of a conversion. The starting point is the
1hr playing time. It is converted into the number of bits stepwise. Each
step is a multiplication by unity — in a convenient form. For example,
the first form of unity is 3600s/1 hr; in other words, 3600s = 1hr. This
equivalence is a truth generally acknowledged. Whereas a particular truth
is the second factor of unity, 4.4-10* samples/1s, because the equivalence
between 1s and 4.4-10% samples is particular to this example.

Problem 1.1 General or particular?

In the conversion from playing time to bits, is the third factor a general or
particular form of unity?

Problem 1.2 US energy usage

In 2005, the US economy used 100 quads. One quad is one quadrillion (10'%)
British thermal units (BTU’s); one BTU is the amount of energy required to raise
the temperature of one pound of liquid water by one degree Fahrenheit. Using
that information, convert the US energy usage stepwise into familiar units such
as kilowatt-hours.

What is the corresponding power consumption (in Watts)?

To evaluate the capacity product in your head, divide it into two sub-
problems — the power of ten and everything else:

1. Powers of ten. They are, in most estimates, the big contributor; so, I
always handle powers of ten first. There are eight of them: The factor
of 3600 contributes three powers of ten; the 4.4 x 10* contributes four;
and the 2 X 16 contributes one.



2. Everything else. What remains are the mantissas — the numbers in front
of the power of ten. These moderately sized numbers contribute the
product 3.6x4.4x3.2. The mental multiplication is eased by collapsing
mantissas into two numbers: 1 and ‘few’. This number system is
designed so that ‘few’ is halfway between 1 and 10; therefore, the
only interesting multiplication fact is that (few)? = 10. In other words,
‘few’ is approximately 3. In 3.6 x 4.4 X 3.2, each factor is roughly a
‘few’, s0 3.6 X 4.4 3.2 is approximately (few)?, which is 30: one power
of 10 and one ‘“few’. However, this value is an underestimate because
each factor in the product is slightly larger than 3. So instead of 30, I
guess 50 (the true answer is 50.688). The mantissa’s contribution of 50
combines with the eight powers of ten to give a capacity of 5-10° bits —
in surprising agreement with the capacity figure on a box of CODROM’s.

Find the examples of divide-and-conquer reasoning in this section.
Divide-and-conquer reasoning appeared three times in this section:

1. spacing dissolved into capacity and area;

2. capacity dissolved into playing time, sampling rate, and sample size;
and

3. numbers dissolved into mantissas and powers of ten.

These uses illustrate important maneuvers using the divide-and-conquer
tool. Further practice with the tool comes in subsequent sections and in
the problems. However, we have already used the tool enough to consider
how to use it with finesse. So, the next two sections are theoretical, in a
practical way.



1.2 Theory 1: Multiple estimates

After estimating the pit spacing, it is natural to wonder: How much can
we trust the estimate? Did we make an embarrassingly large mistake?
Making reliable estimates is the subject of this section.

In a familiar instance of searching for reliability, when we mentally add
a list of numbers we often add the numbers first from top to bottom. For
example: 12 plus 15 is 27; 27 plus 18 is 45. Then, to check the result, we
add the numbers in reverse: 18 plus 15 is 33; 33 plus 12 is 45. When the
two totals agree, as they do here, each is probably correct: The chance is
low that both additions contain an error of exactly the same amount.

Redundancy, it seems, reduces errors. Mindless redundancy, however,
offers little protection. As an example, if we repeatedly add the numbers
from top to bottom, we are likely to repeat our mistakes from the first
attempt. Similarly, reading your rough drafts several times usually means
repeatedly overlooking the same spelling, grammar, or logic faults. In-
stead, put the draft in a drawer for a week, then look at it, or ask a
colleague or friend — in both cases, use fresh eyes.

This robustness heuristic was in the Laser Interferometric Gravitational
Observatory (LIGO), an extremely sensitive system to detect gravitational
waves. It contains one detector in Washington and a second in Louisiana.
The LIGO fact sheet explains the redundancy:

Local phenomena such as micro-earthquakes, acoustic noise, and laser fluc-
tuations can cause a disturbance at one site, simulating a gravitational wave
event, but such disturbances are unlikely to happen simultaneously at widely
separated sites.

Robustness, in short, comes from intelligent redundancy.

This principle helps us make reliable, robust estimates. Not only should
we use several methods, we should make the methods different from one
another; for example, make the methods use unrelated knowledge and
information. This approach is another use of divide and conquer (which
may explain why the approach belongs in this chapter): The hard problem
of making a robust estimate becomes several simpler subproblems — one
per estimation method.

So, to supplement the divide-and-conquer estimate for the pit spacing
(Section 1.1), here are two intelligently redundant methods:



1. An optics method is based on turning over a CD to enjoy and explain
the brilliant, shimmering colors. The colors are caused by how the
pits diffract different wavelengths of light. (Diffraction is beautifully
explained in Feynman’s QED [8].) For a pristine example of diffraction,
find a red-light laser pointer, the kind often used for presentations.
When you shine it onto the back of a CD, you'll see several red dots
on the wall. These dots are separated by the diffraction angle. This
angle, we learn from optics, depends on the wavelength (or color): It
is A/D, where A is the wavelength and D is the pit spacing. Since light
contains a spectrum of colors, each color diffracts by its own angle.
Tilting the disc changes the mix of spots — of colors — that reach your
eye, creating the shimmering colors.

Their brilliance hints that the diffraction angles are significant — mean-
ing that they are comparable to 1rad. To estimate the angle more
precisely, and lacking a laser pointer, I took a CD to a sunny spot and
noted what appeared on the nearest wall: There was a sunny circle,
the reflected image of the CD, surrounded by a diffracted rainbow.
Relative to the reflected image, the rainbow appeared at an angle of
roughly 30° or 0.5rad. This data along with the diffraction relation
0 ~ A/D implies that the pit spacing is approximately 2A. Since visible-
light wavelengths range from 0.35 ym to 0.7 ym — let’s call it 0.5 yum —
I estimate the pit spacing to be 1 um.

2. A hardware method is based on how a CD player or a CDROM drive
reads data. It scans the disc with a tiny laser that emits — I seem
to remember — near-infrared radiation. The infrared means that the
radiation’s wavelength is longer than the wavelength of red light;
the near indicates that its wavelength is close to the wavelength of
red light. Therefore, near infrared means that the wavelength is only
slightly longer than the wavelength of red light. For the laser to read
the pits, its wavelength should be smaller than the pit spacing or size.
Since red light has a wavelength of roughly 700 nm, I'll guess that the
laser has a wavelength of 800 nm or 1000nm and that the pit spacing
is slightly larger — 1 um. (The actual wavelength is 780 nm.)

Three significantly different methods give comparable estimates: 1.4 um
(capacity), 1 um (optics), and 1 um (hardware). Therefore, we have prob-
ably not committed a blunder in any method. To make that argument
concrete, imagine that the true spacing is 0.1 um. Then three independent
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methods all contain an error of a factor of 10 — and each time producing an
overestimate. Such a coincidence is not common. Although any method
can contain errors — the world is infinite but our abilities are finite — the
errors would not often agree in sign (being an over- or underestimate)
and magnitude.

The lesson — that intelligent redundancy produces robustness — seems
plausible now, I hope. But the proof of the pudding is in the eating:
What is the true pit spacing? It depends whether you mean the radial or
the transverse spacing. The data pits lie on a tremendously long spiral
track whose ‘rings’ lie 1.6 um apart. Along the track, the pits lie 0.9 um
apart. So, the spacing is between 0.9 and 1.6 um; if you want just one
value, let it be the midpoint, 1.3 ym. We made a tasty pudding!

Problem 1.3 Robust addition

The text offered addition as an example of intelligent redundancy: We often
verify an addition by by redoing the sum from bottom to top. Analyze this
practice using simple probability models. Is it indeed an example of intelligent
redundancy?

Problem 1.4 Intelligent redundancy
Think of and describe a few real-life examples of intelligent redundancy.
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1.3 Theory 2: Tree representations

Tasty though the estimation pudding may be, its recipe is long and de-
tailed. It is hard to follow — even for its author. Although I wrote the
analysis, I cannot quickly recall all its pieces; rather, I must remind my-
self of the pieces by looking over the text. As I do, I am reminded that
sentences, paragraphs, and pages do not compactly represent a divide-
and-conquer estimate.

Linear, sequential information does not match the estimate’s structure. Its
structure is hierarchical — with answers constructed from solving smaller
problems, which might be constructed from even solving still smaller
problems — and its most compact representation is as a tree.

As an example, let’s construct the tree representing the capacity, area
elaborate divide-and-conquer estimate for a CDROM’s pit / \

spacing (Section 1.1). The tree’s root is ‘capacity, area’, a
two-word tag reminding us of the method underlying the
estimate. The estimate dissolves into finding two quanti-
ties — the capacity and area — so the tree’s root sprouts two branches.

capacity area

Of the two new leaves, the area is easy to estimate without explicitly
subdividing into smaller problems, so the ‘area’ node remains a leaf. To
estimate the capacity — rather, to estimate the capacity reliably — we used
intelligent redundancy: (1) looking on a CDROM box; and (2) estimating
how many bits are required to represent the music that fits on an audio
CD. The second method subdivided into three estimates: for the play-
ing time, sample rate, and sample size. Accordingly, the ‘capacity’ node
sprouts new branches — and a new connector:

capacity, area

/\

capacity area
look on box e gudio content
playing time sample rate sample size

The dotted horizontal line indicates that its endpoints redundantly eval-
uate their common parent (see Section 1.2). Just as a crossbar strengthens
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a structure, the crossing line indicates the extra reliability of an estimate
based on redundant methods.

The next step in representing the estimate is to include estimates at the
five leaves:

capacity on a box of CDROM’s: 700 MB;

playing time: roughly one hour;

1

2

3. sampling rate: 44 kHz;
4. sample size: 32 bits;

5

area: (10 cm)?.

Here is the quantified tree:

capacity, area

/\

capacity area
/ \ (10 Cm)z
look on box ~ e gdio content
playing time sample rate sample size
1 hour 44 kHz 32 bits

The final step is to propagate estimates upward, from children to parent,
until reaching the root.

Draw the resulting tree.
Here are estimates for the nonleaf nodes:

1. audio content. It is the product of playing time, sample rate, and sample
size: 5-107 bits.

2. capacity. The look-on-box and audio-content methods agree on the
capacity: 5-10 bits.

3. pit spacing computed from capacity and area. At last, the root node! The
pit spacing is VA/N, where A is the area and N is the capacity. The
spacing, using that formula, is roughly 1.4 um.
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Propagating estimates from leaf to root gives the following tree:

capacity, area

1.4 um
capacity area
5 x 107 bits (10cm)?2
look on box e qudio content
700 MB 5 x 10 bits
playing time sample rate sample size
1 hour 44 kHz 32 bits

This tree is far more compact than the sentences, equations, and para-
graphs of the original analysis in Section 1.1. The comparison becomes
even stronger by including the alternative estimation methods in Sec-
tion 1.2: (1) the wavelength of the internal laser, and (2) diffraction to
explain the shimmering colors of a CD.

Draw a tree that includes these methods.

The wavelength method depends on just quantity, the wavelength of the
laser, so its tree has just that one node. The diffraction method depends
on two quantities, the diffraction angle and the wavelength of visible light,
so its tree has those two nodes as children. All three trees combine into
a larger tree that represents the entire analysis:
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pit spacing

T um
capacity, area - internal lager s dif
1T pm 1 um
capaci area . .
5 E 1 (;}; (1 0 Cm)z edtfgr.asctlon
100k 0N box s -+ audio content
700 MB 5 x 107 bits
playing time sample rate sample size
1 hour 44 kHz 32 bits

This tree summarizes the whole analysis of Section 1.1 and Section 1.2 —
in one figure. The compact representation make it possible to grasp the
analysis in one glance. It makes the whole analysis easier to understand,
evaluate, and perhaps improve.
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1.4 Example 2: Oil imports

For practice, here is a divide-and-conquer estimate using trees through-
out:

How much oil does the United States import (in barrels per year)?
One method is to subdivide the problem into three quantities:

e estimate how much oil is used every year by cars;
e increase the estimate to account for non-automotive uses; and

e decrease the estimate to account for oil produced in the United States.

Here is the corresponding tree:

The first quantity requires the longest imports

analysis, so begin with the second and / \\

third quantities. Other than for cars, T

. s cars other uses fraction imported
oil is used for other modes of transport
(trucks, trains, and planes); for heating
and cooling; and for manufacturing hydrocarbon-rich products (fertilizer,
plastics, pesticides). To guess the fraction of oil used by cars, there are
two opposing tendencies: (1) the idea that the non-automotive uses are
so important, pushing the fraction toward zero; (2) the idea that the au-
tomotive uses are so important, pushing the fraction toward unity. Both
ideas seem equally plausible to me; therefore, I guess that the fraction is
roughly one-half; and, to account for non-automotive uses, I will double
the estimate of oil consumed by cars.

Imports are a large fraction of total consumption, otherwise we would not
read so much in the popular press about o0il production in other countries,
and about our growing dependence on imported oil. Perhaps one-half of
the oil usage is imported o0il. So I need to halve the total use to find the
imports.

The third leaf, cars, is too complex to guess a number immediately. So
divide and conquer. One subdivision is into number of cars, miles driven
by each car, miles per gallon, and gallons per barrel:
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imports
cars other uses fraction imported

//\\

miles/year gallons/mile barrels/gallon

Now guess values for the unnumbered leaves. There are 3 x 10® people
in the United States, and it seems as if even babies own cars. As a guess,
then, the number of cars is N ~ 3 x 10%. The annual miles per car is
maybe 15,000. But the N is maybe a bit large, so let’s lower the annual
miles estimate to 10,000, which has the additional merit of being easier
to handle. A typical mileage would be 25 miles per gallon. Then comes
the tricky part: How large is a barrel? One method to estimate it is that
a barrel costs about $100, and a gallon of gasoline costs about $2.50, so a
barrel is roughly 40 gallons. The tree with numbers is:

imports
cars other uses fraction imported

miles/year gallons/mile barrels/gallon
3 x 108 104 1/25 1/40

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars” node:

10*miles 1gallon  1barrel
1car-year 25miles 40 gallons

3% 10% cars X ~ 3x10° barrels/ year.

The two adjustment leaves contribute a factor of 2x0.5 = 1, so the import
estimate is

3 x 10° barrels/ year.

For 2006, the true value (from the US Dept of Energy) is 3.7x10° barrels/ year
— only 25% higher than the estimate!



Problem 1.5 Midpoints

The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

17
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1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation — the design principles
of the UNIX operating system — illustrates the generality of this tool.

UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing — the most successful variant,
GNU/Linux, is free software and owned by no corporation — but rather
from outstanding design principles.

These principles are the subject of The UNIX Philosophy [9], a valuable
book for anyone interested in how to design large systems. The author
isolates nine tenets of the UNIX philosophy, of which four — those with
comments in the following list — incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 8.2). Similarly, hard computa-
tional problems — for example, building a searchable database of all
emails or web pages — can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task —
only spell-checking rather than all of word processing — is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

Build a prototype as soon as possible.
Choose portability over efficiency.

Store data in flat text files.

Use software leverage to your advantage.

Use shell scripts to increase leverage and portability.

® N gk Ww

Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
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documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

e head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

e tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.

The remaining problem is how to hand the second filter the output of
the first filter — in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23™ line from its input:

head -23 | tail -1



20

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention —not a requirement, but a habit followed
by most programs — is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

therefore reads lines typed at the keyboard, prints the 23" line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file — for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23" word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file — without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.
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As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [24]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

The UNIX approach divides the problem into two parts:

1. Make a dictionary alphabetized from right to left.

2. Print the line following ‘trivia’.
The first problem subdivides into three parts:

1. Reverse each line of a regular dictionary.
2. Alphabetize (sort) the reversed dictionary.

3. Reverse each line to undo the effect of step 1.

The second part is solved by the UNIX utility sort. For the first and
third parts, perhaps a solution is provided by an item in UNIX toolbox.
However, it would take a long time to thumb through the toolbox hoping
to get lucky: My computer tells me that it has over 8000 system programs.

Fortunately, the UNIX utility man does the work for us. man with the -k
option, with the ‘k’ standing for keyword, lists programs with a specified
keyword in their name or one-line description. On my laptop, man -k
reverse says:

$ man -k reverse

col (1) - filter reverse line feeds from in-
put

git-rev-list (1) - Lists commit objects in reverse chrono-
logical order

rev (1) - reverse lines of a file or files

tac (1) - concatenate and print files in re-
verse

xxd (1) - make a hexdump or do the reverse.
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Understanding the free-form English text in the one-line descriptions is
not a strength of current computers, so I leaf through this list by hand -
but it contains only five items rather than 8000. Looking at the list, I spot
rev as a filter that reverses each line of its input.

How do you use rev and sort to alphabetize the dictionary from right to left?

Therefore the following pipeline alphabetizes the dictionary from right to
left:

rev < /usr/share/dict/words | sort | rev

The second problem — finding the line after ‘trivia” — is a task for the
pattern-searching utility grep. If you had not known about grep, you
might find it by asking the system for help withman -k pattern. Among
the short list is

grep (1) - print lines matching a pattern

In its simplest usage, grep prints every input line that matches a specified
pattern. For example,

grep ’trivia’ < /usr/share/dict/words

prints all lines that contain trivia. Besides trivia itself, the output
includes trivial, nontrivial, trivializes, and similar words. To
require that the word match trivia with no characters before or after it,
give grep this pattern:

grep ’“trivia$’ < /usr/share/dict/words

The patterns are regular expressions. Their syntax can become arcane but
their important features are simple. The " character matches the beginning
of the line, and the $ character matches the end of the line. So the pattern
trivia$ selects only lines that contain exactly the text trivia.

This invocation of grep, with the special characters anchoring the beginning and
ending of the lines, simply prints the word that I specified. How could such an
invocation be useful?

That invocation of grep tells us only that trivia is in the dictionary. So
it is useful for checking spelling — the solution to a problem, but not to
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our problem of finding the word that follows trivia. However, Invoked
with the -A option, grep prints lines following each matching line. For
example,

grep -A 3 >“trivia$’ < /usr/share/dict/words
will print ‘trivia” and the three lines (words) that follow it.

trivia
trivial
trivialities
triviality

To print only the word after ‘trivia” but not “trivia’ itself, use tail:
grep -A 1 ’“trivia$’ < /usr/share/dict/words | tail -1
These small solutions combine to solve the scavenger-hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’“trivia$’
| tail -1

Try it on a local UNIX or GNU/Linux system. How well does it work?
Alas, on my system, the pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide char-
acter

The rev program is complaining that it does not understand a character in
the dictionary. rev is from the old, ASCII-only days of UNIX, when each
character was limited to one byte; the dictionary, however, is a modern
one and includes Unicode characters to represent the accented letters
prevalent in European languages.

To solve this unexpected problem, I clean the dictionary before passing
it to rev. The cleaning program is again the filter grep told to allow
through only pure ASCII lines. The following command filters the dic-
tionary to contain words made only of unaccented, lowercase letters.

grep ’~[a-z]*$’> < /usr/share/dict/words
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This pattern uses the most important features of the regular-expression
language. The * and $ characters have been explained in the preceding
examples. The [a-z] notation means ‘match any character in the range
a to z — i.e. match any lowercase letter” The * character means ‘match
zero or more occurrences of the preceding regular expression’. So " [a-
z]*$ matches any line that contains only lowercase letters — no Unicode
characters allowed.

The full pipeline is
grep ’~[a-z]*$’ < /usr/share/dict/words \

| rev | sort | rev \
| grep -A 1 ’~“trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is

word after trivia in reverse dictionary

grep ’~ [a-z]*$’ | rev | sort | rev | grep -A 1 ’°~ trivia$’ | tail -1
make reverse dictionary select word after trivia
grep ’~ [a-z]*$’ | rev | sort | rev grep -A 1 °° trivia$’ | tail -1
clean dictionary reverse sort unreverse select trivia and next word print last of two wi
grep ’° [a-z]*$’ rev sort rev grep -A 1 °~ trivia$’ tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won't save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:
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Divide large, difficult problems into smaller, easier ones.

Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

Trees compactly represent divide-and-conquer reasoning.
Divide-and-conquer reasoning is a cross-domain tool, useful in text

processing, engineering estimates, and even economics.

breaking hard problems into comprehensible units, the divide-and-

conquer tool helps us organize complexity. The next chapter examines its
cousin abstraction, another way to organize complexity.

Problem 1.7 Air mass

Estimate the mass of air in the 6.055]/2.038] classroom and explain your estimate
with a tree. If you have not seen the classroom yet, then make more effort to
come to lecture (!); meanwhile pictures of the classroom are linked from the
course website.

Problem 1.8 747

Estimate the mass of a full 747 jumbo jet, explaining your estimate using a tree.
Then compare with data online. We'll use this value later this semester for
estimating the energy costs of flying.

Problem 1.9 Random walks and accuracy of divide and conquer

Use a coin, a random-number function (in whatever programming language you
like), or a table of reasonably random numbers to do the following experiments
or their equivalent.

The first experiment:

1.

Flip a coin 25 times. For each heads move right one step; for each tails, move
left one step. At the end of the 25 steps, record your position as a number
between —25 and 25.

. Repeat the above procedure four times (i.e. three more times), and mark your
four ending positions on a number line.

The second experiment:

1

. Flip a coin once. For heads, move right 25 steps; for tails, move left 25 steps.

2. Repeat the above procedure four times (i.e. three more times), and mark your

four ending positions on a second number line.

Compare the marks on the two number lines, and explain the relation between
this data and the model from lecture for why divide and conquer often reduces
erToTS.
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Problem 1.10 Fish tank

Estimate the mass of a typical home fish tank (filled with water and fish): a
useful exercise before you help a friend move who has a fish tank.

Problem 1.11 Bandwidth
Estimate the bandwidth (bits/s) of a 747 crossing the Atlantic filled with CDROM'’s.

Problem 1.12 Repainting MIT
Estimate the cost to repaint all indoor walls in the main MIT classroom buildings.
[with thanks to D. Zurovcik]

Problem 1.13 Explain a UNIX pipeline
What does this pipeline do?

1s -t | head | tac

[Hint: If you are not familiar with UNIX commands, use the man command on
any handy UNIX or GNU/Linux system.]

Problem 1.14 Design a UNIX pipeline

Make a pipeline that prints the ten most common words in the input stream,
along with how many times each word occurs. They should be printed in order
from the the most frequent to the less frequent words. [Hint: First translate any
non-alphabetic character into a newline. Useful utilities include tr and uniq.]
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Divide-and-conquer reasoning breaks enigmas into manageable prob-
lems. When the reasoning is represented as a tree, the manageable prob-
lems become the leaf nodes of the tree, and they are conceptually simpler
than the original problem or its intermediate subproblems. For example,
the length of a classical symphony is a simple concept compared to the
data capacity of a CDROM.

Being simpler, it is more likely than the parent nodes to be used in another
calculation. Imagine that you are an architect designing a classical concert
hall. One task is to ensure sufficient airflow to handle the heat produced
by 1500 audience members during a concert. But how long is a concert?
Reuse the symphony leaf node from the CDROM-capacity estimate. Con-
certs often include a symphony before or after a break (the intermission),
with a comparably long other half, so a rough concert duration 2.5 hours.

Creating and using such reusable parts is the purpose of our second tool
for organizing complexity: abstraction. Abstraction is, according to the
Oxford English Dictionary [29]:

The act or process of separating in thought, of considering a thing independently

of its associations; or a substance independently of its attributes; or an attribute
or quality independently of the substance to which it belongs. [my italics]

The most important characteristic of abstraction is reusability. As Abelson
and Sussman [1, s. 1.1.8] describe:
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The importance of this decomposition strategy is not simply that one is di-
viding the program into parts. After all, we could take any large program
and divide it into parts — the first ten lines, the next ten lines, the next ten
lines, and so on. Rather, it is crucial that each procedure accomplishes an
identifiable task that can be used as a module in defining other procedures.

What they write about programs applies equally well to understanding
other systems. As an example, consider the idea of a fluid. At the bottom
of the abstraction tower are the actors of fundamental physics: quarks
and electrons. Quarks combine to build protons and neutrons. Protons,
neutrons, and electrons combine to build atoms. Atoms combine to build
molecules. And large collections of molecules act — under some conditions
— like a fluid. The idea of a fluid is a new unit of thought that helps
understand diverse phenomena, without our having to calculate or even
to know how quarks and electrons interact to produce fluid behavior.

As a local example, here is how I draw the divide-and- capacity, area
conquer trees found throughout this book. The tree in / \
the margin, repeated from Section 1.3, could have been
drawn using one of many standard figure-drawing pro-
grams with a graphical user interface (GUI). Making the
drawing would then require using the GUI to place all the leaves at the
right height and horizontal position, connect each leaf to its parent with a
line of the correct width, select the correct font, and so on. The next tree
drawing would be another, seemingly separate problem of using the GUI
The graphical and captive user interface makes it impossible to organize
and tame the complexity of making tree diagrams.

capacity area

An alternative that avoids the captive user interface is to draw the figures
in a text-based graphics language, for then any editor can be used to write
the program, and common motifs can be copied and pasted to make new
programs that make new trees. The most successful such language is
Adobe’s PostScript. PostScript statements are mostly of the form, “Draw a
curve connecting these points.” because PostScript is a full programming
language, by clustering repeated drawing operations into reusable units,
one can create procedures that help automate tree drawing.

Instead of using PostScript directly, I took a lazier approach by using
the high-level graphics language MetaPost mainly because this language
has been used to write an even higher-level language for making and
connecting boxes. In the boxes language, the tree program is as follows:
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% specify the texts

boxit.root(btex capacity, area etex);
boxit.capacity(btex capacity etex);
boxit.area(btex area etex);

% specify their relative positions
ypart(capacity.n-area.n) = 0;
xpart(area.w-capacity.e) = 10pt;

root.s - 0.5[capacity.ne,area.nw] = (0,20pt);
% place (draw) the texts without borders
drawunboxed(root, capacity, area);

% connect root with its two children

draw root.s shifted (-5pt,0) -- capacity.n;
draw root.s —-- area.n;

The boxes program translates this program into the MetaPost language.
The MetaPost program translates this program into PostScript (or into
another page-description language such as PDF). A PostScript interpreter
in the printer or in the on-screen viewer translates the PostScript into
black and white dots on a piece of paper or into pixels on a computer
screen.

Even with MetaPost, a long program is required to make such a simple
diagram. A clue to simplifying the process is to notice that it repeats many
operations. For example, the direct children of the root have the same
vertical position; if there were grandchildren, all of them would have the
same vertical position, different from the position of the children. Such
repeating motifs suggest that the program is written at the wrong level
of abstraction.

After using the boxes package to create several complicated tree diagrams,
I took my own medicine and created a language for drawing tree dia-
grams. In this language, the preceding tree is specified by only three
lines:

capacity, area
capacity
area

The tree-language interpreter, which I wrote for the occasion, translates
those three lines into the boxes language. The abstraction tower is there-
fore as follows; (1) the tree language , (2) the boxes language, (3) the
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MetaPost language, (4) the PostScript language, and (5) pixels on a screen
or specks of toner on a page.

The tree minilanguage made constructing tree diagrams so easy that I cre-
ated many diagrams to explain divide-and-conquer reasoning in Chap-
ter 1 and to explain the subsequent ideas in this book. Here is a figure
from Section 4.3.1:

jump height h

/

energy required energy available
h m g muscle mass energy density
/ \ in muscle
animal’s mass m muscle fraction

Its program in the tree minilanguage is short:

jump height $h$
energy required
$h$
$m$
$g$
energy available
muscle mass
animal’s mass $m$
muscle fraction
energy densityl|in muscle

These 10 lines — simple to understand, write, and change — expand into
34 lines of tedious, error-prone code in the boxes language. And they
expand into 1732 lines of PostScript code! As Bertrand Russell said, “a
good notation has a subtlety and suggestiveness which makes it almost
seem like a live teacher” (quoted in [23, Chapter 8]).
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2.1 Diagrams as abstractions

Diagrams are themselves a powerful kind of abstraction. Diagrams are an
abstraction because they force one to discard irrelevant details, reducing
a problem to what can be taken in at a glance. Diagrams are power-
ful because our brain’s perceptual hardware is much more powerful than
its symbolic-processing hardware. There are evolutionary reasons for this
difference. Our capacity for sequential analysis and therefore symbol pro-
cessing took off with the advent of language — perhaps 10° years ago. In
contrast, visual processing has developed for millions of years among pri-
mates alone (and even longer among vertebrates generally), and general
perceptual processing is even older.

Because of the extra development, visual learning can be rapid and long-
lasting. For example, once you see the figure in Richard Gregory’s famous
black-and-white splotch picture [22], you will see it again very easily even
ten years later. (I am being obscure about what the figure shows, in order
not to spoil the surprise.) If only we could learn symbolic information as
quickly. Although I now know the Navier-Stokes equation,

v +(v-V)v = —1V +1V2v
ot o P ’

learning it required many presentations!

Given the massive amount of mental hardware devoted to visual pro-
cessing, a good problem-solving strategy is to translate problems into
diagrams and do a lot of the problem solving on the diagram — in other
words, to make an abstraction and then to think using it. As an example,
try the following problem.
You hike a path up a mountain over a 24-hour period, resting along the way
as you need. You sleep for 24 hours at the top. Then you walk down the same
path over the next 24 hours. Were you at any point on the path at the same
time of day on the way up and the way down? Alternatively, is it possible
to walk up and down on a careful schedule to ensure that there is no such
point?
It is hard to solve without making a diagram. To make the diagram,
first decide on details that you do not care about — consider the situation
“independently of its attributes.” For example, the day of the month, the
year, or the age of the hiker are irrelevant to the solution. All that matters
is the schedule on which you walk up and down, namely where are you
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when? A particular walking and resting schedule can be abstracted to
a function of ¢, the time of day, where the function gives your distance
along the path. Let u(t) be the schedule for hiking up the mountain, and
d(t) be the schedule for hiking down the mountain. In this representation,
the question is: Must u(t) = d(t) for some value of t? Or can you choose
u(t) and d(t) to avoid the equality for all values of t?

With these abstractions, the question is 1
cleaner, but it is not yet easy enough to

answer. A diagrammatic representation

makes the answer more obvious. Here is distance
a diagram illustrating an upward sched-

ule. Distance is measured from the bot- 0 |
tom of the mountain (0) to the top of 0 24
the mountain (1). According to the in- time (hours)
dicated schedule, you walked fast (the

initial slope), rested (the flat part), and then walked to the top.

Here is a diagram illustrating a down- 1
ward schedule. On this schedule, you

rested (initial flat line), walked fast, then

walked slowly to the bottom. distance

time (hours)

And this diagram shows the upward and 1
downward schedules on the same dia-

gram. Something interesting happens:

The curves intersect! The intersection distance
point gives the time and location where

the upward and downward schedules landed 0
on the same point at the same time of 0 24
day (but on separate days). time (hours)

Furthermore, the diagram shows that this pattern is general. No mat-
ter what schedules you choose, the upward and downward paths must
cross. So the answer to the question is “Yes, there is always a point that
you reached the same time on the upward and downward journeys’— an
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answer hard to reach without abstracting away all the unessential details
to make a diagram.
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Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method — as our first example illustrates.

Coin-flip game

The first example is the following game.

Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.

However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program — namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

TH
TH

H

TH
TTH
TTTH
TH

P P P NNMNENDNEFE,DNDDN

j==jia=jias)



35

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -1

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

To find the exact value, first diagram the game as a tree. start

Each horizontal layer contains H and T, and represents / \

one flip. The game ends at the leaves, when one player i T

has tossed heads. The boldface H’s show the leaves

where the first player wins, e.g. H, TTH, or TTTTH. The / \

probabilities of each winning way are, respectively, 1/2, H T

1/8, and 1/32. The infinite sum of these probabilities is

the probability p of the first player winning: / \
H T

1 1 1
p—§+§+3—2+"'. (21)

This series can be summed using a familiar formula.

However, a more enjoyable analysis — which can explain the formula
(Problem 2.1) — comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.
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Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

147472+ +.-. (22)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing 7t to billions of digits or
in public-key cryptography. I'll introduce the new method by contrasting
it with the school method on the example of 35 X 27.

In the school method, the product is written as
35x27=B3%x10+5)x(2x10+7). (2.3)

The product expands into four terms:
BX10)x(2x10)+(Bx10)x7+5%x(2x10)+5%7. (2.4)

Regrouping the terms by the powers of 10 gives
3x2x100+(B%X7+5%x2)x10+5x%x7. (2.5)

Then you remember the four one-digit multiplications 3 x2, 3 X7, 52,
and 5 x 7, finding that

35 %27 =6x100+ 31 x 10 + 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+x.
Then the school method runs as follows:

3|5><2|7:3><2’3><7+5><2 5x%x7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace
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a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247 x 1798 becomes

32|47 x 17198 = 32 x 17 | 32x98 +47 x17 | 47 x 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
ylx = 10y + x notation),

32 x 1)7=3%x2|3x7+2x1[2x7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.

Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n* one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.

Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

atlag X bilby = a1by | (a1 + a9)(b1 + bo) — a1by — agbo | aobo.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35 X 27 example.

35 x2[7=3x%2 ’ 3+5)(2+7)—-3%x2-5Xx7|5x%x7.
Doing the five one-digit multiplications gives
315 x 2|7 =6[31]35 =6 x 100 + 31 x 10 + 35 = 945, (2.10)

just as it should.

At first glance, the method seems like a retrograde step because it re-
quires five multiplications whereas the school method requires only four.
However, the magic of the new method is that two multiplications are
redundant: a;b; and apby are each computed twice. Therefore, the new
method requires only three multiplications. The small change from four
to three multiplications, when used recursively, makes the new method
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significantly faster: An n-digit multiplication requires roughly n*® one-

digit multiplications (Problem 2.2). In contrast, the school algorithm re-
quires n* one-digit multiplications. The small decrease in the exponent
from 2 to 1.58 has a large effect when n is large. For example, when
multiplying billion-digit numbers, the ratio of n? to 11823 is roughly 5000.

Why would anyone multiply billion-digit numbers? One answer is to
compute 7 to a billion digits. Computing 7 to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.

The new algorithm is known as the Karatsuba algorithm after its inventor
[13]. But even it is too slow for gigantic numbers. For large enough n,
an algorithm using fast Fourier transforms is even faster than the Karat-
suba algorithm. The so-called Schonhage-Strassen algorithm [27] requires
a time proportional to nlognloglogn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schonhage-Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm

1.

Show that the Karatsuba multiplication method requires 11°823 ~ 1158 one-digit

multiplications.
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Low-pass filters

The next example is an analysis that originated in the study of circuits
(Section 2.3.1). After those ontological bonds are snipped — once the
subject is “considered independently of its original associations” — the
core idea (the abstraction) will be useful in understanding diverse natural
phenomena including temperature fluctuations (Section 2.3.2).

RC circuits

Linear circuits are composed of resistors, ca- v AEM v
pacitors, and inductors. Resistors are the only "™ B out
time-independent circuit element. To get time- c ——

dependent behavior — in other words, to get any
interesting behavior — requires inductors or ca-
pacitors. Here, as one of the simplest and most
widely applicable circuits, we will analyze the behavior of an RC circuit.

The input signal is the voltage Vj, a function of time ¢. The input signal
passes through the RC system and produces the output signal V(t). The
differential equation that describes the relation between V, and V; is
(from 8.02)

av Vv Vi
i Vi _ Y

dt  RC RC’ (2.11)

This equation contains R and C only as the product RC. Therefore, it
doesn’t matter what R and C individually are; only their product RC
matters. Let’s make an abstraction and define a quantity 7 as 7 = RC.

This time constant has a physical meaning. To see what it is, give the
system the simplest nontrivial input: Vy, the input voltage, has been zero
since forever; it suddenly becomes a constant V' at t = 0; and it remains
at that value forever (t > 0). What is the output voltage V;? Until t = 0,
the output is also zero. By inspection, you can check that the solution for
t>0is

Vi =V(1-e"). (2.12)
In other words, the output voltage exponentially approaches the input

voltage. The rate of approach is determined by the time constant 7. In
particular, after one time constant, the gap between the output and input
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voltages shrinks by a factor of e. Alternatively, if the rate of approach
remained its initial value, in one time constant the output would match
the input (dotted line).

\% input

' t
|

The actual inputs provided by the world are more complex than a step
function. But many interesting real-world inputs are oscillatory (and it
turns out that any input can be constructed by adding oscillatory inputs).
So let’s analyze the effect of an oscillatory input V() = Ae'”!, where A is
a (possibly complex) constant called the amplitude, and w is the angular
frequency of the oscillations. That complex-exponential notation really
means that the voltage is the real part of Ae’’, but the ‘real part’ notation
gets distracting if it is repeated in every equation, so traditionally it is
omitted.

The RC system is linear — it is described by a linear differential equation
— so the output will also oscillate with the same frequency w. There-
fore, write the output in the form Be™!, where B is a (possibly complex)
constant. Then substitute V, and V; into the differential equation

avy ViV
o+ TRCTRC (2.13)
After removing a common factor of ¢, the result is
Biw + B_ é, (2.14)
T T
or
A
= . 2.15
1 +iwT (.15)

This equation — a so-called transfer function — contains many generalizable
points. First, wt is a dimensionless quantity. Second, when wt is small
and is therefore negligible compared to the 1 in the denominator, then
B = A. In other words, the output almost exactly tracks the input.

Third, when wt is large, then the 1 in the denominator is negligible, so
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B~ i (2.16)
iwT

In this limit, the output variation (the amplitude B) is shrunk by a factor of
@t in comparison to the input variation (the amplitude A). Furthermore,
because of the i in the denominator, the output oscillations are delayed
by 90° relative to the input oscillations (where 360° is a full period).
Why 90°? In the complex plane, dividing by i is equivalent to rotating
clockwise by 90°. As an example of this delay, if wt > 1 and the input
voltage oscillates with a period of 4hr, then the output voltage peaks
roughly 1hr after the input peaks. Here is an example with wt = 4:

\% inpu

In summary, this circuit allows low-frequency inputs to pass through to
the output almost unchanged, and it attenuates high-frequency inputs.
It is called a low-pass filter: It passes low frequencies and blocks high
frequencies. The idea of a low-pass filter, now that we have abstracted it
away from its origin in circuit analysis, has many applications.

Temperature fluctuations

The abstraction of a low-pass filter resulting from the solutions to the RC
differential equation are transferable. The RC circuit is, it turns out, a
model for heat flow; therefore, heat flow, which is everywhere, can be
understood by using low-pass filters. As an example, I often prepare a
cup of tea but forget to drink it while it is hot. Slowly it cools toward room
temperature and therefore becomes undrinkable. If I neglect the cup for
still longer — often it spends the night in the microwave, where I forgot it
— it warms and cools with the room (for example, it will cool at night as
the house cools). A simple model of its heating and cooling is that heat
flows in and out through the walls of the mug: the so-called thermal
resistance. The heat is stored in the water and mug, which form a heat
reservoir: the so-called thermal capacitance. Resistance and capacitance
are transferable abstractions.
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If R; is the thermal resistance and C; is the thermal capacitance, their
product R.C; is, by analogy with the RC circuit, a thermal time constant 7.
To measure it, heat up a mug of tea and watch how the temperature falls
toward room temperature. The time for the temperature gap to fall by a
factor of e is the time constant 7. In my extensive experience of neglecting
cups of tea, in 0.5hr an enjoyably hot cup of tea becomes lukewarm. To
give concrete temperatures to it, ‘enjoyably warm’ is perhaps 130 °F, room
temperature is 70 °F, and lukewarm is perhaps 85 °F. The temperature gap
between the tea and the room started at 60 °F and fell to 15°F — a factor
of 4 decrease. It might have required 0.3 hr to have fallen by a factor of e
(roughly 2.72). This time is the time constant.

How does the teacup respond to daily temperature variations? In this
system, the input signal is the room’s temperature; it varies with a fre-
quency of f = 1day . The output signal is the tea’s temperature. The
dimensionless parameter w7 is, using w = 2nf, given by

) 1day
2nf t=2nx1lday X 0.3hr x——, (2.17)
—— 24hr
@ f T

or approximately 0.1. In other words, the system is driven slowly (w is not
large enough to make wt near 1), so slowly that the inside temperature
almost exactly follows the outside temperature.

A situation showing the opposite extreme of behavior is the response of
a house to daily temperature variations. House walls are thicker than
teacup walls. Because thermal resistance, like electrical resistance, is pro-
portional to length, the house walls give the house a large thermal re-
sistance. However, the larger surface area of the house compared to the
teacup more than compensates for the wall thickness, giving the house a
smaller overall thermal resistance. Compared to the teacup, the house has
a much, much higher mass and much higher thermal capacitance. The
resulting time constant R;C; is much longer for the house than for the
teacup. One study of houses in Greece quotes 86 hr or roughly 4 days as
the thermal time constant. That time constant must be for a well insulated
house.

In Cape Town, South Africa, where the weather is mostly warm and
houses are often not heated even in the winter, the badly insulated house
in which I lived had a thermal time constant of around 0.5day. The
dimensionless parameter wt is then
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2nf 1 =2nx1day ' x0.5day, (2.18)
N—— ——— N———

[ f T

or approximately 3. In the (South African) winter, the outside temper-
ature varied between 45°F and 75°F. This 30 °F outside variation gets
shrunk by a factor of 3, giving an inside variation of 10 °F. This variation
occurred around the average outside temperature of 60 °F, so the inside
temperature varied between 55°F and 65°F. Furthermore, if the coldest
outside temperature is at midnight, the coldest inside temperature is de-
layed by almost 6hr (the one-quarter-period delay). Indeed, the house
did feel coldest early in the morning, just as I was getting up — as pre-
dicted by this simple model of heat flow that is based on a circuit-analysis
abstraction.
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2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in
a famous representation: Richard Feynman’s diagrams for calculations
in the theory of quantum electrodynamics (how radiation interacts with
matter). Those diagrams are discussed in [32]and [12].

The main ideas in this chapter:

For more on the value of diagrams, see [28]and [19].

Problem 2.3 Spacetime diagrams
Learn about spacetime diagrams. My favorite source is Spacetime Physics [30].

Problem 2.4 Word processors

Compare WYSIWIG (what you see is what you get) word processors such as
WordPerfect or Microsoft Word with document formatting systems such as TgX
or ConTgXt (used to typeset this book).

Problem 2.5 Longest left-handed word

What is the longest word in the dictionary that can be typed with only the left
hand (on a qwerty keyboard)?



45

Part 2

Lossless
compression

4 7
Symmetry and conservation 47
Proportional reasoning 67
Dimensions 85

The first part discussed methods for organizing and therefore for manag-
ing complexity. The remaining two parts discuss how to discard complexity.
The discarded complexity can be actual complexity (Part 3) or it can be
only apparent complexity — whereupon discarding it does not discard
information. Such lossless compression is the subject of this part.
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The three methods are symmetry and conservation, proportional reason-
ing, and dimensional analysis. Proportional reasoning and dimensional
analysis are, additionally, examples of symmetry reasoning. Therefore,
the next chapter introduces symmetry and conservation reasoning.
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Symmetry greatly simplifies any problem to which it applies — without
any cost in accuracy. A classic example is the following story about the
young Carl Friedrich Gauss. The story might be merely a legend, but it is
so instructive that it ought to be true. One day when Gauss was 3 years
old, the story goes, his schoolteacher wanted to occupy the students for
a good while. He therefore asked them to compute the sum

S=1+2+3+---+100,

and then sat back to enjoy a welcome break. To the teacher’s surprise,
Gauss returned in a few minutes claiming that the sum is 5050. Was he
right? If so, how did he compute the sum so quickly?

Gauss noticed that the sum remains unchanged when the terms are added
backward from highest to lowest. In other words,

S =100+99+98+---+1

equals S. Then Gauss added the two sums:

S=1+2+3+---+100
+S5=100+99+98+---+1

25=101+101 +---+101.
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In this form, 25 is easy to compute because it contains 100 copies of 101.
So 25 =100 x 101, and S = 50 x 101 = 5050.

Gauss tremendously simplified the problem by finding a symmetry: a
transformation that preserved essential features of the problem. The idea
of symmetry is an abstraction, and fluency in its use comes with practice.

Heat flow

As the first example, imagine a uniform metal sheet, 80° 10°
perhaps aluminum foil, cut into the shape of a regular

pentagon. Attach heat sources and sinks to the edges 10° 10°

in order to hold the edges at the temperatures marked
on the figure. After waiting long enough, the tempera-
ture distribution in the pentagon stops changing (‘comes to equilibrium’).
Once the temperature equilibrates, what is the temperature at the center
of the pentagon?

10°

A brute-force analytic solution is difficult. Heat flow is described by the
following second-order partial differential equation:

aT
KV = =,
ot
where T is the temperature as a function of position and time, and « is a
constant known as the thermal diffusivity. Eventually the time derivatives
approach zero (the temperature eventually settles down), so the right side

eventually becomes zero. The equation then simplifies to *V*T = 0.

Alas, even this simpler time-independent equation has easy \\\//(

solutions only for a few simple boundaries. Even these so-

lutions do not seem that simple. For example, on a square

sheet with edges held at 10°, 10°, 10°, and 80° (the north

edge), the temperature distribution is highly nonintuitive

(the figure shows contour lines spaced every 10°). For a

pentagon, even for a regular pentagon, the full temperature distribution
is still less intuitive.

Symmetry, however, makes the solution flow: Rotating the pentagon
about its center does not change the temperature at the center. Nature,
in the person of the heat equation, does not care in what direction our
coordinate system points. Stated mathematically, the Laplacian operator
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V? is rotation invariant. Therefore, the following five orientations of the
pentagon produce the identical temperature at the center:

80° ~10° 10° ~\10° 10° ~10° 10° ~10° 10° A~ 80°
100©100 800©100 100©100 100©800 100©100
10° 10° 80° 10° 10°
Now stack these sheets mentally, adding the temperatures that lie on top

of each other to make the temperature profile of a new metal supersheet.
On this new sheet, each edge has temperature

Tedge =80°+10° +10° +10° +10° =120°.

Solving for the resulting temperature distribution does not require solving
the heat equation. All the edges are held at 120°, so the temperature
throughout the sheet is 120°.

That result, with one more step, solves the original problem. The sym-
metry operation is a rotation about the center of the pentagon, so the
centers overlap when the plates are stacked atop one another. Because
the stacked plate has a temperature of 120° throughout, and the centers
of the five stacked sheets align, each center is at T = 120°/5 = 24°.

Compare the symmetry solutions to Gauss’s sum and to this tempera-
ture problem. The comparison will extract the transferable ideas (the
useful abstractions). First, both problems look complex upon first glance.
Gauss’s sum has many terms, all different; the pentagon problem seems
to require solving a difficult partial differential equation. Second, both
problems contain a symmetry operation. In Gauss’s sum, the symmetry
operation reversed the order of the terms; in the pentagon problem, the
symmetry operation rotated the pentagon by 72°. Third, the symmetry
operation leaves an important quantity unchanged: the sum S for Gauss’s
problem or the central temperature for the pentagon problem.

The moral of these two examples is as follows: When there is change, look
for what does not change. That is, look for invariants. Then look for sym-
metries: operations that leave these quantities unchanged.
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Cube solitaire

Here is a game of solitaire that illustrates the theme of

this chapter. The following cube starts in the configu- 0 E
ration in the margin; the goal is to make all vertices be !
multiples of three simultaneously. The moves are all of !
the same form: Pick any edge and increment its two e
vertices by one. For example, if I pick the bottom edge
of the front face, then the bottom edge of the back face,
the configuration becomes the first one in this series, then the second one:

0 0 0 0

2,7 1 AR 1

Alas, neither configuration wins the game.

Can I win the cube game? If I can win, what is a sequence of moves ends
in all vertices being multiples of 3? If I cannot win, how can that negative
result be proved?

Brute force — trying lots of possibilities — looks overwhelming. Each move
requires choosing one of 12 edges, so there are 12!° sequences of ten
moves. Although that number is an overestimate, because the order of
the moves does not affect the final state, even a somewhat lower number
would still be overwhelming. I could push this line of reasoning by
figuring out how many possibilities there are, and how to list and check
them if the number is not too large. But that approach is specific to this
problem and unlikely to generalize to other problems.

Instead of that specific approach, make the generic observa- ¢ 0
tion that this problem is difficult because each move offers
many choices. The problem would be simpler with fewer
edges: for example, if the cube were a square. Can this
square be turned into one where the four vertices are mul- 0

tiples of 3? This problem is not the original problem, but

solving it might teach me enough to solve the cube. This hope moti-
vates the following advice: When the going gets tough, the tough lower their
standards.
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The square is easier to analyze than is the cube, but standards ©® T ©

can be lowered farther by analyzing the one-dimensional analog
of a line. With one edge and two vertices, there is only one move:
incrementing the top and bottom vertices. The vertices start with
a difference of one, and continue with that difference. So they
cannot be multiples of 3 simultaneously. In symbols: a —b = 1. If
all vertices were multiples of 3, then a — b would also be a multiple of 3.
Since a — b = 1, it is also true that

=1

a—b=1 (mod3),

where the mathematical notation x = y (mod 3) means that x and y have
the same remainder (the same modulus) when dividing by 3. In this
one-dimensional version of the game, the quantity a — b is an invariant: It
is unchanged after the only move of increasing each vertex on an edge.

Perhaps a similar invariant exists in the two-dimensional ¢ =9 c=0
version of the game. Here is the square with vari-
ables to track the number at each vertex. The one-
dimensional invariant 4 — b is sometimes an invariant
for the square. If my move uses the bottom edge, then = o

a and b increase by 1, so a — b does not change. If my

move uses the top edge, then a and b are individually unchanged so a —b
is again unchanged. However, if my move uses the left or right edge,
then either a or b changes without a compensating change in the other
variable. The difference d — c has a similar behavior in that it is changed
by some of the moves. Fortunately, even when a — b and d — c change,
they change in the same way. A move using the left edge increments a—b
and d — ¢; a move using the right edge decrements a — b and d —c. So
(a—b) — (d — c) is invariant! Therefore for the square,

a—-b+c—-d=1 (mod3).

Therefore, it is impossible to get all vertices to be multiples of 3 simulta-
neously.



The original three-dimensional solitaire game is also h=0 9=0
unlikely to be winnable. The correct invariant shows d=0,/] c=0
this impossibility. The quantity a—b+c—d+f—g+h—e |
generalizes the invariant for the square, and it is E
preserved by all 12 moves. So rs---- L)
a=1|~ b=0

a-b+c—d+f-g+h—-e=1(mod3)

forever. Therefore, all vertices cannot be made multiples of 3 simultane-
ously.

Invariants — quantities that remain unchanged — are a powerful tool for
solving problems. Physics problems are also solitaire games, and invari-
ants (conserved quantities) are essential in physics. Here is an example:
In a frictionless world, design a roller-coaster track so that an unpowered
roller coaster, starting from rest, rises above its starting height. Perhaps a
clever combination of loops and curves could make it happen.

The rules of the physics game are that the roller coaster’s position is
determined by Newton’s second law of motion F = ma, where the forces
on the roller coaster are its weight and the contact force from the track.
In choosing the shape of the track, you affect the contact force on the
roller coaster, and thereby its acceleration, velocity, and position. There
are an infinity of possible tracks, and we do not want to analyze each one
to find the forces and acceleration.

An invariant — energy — vastly simplifies the analysis. No matter what
tricks the track does, the kinetic plus potential energy

%mvz +mgh

is constant. The roller coaster starts with v = 0 and height hgar; it can
never rise above that height without violating the constancy of the energy.
The invariant — the conserved quantity — solves the problem in one step,
avoiding an endless analysis of an infinity of possible paths.

The moral of this section is the same as the moral of the previous section:
When there is change, look for what does not change. That unchanging quantity
is a new abstraction (Chapter 2). Finding invariants is a way to develop
powerful abstractions.
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Drag using conservation of energy

Conservation of energy helps analyze drag — one of the most difficult
subjects in classical physics. To make drag concrete, try the following
home experiment.

Home experiment using falling cones

Photocopy this page at 200% enlargement, cut out the templates, then
tape the their edges together to make two cones:

90°

cutout

When you drop the small cone and the big cone, which one falls faster?
In particular, what is the ratio of their fall speeds vpig/vsman? The large
cone, having a large area, feels more drag than the small cone does. On
the other hand, the large cone has a higher driving force (its weight)
than the small cone has. To decide whether the extra weight or the extra
drag wins requires finding how drag depends on the parameters of the
situation.

However, finding the drag force is a very complicated calculation. The
full calculation requires solving the Navier-Stokes equations:

(V-V)v+8—V ——lv + vy
o p P )

And the difficulty does not end with this set of second-order, coupled,
nonlinear partial-differential equations. The full description of the situa-
tion includes a fourth equation, the continuity equation:
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v-v =0.

One imposes boundary conditions, which include the motion of the ob-
ject and the requirement that no fluid enters the object — and solves for
the pressure p and the velocity gradient at the surface of the object. Inte-
grating the pressure force and the shear force gives the drag force.

In short, solving the equations analytically is difficult. I could spend
hundreds of pages describing the mathematics to solve them. Even then,
solutions are known only in a few circumstances, for example a sphere
or a cylinder moving slowly in a viscous fluid or a sphere moving at any
speed in an zero-viscosity fluid. But an inviscid fluid — what Feynman
calls “dry water” [7, Chapter II-40] — is particularly irrelevant to real life
since viscosity is the reason for drag, so an inviscid solution predicts
zero drag! Conservation of energy, supplemented with skillful lying, is a
simple and quick alternative.

The analysis imagines an object of cross-sectional area A moving through
a fluid at speed v for a distance d:

volume ~ Ad

distance ~ d

The drag force is the energy consumed per distance. The energy is con-
sumed by imparting kinetic energy to the fluid, which viscosity eventu-
ally removes from the fluid. The kinetic energy is mass times velocity
squared. The mass disturbed is pAd, where p is the fluid density (here,
the air density). The velocity imparted to the fluid is roughly the velocity
of the disturbance, which is v. So the kinetic energy imparted to the fluid
is pAv®d, making the drag force

F ~ pAv*.

The analysis has a divide-and-conquer tree:
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force ~ E/d
pAvV2Z

/

energy imparted, ~ mv?
pAvZd

T

mass disturbed velocity imparted
pAd ~Vv

/N

density volume
P Ad

distance d

The result that Fyrag ~ pvQA is enough to predict the result of the cone
experiment. The cones reach terminal velocity quickly (see Problem 7.10),
so the relevant quantity in finding the fall time is the terminal velocity.
From the drag-force formula, the terminal velocity is

N Y

pA

The cross-sectional areas are easy to measure with a ruler, and the ratio
between the small- and large-cone terminal velocities is even easier. The
experiment is set up to make the drag force easy to measure: Since the
cones fall at their respective terminal velocities, the drag force equals the
weight. So

W
U~ L —.

pA

Each cone’s weight is proportional to its cross-sectional area, because they
are geometrically similar and made out of the same piece of paper. So
the terminal velocity v is independent of the area A: so the small and
large cones should fall at the same speed.

To test this prediction, I stood on a table and dropped the two cones. The
fall lasted about two seconds, and they landed within 0.1s of one another.
So, the approximate conservation-of-energy analysis gains in plausibility
(all the inaccuracies are hidden within the changing drag coefficient).
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3.4 Cycling

This section discusses cycling as an example of how drag affects the per-
formance of people as well as fleas. Those results will be used in the
analysis of swimming, the example of the next section.

What is the world-record cycling speed? Before looking it up, predict it
using armchair proportional reasoning. The first task is to define the kind
of world record. Let’s say that the cycling is on a level ground using a
regular bicycle, although faster speeds are possible using special bicycles
or going downbhill.

To estimate the speed, make a model of where the energy goes. It goes
into rolling resistance, into friction in the chain and gears, and into drag.
At low speeds, the rolling resistance and chain friction are probably im-
portant. But the importance of drag rises rapidly with speed, so at high-
enough speeds, drag is the dominant consumer of energy.

For simplicity, assume that drag is the only consumer of energy. The
maximum speed happens when the power supplied by the rider equals
the power consumed by drag. The problem therefore divides into two
estimates: the power consumed by drag and the power that an athlete
can supply.

The drag power Py, is related to the drag force:
Pdrag = Fdragv ~ PUSA-

It indeed rises rapidly with velocity, supporting the initial assumption
that drag is the important effect at world-record speeds.

Setting Pdrag = Pathlete gives

1/3
v - P athlete
max p A

To estimate how much power an athlete can supply, I ran up one flight
of stairs leading from the MIT Infinite Corridor. The Infinite Corridor,
being an old building, has spacious high ceilings, so the vertical climb is
perhaps I ~ 4m (a typical house is 3 m per storey). Leaping up the stairs
as fast as I could, I needed t ~ 55 for the climb. My mass is 60 kg, so my
power output was
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potential energy supplied

P ~
author time to deliver it

3 mgh  60kg X 10ms2x4m

~ 500 W.
t 5s

Pathiete should be higher than this peak power since most authors are not
Olympic athletes. Fortunately I'd like to predict the endurance record.
An Olympic athlete’s long-term power might well be comparable to my
peak power. So I use Paghiete = 500 W.

The remaining item is the cyclist’s cross-sectional area A. Divide the area
into width and height. The width is a body width, perhaps 0.4m. A
racing cyclist crouches, so the height is maybe 1 m rather than a full 2m.
So A~ 04m?.

Here is the tree that represents this analysis:

Vmax
/ \
athlete ~ Estalrs/tstalrs Pdrag ~ pVv A
stcu.rs tstairs
2400] 5s 1 kgm 0. 4rn
m g h

60kg ]Om572 4m

Now combine the estimates to find the maximum speed. Putting in num-
bers gives

Vinax ~ Pathiete e N 500 W 13
e pA lkgm=3x04m?)

The cube root might suggest using a calculator. However, massaging the
numbers simplifies the arithmetic enough to do it mentally. If only the
power were 400 W or, instead, if the area were 0.5m! Therefore, in the
words of Captain Jean-Luc Picard, ‘make it so’. The cube root becomes
easy:

o 400W
e 1kgm=3 x 0.4m?

1/3
) ~(1000m3s3)/3 = 10ms™!
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So the world record should be, if this analysis has any correct physics in
it, around 10ms™ or 22 mph.

The world one-hour record — where the contestant cycles as far as pos-
sible in one hour — is 49.7km or 30.9mi. The estimate based on drag is
reasonable!
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Flight

How far can birds and planes fly? The theory of flight is difficult and
involves vortices, Bernoulli’s principle, streamlines, and much else. This
section offers an alternative approach: use conservation estimate the en-
ergy required to generate lift, then minimize the lift and drag contribu-
tions to the energy to find the minimum-energy way to make a trip.

Lift

Instead of wading into the swamp of vortices, study what does not change.
In this case, the vertical component of the plane’s momentum does not
change while it cruises at constant altitude.

Because of momentum conservation, a plane must deflect air downward.
If it did not, gravity would pull the plane into the ground. By deflecting
air downwards — which generates lift — the plane gets a compensating,
upward recoil. Finding the necessary recoil leads to finding the energy
required to produce it.

Imagine a journey of distance s. I calculate the energy to produce lift in
three steps:

1. How much air is deflected downward?

2. How fast must that mass be deflected downward in order to give the
plane the needed recoil?

3. How much kinetic energy is imparted to that air?

The plane is moving forward at speed v, and it deflects air over an area
L? where L is the wingspan. Why this area L?, rather than the cross-
sectional area, is subtle. The reason is that the wings disturb the flow
over a distance comparable to their span (the longest length). So when
the plane travels a distance s, it deflects a mass of air

2
Mair ~ pL%s.

The downward speed imparted to that mass must take away enough mo-
mentum to compensate for the downward momentum imparted by grav-
ity. Traveling a distance s takes time s/v, in which time gravity imparts a
downward momentum Mgs/v to the plane. Therefore
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Mgs
MairUdown ™~ -

S0
Mgs  Mgs Mg
UMy pul?s  pol?’

Odown ~

The distance s divides out, which is a good sign: The downward velocity
of the air should not depend on an arbitrarily chosen distance!

The kinetic energy required to send that much air downwards is mairviown.
That energy factors into (7,irUdown)?down, SO

Mgs Mg _ (Mg)’
Ehft ~ MairUdown YPdown ™~ v p'ULz = pszz :
Mgs/v —

Udown

Check the dimensions: The numerator is a squared force since Mg is a
force, and the denominator is a force, so the expression is a force times
the distance s. So the result is an energy.

Interestingly, the energy to produce lift decreases with increasing speed.
Here is a scaling argument to make that result plausible. Imagine dou-
bling the speed of the plane. The fast plane makes the journey in one-half
the time of the original plane. Gravity has only one-half the time to pull
the plane down, so the plane needs only one-half the recoil to stay aloft.
Since the same mass of air is being deflected downward but with half the
total recoil (momentum), the necessary downward velocity is a factor of 2
lower for the fast plane than for the slow plane. This factor of 2 in speed
lowers the energy by a factor of 4, in accordance with the 272 in Ejg.

Optimization including drag

The energy required to fly includes the energy to generate lift and to
fight drag. I'll add the lift and drag energies, and choose the speed that
minimizes the sum.

The energy to fight drag is the drag force times the distance. The drag
force is usually written as

Fdrag ~ PU2A,
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where A is the cross-sectional area. The missing dimensionless constant
is cq/2:

1
Fdrag = ECdPUZA;

where cq is the drag coefficient.

However, to simplify comparing the energies required for lift and drag, I
instead write the drag force as

Fdrag = vaszr

where C is a modified drag coefficient, where the drag is measured rel-
ative to the squared wingspan rather than to the cross-sectional area.
For most flying objects, the squared wingspan is much larger than the
cross-sectional area, so C is much smaller than cq.

With that form for Fyrag, the drag energy is
Edrag = vaszs,

and the total energy to fly is

M 2
E~ ( 2g)25 + Cpo®L?s.
pvAL \ ,
Ein Edrag

A sketch of the total energy versus
velocity shows interesting features. Egrag o V2
At low speeds, lift is the dominant
consumer because of its v™* depen-
dence. At high speeds, drag is the
dominant consumer because of its |
v* dependence. In between these

extremes is an optimum speed Uoptimum? 1 Ejg o< v2
the speed that minimizes the energy
consumption for a fixed journey dis-
tance s. Going faster or slower than the optimum speed means consuming
more energy. That extra consumption cannot always be avoided. A plane
is designed so that its cruising speed is its minimum-energy speed. So
at takeoff and landing, when its speed is much less than the minimum-
energy speed, a plane requires a lot of power to stay aloft, which is one

E total

Voptimum
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reason that the engines are so loud at takeoff and landing (another reason
is probably that the engine noise reflects off the ground and back to the
plane).

The constraint, or assumption, that a plane travels at the minimum-energy
speed simplifies the expression for the total energy. At the minimum-
energy speed, the drag and lift energies are equal. So

(Mg)?
pv2L2

s ~ vaZLzs,

or
Mg ~ C2p?L2.

This constraint simplifies the total energy. Instead of simplifying the sum,
simplify just the drag, which neglects only a factor of 2 since drag and
lift are roughly equal at the minimum-energy speed. So

E ~ Edrag ~ Cpv?L?s ~ C'/*Mgs.

This result depends in reasonable ways upon M, g, C, and s. First, lift
overcomes gravity, and gravity produces the plane’s weight Mg. So Mg
should show up in the energy, and the energy should, and does, increase
when Mg increases. Second, a streamlined plane should use less energy
than a bluff, blocky plane, so the energy should, and does, increase as
the modified drag coefficient C increases. Third, since the flight is at a
constant speed, the energy should be, and is, proportional to the distance
traveled s.

Explicit computations

To get an explicit range, estimate the fuel fraction f8, the energy density
&, and the drag coefficient C. For the fuel fraction I'll guess g ~ 0.4. For
&, look at the nutrition label on the back of a pack of butter. Butter is
almost all fat, and one serving of 11g provides 100Cal (those are ‘big
calories’). So its energy density is 9kcalg™. In metric units, it is 4-
107Tkg™". Including a typical engine efficiency of one-fourth gives

E~10"Tkg ™.
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The modified drag coefficient needs converting from easily available data.
According to Boeing, a 747 has a drag coefficient of C’ = 0.022, where this
coefficient is measured using the wing area:

1.
Fdrag = EC Awingpvz-

Alas, this formula is a third convention for drag coefficients, depending
on whether the drag is referenced to the cross-sectional area A, wing area
Auwing, Or squared wingspan L?.
It is easy to convert between the definitions. Just equate the standard
definition
1
Fdrag = EC’AngpUZ.

to our definition

Farag = Cszv2

to get

_ 1 Awing 11

C=771 ¢ =31%

since Awing = Ll where | is the wing width. For a 747, I ~ 10m and
L~60m, so C~ 1/600.

Combine the values to find the range:

BE 0.4 x 107 kg™

~ ~ ~ 10’ m = 10* km.
7 Clizg ~ (1/600)12 x 10m -2 m m

The maximum range of a 747-400 is 13,450 km, so the approximate analy-
sis of the range is unreasonably accurate.



Problem 3.1 Integrals
Evaluate these definite integrals:

10 2
a. f e dx
-10
00 3
x
b. —  —dx
f:oo 1+ 7x2 4+ 18x8

Problem 3.2 Number sum
Use symmetry to find the sum of the integers between 200 and 300 (inclusive).

Problem 3.3 Heat equation

In lecture we used symmetry to argue that the tempera- N °0,
ture at the center of the metal sheet is the average of the
temperatures of the sides.

Check this result by making a simulation or, if you are %
bold but crazy, by finding an analytic solution of the heat
equation.

700

10°

Problem 3.4 Symmetry for algebra
Use symmetry to find (a — b)3.

Problem 3.5 Symmetry for second-order systems

This problem analyzes the frequency of maximum gain for an LRC circuit oz,
equivalently, for a damped spring-mass system. The gain of such a system is the
ratio of the input amplitude to the output amplitude as a function of frequency.

If the output voltage is measured across the resistor, and you drive the circuit
with a voltage oscillating at frequency w, the gain is (in a suitable system of
units):

jw

O T erg=a

where j = V-1 and Q is quality factor, a dimensionless measure of the damping.

Do not worry if you do not know where that gain formula comes from. The
purpose of this problem is not its origin, but rather using symmetry to maximize
its magnitude.

a. Show that the magnitude of the gain is

@

w’(l —a)z)z + a)Z/QZI

IG(w)l =




b.

C.

d.

Find a variable substitution (a symmetry operation) wnew = f(w) that turns
|G(w)| into |[H(wnew)| such that G and H are the same function (i.e. they have
the same structure but with w in G replaced by wnew in H).

Use the form of that symmetry operation to maximize |G(w)| without using
calculus.

[Optional, for masochists!] Maximize |(Gw)| using calculus.

Problem 3.6 Inertia tensor

[For those who know about inertia tensors.] Here is the inertia tensor (the generaliza-
tion of moment of inertia) of a particular object, calculated in a lousy coordinate

system:
4 0 0
0 5 4
0 4 5

Change coordinate systems to a set of principal axes. In other words, write
the inertia tensor as

Lk« 0 0
0 Iy 0
0 0 I,

and give I, lyy, and I;. Hint: What properties of a matrix are invariant
when changing coordinate systems?

Give an example of an object with a similar inertia tensor. On Friday in class
we’ll have a demonstration.

Problem 3.7 Resistive grid

In an infinite grid of 1-ohm resistors, what

is t

he resistance measured across one re-

sistor?

To

measure resistance, an ohmmeter in-

jects a current I at one terminal (for sim-
plicity, say I = 1A), removes the same
current from the other terminal, and mea-
sures the resulting voltage difference V be-
tween the terminals. The resistance is R =
VII.

Hint: Use symmetry. But it’s still a hard problem!
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Symmetry wrings out excess, irrelevant complexity, and proportional rea-
soning in one implementation of that philosophy. If an object moves with
no forces on it (or if you walk steadily), then moving for twice as long
means doubling the distance traveled. Having two changing quantities
contributes complexity. However, the ratio distance/time, also known as
the speed, is independent of the time. It is therefore simpler than distance
or time. This conclusion is perhaps the simplest example of proportional
reasoning, where the proportional statement is

distance o time.

Using symmetry has mitigated complexity. Here the symmetry operation
is ‘change for how long the object move (or how long you walk)". This op-
eration should not change conclusions of an analysis. So, do the analysis
using quantities that themselves are unchanged by this symmetry opera-
tion. One such quantity is the speed, which is why speed is such a useful

quantity.
Similarly, in random walks and diffusion problems, the mean-square dis-
tance traveled is proportional to the time travelled:

(%) o< t.

So the interesting quantity is one that does not change when ¢ changes:
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interesting quantity = ;

This quantity is so important that it is given a name — the diffusion con-
stant — and is tabulated in handbooks of material properties.

Flight range versus size

How does the range depend on the size of the plane? Assume that all
planes are geometrically similar (have the same shape) and therefore differ
only in size.

Since the energy required to fly a distance s is E ~ C'/>Mgs, a tank of fuel
gives a range of

5 ~ Etank
Cl2Mg’

Let 8 be the fuel fraction: the fraction of the plane’s mass taken up by
fuel. Then M§ is the fuel mass, and MBE is the energy contained in the
fuel, where & is the energy density (energy per mass) of the fuel. With
that notation, Eink ~ MBE and

MBE P&

5 Cl2Mg ~ Cli2g’

Since all planes, at least in this analysis, have the same shape, their mod-
ified drag coefficient C is also the same. And all planes face the same
gravitational field strength g. So the denominator is the same for all
planes. The numerator contains § and &. Both parameters are the same
for all planes. So the numerator is the same for all planes. Therefore

s o 1.

All planes can fly the same distance!

Even more surprising is to apply this reasoning to migrating birds. Here
is the ratio of ranges:

-1/2
Splane N ﬁplane 8plane (Cplane) /

Sbird  Pbird  Sbird

Chird

Take the factors in turn. First, the fuel fraction fppne is perhaps 0.3 or
0.4. The fuel fraction Ppirq is probably similar: A well-fed bird having
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fed all summer is perhaps 30 or 40% fat. So Pplane/Poira ~ 1. Second,
jet fuel energy density is similar to fat’s energy density, and plane en-
gines and animal metabolism are comparably efficient (about 25%). So
Eplane/Epird ~ 1. Finally, a bird has a similar shape to a plane - it is not a
great approximation, but it has the virtue of simplicity. So Cpird/Cplane ~ 1.

Therefore, planes and well-fed, migrating birds should have the same
maximum range! Let’s check. The longest known nonstop flight by
an animal is 11,570 km, made by a bar-tailed godwit from Alaska to
New Zealand (tracked by satellite). The maximum range for a 747-400
is 13,450 km, only slightly longer than the godwit’s range.
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4.2 Mountain heights

The next example of proportional reasoning explains why mountains can-
not become too high. Assume that all mountains are cubical and made of
the same material. Making that assumption discards actual complexity,
the topic of ??7. However, it is a useful approximation.

To see what happens if a mountain gets too large, estimate the pressure
at the base of the mountain. Pressure is force divided by area, so estimate
the force and the area.

The area is the easier estimate. With the approximation that all moun-
tains are cubical and made of the same kind of rock, the only parameter
distinguishing one mountain from another is its side length I. The area
of the base is then 2.

Next estimate the force. It is proportional to the mass:
F o m.

In other words, F/m is independent of mass, and that independence is
why the proportionality F oc m is useful. The mass is proportional to I°:

m o volume ~ .

In other words, m/I® is independent of I; this independence is why the
proportionality m o I is useful. Therefore

Fo P
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The force and area results show that the pressure is pro- pressure

portional to I: !

F P / \
~ Z « Z_2 =1 force area

o 13 o 12

With a large-enough mountain, the pressure is larger than

the maximum pressure that the rock can withstand. Then \

the rock flows like a liquid, and the mountain cannot grow  mass

taller. o 1?

This estimate shows only that there is a maximum height \
but it does not compute the maximum height. To do that volume
next step requires estimating the strength of rock. Later o1’
in this book when we estimate the strength of materials, I

revisit this example.

This estimate might look dubious also because of the assumption that
mountains are cubical. Who has seen a cubical mountain? Try a reason-
able alternative, that mountains are pyramidal with a square base of side
I and a height I, having a 45° slope. Then the volume is °/3 instead of °
but the factor of one-third does not affect the proportionality between force and
length. Because of the factor of one-third, the maximum height will be
higher for a pyramidal mountain than for a cubical mountain. However,
there is again a maximum size (and height) of a mountain. In general,
the argument for a maximum height requires only that all mountains are
similar — are scaled versions of each other — and does not depend on the
shape of the mountain.

Jumping high

We next use proportional reasoning to understand how high animals
jump, as a function of their size. Do kangaroos jump higher than fleas?
We study a jump from standing (or from rest, for animals that do not
stand); a running jump depends on different physics. This problem looks
underspecified. The height depends on how much muscle an animal has,
how efficient the muscles are, what the animal’s shape is, and much else.
The first subsection introduces a simple model of jumping, and the sec-
ond refines the model to consider physical effects neglected in the crude
approximations.
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4.3.1 Simple model

We want to determine only how jump height varies with body mass. Even
this problem looks difficult; the height still depends on muscle efficiency,
and so on. Let’s see how far we get by just plowing along, and using
symbols for the unknown quantities. Maybe all the unknowns cancel.

We want an equation for the height % in the form h ~ mf, where m is the
animal’s mass and f is the so-called scaling exponent.

This first, simplest model equates the required energy to the

Jumping requires energy, which must be provided by muscles.
energy supplied by the animal’s muscles. I

m jumping to a height h requires an energy Ejump o« mh. Because

all animals feel the same gravity, this relation does not contain
the gravitational acceleration ¢. You could include it in the
equation, but it would just carry through the equations like
unused baggage on a trip.

The required energy is the easier estimation: An animal of mass l

The available energy is the harder estimation. To find it, divide and
conquer. It is the product of the muscle mass and of the energy per mass
(the energy density) stored in muscle.

To approximate the muscle mass, assume that a fixed fraction of an ani-
mals mass is muscle, i.e. that this fraction is the same for all animals. If
« is the fraction, then

Mmuscle ~ AM
or, as a proportionality,
Mmuscle < M,

where the last step uses the assumption that all animals have the same a.

For the energy per mass, assume again that all muscle tissues are the
same: that they store the same energy per mass. If this energy per mass
is &, then the available energy is

Eavail ~ ‘Smmuscle

or, as a proportionality,
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Eavail ¢ Mmuscle,

where this last step uses the assumption that all muscle has the same
energy density &.

Here is a tree that summarizes this model:

jump height h

/\

energy required energy available
h m g muscle mass energy density
/ \ in muscle
animal’s mass m muscle fraction

Now finish propagating toward the root. The available energy is
Eavail o< m.

So an animal with three times the mass of another animal can store
roughly three times the energy in its muscles, according to this simple
model.

Now compare the available and required energies to find how the jump
height as a function of mass. The available energy is

Eavail xm
and the required energy is
Erequirecl o mbh.

Equate these energies, which is an application of conservation of energy.
Then mh oc m or

h oc mP.

In other words, all animals jump to the same height.



The result, that all animals jump to the
same height, seems surprising. Our intu-
ition tells us that people should be able
to jump higher than locusts. The graph
shows jump heights for animals of var-
ious sizes and shapes [source: Scaling:

Why Animal Size is So Important [26, p. 178].

Here is the data:

Animal Mass(g) Height (cm)
Flea 5-107* 20
Click beetle ~ 4-1072 30
Locust 3 59
Human 7-10* 60

74

elocust  ®human

1 eclick beetle

- eflea

1L o o e B e e e e L )
10-4 101 102

The height varies almost not at all when compared to variation in mass,
so our result is roughly correct! The mass varies more than eight orders
of magnitude (a factor of 10%), yet the jump height varies only by a factor
of 3. The predicted scaling of constant i (h oc 1) is surprisingly accurate.
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4.3.2 Power limits

Power production might also limit the jump height. In the preceding
analysis, energy is the limiting reagent: The jump height is determined
by the energy that an animal can store in its muscles. However, even if the
animal can store enough energy to reach that height, the muscles might
not be able to deliver the energy rapidly enough. This section presents a
simple model for the limit due to limited power generation.

Once again we’d like to find out how power P scales (varies) with the size
| Power is energy per time, so the power required to jump to a height
is

energy required to jump to height h

time over which the energy is delivered

The energy required is E ~ mgh. The mass is m o« . The gravitational
acceleration is independent of /. And, in the energy-limited model, the
height & is independent of I. Therefore E o I°.

The delivery time is how long the animal is in contact with the ground,
because only during contact can the ground exert a force on the animal.
So, the animal crouches, extends upward, and finally leaves the ground.
The contact time is the time during which the animal extends upward.
Time is length over speed, so

extension distance
extension speed

tdelivery ~

The extension distance is roughly the animal’s size . The extension speed
is roughly the takeoff velocity. In the energy-limited model, the takeoff
velocity is the same for all animals:

1/2 0
Utakeoft 11 2o 0.
So
Fdelivery L.

The power required is P o I3/] = I,

That proportionality is for the power itself, but a more interesting scaling
is for the specific power: the power per mass. It is
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P L

m_
m B

Ah, smaller animals need a higher specific power!

— Z—l

A model for power limits is that all muscle can generate the same maxi-
mum power density (has the same maximum specific power). So a small-
enough animal cannot jump to its energy-limited height. The animal can
store enough energy in its muscles, but cannot release it quickly enough.

More precisely, it cannot do so unless it finds an alternative method for
releasing the energy. The click beetle, which is toward the small end in
the preceding graph and data set, uses the following solution. It stores
energy in its shell by bending the shell, and maintains the bending like a
ratchet would (holding a structure motionless does require energy). This
storage can happen slowly enough to avoid the specific-power limit, but
when the beetle releases the shell and the shell snaps back to its resting
position, the energy is released quickly enough for the beetle to rise to its
energy-limited height.

But that height is less than the height for locusts and humans. Indeed, the
largest deviations from the constant-height result happen at the low-mass
end, for fleas and click beetles. To explain that discrepancy, the model
needs to take into account another physical effect: drag.

Drag

Jumping fleas
The drag force
F ~ pAv?

affects the jumps of small animals more than it affects the jumps of peo-
ple. A comparison of the energy required for the jump with the energy
consumed by drag explains why.

The energy that the animal requires to jump to a height h is mgh, if we use
the gravitational potential energy at the top of the jump; or it is ~ mo?, if
we use the kinetic energy at takeoff. The energy consumed by drag is
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Edrag ~ pUZA xHh.
——
Fdrag

The ratio of these energies measures the importance of drag. The ratio is

E drag ‘OUZAh pAh

E required mv? m

Since A is the cross-sectional area of the animal, Ah is the volume of air
that it sweeps out in the jump, and pAh is the mass of air swept out in
the jump. So the relative importance of drag has a physical interpretation
as a ratio of the mass of air displaced to the mass of the animal.

To find how this ratio depends on animal size, rewrite it in terms of the
animal’s side length . In terms of side length, A ~ I and m « I°. What
about the jump height #? The simplest analysis predicts that all animals
have the same jump height, so h « I°. Therefore the numerator pAh is
o [!, the denominator m is o I3, and

Eq
&(x—:l_l

E required !

So, small animals have a large ratio, meaning that drag affects the jumps
of small animals more than it affects the jumps of large animals. The
missing constant of proportionality means that we cannot say at what size
an animal becomes ‘small” for the purposes of drag. So the calculation so
far cannot tell us whether fleas are included among the small animals.

The jump data, however, substitutes for the missing constant of propor-
tionality. The ratio is

Edrag pAh plzh

~

E required m Panimal B

It simplifies to

Edrag Y h
Erequired Panimal I
As a quick check, verify that the dimensions match. The left side is a ratio

of energies, so it is dimensionless. The right side is the product of two
dimensionless ratios, so it is also dimensionless. The dimensions match.
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Now put in numbers. A density of air is p ~ 1kgm™. The density of

an animal is roughly the density of water, S0 panimal ~ 10°kgm™. The
typical jump height — which is where the data substitutes for the constant
of proportionality —is 60 cm or roughly 1m. A flea’s length is about 1 mm
or [ ~102m. So

Edrag 1 kg m™ Im 1
Erequired 103 kg m=3 103m '

The ratio being unity means that if a flea would jump to 60 cm, overcom-
ing drag would require roughly as much as energy as would the jump
itself in vacuum.

Drag provides a plausible explanation for why fleas do not jump as high
as the typical height to which larger animals jump.
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4.4.2 Swimming

A previous section’s analysis of cycling helps predict the world-record
speed for swimming.

1/3
2 - (P athlete)
max .
pA

To evaluate the maximum speed for swimming, one could put in a new

p and A directly into that formula. However, that method replicates the
work of multiplying, dividing, and cube-rooting the various values.

Instead it is instructive to scale the numerical result for cycling by look-
ing at how the maximum speed depends on the parameters of the sit-
uation. In other words, I'll use the formula for vy, to work out the
ratio Uswimmer/Veyclist, and then use that ratio along with vcyest to work out

Uswimmer-

The speed Upmay is

1/3
v - p athlete
max P A .

So the ratio of swimming and cycling speeds is

1/3 -1/3 -1/3
Uswimmer N (P swimmer ) x ( P swimmer ) % (Aswimmer )
Peyclist Acydist

Ucyclist P cyclist

Estimate each factor in turn. The first factor accounts for the relative ath-
letic prowess of swimmers and cyclists. Let’s assume that they generate
equal amounts of power; then the first factor is unity. The second factor
accounts for the differing density of the mediums in which each athlete
moves. Roughly, water is 1000 times denser than air. So the second factor
contributes a factor of 0.1 to the speed ratio. If the only factors were the

first two, then the swimming world record would be about 1ms™.

Let’s compare with reality. The actual world record for a 1500-m freestyle
(in a 50-m pool) is 14m34.56s set in July 2001 by Grant Hackett. That
speed is 1.713ms™, significantly higher than the prediction of 1ms™.

The third factor comes to the rescue by accounting for the relative profile
of a cyclist and a swimmer. A swimmer and a cyclist probably have the
same width, but the swimmer’s height (depth in the water) is perhaps
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one-sixth that of a crouched cyclist. So the third factor contributes 6!/3 to

the predicted speed, making it 1.8 ms™'.

This prediction is close to the actual record, closer to reality than one
might expect given the approximations in the physics, the values, and the
arithmetic. However, the accuracy is a result of the form of the estimate,
that the maximum speed is proportional to the cube root of the athlete’s
power and the inverse cube root of the cross-sectional area. Errors in
either the power or area get compressed by the cube root. For example,
the estimate of 500 W might easily be in error by a factor of 2 in either
direction. The resulting error in the maximum speed is 2!/% or 1.25, an
error of only 25%. The cross-sectional area of a swimmer might be in
error by a factor of 2 as well, and this mistake would contribute only
a 25% error to the maximum speed. [With luck, the two errors would
cancel!]

Flying

In the next example, I scale the drag formula to estimate the fuel efficiency
of a jumbo jet. Rather than estimating the actual fuel consumption, which
would produce a large, meaningless number, it is more instructive to
estimate the relative fuel efficiency of a plane and a car.

Assume that jet fuel goes mostly to fighting drag. This assumption is not
quite right, so at the end I'll discuss it and other troubles in the analysis.
The next step is to assume that the drag force for a plane is given by the
same formula as for a car:

Farag ~ vaA.

Then the ratio of energy consumed in travelling a distance d is

Eplane Pup-high v (Uplane )2 Aplane % d
Acar d

E car Plow

Ucar

Estimate each factor in turn. The first factor accounts for the lower air
density at a plane’s cruising altitude. At 10km, the density is roughly one-
third of the sea-level density, so the first factor contributes 1/3. The second
factor accounts for the faster speed of a plane. Perhaps vpjane ~ 600 mph
and vy ~ 60 mph, so the second factor contributes a factor of 100. The
third factor accounts for the greater cross-sectional area of the plane. As
a reasonable estimate
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Aplane ~ 6m X 6m = 36m?,

whereas

Aer ~2m X 1.5m =3m?,

so the third factor contributes a factor of 12. The fourth factor contributes
unity, since we are analyzing the plane and car making the same trip
(New York to Los Angeles, say).

The result of the four factors is

E plane

1
~ = x 100 x 12 ~ 400.
Ecar

A plane looks incredibly inefficient. But I neglected the number of people.
A jumbo jet takes carries 400 people; a typical car, at least in California,
carries one person. So the plane and car come out equal!

This analysis leaves out many effects. First, jet fuel is used to generate lift
as well as to fight drag. However, as a later analysis will show, the energy
consumed in generating lift is comparable to the energy consumed in
fighting drag. Second, a plane is more streamlined than a car. Therefore
the missing constant in the drag force Fyrag ~ pv2A is smaller for a plane
than for a car. our crude analysis of drag has not included this effect.
Fortunately this error compensates, or perhaps overcompensates, for the
error in neglecting lift.



More on proportional reasoning

Problem 4.1 Raindrop speed

a. How does a raindrop’s terminal velocity v depend on the raindrop’s radius
r?

b. Estimate the terminal speed for a typical raindrop.

c. How could you check your estimate in part (b)?

Problem 4.2 Mountains

Look up the height of the tallest mountain on earth, Mars, and Venus, and
explain any pattern in the three values.

Problem 4.3 Highway vs city driving

In lecture we derived a measure of how important drag is for a car moving at
speed v for a distance d:

E drag pZ)ZAd

Eyinetic mcarv2 ’
a. Show that the ratio is equivalent to the ratio

mass of the air displaced

mass of the car

and to the ratio
i d
Pair Sy

l 7
Pcar car

where pcar is the density of the car (i.e. its mass divided by its volume) and
lcar is the length of the car.

b. Make estimates for a typical car and find the distance d at which the ratio
becomes significant (say, roughly 1). How does the distance compare with the
distance between exits on the highway and between stop signs or stoplights
on city streets?

Problem 4.4 Gravity on the moon

In this problem you use a scaling argument to estimate the strength of gravity
on the surface of the moon.

a. Assume that a planet is a uniform sphere. What is the proportionality
between the gravitational acceleration g at the surface of a planet and the
planet’s radius R and density p?

b. Write the ratio gmoon/gearth s a product of dimensionless factors as in the
analysis of the fuel efficiency of planes.
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c. Estimate those factors and estimate the ratio gmoon/Searth, then estimate
gmoon- [Hint: To estimate the radius of the moon, whose angular size you
can estimate by looking at it, you might find it useful to know that the moon
is 4-108 m distant from the earth.]

d. Look up gmoon and compare the value to your estimate, venturing an expla-
nation for any discrepancy.

Problem 4.5 Checking plane fuel-efficiency calculation
This problem offers two more methods to estimate the fuel efficiency of a plane.

a. Use the cost of a plane ticket to estimate the fuel efficiency of a 747, in
passenger—miles per gallon.

b. According to Wikipedia, a 747-400 can hold up to 210°¢ of fuel for a maximum
range of 1.3-10* km. Use that information to estimate the fuel efficiency of
the 747, in passenger—miles per gallon.

How do these values compare with the rough result from lecture, that the fuel
efficiency is comparable to the fuel efficiency of a car?

83






5
Dimensions

5.1 Power of multinational corporations 85
5.2 Dimensionless groups 87
5.3 Hydrogen atom 92
5.4 Bending of light by gravity 97
5.5 Buckingham Pi theorem 104
5.6 Drag 105

5.1 Power of multinational corporations

Critics of globalization often make the following comparison [17] to prove
the excessive power of multinational corporations:
In Nigeria, a relatively economically strong country, the GDP [gross domestic
product] is $99 billion. The net worth of Exxon is $119 billion. “When multi-
nationals have a net worth higher than the GDP of the country in which they

operate, what kind of power relationship are we talking about?” asks Laura
Morosini.

Before continuing, explore the following question:
What is the most egregious fault in the comparison between Exxon and Nigeria?

The field is competitive, but one fault stands out. It becomes evident after
unpacking the meaning of GDP. A GDP of $99 billion is shorthand for
a monetary flow of $99 billion per year. A year, which is the time for
the earth to travel around the sun, is an astronomical phenomenon that
has been arbitrarily chosen for measuring a social phenomenon—namely,
monetary flow.
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Suppose instead that economists had chosen the decade as the unit of
time for measuring GDP. Then Nigeria’s GDP (assuming the flow remains
steady from year to year) would be roughly $1 trillion per decade and
be reported as $1 trillion. Now Nigeria towers over Exxon, whose puny
assets are a mere one-tenth of Nigeria’'s GDP. To deduce the opposite
conclusion, suppose the week were the unit of time for measuring GDP.
Nigeria’s GDP becomes $2 billion per week, reported as $2 billion. Now
puny Nigeria stands helpless before the mighty Exxon, 50-fold larger than
Nigeria.

A valid economic argument cannot reach a conclusion that depends on
the astronomical phenomenon chosen to measure time. The mistake lies
in comparing incomparable quantities. Net worth is an amount: It has
dimensions of money and is typically measured in units of dollars. GDP,
however, is a flow or rate: It has dimensions of money per time and
typical units of dollars per year. (A dimension is general and independent
of the system of measurement, whereas the unit is how that dimension is
measured in a particular system.) Comparing net worth to GDP compares
a monetary amount to a monetary flow. Because their dimensions differ,
the comparison is a category mistake [] and is therefore guaranteed to
generate nonsense.

Problem 5.1 Units or dimensions?
Are meters, kilograms, and seconds units or dimensions? What about energy,
charge, power, and force?

A similarly flawed comparison is length per time (speed) versus length:
“I walk 1.5ms™'—much smaller than the Empire State building in New
York, which is 300 m high.” It is nonsense. To produce the opposite but
still nonsense conclusion, measure time in hours: “I walk 5400 m/hr—
much larger than the Empire State building, which is 300 m high.”

I often see comparisons of corporate and national power similar to our
Nigeria—Exxon example. I once wrote to one author explaining that I
sympathized with his conclusion but that his argument contained a fatal
dimensional mistake. He replied that I had made an interesting point
but that the numerical comparison showing the country’s weakness was
stronger as he had written it, so he was leaving it unchanged!

A dimensionally valid comparison would compare like with like: either
Nigeria’s GDP with Exxon’s revenues, or Exxon’s net worth with Nige-
ria’s net worth. Because net worths of countries are not often tabulated,
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whereas corporate revenues are widely available, try comparing Exxon’s
annual revenues with Nigeria’s GDP. By 2006, Exxon had become Exxon
Mobil with annual revenues of roughly $350 billion—almost twice Nige-
ria’s 2006 GDP of $200 billion. This valid comparison is stronger than the
flawed one, so retaining the flawed comparison was not even expedient!

That compared quantities must have identical dimensions is a necessary
condition for making valid comparisons, but it is not sufficient. A costly
illustration is the 1999 Mars Climate Orbiter (MCO), which crashed into
the surface of Mars rather than slipping into orbit around it. The cause,
according to the Mishap Investigation Board (MIB), was a mismatch be-
tween English and metric units [18, p.6]:
The MCO MIB has determined that the root cause for the loss of the MCO
spacecraft was the failure to use metric units in the coding of a ground
software file, Small Forces, used in trajectory models. Specifically, thruster
performance data in English units instead of metric units was used in the
software application code titled SM_FORCES (small forces). A file called An-
gular Momentum Desaturation (AMD) contained the output data from the
SM_FORCES software. The data in the AMD file was required to be in metric
units per existing software interface documentation, and the trajectory mod-
elers assumed the data was provided in metric units per the requirements.

Make sure to mind your dimensions and units.

Problem 5.2 Finding bad comparisons
Look for everyday comparisons—for example, on the news, in the newspaper,
or on the Internet—that are dimensionally faulty.

Dimensionless groups

Dimensionless ratios are useful. For example, in the oil example, the ratio
of the two quantities has dimensions; in that case, the dimensions of the
ratio are time (or one over time). If the authors of the article had used a
dimensionless ratio, they might have made a valid comparison.

This section explains why dimensionless ratios are the only quantities that
you need to think about; in other words, that there is no need to think
about quantities with dimensions.

To see why, take a concrete example: computing the energy E to produce
lift as a function of distance traveled s, plane speed v, air density p,
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wingspan L, plane mass m, and strength of gravity g. Any meanginful
statement about these variables looks like

+ | mess | = ,
mess

where the various messes mean ‘a horrible combination of E, s, v, p, L,
and m.

As horrible as that statement is, it permits the following rewriting: Divide
each term by the first one (the triangle). Then

mess
mess

+ = ,

mess mess mess

The first ratio is 1, which has no dimensions. Without knowing the indi-
vidual messes, we don’t know the second ratio; but it has no dimensions
because it is being added to the first ratio. Similarly, the third ratio, which
is on the right side, also has no dimensions.

So the rewritten expression is dimensionless. Nothing in the rewriting
depended on the particular form of the statement, except that each term
has the same dimensions.

Therefore, any meaningful statement can be rewritten in dimensionless form.

Dimensionless forms are made from dimensionless ratios, so all you need
are dimensionless ratios, and you can do all your thinking with them. As
a negative example, revisit the comparison between Exxon’s net worth
and Nigeria’s GDP (Section 5.1). The dimensions of net worth are simply
money. The dimensions of GDP are money per time. These two quantities
cannot form a dimensionless group! With just these two quantities, no
meanginful statements are possible.

Here is a further example to show how this change simplifies your think-
ing. This example uses familiar physics so that you can concentrate on
the new idea of dimensionless ratios.



The problem is to find the period of an oscillating
spring-mass system given an initial displacement
xo, then allowed to oscillate freely. The relevant
variables that determine the period T are mass m,
spring constant k, and amplitude xp. Those three

A
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x=0

variables completely describe the system, so any true statement about

period needs only those variables.

Since any true statement can be written in di-
mensionless form, the next step is to find all di-
mensionless forms that can be constructed from
T, m, k, and xo. A table of dimensions is help-
ful. The only tricky entry is the dimensions of a
spring constant. Since the force from the spring
is F = kx, where x is the displacement, the di-

Var
T

3

Dim
T
M

MT-2
L

What

period

mass

spring constant
amplitude

mensions of a spring constant are the dimensions of force divided by the
dimensions of x. It is convenient to have a notation for the concept of ‘the

dimensions of’. In that notation,
[F]
k] = —,

where [quantity] means the dimensions of the quantity. Since [F] =

MLT2 and [x] = L,
[k] = MT 2,

which is the entry in the table.

These quantities combine into many — infinitely many — dimensionless

combinations or groups:

kT2 (KNS m
m kT2 \m ) ~ kT2’

The groups are redundant. You can construct them from only one group.
In fancy terms, all the dimensionless groups are formed from one indepen-
dent dimensionless group. What combination to use for that one group

is up to you, but you need only one group. I like kT?/m.

So any true statement about the period can be written just using kT?/m.

That requirement limits the possible statements to
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e _
28

G

where C is a dimensionless constant. This form has two important con-
sequences:

1. The amplitude xy does not affect the period. This independence is
also known as simple harmonic motion.

2. The constant C is independent of k and m. So I can measure it for
one spring—mass system and know it for all spring-mass systems,
no matter the mass or spring constant. The constant is a universal
constant.

The requirement that dimensions be valid has simplified the analysis of
the spring-mass system. Without using dimensions, the problem would
be to find (or measure) the three-variable function f that connects m, k,
and x to the period:

T = f(m,k, xo).

Whereas using dimensions reveals that the problem is simpler: to find
the function & such that

kT?

— =h().

— =)
Here h() means a function of no variables. Why no variables? Because
the right side contains all the other quantities on which kT?/m could
depend. However, dimensional analysis says that the variables appear
only through the combination kT?/m, which is already on the left side.
So no variables remain to be put on the right side; hence / is a function

of zero variables. The only function of zero variables is a constant, so
kT?/m = C.

This pattern illustrates a famous quote from the statistician and physicist
Harold Jeffreys [20, p. 82]:

A good table of functions of one variable may require a page; that
of a function of two variables a volume; that of a function of three
variables a bookcase; and that of a function of four variables a
library.

Use dimensions; avoid tables as big as a library!
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Dimensionless groups are a kind of invariant: They are unchanged even
when the system of units is changed. Like any invariant, a dimensionless
group is an abstraction (Chapter 2). So, looking for dimensionless groups
is recipe for developing new abstractions.
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Hydrogen atom

Hydrogen is the simplest atom, and studying hydrogen is the simplest
way to understand the atomic theory. Feynman has explained the impor-
tance of the atomic theory in his famous lectures on physics [7, Volume
1, p. 1-2]:

If, in some cataclysm, all of scientific knowledge were to be de-
stroyed, and only one sentence passed on to the next generations
of creatures, what statement would contain the most information
in the fewest words? I believe it is the atomic hypothesis (or the
atomic fact, or whatever you wish to call it) that all things are made
of atoms — little particles that move around in perpetual motion, attract-
ing each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence, you will see,
there is an enormous amount of information about the world. ..

The atomic theory was first stated by Democritus. (Early Greek science
and philosophy is discussed with wit, sympathy, and insight in Bertrand
Russell’s History of Western Philosophy [25].) Democritus could not say
much about the properties of atoms. With modern knowledge of classical
and quantum mechanics, and dimensional analysis, you can say more.

Dimensional analysis

The next example of dimensional reasoning is the hydrogen atom in order
to answer two questions. The first question is how big is it. That size sets
the size of more complex atoms and molecules. The second question is
how much energy is needed to disassemble hydrogen. That energy sets
the scale for the bond energies of more complex substances, and those
energies determine macroscopic quantities like the stiffness of materials,
the speed of sound, and the energy content of fat and sugar. All from
hydrogen!

The first step in a dimensional analysis is to choose the relevant vari-
ables. A simple model of hydrogen is an electron orbiting a proton. The
orbital force is provided by electrostatic attraction between the proton and
electron. The magnitude of the force is

e 1
4mey 12’
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where r is the distance between the proton and electron. The list of
variables should include enough variables to generate this expression for
the force. It could include g, €y, and r separately. But that approach is
needlessly complex: The charge g is relevant only because it produces a
force. So the charge appears only in the combined quantity ¢?/4meg. A
similar argument applies to €.

Therefore rather than listing 4 and €y separately, | var Dim  What

list only €?/4mep. And rather than listing r, list w T-!  frequency

ag, the common notation for the Bohr radius (the k L1 wavenumber
radius of ideal hydrogen). The acceleration of the g LT2  gravity
electron depends on the electrostatic force, which h L depth

can be constructed from ¢?/4mey and ag, and on p ML density

its mass m,. So the list should also include m,. To y  MT=2  surface tension

find the dimensions of ¢*/4me,, use the formula

for force
_e 1
" 4me 12
Then
e? )
= |r?| x [F] = ML3T 2.
[47’(60] [r ] [F]

The next step is to make dimensionless groups. However, no combination
of these three items is dimensionless. To see why, look at the time dimen-
sion because it appears in only one quantity, ¢?/47ep. So that quantity
cannot occur in a dimensionless group: If it did, there would be no way
to get rid of the time dimensions. From the two remaining quantities, a9
and m,, no dimensionless group is possible.

The failure to make a dimensionless group means that hydrogen does not
exist in the simple model as we have formulated it. I neglected important
physics. There are two possibilities for what physics to add.

One possibility is to add relativity, encapsulated in the speed of light
c. So we would add c to the list of variables. That choice produces a
dimensionless group, and therefore produces a size. However, the size is
not the size of hydrogen. It turns out to be the classical electron radius
instead. Fortunately, you do not have to know what the classical electron
radius is in order to understand why the resulting size is not the size
of hydrogen. Adding relativity to the physics — or adding c to the list —
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allows radiation. So the orbiting, accelerating electron would radiate. As
radiation carries energy away from the electron, it spirals into the proton,
meaning that in this world hydrogen does not exist, nor do other atoms.

The other possibility is to add quantum mechanics, which was developed
to solve fundamental problems like the existence of matter. The physics of
quantum mechanics is complicated, but its effect on dimensional analyses
is simple: It contributes a new constant of nature /7 whose dimensions are
those of angular momentum. Angular momentum is movr, so

[A] = ML>T.

The 7 might save the day. There are now
two quantities containing time dimensions.
Since e*/4mey has T~2 and /i has T, the ra-
tio 11?/(e*/4mey) contains no time dimensions.
Since

h2
— | =ML,
L,z /4mey ]

a dimensionless group is
K2
agm,(e?/4meg)

Var
ag
2
e~ /4meg
me

h

Dim
L
ML3T—2
M
ML2T-1

What

size

electron mass

quantum

It turns out that all dimensionless groups can be formed from this group.
So, as in the spring-mass example, the only possible true statement in-

volving this group is
12
——————— = dimensionless constant.
aom,(e?/4meg)
Therefore, the size of hydrogen is
K2

ag ~ ———.
0 m,(e2/41eg)

Putting in values for the constants gives

a9 ~ 0.5A =0.5-10""m.

It turns out that the missing dimensionless constant is 1: Dimensional

analysis has given the exact answer.




5.3.2

95

Atomic sizes and substance densities

Hydrogen has a diameter of 1A. A useful consequence is the rule of
thumb is that a typical interatomic spacing is 3A. This approximation
gives a reasonable approximation for the densities of substances, as this
section explains.

Let A be the atomic mass of the atom; it is =
N

(roughly) the number of protons and neutrons a

in the nucleus. Although A is called a mass, it N

is dimensionless. Each atom occupies a cube
of side length a ~ 3 A, and has mass Antproton.
The density of the substance is

_ mass Amproton
P = Yolume (3A)3

You do not need to remember or look up #proten if you multiply this

fraction by unity in the form of Ns/Na, where N, is Avogadro’s number:
AmprotonNA
P (BAP XNy

The numerator is A g, because that is how Ny is defined. The denominator
is
3102 em® x 6-10% = 18.

So instead of remembering prot0n, you need to remember Nn. How-
ever, N is more familiar than 71,,0t0n because N arises in chemistry and
physics. Using Na also emphasizes the connection between microscopic
and macroscopic values. Carrying out the calculations:

é m_3
18gC .



The table compares the estimate against reality. Most
everyday elements have atomic masses between 15
and 150, so the density estimate explains why most
densities lie between 1 and 10 gcm™. It also shows
why, for materials physics, cgs units are more con-
venient than SI units are. A typical cgs density
of a solid is 3gcm™, and 3 is a modest number
and easy to remember and work with. However, a
typical SI density of a solid 3000 kgm™. Numbers
such as 3000 are unwieldy. Each time you use it,

you have to think, ‘How many powers of ten were there again?’ So the
table tabulates densities using the cgs units of gcm™. I even threw a

joker into the pack — water is not an element! — but the density estimate

is amazingly accurate.
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Element
Li

H,O

Si

Fe

Hg

Au

U

Pestimated

0.39
1.0

1.56
3.11
11.2
10.9
13.3

Pactual
0.54

1.0
24
79
13.5
19.3
18.7

3
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5.4 Bending of light by gravity

Rocks, birds, and people feel the effect of gravity. So why not light?
The analysis of that question is a triumph of Einstein’s theory of general
relativity. We could calculate how gravity bends light by solving the
so-called geodesic equations from general relativity:

d?xF g odxtdx’

ae e T

wwhere Fﬁv are the Christoffel symbols, whose evaluation requires solv-
ing for the metric tensor g,,, whose evaluation requires solving the general-
relativity curvature equations R, = 0.

The curvature equations are themselves a shorthand for ten partial-differential
equations. The equations are rich in mathematical interest but are a night-
mare to solve. The equations are numerous; worse, they are nonlinear.
Therefore, the usual method for handling linear equations — guessing a
general form for the solution and making new solutions by combining
instances of the general form — does not work. One can spend a decade
learning advanced mathematics to solve the equations exactly. Instead,
apply a familiar principle: When the going gets tough, lower your stan-
dards. By sacrificing some accuracy, we can explain light bending in fewer
than one thousand pages — using mathematics and physics that you (and
I!) already know.

The simpler method is dimensional analysis, in the usual three steps:

1. Find the relevant parameters.

2. Find dimensionless groups.

3. Use the groups to make the most general dimensionless statement.
4

. Add physical knowledge to narrow the possibilities.

These steps are done in the following sections.

5.4.1 Finding parameters

The first step in a dimensional analysis is to decide what physical para-
meters the bending angle can depend on. For that purpose I often start
with an unlabeled diagram, for it prods me into thinking of labels; and
many of the labels are parameters of the problem.
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Here various parameters and reasons to include them:

1.

The list has to include the quantity to solve for. So the angle 6 is the
first item in the list.

The mass of the sun, m, has to affect the angle. Black holes greatly
deflect light, probably because of their huge mass.

A faraway sun or black hole cannot strongly affect the path (near the
earth light seems to travel straight, in spite of black holes all over the
universe); therefore r, the distance from the center of the mass, is a
relevant parameter. The phrase ‘distance from the center’ is ambigu-
ous, since the light is at various distances from the center. Let r be
the distance of closest approach.

The dimensional analysis needs to know that gravity produces the
bending. The parameters listed so far do not create any forces. So
include Newton’s gravitational constant G.

Here is the diagram with important parameters labeled:

Here is a table of the parameters and their dimensions:

Parameter Meaning Dimensions
0 angle -

m mass of sun M

G Newton’s constant L3T2M™!
r distance from center of sun L
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where L, M, and T represent the dimensions of length, mass, and time,
respectively.

Dimensionless groups

The second step is to form dimensionless groups. One group is easy:
The parameter 0 is an angle, which is already dimensionless. The other
variables, G, m, and r, cannot form a second dimensionless group. To see
why, following the dimensions of mass. It appears only in G and m, so a
dimensionless group would contain the product Gm, which has no mass
dimensions in it. But Gm and r cannot get rid of the time dimensions. So
there is only one independent dimensionless group, for which 0 is the
simplest choice.

Without a second dimensionless group, the analysis seems like nonsense.
With only one dimensionless group, it must be a constant. In slow motion:

0 = function of other dimensionless groups,
but there are no other dimensionless groups, so
0 = constant.

This conclusion is crazy! The angle must depend on at least one of m
and r. Let’s therefore make another dimensionless group on which 6 can
depend. Therefore, return to Step 1: Finding parameters. The list lacks a
crucial parameter.

What physics has been neglected? Free associating often suggests the
missing parameter. Unlike rocks, light is difficult to deflect, otherwise
humanity would not have waited until the 1800s to study the deflection,
whereas the path of rocks was studied at least as far back as Aristotle
and probably for millions of years beforehand. Light travels much faster
than rocks, which may explain why light is so difficult to deflect: The
gravitational field gets hold of it only for a short time. But none of the
parameters distinguish between light and rocks. Therefore let’s include
the speed of light c. It introduces the fact that we are studying light, and
it does so with a useful distinguishing parameter, the speed.

Here is the latest table of parameters and dimensions:
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Parameter Meaning Dimensions
0 angle -

m mass of sun M

G Newton’s constant L3T2M™!
r distance from center of sun L

c speed of light LT !

Length is strewn all over the parameters (it’s in G, r, and c). Mass, how-
ever, appears in only G and m, so the combination Gm cancels out mass.
Time also appears in only two parameters: G and c. To cancel out time,
form Gm/c?. This combination contains one length, so a dimensionless
group is Gm/rc?.

Drawing conclusions

The most general relation between the two dimensionless groups is
G
0= f( m)

Dimensional analysis cannot determine the function f, but it has told us
that f is a function only of Gm/rc* and not of the variables separately.

Physical reasoning and symmetry narrow the possibilities. First, strong
gravity — from a large G or m — should increase the angle. So f should
be an increasing function. Now apply symmetry. Imagine a world where
gravity is repulsive or, equivalently, where the gravitational constant is
negative. Then the bending angle should be negative; to make that hap-
pen, f must be an odd function: namely, f(-x) = —f(x). This symmetry

argument eliminates choices like f(x) ~ x2.

The simplest guess is that f is the identity function: f(x) ~ x. Then the
bending angle is
Gm
0=—.
rc?
But there is probably a dimensionless constant in f. For example,

o=7
rc

and
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0=032
re
are also possible. This freedom means that we should use a twiddle

rather than an equals sign:

Gm
0~ —.
rc2

Comparison with exact calculations

All theories of gravity have the same form for the result, namely

Gm
0~ —.
rc?
The difference among the theories is in the value for the missing dimen-
sionless constant:
1 (simplest guess);
Gm : .
0 = — x{2 (Newtonian gravity);
e 4 (Einstein’s theory).

Here is a rough explanation of the origin of those constants. The 1 for
the simplest guess is just the simplest possible guess. The 2 for Newton-
ian gravity is from integrating angular factors like cosine and sine that
determine the position of the photon as it moves toward and past the sun.

The most interesting constant is the 4 for general relativity, which is dou-
ble the Newtonian value. The fundamental reason for the factor of 2 is
that special relativity puts space and time on an equal footing to make
spacetime. The theory of general relativity builds on special relativity by
formulating gravity as curvature of spacetime. Newton’s theory is the
limit of general relativity that considers only time curvature; but gen-
eral relativity also handles the space curvature. Most objects move much
slower than the speed of light, so they move much farther in time than in
space and see mostly the time curvature. For those objects, the Newton-
ian analysis is fine. But light moves at the speed of light, and it therefore
sees equal amounts of space and time curvature; so its trajectory bends
twice as much as the Newtonian theory predicts.

Numbers!

At the surface of the Earth, the dimensionless gravitational strength is
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Gm 6.7-10" m®s2 kg™ x 6.0-10* kg

— ~ ~107°.
re2  64-106m x3.0-108ms1x3.0-108ms™!

This miniscule value is the bending angle (in radians). If physicists want
to show that light bends, they had better look beyond the earth! That
statement is based on another piece of dimensional analysis and physical
reasoning, whose result is quoted without proof: A telescope with mirror
of diameter d can resolve angles roughly as small as A/d, where A is
the wavelength of light; this result is based on the same physics as the
diffraction pattern on a CDROM (Section 1.1). One way to measure the
bending of light is to measure the change in position of the stars. A lens
that could resolve an angle of 107 has a diameter of at least

0.5-10°m

d~ /\/9 ~ 10—_9 ~ 500 m.

Large lenses warp and crack; one of the largest existing lenses has d ~ 6 m.
No practical mirror can have d ~ 500 m, and there is no chance of detecting
a deflection angle of 107°.

Physicists therefore searched for another source of light bending. In the
solar system, the largest mass is the sun. At the surface of the sun, the
field strength is

Gm 6.7-10"" m®s2kg™! x2.0-10* kg
rc2  7.0-108m x3.0-108ms1 x3.0-103ms!

~21-10°~04".

This angle, though small, is possible to detect: The required lens diameter
is roughly
0.5-10°m
d~ A/G ~ 21—10—6 ~ 20 cm.
The eclipse expedition of 1919, led by Arthur Eddington of Cambridge
University, tried to measure exactly this effect.

For many years — between 1909 and 1916 — Einstein believed that a correct
theory of gravity would predict the Newtonian value, which turns out to
be 0.87 arcseconds for light that grazes the surface of the sun. The German
mathematician Soldner derived the same result in 1803. Fortunately for
Einstein’s reputation, the eclipse expeditions that went to test his (and
Soldner’s) prediction got rained or clouded out. By the time an expedition
got lucky with the weather (Eddington’s in 1919), Einstein had invented
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a new theory of gravity — general relativity — and it predicted a deflection
of 1.75 arcseconds.

The goal of Eddington’s expedition was to decide between the Newtonian
and general relativity values. The measurements are difficult, and the
results were not accurate enough to decide which theory was right. But
1919 was the first year after the World War in which Germany and Britain
had fought each other almost to oblivion. A theory invented by a German,
confirmed by an Englishman (from Newton’s university, no less) — such
a picture was comforting after the trauma of war. The world press and
scientific community saw what they wanted to: Einstein vindicated!

A proper confirmation of Einstein’s prediction came only with the ad-
vent of radio astronomy, in whichsmall deflections could be measured
accurately. Here is then a puzzle: If the accuracy (resolving power) of
a telescope is A/d, where A is the wavelength and d is the telescope’s
diamater, how could radio telescopes be more accurate than optical ones,
since radio waves have a much longer wavelength than light?
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5.5 Buckingham Pi theorem

The second step is in a dimensional analysis is to make dimensionless
groups. That task is simpler by knowing in advance how many groups
to look for. The Buckingham Pi theorem provides that number. I derive
it with a series of examples.

Here is a possible beginning of the theorem statement: The number of
dimensionless groups is.... Try it on the light-bending example. How
many groups can the variables 0, G, m, r, and ¢ produce? The possibilities
include 0, 62, Gm/rc*, 6Gm/rc?, and so on. The possibilities are infinite!
Now apply the theorem statement to estimating the size of hydrogen,
before including quantum mechanics in the list of variables. That list is
ap (the size), e?/4mey, and m,. That list produces no dimensionless groups.
So it seems that the number of groups would be zero — if no groups are
possible — or infinity, if even one group is possible.

Here is an improved theorem statement taking account of the redundancy:
The number of independent dimensionless groups is.... To complete the
statement, try a few examples:

1. Bending of light. The five quantities 0, G, m, r, and ¢ produce two
independent groups. A convenient choice for the two groups is 6 and
Gm/rc?, but any other independent set is equally valid, even if not as
intuitive.

2. Size of hydrogen without quantum mechanics. The three quantities
ay (the size), ?/4mey, and m. produce zero groups.

3. Size of hydrogen with quantum mechanics. The four quantities a (the
size), e?/4meo, me, and 1 produce one independent group.

These examples fit a simple pattern:
no. of independent groups = no. of quantities — 3.

The 3 is a bit distressing because it is a magic number with no explanation.
It is also the number of basic dimensions: length, mass, and time. So
perhaps the statement is

no. of independent groups = no. of quantities — no. of dimensions.

Test this statement with additional examples:
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1. Period of a spring-mass system. The quantities are T (the period), k, m,
and xg (the amplitude). These four quantities form one independent
dimensionless group, which could be kT?/m. This result is consistent
with the proposed theorem.

2. Period of a spring-mass system (without xg). Since the amplitude
xo does not affect the period, the quantities could have been T (the
period), k, and m. These three quantities form one independent di-
mensionless group, which again could be kT?/m. This result is also
consistent with the proposed theorem, since T, k, and m contain only
two dimensions (mass and time).

The theorem is safe until we try to derive Newton’s second law. The force
F depends on mass m and acceleration a. Those three quantities contain
three dimensions — mass, length, and time. Three minus three is zero, so
the proposed theorem predicts zero independent dimensionless groups.
Whereas F = ma tells me that F/ma is a dimensionless group.

This problem can be fixed by adding one word to | Var Dim  What
the statement. Look at the dimensions of F, m, and F MLT 2 force
a. All the dimensions — M or MLT~2 or LT? - can m M mass
be constructed from only two dimensions: M and a LT2  acceleration

LT2. The key idea is that the original set of three
dimensions are not independent, whereas the pair
M and LT are independent. So:

# of independent groups = # of quantities—# of independent dimensions.

That statement is the Buckingham Pi theorem [3].

Drag

For the final example of dimensional analysis, we revisit the cone exper-
iment of Section 3.3.1. That analysis, using conservation, concluded that
the drag force on the cones is given by

Fdrag ~ Pvar (51)

where p is the density of the fluid (e.g. air or water), v is the speed of the
cone, and A is its cross-sectional area. What can dimensional analysis tell
us about this problem?
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The strategy is to find the quantities that affect Fyrag, find their dimen-
sions, and then find dimensionless groups.

On what quantities does the drag depend, and what are their dimensions?

The drag force depends on four quan- | ;  speed of the cone LT~}
tities: two parameters of the cone and | ;  gize of the cone L
two parameters of the fluid (air). Any ) ) N
dimensionless form can be built from di- p density of air ML7
v viscosity of air L2711

mensionless groups: from dimensionless
products of the variables. Because any
equation describing the world can be written in a dimensionless form,
and any dimensionless form can be written using dimensionless groups,
any equation describing the world can be written using dimensionless
groups.

Problem 5.3 Kepler’s third law

Use dimensional analysis to derive Kepler’s third law connecting the orbital
period of a planet to its orbital radius (for a circular orbit).

What dimensionless groups can be constructed for the drag problem?

According to the Buckingham Pi theorem, the five quantities and three in-
dependent dimensions give rise to two independent dimensionless groups.
One dimensionless group could be F/pv?r2. A second group could be
rv/v. Any other dimensionless group can be constructed from these two
groups (Problem 5.4), so the problem is indeed described by two indepen-
dent dimensionless groups. The most general dimensionless statement is
then

one group = f(second group), (5.2)
where f is a still-unknown (but dimensionless) function.
Which dimensionless group belongs on the left side?

The goal is to synthesize a formula for F, and F appears only in the first
group F/pv?r?. With that constraint in mind, place the first group on the
left side rather than wrapping it in the still-mysterious function f. With
this choice, the most general statement about drag force is
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F
pv2r2

v
-7(%). (5.3)
The physics of the (steady-state) drag force on the cone is all contained in
the dimensionless function f. However, dimensional analysis cannot tell
us anything about that function. To make progress requires incorporating
new knowledge. It can come from an experiment such as dropping the
small and large cones, from wind-tunnel tests at various speeds, and even
from physical reasoning.

Before reexamining the results of the cone experiment in dimensionless
form, let’s name the two dimensionless groups. The first one, F/ pvzrz, is
traditionally written in a slightly different form:

1 Fz 4 (5.4)
2p0?A
where A is the cross-sectional area of the cone. The 1/2 is an arbitrary
choice, but it is the usual choice: It is convenient and is reminiscent of
the 1/2 in the kinetic energy formula mv?/2. Written in that way, the first
dimensionless group is called the drag coefficient and is abbreviated cg.
The second group, rv/v, is called the Reynolds number. It is traditionally
written in terms of the diameter rather than the radius:

vL

=, (5.5)

where L is the diameter of the object.

The conclusion of the dimensional analysis is then
drag coefficient = f(Reynolds number). (5.6)

Now let’s see how the cone experiment fits into this dimensionless frame-
work. The experimental data was that the small and large cones fell at
the same speed — roughly 1ms~!. The conclusion is that the drag force
is proportional to the cross-sectional area A. Because the drag coefficient
is proportional to F/A, which is the same for the small and large cones,
the small and large cones have the same drag coefficient.

Their Reynolds numbers, however, are not the same. For the small cone,
the diameter is 2in x 0.75 (why?), which is roughly 4cm. The Reynolds
number is
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1ms™!x0.04m

R ~ Vi
€Y 15105 m2s !

(5.7)
where 1ms™! is the fall speed and 1.510™° m?s™! is the kinematic viscosity
of air. Numerically, Regman ~ 2000. For the large cone, the fall speed
and viscosity are the same as for the small cone, but the diameter is
twice as large, so Rejarge ~ 4000. The result of the cone experiment is, in
dimensionless form, that the drag coefficient is independent of Reynolds
number — at least, for Reynolds numbers between 2000 and 4000.

This conclusion is valid for diverse shapes. The most extensive data on
drag coefficient versus Reynolds number is for a sphere. That data is plot-
ted logarithmically below (from Fluid-dynamic Drag: Practical Information
on Aerodynamic Drag and Hydrodynamic Resistance by Sighard F. Hoerner):

l00o "'-_\ Figure 10. Experimental d
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Just like the cones, the sphere’s drag coefficient is almost constant in the
Reynolds number range 2000 to 4000. This full graph has interesting fea-
tures. First, toward the low-Reynolds-number end, the drag coefficient
increases. Second, for high Reynolds numbers, the drag coefficient stays
roughly constant until Re ~ 10°, where it rapidly drops by almost a factor
of 5. The behavior at low Reynolds number will be explained in the chap-
ter on easy (extreme) cases (Chapter 6). The drop in the drag coefficient,
which relates to why golf balls have dimples, will be explained in the
chapter on lumping (Chapter 7).
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Problem 5.4 Only two groups
Show that F, v, 7, p, and v produce only two independent dimensionless groups.

Problem 5.5 Counting dimensionless groups
How many independent dimensionless groups are there in the following sets of
variables:

a. size of hydrogen including relativistic effects:
% /4mey, i, ¢, ag (Bohr radius), me (electron mass).
b. period of a spring—mass system in a gravitational field:
T (period), k (spring constant), m, xo (amplitude), .
c. speed at which a free-falling object hits the ground:
v, g, h (initial drop height).
d. [tricky!] weight W of an object:

W, g m.

Problem 5.6 Integrals by dimensions
You can use dimensions to do integrals. As an example, try this integral:

I(B) = f:m e P dx.

00

Which choice has correct dimensions:  (a.) \/Eﬁ_l (b.) \/E‘B_l/ 2 (c) \/Eﬂl/ 2
(d) Vrp!

Hints:

1. The dimensions of dx are the same as the dimensions of x.

2. Pick interesting dimensions for x, such as length. (If x is dimensionless then
you cannot use dimensional analysis on the integral.)

Problem 5.7 How to avoid remembering lots of constants

Many atomic problems, such as the size or binding energy of hydrogen, end up
in expressions with 7, the electron mass ., and % /4mey, which is a nicer way to
express the squared electron charge. You can avoid having to remember those
constants if instead you remember these values instead:

fic ~ 200 eV nm = 2000V A
Mec® ~ 0.5-10° eV

% /4meg L
fic T 137

(fine-structure constant).
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Use those values to evaluate the Bohr radius in angstroms (1 A =0.1nm):
h2

= ————.
0 me(e2 /4mieg)

As an example calculation using the fic value, here is the energy of a photon:
E=hf = 2nhf = 27'(7&%,

where f is its frequency and A is its wavelength. For green light, A ~ 600 nm, so

2m fic
— N

6 X 200eVnm
E~ 600 nm ~2eV.
——

A

Problem 5.8 Heavy nuclei

In lecture we analyzed hydrogen, which is one electron bound to one proton. In
this problem you study the innermost electron in an atom such as uranium that
has many protons, and analyze one physical consequence of its binding energy.

So, imagine a nucleus with Z protons around which orbits one electron. Let
E(Z) be the binding energy (the hydrogen energy is the case Z = 1).

a. Show that the ratio E(Z)/E(1) is Z2.

b. In lecture, we derived that E(1) is the kinetic energy of an electron moving
with speed ac where « is the fine-structure constant (roughly 1072). How
fast does the innermost electron move around a heavy nucleus with charge
z?

c. When that speed is comparable to the speed of light, the electron has a kinetic
energy comparable to its (relativistic) rest energy. One consequence of such a
high kinetic energy is that the electron has enough kinetic energy to produce
a positron (an anti-electron) out of nowhere (‘pair creation’). That positron
leaves the nucleus, turning a proton into a neutron as it exits. So the atomic
number Z drops by one: The nucleus is unstable! Relativity sets an upper
limit for Z.

Estimate that maximum Z and compare it with the Z for the heaviest stable
nucleus (uranium).

Problem 5.9 Power radiated by an accelerating charge

Electromagnetism, where the usual derivations are so cumbersome, is an excel-
lent area to apply dimensional analysis. In this problem you work out the power
radiated by an accelerating charge, which is how radio stations work.

So, consider a particle with charge g, with position x, velocity v, and acceleration
a. What variables are relevant to the radiated power P? The position cannot
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matter because it depends on the origin of the coordinate system, whereas the
power radiated cannot depend on the origin. The velocity cannot matter because
of relativity: You can transform to a reference frame where v = 0, but that change
will not affect the radiation (otherwise you could distinguish a moving frame
from a non-moving frame, in violation of the principle of relativity). So the
acceleration a is all that’s left to determine the radiated power. [This line of
argument is slightly dodgy, but it works for low speeds.]

a. Using P, 4?/4meg, and a, how many dimensionless quantities can you form?

b. Fix the problem in the previous part by adding one quantity to the list of
variables, and give a physical reason for including the quantity.

c. With the new list, use dimensionless groups to find the power radiated by an
accelerating point charge. In case you are curious, the exact result contains
a dimensionless factor of 2/3; dimensional analysis triumphs again!

Problem 5.10 Yield from an atomic bomb

Geoffrey Taylor, a famous Cambridge fluid mechanic, annoyed the US govern-
ment by doing the following analysis. The question he answered: ‘What was
the yield (in kilotons of TNT) of the first atomic blast (in the New Mexico desert
in 1945)?" Declassified pictures, which even had a scale bar, gave the following
data on the radius of the explosion at various times:

t (ms) R (m)
326  59.0
461 673

15.0 106.5
62.0 185.0

a. Use dimensional analysis to work out the relation between radius R, time ¢,
blast energy E, and air density p.

b. Use the data in the table to estimate the blast energy E (in Joules).

c. Convert that energy to kilotons of TNT. One gram of TNT releases 1 kcal or
roughly 4k]J.

The actual value was 20kilotons, a classified number when Taylor published
his result ["The Formation of a Blast Wave by a Very Intense Explosion. II. The
Atomic Explosion of 1945, Proceedings of the Royal Society of London. Series A,
Mathematical and Physical 201(1065): 175-186 (22 March 1950)]
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Problem 5.11 Atomic blast: A physical interpretation

Use energy densities and sound speeds to make a rough physical explanation of
the result in the ‘yield from an atomic bomb’ problem.

Problem 5.12 Rolling down the plane

Four objects, made of identical steel, roll down an inclined plane without slip-
ping. The objects are:

a large spherical shell,
a large disc,

a small solid sphere,
a small ring.

> 89 D =

The large objects have three times the radius of the small objects. Rank the
objects by their acceleration (highest acceleration first).

Check your results with exact calculation or with a home experiment.

Problem 5.13 Blackbody radiation

A hot object — a so-called blackbody — radiates energy, and the flux F depends on
the temperature T. In this problem you derive the connection using dimensional
analysis. The goal is to find F as a function of T. But you need more quantities.

a. What are the dimensions of flux?

b. What two constants of nature should be included because blackbody radia-
tion depends on the quantum theory of radiation?

c. What constant of nature should be included because you are dealing with
temperature?

d. After doing the preceding parts, you have five variables. Explain why these
five variables produce one dimensionless group, and use that fact to deduce
the relation between flux and temperature.

e. Look up the Stefan-Boltzmann law and compare your result to it.
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The previous tools included methods for organizing complexity and meth-
ods for losslessly discarding complexity (for example, dimensional analy-
sis). However, the world often throws us problems so complex — for
example, almost any question in fluid mechanics — that these methods
are insufficient on their own. Therefore, we now start to study meth-
ods for discarding actual complexity. With these methods, we accept a
reduction in accuracy in order to reach a solution at all.

The first tool for discarding actual complexity is based on the principle
that a correct solution works in all cases — including the easy ones. This
principle helps us check and, more surprisingly, helps us guess solutions.

Pyramid volume

As the first example, let’s explain the factor of one-third in the volume of
a pyramid with a square base:

_12
V= Zhi?,

where & is the altitude and b is the length of a side of the base.
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Rather than explaining right away the one-third in
the volume of a pyramid, a difficult three-dimensional
problem, let’s first find the corresponding constant
in a two-dimensional problem. That problem is the
area of a triangle with base b and height #; its area is
A ~ bh. What is the constant? Choose a convenient
triangle — a special, easy case — perhaps a 45-degree right triangle where
h = b. Two such triangles form a square with area b?, so A = b*/2 when
h = b. The constant in A ~ bh is therefore 1/2 no matter what b and h are,
so A =bh/2.

Now use the same construction in three dimensions.
What square-based pyramid, when combined with it-
self perhaps several times, makes a familiar shape? In
other words, find an easy case of i and b, and make
sure that the volume is correct in that case. Because
only the aspect ratio &1/b matters in the following dis-
cussion, choose b conveniently, then choose / to make
a pyramid with the right aspect ratio. The goal shape
is suggested by the square pyramid base. One easy
solid with a square base is a cube.

Therefore, let’s try to combine several pyramids into a cube of side b. To
simplify the upcoming arithmetic, I choose b = 2. What should the height
hbe? To decide, imagine how the cube will be constructed. Each cube has
six faces, so six pyramids might make a cube where each pyramid base
forms one face of the cube, and each pyramid tip faces inward, meeting
in the center of the cube. For the tips to meet in the center of the cube,
the height must be h = 1. So six pyramids with b = 2, and / = 1 make a
cube with side length 2.

The volume of one pyramid is one-sixth of the volume of this cube:

cube volume 8 4

V= 6 6 3

The volume of the pyramid is V ~ hv?, and the missing constant must
make volume 4/3. Since hb* = 4 for these pyramids, the missing constant
is 1/3. Voila:

_12
V= hi
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6.2 Atwood machine

The next problem illustrates dimensional analysis and easy

cases in a physical problem. The problem is the Atwood ma-
chine, a staple of the first-year physics curriculum. Two masses,

my and mjy, are connected and, thanks to a pulley, are free to

move up and down. What is the acceleration of the masses
and the tension in the string? You can solve this problem with [m2]
standard methods from first-year physics, which means that

you can can check the solution that we derive using dimensional analy-
sis, easy cases, and a feel for functions.

The first problem is to find the acceleration of, say, m;. Since m; and m,
are connected by a rope, the acceleration of m, is, depending on your sign
convention, either equal to m; or equal to —m;. Let’s call the acceleration
a and use dimensional analysis to guess its form. The first step is to
decide what variables are relevant. The acceleration depends on gravity,
so g should be on the list. The masses affect the acceleration, so m; and
my are on the list. And that’s it. You might wonder what happened to
the tension: Doesn’t it affect the acceleration? It does, but it is itself a
consequence of mj, my, and g. So adding tension to the list does not add
information; it would instead make the dimensional analysis difficult.

These variables fall into two pairs where the vari- | Var Dim What

ables in each pair have the same dimensions. So there a  LT2  accel. of m
are two dimensionless groups here ripe for picking: g LT72  gravity
Gy =my/my and G, = a/g. You can make any dimen- 1y M block mass

sionless group using these two obvious groups, as | m, M block mass

experimentation will convince you. Then, following
the usual pattern,

it

where f is a dimensionless function.

Pause a moment. The more thinking that you do to choose a clean rep-
resentation, the less algebra you do later. So rather than find f using
my/my as the dimensionless group, first choose a better group. The ratio
my/my does not respect the symmetry of the problem in that only the
sign of the acceleration changes when you interchange the labels m; and
my. Whereas mj/my turns into its reciprocal. So the function f will have
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to do lots of work to turn the unsymmetric ratio m;/m, into a symmetric
acceleration.

Back to the drawing board for how to fix G;. Another option is to use
my — my. Wait, the difference is not dimensionless! I fix that problem in
a moment. For now observe the virtue of m; —m,. It shows a physically
reasonable symmetry under mass interchange: G; — —G;. To make it
dimensionless, divide it by another mass. One candidate is m;:
mq + np

nq ’

G1:

That choice, like dividing by m5, abandons the beloved symmetry. But
dividing by m; + m; solves all the problems:
mq —mp

G = .
mq + mp

This group is dimensionless and it respects the symmetry of the problem.

Using this Gy, the solution becomes

(e

mq +1’I12)

where f is another dimensionless function.

To guess f(x), where x = Gj, try the easy cases. First imagine that ‘
my; becomes huge. A quantity with mass cannot be huge on its
own, however. Here huge means huge relative to m,, whereupon

=~ 1. In this thought experiment, m; falls as if there were no
my so a = —g. Here we’ve chosen a sign convention with positive
acceleration being upward. If m, is huge relative to m;, which
means x = —1, then m, falls like a stone pulling m; upward with
acceleration 4 = g. A third limiting case is m; = m, or x = 0, whereupon
the masses are in equilibrium so a = 0.

Here is a plot of our knowledge of f:
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The simplest conjecture — an educated guess — is that f(x) = x. Then we
have our result:

a _mjp—mnmyp

g mitm

Look how simple the result is when derived in a symmetric, dimension-
less form using easy cases.
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Drag

Although the method of easy cases is a lossy method — it throws away
information — it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose 1 and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re > 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re < 1 (Section 6.3.2).

Turbulent limit

When the Reynolds number is high — for example, at very high speeds
— the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity v to 0, because v
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 31].)

In other words, f is constant! The consequence is

F4q ~ pv*A, (6.2)
where A is the cross-sectional area of the object.
Therefore, the drag coefficient Object
R4 Car
Cq = pZ)ZA (6.3) Sphere
Cylinder
is a dimensionless constant. The value depends on the shape | Flat plate

cq
0.4
0.5
1.0
2.0

of the object — on how streamlined it is. The table lists ¢4 for
various shapes (at high Reynolds number).

Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [21], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re <« 1):

ca = f(Re) (for Re < 1). (6.4)

The Reynolds number (based on radius) is vr/v, where v is the speed, r is
the object’s radius, and v is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
v but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from — sur-
prise! — viscous forces. The viscous force themselves are proportional to
the viscosity v. In fact, the viscous force on an object is given by

Fyiscous ~ Viscosity X velocity gradient X area, (6.5)
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fq ocv.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

F_g().

par?v? v

The viscosity v appears only in the Reynolds number, where it appears
in the denominator. To make F4 proportional to v requires making the
drag coefficient proportional to Re™*. Equivalently, the function f, when
Re < 1, is given by f(x) ~ 1/x. For the drag force itself, the consequence
is
Fq ~ pﬂr202 g pavo.
vr

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6;
in other words,

Fq = 6mpavor.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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6.3.3 Conductivity of seawater

To illustrate a rare example of a situa- c=—
tion with low Reynolds numbers, we es-

timate the electrical conductivity of sea- ‘
water. Doing this estimate requires di- P

viding and conquering. — T~

R = v block geometr
The first question is: What is conduc- I 8 Y

tivity? Conductivity o is the recipro- /\

cal of resistivity p. (Apologies for the VvV =El I[=qnvA
symbolic convention that overloads the /\ /I\
density symbol with yet another mean- E L n v A
ing.) Resistivity is related to resistance /\
R. Then why have both p and R? Resis- Fa Fa

tance is a useful measure for a particu-

lar wire or resistor with a fixed size and shape. However, for a general
wire, the resistance depends on the wire’s length and cross-sectional area.
In other words, resistance is not an intensive quantity. (It’s also not an
extensive quantity, but that’s a separate problem.) Before determining the
relationship between resistivity and resistance, let’s finish sketching the
solution tree, for now leaving p as depending on R plus geometry.

The second question is: What is a physical model for the resistance (and
how to measure it)? We can find R by placing a voltage V — and therefore
an electric field — across a block of seawater and measuring the current
I. The resistance is given by R = V/I. But how does seawater conduct
electricity? Conduction requires the transport of charge. Seawater is
mostly water and table salt (NaCl). The ions that arise from dissolving
salt transport charge. The resulting current is

I = gnoA,

where A is the cross-sectional area of the block, g is the ion charge, n is
concentration of the ion (ions per volume), and v is its terminal speed.

To understand and therefore rederive this formula, first check its dimen-
sions. The left side, current, is charge per time. Is the right side also
charge per time? Do it piece by piece: g is charge, and nvA has dimen-
sions of T}, so gnvA has dimensions of charge per time or current.
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As a second check, watch a cross-section of the block for a time At and
calculate how much charge flows during that time. The charges move
at speed v, so all charges in a rectangular block of width vAt and area
A cross the cross-section. This rectangular block has volume vAAt. The
ion concentration is 1, so the block contains nvAAt charges. If each ion
has charge g, then the total charge on the ions is Q = gnvAAt. It took a
time At for this charge to make its journey, so the current is, once again,
I = Q/At = gnoA.

The drift speed v depends on the applied force F; and on the drag force
F4. The ion adjusts its speed until the drag force matches the applied
force. The result of this subdividing is the preceding map.

Now let’s find expressions for the unknown nodes.

Only three remain: p, v, and n. The figure illus- : A
trates the relation between p and R: -
RA T
T

To find v, we balance the drag and electrical forces. The applied force is
F; = qE, where g is the ion charge and E is the electric field. The electric
tield produced by the voltage V is E = V/I, where [ is the length of the
block, so

This expression contains no unknown quantities, so it does not need fur-
ther subdivision.

The drag is Stokes drag:
F4q = 6mpgvor. (6.6)

Equating this force to the applied force gives the terminal velocity v in
terms of known quantities:
4
oo AV
6nnlr
where r is the radius of the ion.

The number density 7 is the third and final unknown. However, let’s
estimate it after getting a symbolic result for 0. (This symbolic result will
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contain n.) To find ¢ climb the solution tree. First, find the current in
terms of the terminal velocity:

g*nAvV
I =gnovA ~ .
ornlr
Use the current to find the resistance:
VvV énnlr
I g*nA’

The voltage V has vanished, which is encouraging: In most circuits, the
conductivity (and resistance) is independent of voltage. Use the resistance
to find the resistivity:

A 6nyr

—_—~

L g
The expressions simplify as we climb the tree. For example, the geometric
parameters [ and A have vanished. Their disappearance is encouraging —
the purpose of evaluating resistivity rather than resistance is that resis-
tivity is independent of geometry.
Now use resistivity to find conductivity:
1 g*n

— ~

p 6mnr

Here g is the electron charge e or its negative, depending on whether a
sodium or a chloride ion is the charge carrier. Thus,

1 én

—_ ~

p 6

To find o still requires the ion concentration n, which we can find from the
concentration of salt in seawater. To do so, try a kitchen-sink experiment.
Add table salt to a glass of water until it tastes as salty as seawater. I just
tried it. In a glass of water, I found that one teaspoon of salt tastes like
drinking seawater. A glass of water may have a volume of 0.3 £ or a mass
of 300g. A flat teaspoon of salt has a volume of about 5m¢. Why 5m¢?
A teaspoon is about 4 cm long by 2cm wide by 1cm thick at its deepest
point; let’s assume 0.5 cm on average. Its volume is therefore

teaspoon ~4cm x2cm X 0.5cm ~ 4 cm?®.
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The density of salt is maybe twice the density of water, so a flat teaspoon
has a mass of roughly 10g. The mass fraction of salt in seawater is, in
this experiment, roughly 1/30. The true value is remarkably close: 0.035.
A mole of salt, which provides two charges per NaCl ‘molecule’, has a
mass of 60 g, so

1 _5_2charges _ 6-10% molecules mole™

n~—Xlgcm ™~ X —
30 molecule 60 g mole

,D ‘water

~7-10% charges cm™3.

With n evaluated, the only remaining mysteries in the conductivity

1 ¢n

— ~

p 6nyr

are the ion radius r and the dynamic viscosity 7.

Do the easy part first. The dynamic viscosity is
1= Pwater? ~ 10° kgm™ x 10 m? s1=1073 kgm™ s7L

Here I switched to SI (mks) units. Although most calculations are eas-
ier in cgs units than in SI units, the one exception is electromagnetism,
which is represented by the ¢ in the conductivity. Electromagnetism is
conceptually easier in cgs units — which needs no factors of g or 4mney, for
example — than in SI units. However, the cgs unit of charge, the electrosta-
tic unit, is unfamiliar. So, for numerical calculations in electromagnetism,
use SI units.

The final quantity required is the ion radius.
A positive ion (sodium) attracts an oxygen end
of a water molecule; a negative ion (chloride)
attracts the hydrogen end of a water mole-
cule. Either way, the ion, being charged, is
surrounded by one or maybe more layers of
water molecules. As it moves, it drags some
of this baggage with it. So rather than use
the bare ion radius you should use a larger
radius to include this shell. But how thick is
the shell? As a guess, assume that the shell includes one layer of water
molecules, each with a radius of 1.5A. So for the ion plus shell, r ~ 2A.

1
O
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With these numbers, the conductivity becomes:

2

e n

(1.6-107Y C)?x7-10° m™

6x3 x10°kgm s 1x2:10'm
N—— N—————

61 n r

~

You can do the computation mentally. First count the powers of ten and
then worrying about the small factors. Then count the top and bottom
contributions separately. The top contributes —12 powers of 10: —38 from
¢? and +26 from n. The bottom contributes —13 powers of 10: -3 from 71
and —10 from r. The division produces one power of 10.

Now account for the remaining small factors:

1.62x 7
6XxX3%x2

Slightly overestimate the answer by pretending that the 1.6 on top cancels
the 3 on the bottom. Slightly underestimate the answer — and maybe
compensate for the overestimate — by pretending that the 7 on top cancels
the 6 on the bottom. After these lies, only 1/2 remains. Multiplying it by
the sole power of ten gives

o~5QtTm™,

Using a calculator to do the arithmetic gives 4.977... Q"' m™!, which is
extremely close to the result from mental calculation.

The estimated resistivity is
p~0o1~02Qm=20Qcm,

where we converted to the conventional although not fully SI units of
Qcm. A typical experimental value for seawater at T = 15°C is 23.3Q cm
(from [15, p. 14-15]), absurdly close to the estimate!

Probably the most significant error is the radius of the ion-plus-water
combination that is doing the charge transport. Perhaps r should be
greater than 2 A, especially for a sodium ion, which is smaller than chlo-
ride; it therefore has a higher electric field at its surface and grabs water
molecules more strongly than chloride does. In spite of such uncertain-
ties, the continuum approximation produced accurate results.
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That accuracy is puzzling. At the length scale of a sodium ion, water looks
like a collection of spongy boulders more than it looks like a continuum.
Yet Stokes drag worked. It works because the important length scale is
not the size of water molecules, but rather their mean free path between
collisions. Molecules in a liquid are packed to the point of contact, so the
mean free path is much shorter than a molecular (or even ionic) radius,
especially compared to an ion with its shell of water.

The moral of this example, besides the application of Stokes drag, is to
have courage: Approximate first and ask questions later. The approxi-
mations might be accurate for reasons that you do not suspect when you
start solving a problem. If you agonize over each approximation, you
will never start a calculation, and then you will not find out that many
approximations would have been fine — if only you had had the courage
to make them.

Combining solutions from the two limits

You know know the drag force in two extreme cases, viscous and turbu-
lent drag. The results are repeated here:

P énpavor  (viscous),
47 ScapaAv?  (turbulent).

Let’s compare and combine them by making the viscous form look like
the turbulent form: Multiply by the Reynolds number rv/v (basing the
Reynolds number on radius rather than diameter). Then

rolv

1
Fq= ( Re )x 6mtpaovr = Re 61 P01 (viscous).
———
Fq
1
With A = nir?,

6
Fq = Re pﬂva (viscous),

Since ¢4 = Fq/ (% pavtA),
12 .

€= Ra (viscous). 10I_4I Ilﬁll_l_\l(l) [

That limit and the the high-speed limit cq ~ 0.5 are skdtched in the gragﬁ

(with a gray interpolation between the limits). Almost all of the experi-

mental data is explained by this graph, except for the drop in cq near the
Re ~ 10°.
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More on special cases

Summary:

Further reading:

Problem 6.1 Integrals
Use special cases of a to choose the correct formula for each integral.

0 2
a. f e " dx
—00

(1) Vma (2) Vr/a

0 1
b. \[m i dx
(1)ma (2)n/a (3.) Vma (4.) Vr/a

Problem 6.2 Debugging

Use special (i.e. easy) cases of n to decide which of these two C functions
correctly computes the sum of the first n odd numbers:

int sum_of_odds (int n) {
int i, total = O;
for (i=1; i<=2*n+1; i+=2)
total += i;
return total;

}
or

int sum_of_odds (int n) {
int i, total = 0;
for (i=1; i<=2*n-1; i+=2)
total += i;
return total;

}

Problem 6.3 Reynolds numbers
Estimate the Reynolds number for:

a. a falling raindrop;

b. a flying mosquito;

Problem 6.4 Drag at low Reynolds number
At low Reynolds number, the drag on a sphere is
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F = 6mpvor.

What is the drag coefficient cq as a function of Reynolds number Re?

Problem 6.5 Truncated pyramid

In this problem you use special cases to find the &
volume of a truncated pyramid. It has a square base

with side b, a square top with side a4, and height

h. So, use special cases of a and b to evaluate these

candidates for the volume:

a. 5hbz b
b. %ha2

c 1h(a2+bz)

"3

d. %h(az +b?)

Which if any of these formulas pass all your special-cases tests? If no formula
passes all tests, invent a formula that does. If you are stuck, find the volume by
integration!

Problem 6.6 Fog

a. Estimate the terminal speed of fog droplets (radius ~ 10 um). Use either the
low- or high-Reynolds-number limit for the drag force, whichever you guess
is the more likely to be valid.

b. Use the speed to estimate the Reynolds number and check that you used the
correct limit for the drag force. If not, try the other limit!
It is much less than 1, so the original assumption of low-Reynolds-number
flow is okay.

c. Fog is a low-lying cloud. How long would fog droplets take to fall 1 km (the
height of a typical cloud)? What is the everyday effect of this settling time?

Problem 6.7 Tube flow
In this problem you study fluid flow through a narrow tube. The quantity to
predict is Q, the volume flow rate (volume per time). This rate depends on:

I the length of the tube

Ap  the pressure difference between the tube ends
r the radius of the tube

P the density of the fluid

% the kinematic viscosity of the fluid
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a. Find three independent dimensionless groups G, Gy, and G3 from these six
variables. Hint 1: One physically reasonable group is Gy = r/l. Hint 2: Put
Q in G; only! Then write the general form

G1 = f(G2,Gy).

[There are lots of choices for G; and Gs.]

b. Now imagine that the tube is very long and thin (I > r) and that the radius
or flow speed are small enough to make the Reynolds number low. Then
you can deduce the form of f using proportional reasoning.

You might think about these proportionalities:

1. How should Q depend on Ap? For example, if you double the pressure
difference, what should happen to the flow rate?

2. How should Q depend on I? For example, if you keep the pressure dif-
ference the same but double the tube length, what happens to Q? Or if
you double Ap and double [, what happens to Q?

Figure out the form of f to satisfy all your proportionality requirements.

If you get stuck going forward, instead work backward from the correct
result. Look up Poiseuille flow, and use this result to deduce the preceding
proportionalities; and then give reasons for why they are that way.

c. [optional]
The dimensional analysis in the preceding parts does not tell you the di-
mensionless constant. Use a syringe and needle to estimate the constant.
Compare your constant with the value of /8 that comes from solving the
equations of fluid mechanics honestly.

Problem 6.8 Atwood machine: Tension in the string

Here is the Atwood machine from lecture. The string and pulley are
massless and frictionless. We used dimensional analysis and special
cases to guess the acceleration of either mass. With the right choice
of sign,

a _ my—nyp

g mp+my

In this problem you guess the tension in the string.

a. The tension T, like the acceleration, depends on m, my, and g. Explain why
these four variables result in two independent dimensionless groups.

b. Choose two suitable independent dimensionless groups so that you can write
an equation for the tension in this form:

dimensionless group containing T = f(dimensionless group without T).

The next part will be easier if you use a lot of symmetry in choosing the
groups.
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c. Use special cases to guess f, and sketch f.

d. Solve for T using the usual methods from introductory physics (8.01); then
compare that answer with your answer from the preceding part.

Problem 6.9 Plant-watering system

The semester is over and you are going on holiday for a few weeks. But how
will you water the house plants?! Design an unpowered slow-flow system to
keep your plants happy.

Problem 6.10 Dimensional analysis for circuits

a. Using Q as the dimension of charge, what are the dimensions of inductance
L, capacitance C, and resistance R?

b. Show that the dimensions of L, C, and R contain two independent dimen-
sions.

c. In a circuit with one inductor, one capacitor, and one resistor, one dimen-
sionless group should result from the three component values L, R, and C.
What is physical interpretation of this group?

Problem 6.11 Tipsy host for the three-doors problem
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The symmetry chapter (Section 3.1) introduced the principle of invariance:
‘When there is change, look for what does not change.” However, when
you cannot find any useful but unchanging quantity, you have to make
one. As Jean-Luc Picard often says, ‘Make it so.’

Estimating populations: How many babies?

The first example is to estimate the number of babies in the United States.
For definiteness, call a child a baby until he or she turns 2 years old. An
exact calculation requires the birth dates of every person in the United
States. This, or closely similar, information is collected once every decade
by the US Census Bureau.

As an approximation to this voluminous
data, the Census Bureau [33] publishes
the number of people at each age. The
data for 1991 is a set of points lying ona v
wiggly line N(t), where t is age. Then

2yr 0

Nbabies = N(t) dt. (71)
0

0 50 age (yr)
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Problem 7.1 Dimensions of the vertical axis
Why is the vertical axis labeled in units of people per year rather than in units
of people? Equivalently, why does the axis have dimensions of T-1?

This method has several problems. First, it depends on the huge resources
of the US Census Bureau, so it is not usable on a desert island for back-
of-the-envelope calculations. Second, it requires integrating a curve with
no analytic form, so the integration must be done numerically. Third, the
integral is of data specific to this problem, whereas mathematics should
be about generality. An exact integration, in short, provides little insight
and has minimal transfer value. Instead of integrating the population
curve exactly, approximate it—lump the curve into one rectangle.

What are the height and width of this rectangle?

The rectangle’s width is a time, and a plausible time related to populations
is the life expectancy. It is roughly 80 years, so make 80 years the width
by pretending that everyone dies abruptly on his or her 80th birthday.
The rectangle’s height can be computed from the rectangle’s area, which
is the US population—conveniently 300 million in 2008. Therefore,

area 3.108

height = width ~ 75 yr (7.2)
Why did the life expectancy drop from 80 to 75 years?
Fudging the life expectancy simplifies the 7 lumped
mental division: 75 divides easily into 3 and M YA
300. The inaccuracy is no larger than the . A
error made by lumping, and it might even “yr- census data
cancel the lumping error. Using 75 years as " babies L
the width makes the height approximately oO pysy s

4-10%yr 1.
Integrating the population curve over the range t = 0...2yr becomes just
multiplication:

Nbabies ~ 4- 10° Yl'_l X 2 yr = 8-10°. (73)
—_——— ——
height infancy

The Census Bureau’s figure is very close: 7.980-10°. The error from
lumping canceled the error from fudging the life expectancy to 75 years!
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Problem 7.2 Landfill volume
Estimate the US land(fill volume used annually by disposable diapers.

Problem 7.3 Industry revenues
Estimate the annual revenue of the US diaper industry.

7.2 Bending of light

The fundamental principle of lumping is to replace a complex, changing
process by a simpler, constant process. Let’s apply the method far beyond
mundane concerns about the number of babies, using lumping to revisit
the bending of starlight by the sun. Using dimensional analysis and
educated guessing (Section 5.4), we concluded that the bending angle is
roughly GM/Rc?, where R is the distance of closest approach (here, the
radius of the sun), and M is the mass of the sun. Lumping provides a
physical explanation for the same result; it thereby helps us make physical
predictions (77).

So once again imagine a beam (or photon) of light that leaves a distant
star. In its travels, it grazes the surface of the sun and reaches our eye. To
estimate the deflection angle by using lumping, first identify the changing
process. Here, the changing process is the angle that the light beam
makes relative to its original, undeflected path; equivalently, the photon
falls toward the sun as would a rock. This deflection angle increases
slowly after the photon leaves the star, increasing most rapidly near the
sun. Because the angle and position are changing, which means the
downward gravitational force is changing, calculating the final deflection
angle requires setting up and evaluating an integral — while carefully
checking items in the integral such as the number of cosines and secants.

In contrast, the lumping approximation is much simpler. It pretends that
the deflection is zero until the beam gets near the sun. Gravity, in this
approximation, operates only near the sun. While the photon is near the
sun, the approximation pretends further that the downward acceleration
(toward the center of the sun) is a constant, rather than varying rapidly
with position. Finally, once the beam is no longer near the sun, the
deflection does not change.
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The problem then becomes one of estimating the

deflection produced by gravity while the beam : :

is in the gravity zone. But what is the near __ R R

zone? As a reasonable guess, define ‘near’ to gravity

mean, ‘Within R on either side of the location . zome

of closest approach.” The justification is that the 3

distance of closest approach, which is R, is the

only length in the problem, so the size of the near zone must be a dimen-
sionless constant times R.

The deflection calculation is easiest at the lo- ;

cation of closest approach, so assume that the ”i ~at
bending happens there and only there — in other

words, the beam’s track has a kink rather than changing its direction
smoothly. At the kink, the gravitational acceleration, which is all down-
ward, is a ~ GM/R?. The downward velocity is the acceleration multiplied
by the time in the gravity zone. The zone has length ~ R, so the time is
t ~ R/c. Thus the downward velocity is ~ GM/Rc. The deflection angle,
in the small-angle approximation, is the downward velocity divided by
the forward velocity. Therefore,

GM/Rc _ GM

0 c Re?’

(7.4)

The lumping argument has reproduced the result of dimensional analysis
and guessing.

The true curve of 0 versus position (measured v
as distance from the point of closest approach)
varies smoothly but, as mentioned, it is diffi-
cult to calculate. Lumping replaces that smooth
curve with a piecewise-straight curve that re-
flects the behaviors in and out of the gravity
zone: no change in 0 outside the gravity zone,
and a constant rate of change in 0 inside the gravity zone (with the rate
set by the rate at the closest approach). Lumping is a complementary
method to dimensional analysis. Dimensional analysis is a mathemati-
cal argument, although the guessing added a bit of physical reasoning.
Lumping removes as much mathematical complexity as possible, in order
to focus on the physical reasoning. Both approaches are useful!

... the crooked shall be made straight, and the rough places plain. (Isaiah 40:4)
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Problem 7.4 Higher values of GM/Rc?

When GM/Rc? is no longer small, strange things happen. Use lumping to predict
what happens to light when GM/Rc? ~ 1.
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7.3 Quantum mechanics: Hydrogen revisited

As a second computation of the Bohr radius 4y, here is a lumping and
easy-cases method. The Bohr radius is the radius of the orbit with the
lowest energy (the ground state). The energy is a sum of kinetic and
potential energy. This division suggests, again, a divide-and-conquer ap-
proach: first the kinetic energy, then the potential energy.

What is the origin of the kinetic energy? The electron does not orbit in any
classical sense. If it orbited, it would, as an accelerating charge, radiate
energy and spiral into the nucleus. According to quantum mechanics,
however, the proton confines the electron to a region of size r — still
unknown to us — and the electron exists in a so-called stationary state. The
nature of a stationary state is mysterious; no one understands quantum
mechanics, so no one understands stationary states except mathematically.
However, in an approximate estimate you can ignore details such as the
meaning of a stationary state. The necessary information here is that
the electron is, as the name of the state suggests, stationary: It does not
radiate. The problem then is to find the size of the region to which the
electron is confined. In reality the electron is smeared over the whole
universe; however, a significant amount of it lives within a typical radius.
This typical radius we estimate and call ao.

For now let this radius be an unknown r and
study how the kinetic energy depends on r.
Confinement gives energy to the electron ac-
cording to the uncertainty principle:

AxAp ~ I,

- e/ 4mey
where Ax is the position uncertainty and Ap T Ir
is the momentum uncertainty of the electron.

ez TtE
In this model Ax ~ r, as shown in the figure, KE~ £hnc
so Ap ~ i/r. The kinetic energy of the elec- l
. __ e? /4me
tron is Ax -1 -
(Ap? B2
Ekinetic ~ ~ 0"
Me el

This energy is the confinement energy or the
uncertainty energy.
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This estimate uses lumping twice. First, the complicated electrostatic
potential, which varies with distance, is replaced by the simple potential
well (with infinitely high sides). Second, the electron, which in reality is
smeared all over, is assumed to be at only one spot that is at a distance r
from the proton.

This second lumping approximation also helps us estimate the potential
energy. It is the classical electrostatic energy of a proton and electron
separated by r:

82

4miegr’

E potential ~

Therefore, the total energy is the sum
e 12

+ .
driegr  mer?

E= Epotential + Ekinetic ~

With this total energy as its guide, the electron adjusts its separation r to
make the energy a minimum. As a step toward finding that separation,
sketch the energy. For sketching functions, the first tool to try is easy
cases. Here, the easy cases are small and large . At small r, kinetic energy
is the important term because its 1/ 2 overwhelms the 1/7 in the potential
energy. At large r, potential energy is the important term, because its 1/r
goes to zero more slowly than the 1/7 in the kinetic energy.

1/r*  (small r)
Ee {—1/r (large r) 75

Now we can sketch E in the two extreme *
cases. The sketch demonstrates the re-
sult in which we are interested: that
there must be a minimum combined en-
ergy at an intermediate value of . There
is no smooth way to connect the two ex-
treme segments without introducing a
minimum. An analytic argument con-
firms that pictorial reasoning. At small r, the slope dE/dr is negative. At
large 7, it is positive. At an intermediate 7, the slope must cross between
positive and negative. In other words, somewhere in them middle the
slope must be zero, and the energy must therefore be a minimum.

I - 7
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There are two approximate methods to determine the minimum r. The
first method is familiar from the analysis of lift in Section 3.5.2: When two
terms compete, the minimum occurs when the terms are roughly equal.
In other words, at the minimum energy, the potential energy and kinetic
energy (the two competing terms) are roughly equal in magnitude. Using
the Bohr radius a4y as the corresponding separation, this criterion says

e? h?

~ . 7.6
4rtepan meﬂé (7.6)
—— —_——
PE KE
The result for ag is
2
ap f (77)

" me(e?/4/4meq)’

The second method of estimating the minimum-energy separation is to
use dimensional analysis, by writing the energy and radius in dimension-
less forms. Such a rewriting is not mandatory in this example, but it is
helpful in complicated examples and is therefore worth learning via this
example. To make r dimensionless, cook up another length [ and then
define 7 = r/l. The only other length that is based on the parameters of
hydrogen (and the relevant constants of nature such as ) is

hz

I= me(e?/4megy)”

So, let’s defined the scaled (dimensionless) radius as

4

-

To make the energy dimensionless, cook up another energy based on the
parameters of the problem. A reasonable candidate for this energy scale
is e /4meol. That choice defines the scaled energy as

_E

e2/4nepl’

7

E=

Using the scaled length and energy, the total energy
82 K2

+
dmtegr  mer?

E= Epotential + Ekinetic ~ —

simplifies greatly:
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E~ —1_ + _l
ror
The ugly constants all live in the definitions of scaled length and energy.

This dimensionless energy is easy to think about and to sketch.

Calculus locates this minimum-energy »
7 at 7min = 2. Equating the two terms

7! and 72 gives Fmin ~ 1. In normal,
unscaled terms, it is

12 |

Tmin = Pmin = ————— > 7
T e (e2 /4meg) \f/'

which is the Bohr radius as computed fmin

using dimensional analysis (Section 5.3.1) and is also the exact Bohr ra-
dius computed properly using quantum mechanics. The sloppiness in
estimating the kinetic and potential energies has canceled the error intro-
duced by cheap minimization! Even if the method were not so charmed,
there is no point in doing a proper calculus minimization. Given the inac-
curacies in the rest of the derivation, The calculus method is too accurate

Engineers understand this idea of not over-engineering a system. If a bi-
cycle most often breaks at welds in the frame, there is little point replacing
the metal between the welds with expensive, high-strength aerospace ma-
terials. The new materials might last 100 years, but such a replacement
would be overengineering because something else will break before 100
years are done.

In estimating the Bohr radius, the kinetic-energy estimate uses a crude
form of the uncertainty principle, ApAx ~ Ii, whereas the true statement
is that ApAx > 7i/2. The estimate also uses the approximation Eyinetic ~
(Ap)?/m. This approximation contains n instead of 2m in the denominator.
It also assumes that Ap can be converted into an energy as though it
were a true momentum rather than merely a crude estimate for the root-
mean-square momentum. The potential- and kinetic-energy estimates
use a crude definition of position uncertainty Ax: that Ax ~ r. After
making so many approximations, it is pointless to minimize the result
using the elephant gun of differential calculus. The approximate method
is as accurate as, or perhaps more accurate than the approximations in
the energy.
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The method of equating competing terms is called balancing. We bal-
anced the kinetic energy against the potential energy by assuming that
they are roughly the same size. Nature could have been unkind: The
potential and kinetic energies could have differed by a factor of 10 or 100.
But Nature is kind: The two energies are roughly equal, except for a con-
stant that is nearly 1 (of order unity). This rough equality occurs in many
examples: You often get a reasonable answer simply by pretending that
two energies (or two quantities with the same units) are equal. [When the
quantities are potential and kinetic energy, as they often are, you get extra
safety: The so-called virial theorem protects you against large errors (for
more on the virial theorem, see any intermediate textbook on classical
dynamics).]
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7.4 Boundary layers

Boundary layers, which are the final example of lumping, will help us
explain the drag paradox. That paradox arises in analyzing drag at high
Reynolds numbers (the usual case in everyday fluid motions). Dimen-
sional analysis tells us that the drag coefficient cq is a function only of the
Reynolds number:

%;;A -7(2). (7.8)

where Fq/3pv*A is the drag coefficient, and rv/v is the Reynolds number.
To make a high Reynolds number, take the limit in which the viscosity
v approaches 0. Then viscosity vanishes from the analysis, as does the
Reynolds number. The result is that the drag coefficient is a function of
nothing — in other words, it is a constant. So far, so good: Empirically,
at high Reynolds number, the drag coefficient is roughly constant and
independent of the Reynolds number.

The paradox arises upon looking at the Navier-Stokes equations:

ov 1
(VYW + — = —=Vp + vviv. (7.9)
ot p 4

When the viscosity v goes to zero, the vv?v viscous-stress term also van-
ishes. However, the viscous-stress term is the only term that dissipates
energy. (The pressure term Vp is, like gravity, a conservative force field
because it is the gradient of a scalar — the pressure — so it cannot dissi-
pate energy.) Without the viscous-stress term, there can be no drag! So,
at high Reynolds number, the drag coefficient should approach a constant
but that constant should be zero!. In real life, however, the drag is not zero;
this discrepancy is the drag paradox.

Mathematically, the paradox is a failure of two operations to commute.
The two operations are (1) solving the Navier-Stokes equations and (2)
taking the viscosity to zero. If we first solve the Navier-Stokes equations,
then we find that the drag coefficient is nonzero and roughly constant (i.e.
independent of Reynolds number). If we then take the viscosity to zero
(by taking the Reynolds number to infinity), no harm is done. Because
the drag coefficient is roughly independent of Reynolds number, the drag
coefficient remains nonzero and roughly constant.
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Now imagine applying the two operations in the reverse order. Taking
the viscosity to zero removes the viscous-stress term from the Navier—
Stokes equations. Because that term is the only loss term, solving these
simplified equations — called the Euler equations — produces a solution
with zero drag. The mathematical formulation of the drag paradox is that
the solution depends on the order in which one applies the operations of
solving and taking a limit.

This paradox, which remained a mystery for over 100 years, was resolved
by Prandtl in the early 1900s. The resolution identified the fundamental
problem: that taking the viscosity to zero is a singular limit. That limit
removes the highest-order-derivative from the differential equation, so it
changes the equation from a second- to a first-order equation. This qual-
itative change produces a qualitative change in behavior: from nonzero
drag to zero drag. To handle this change properly, Prandtl devised the
concept of a boundary layer — which we can understand using lumping.

The explanation begins with the no-slip con-
dition: In a fluid with viscosity (which means
all fluids), the fluid is at rest next to a solid
object. As an example, imagine wind blowing
over a frozen lake. Just above the ice, and de-
spite the wind, the air has zero velocity in the
horizontal direction. (In the vertical direction,
the velocity is also zero because no air enters | ice |
the ice — that requirement is independent of

the no-slip condition.) Far above the ice, the air has the speed of the
wind. The boundary layer is the region above the ice over which the hor-
izontal velocity v, changes from zero to the wind velocity. Actually, the
horizontal velocity never fully reaches the full wind velocity V (called the
free-stream velocity). But make the following lumping approximation:
that v, increases linearly from 0 to V over a length 6 — the thickness of
the boundary layer.

vy =V

1

The boundary layer is a result of viscosity. The dimensions of viscosity,
along with a bit of dimensional analysis, will help us estimate the thick-
ness 6. The dimensions of v are L?T~!. To make a thickness, multiply by
a time and take the square root. But where does the time come from? It
is the time which the fluid has been flowing over the object. For example,
for a golf ball moving at speed v, the time is roughly t ~ r/v, where r is
the radius of the ball. Then
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5~ Vvt ~ \/g (7.10)

Relative to the size of the object r, the dimensionless boundary-layer thick-
ness 0/r is

o v

-~ 4= 7.11

r 1o 711
The fraction inside the square root looks familiar: It is the reciprocal of

the Reynolds number Re! Therefore

g ~ Re 12, (7.12)
For most everyday flows, Re > 1, so Re™/?2 < 1. The result is that the
boundary layer is a thin layer.

This thin layer will resolve the drag paradox. The intuition is that the
boundary layer separates the flow into two regimes: inside and outside
the boundary layer. Inside the boundary layer, viscosity has a large effect
on the flow. Outside the boundary layer, the flow behaves as if viscosity
were zero; there, the flow is described by the Euler equations (by the
Navier-Stokes equations without the viscous-stress term). However, the
boundary layer does not stick to the object everywhere. Generally, it
detaches somewhere on the back of the object. Once the boundary layer
detaches, a wake — the region behind the detached layer — is created,
and the wake is turbulent. The wake has high-speed and therefore low-
pressure flow: Bernoulli’s principle says that pressure p and velocity v
are related by p + pv?/2 = constant, so high v implies low p. Therefore,
the front of the object experiences high pressure and the back experiences
low pressure. The result is drag. Intuitively, the drag coefficient is the
fraction of the cross-sectional area covered by the turbulent wake.

boundary layer

turbulent wake

flow (low pressure)
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That interpretation of the drag coefficient leads to an explanation of why
the drag coefficient remains roughly constant as the Reynolds number
goes to infinity — in other words, as the flow speed increases or the vis-
cosity decreases. In that limit, the boundary-layer detachment point shifts
as far forward as it goes, namely to the widest portion of the object. Then
the drag coefficient is roughly 1.

This explanation mostly accounts for the high-Re data on drag coefficient
versus Reynolds number. Here is the log-log plot from Section 5.6:
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The drag coefficient is roughly constant in the Reynolds-number range 10°
to (almost) 10°. But why does the drag coefficient drop sharply around
Re ~ 10°? The boundary-layer picture can also help us understand this
behavior. To do so, first compute Res, the Reynolds number of the flow
in the boundary layer. The Reynolds number is defined as

_ typical flow speed x distance over which the flow speed varies

kinematic viscosity
(7.13)

In the boundary layer, the flow speed varies from 0 to v, so it is comparable
to v. The speed changes over the boundary-layer thickness 6. So

Res ~ —. 7.14
(G5} Ny ( )

Because O ~ r X Re™V/?,
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Res ~ % x Re~1/2, (7.15)

The first fraction is just the regular Reynolds number Re, so
Res ~ Re x Re™1/2 = Re!/2. (7.16)

Flows become turbulent when Re ~ 102,

so the boundary layer becomes turbu-

lent when Res ~ 10% or Re ~ 10°. Hmm! g2y
Somehow, the boundary layer’s becom-

ing turbulent reduces the drag coefficient.
Now recall the interpretation of the drag
coefficient as the fraction of the cross-sectional area covered by the turbu-
lent wake. When the boundary layer becomes turbulent, it sticks to the
object much better, and detaches only near the back of the object. The
result is less drag!

boundary layer

So, to get a low drag coefficient, make the object move fast enough that
the Reynolds number is around 10°. That high a Reynolds number is,
however, difficult to achieve with a golf ball. That difficulty is the rea-
son for the dimples on a golf ball. They trip the boundary layer into
turbulence at a lower Reynolds number. The golf ball then travels with
the benefit of this lower drag coefficient without needing to be hit at an
unrealistically high speed.
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Problem 7.5 Perfume

If the diffusion constant (in air) for small perfume molecules is 107°m?2s71,

estimate the time for perfume molecules to diffuse across a room.

Now try the experiment: How long does it take to smell the perfume from across
the room? Explain the large discrepancy between the theoretical estimate and
the experimental value.

Problem 7.6 Bending of light

In lecture we estimated how much gravity bends light by using dimensional
analysis and then guessing the final functional form. In this problem, you ana-
lyze the same situation using lumping.

As before, let r be the closest that the light gets to the origin (which is the center
of the gravitating mass). Discretize: Pretend that gravity forgets to deflect the
photon unless the photon’s distance to the origin is comparable to r. Using that
idea, estimate the radial (inward) velocity imparted to the photon, and then the
bending angle.

Feel free to neglect dimensionless constants like 2 or 7, and check your answer
against what we derived in lecture.

Problem 7.7 Teacup spindown

You stir your afternoon tea to mix the milk (and sugar if you have a sweet
tooth). Once you remove the stirring spoon, the rotation starts to slow. What is
the spindown time t? In other words, how long before the angular velocity of
the tea has fallen by a significant fraction?

To estimate 7, consider a physicist’s idea of a teacup: a cylinder with height L
and diameter L, filled with liquid. Why does the rotation slow? Tea near the
edge of the teacup — and near the base, but for simplicity neglect the effect of the
base — is slowed by the presence of the edge (the no-slip boundary condition).
The edge produces a velocity gradient.

Because of the tea’s viscosity, the velocity gradient produces a force on any
piece of the edge. This force tries to spin the piece in the direction of the tea’s
motion. The piece exerts a force on the tea equal in magnitude and opposite
in direction. Therefore, the edge slows the rotation. Now you can analyze this
model quantitatively.

a. In terms of the total viscous force F and of the initial angular velocity w,
estimate the spindown time. Hint: Consider torque and angular momentum.
(Feel free to drop any constants, such as 7 and 2, by invoking the Estimation
Theorem: 1 = 2.)

b. You can estimate F with the idea that

viscous force ~ pv X velocity gradient X surface area.
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Here pv is 1. The more familiar viscosity is 1, known as the dynamic viscosity.
The more convenient viscosity is v, the kinematic viscosity. The velocity
gradient is determined by the size of the region in which the the edge has a
significant effect on the flow; this region is called the boundary layer. Let 6
be its thickness. Estimate the velocity gradient near the edge in terms of 6,
and use the equation for viscous force to estimate F.

c. Put your expression for F into your earlier estimate for 7, which should now
contain only one quantity that you have not yet estimated (the boundary-layer
thickness).

d. You can estimate 0 using your knowledge of random walks. The boundary
layer is a result of momentum diffusion; just as D is the molecular-diffusion
coefficient, v is the momentum-diffusion coefficient. In a time ¢, how far can
momentum diffuse? This distance is 6. What is a natural estimate for ¢?
(Hint: After rotating 1 radian, the fluid is moving in a significantly different
direction than before, so the momentum fluxes no longer add.) Use that time
to estimate 6.

e. Now put it all together: What is the characteristic spindown time 7 (the time
for the rotation to slow down by a significant amount)?

f. Stir some tea to experimentally estimate Texp. Compare this time with the
time predicted by the preceding theory. [In water (and tea is roughly water),
v ~210"°m2s71]

Problem 7.8 Stokes’” law

You can use ideas from Problem 7.7 to derive Stokes’ formula for drag at low
speeds (more precisely, at low Reynolds” number). In the text we derived the
result from dimensional analysis; here you will develop a physical argument.

Consider a sphere of radius R moving with velocity v. Equivalently, in the
reference frame of the sphere, the sphere is fixed and the fluid moves past it
with velocity v. Next to the sphere, the fluid is stationary. Over a region of
thickness 6 (the boundary layer), the fluid velocity rises from zero to the full
flow speed v. Assume that 6 ~ R (the most natural assumption) and estimate
the viscous drag force. Compare the force with Stokes” formula (remember that

pv=1).

Problem 7.9 Bouncing ball
You drop a steel ball, say 7 ~ 1cm, from a height of one or two metres. It lands
on a steel surface and bounces up to nearly the original drop height. Estimate
the contact force at the instant when the ball is stationary on the ground. Give
your answer as the dimensionless ratio
contact force
weight of the ball’

Useful data: The elastic modulus of steel is Y ~ 1011 N m—2.
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Problem 7.10 Cone free-fall time and distance

Estimate how long the falling cones of Section 3.3.1 require to reach (a good
fraction of) terminal velocity. And estimate how far they fall before reaching (a
good fraction of) terminal velocity.

Problem 7.11 Kinetic theory

Molecules in a gas travel in all directions and with a continuous range of speeds.
However, many results can be understood with the following lumping approxi-
mation: Pretend that all molecules move with the thermal speed and that they
move only along a coordinate axis (i.e. in one of six directions).

Using the preceding lumping approximation, compute the following quantities:

Problem 7.12 Electric field of a uniform sheet of charge

Problem 7.13 Electric field inside a uniform shell of charge
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The set of tools under discussion in this part — which so far have in-
cluded easy cases and lumping — all offer ways to handle complexity by
discarding information. The next tool in this set is probabilistic reason-
ing. Instead of trying to force the world to give us exact and complete
information, we accept that our information will be incomplete and use
probability to quantify the incompleteness.

8.1 Is it my telephone number?

To introduce the fundamental ideas, here is an example from soon after
I had moved to England sometime in the last century. I was talking to a
friend on the phone, and he needed to call me back. Having just moved
to the apartment, I was still unsure of my phone number (plus, British
phone numbers have a strange format). I had a guess, which I thought
was reasonably likely, but I was not very sure of it. To test it, I picked up
my phone, dialed the candidate number, and got a busy signal.

Given this experimental evidence, how sure am I that the candidate number is
my phone number? To make the question quantitative: What odds should I give?

This question makes no sense if one uses the view of probability as long-
run frequency. In that view — alas, the most common view — the proba-
bility of, say, a coin turning up heads is 1/2 because 1/2 is the limiting
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proportion of heads in an ever-longer series of tosses. However, for eva-
lutin the plausibility of the phone number, this interpretation — called
the frequentist interpretation — makes no sense. What is the repeated
experiment analogous to tossing the coin repeatedly? There is none.

The frequentist interpretation places probability in the physical system
itself, as an objective property of the system. For example, the probability
of 1/2 for tossing heads is seen as a property of the coin itself. That
placement is incorrect and is the reason that the frequentist interpretation
cannot answer the phone-number question. The sensible alternative — that
probability reflects the incompleteness of our knowledge — is known as
the Bayesian interpretation of probability.

The Bayesian interpretation is based on a two simple ideas. First, proba-
bilities reflect our state of certainty about a hypothesis. Probabilities are
explicitly subjective: Someone with a different set of knowledge will use
a different set of probabilities. Second, by collecting evidence, our state
of certainty changes. In other words, evidence changes our probability
assignments.

In the phone-number problem, the hypothesis H is that my candidate
number is correct. For this hypothesis, I have an initial or prior probability
P(H). After collecting the evidence E — that when I dialed this number
the phone was busy — I make a new probability assignment P(H|E) (the
probability of the hypothesis H given the evidence E).

The recipe for using evidence to update probabilities is known as Bayes
theorem. To derive it, imagine that the mental world contains only two
hypothesis H and H, with probabilities P(H) and P(H) = 1 — P(H), and
that we have collected some evidence E. Now write the joint probability
P(H&E) in two different ways. P(H&E) is the probability of H being
true and E occurring. That probability is, first, the product P(H|E)P(E)
— namely, the probability that H is true given that E occurs times the
probability that E occurs. P(H&E) is, second, the product P(E|H)P(H)
— namely, the probability that E occurs given that H is true times the
probability that H is true. These two paths to H&E must produce identical
probabilities, so

P(EJH)P(H) = P(H|E)P(E). (8.1)

Our goal is the updated probability of the hypothesis, namely P(H|E). It
is given by
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P(EJH)P(H)

P(HIE) = = 5

(8.2)

Similarly, for the opposite hypothesis H,

P(E|H)P(H)

P(HIE) = B(E)

(8.3)

Using the ratio P(H|E)/P(H|E), which is known as the odds, gives an
even simpler formula because P(E) is common to both probabilities and
therefore cancels out:

P(HIE) _ P(EIH)P(H)
P(HIE) P(E[E)P(H)

(8.4)

The right side contains the factor P(H)/P(H), which is the initial odds.
Using O for odds,

P(E|H)

O(HIE) = O(H) x ——=.
P(E|H)

(8.5)

This result is Bayes theorem (for the case of two mutually exclusive hy-
potheses).

In the fraction P(E|H)/P(E|H), the numerator measures how well the hy-
pothesis H explains the evidence E; the denominator measures how well
the contrary hypothesis H explains the same evidence. Their ratio, known
as the likelihood ratio, measures the relative value of the two hypothesis
in explaining the evidence. So, Bayes theorem has the following English
translation:

updated odds = initial odds X relative explanatory power. (8.6)

Let’s see how this result applies to my English telephone number. Initially
I was not very sure of the phone number, so P(H) is perhaps 1/2 and O(H)
is 1. In the likelihood ratio, the numerator P(E|H) is the probability of
getting a busy signal given that my guess is correct (given that H is true).
If my guess is correct, I'd be dialing my own phone using my phone, so
I would definitely get a busy signal: P(E|[H) = 1. The hypothesis of a
correct number is a very good explanation of the data.

The trickier estimate is P(E|H): the probability of getting a busy signal
given that my guess is incorrect (given that H is true). If my guess is
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incorrect, I'd be dialing a random person’s phone. What is the probability
that a random phone is busy? I figure it’s similar to the fraction of the
day that my phone is busy. In my household, the adults use the phone
maybe 1 hour per day (and the children are not yet able to use a phone).
So the busy fraction is perhaps the ratio of 1 hour to 24 hours, or 1/24.
But that’s an underestimate. At 3am I would not do the experiment —
in case I am wrong and wake someone up. Equally, I am not often on
the phone at 3am. A more reasonable denominator is probably 10 or 12
hours, making the busy fraction roughly 0.1. In other words, P(E|H) ~ 0.1.
The hypothesis of an incorrect number is not a very good explanation for
the data. The relative explanatory power, which is the likelihood ratio, is

P(EIE) LI 10. (8.7)
P(EH) 01
Therefore, the updated odds are
P(EIH
O(H|E) = O(H) x ( l_) =10, (8.8)
P(E|H)

or 10-to-1 odds in favor of the number (at the start the odds were 1 to 1).
The guess become very plausible!
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Why divide and conquer works

How does divide-and-conquer reasoning (Chapter 1) produce such ac-
curate estimates? Alas, this problem is hard to analyze directly because
we do not know the accuracy in advance. But we can analyze a related
problem: how divide-and-conquer reasoning increases our confidence in
an estimate or, more precisely, decreases our uncertainty.

The telegraphic answer is that it works by subdividing a quantity about
which we know little into several quantities about which we know more.
Even if we need many subdivisions before we reach reliable information,
the increased certainty outweighs the small penalty for combining many
quantities. To explain that telegraphic answer, let’s analyze in slow motion
a short estimation problem using divide-and-conquer done.

Area of a sheet of paper

The slow-motion problem is to estimate area of a sheet of A4 paper (A4
is the standard sheet size in Europe). On first thought, even looking at a
sheet I have little idea about its area. On second thought, I know some-
thing. For example, the area is more than 1cm? and less than 10° cm?.
That wide range makes it hard to be wrong but is also too wide to be
useful. To narrow the range, I'll drew a small square with an area of
roughly 1cm? and guess how many squares fit on the sheet: probably at
least a few hundred and at most a few thousand. Turning ‘few” into 3, I
offer 300 cm? to 3000 cm? as a plausible range for the area.

Now let’s use divide-and-conquer and get a more studied range. Subdi-
vide the area into the width and height; about two quantities my knowl-
edge is more precise than it is about area itself. The extra precision has a
general reason and a reason specific to this problem. The general reason is
that we have more experience with lengths than areas: Which is the more
familiar quantity, your height or your cross-sectional area? Therefore, our
length estimates are usually more accurate than our area estimates.

The reason specific to this problem is that A4 paper is the European
equivalent of standard American paper. American paper is known to
computers and laser printers as ‘letter’ paper and known commonly in
the United States as ‘eight-and-a-half by eleven’ (inches!). In metric units,
those dimensions are 21.59 cm x 27.94cm. If A4 paper were identical to
letter paper, I could now compute its exact area. However, A4 paper is, I
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remember from living in England, slightly thinner and longer than letter
paper. I forget the exact differences between the dimensions of A4 and
letter paper, hence the remaining uncertainty: I'll guess that the width
lies in the range 19...21 cm and the length lies in the range 28...32cm.

The next problem is to combine the plausible ranges for the height and
width into the plausible range for the area. A first guess, because the
area is the product of the width and height, is to multiply the endpoints
of the width and height ranges:

Amin = 19cm x 28 cm = 532 cm?;
Apmax = 21 cm X 32cm = 672 cm?.

This method turns out to overestimate the range — a mistake that I correct
later — but even the too-large range spans only a factor of 1.26 whereas the
starting range of 300...3000 cm? spans a factor of 10. Divide and conquer
has significantly narrowed the range by replacing quantities about which
we have little knowledge, such as the area, with quantities about which
we have more knowledge.

The second bonus, which I now quantify correctly, is that subdividing
into many quantities carries only a small penalty, smaller than suggested
by naively multiplying endpoints. The naive method overestimates the
range because it assumes the worst. To see how, imagine an extreme
case: estimating a quantity that is the product of ten factors, each that
you know to within a factor of 2 (in other words, each plausible range
is a factor of 4). Is your plausible range for the final quantity a factor of
410 ~ 10°?! That conclusion is terribly pessimistic. A more likely result
is that a few of the ten estimates will be too large and a few too small,
allow several errors to cancel.

To quantify and fix this pessimism, I will explain plausible ranges using
probabilities. Probabilities are the tool for this purpose. As discussed
in Section 8.1, probabilities reflect incomplete knowledge; they are not
frequencies in a random experiment (Jaynes’s Probability Theory: The Logic
of Science [11] is a excellent, book-length discussion and application of this
fundamental point).

To make a probabilistic description, start with the proposition or hypoth-
esis

H = The area of A4 lies in the range 300...3000 cm?.
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and information (or evidence)
I = What I know about the area before using divide and conquer.

Now I want to find the conditional probability P(H|I) — namely, the prob-
ability of H given my knowledge before trying divide and conquer. There
is no known algorithm for computing a probability in such a complicated
problem situation. How, for example, does one represent my state of
knowledge? In these cases, the best we can do is to introspect or, in plain
English, to talk to our gut.

My gut is the organ with the most access to my intuitive knowledge and
its incompleteness, and it tells me that I would feel mild surprise but not
shock if I learned that the true area lay outside the range 300...3000 cm?.
The surprise suggests that P(H|I) is larger than 1/2. The mildness of the
surprise suggests that P(H|I) is not much larger than 1/2. I'll quantify it
as P(H|I) = 2/3: I would give 2-to-1 odds that the true area is within the
plausible range.

Furthermore, I'll use this probability or odds to define a plausible range:
It is the range for which I think 2-to-1 odds is fair. I could have used a
1-to-1 odds range instead, but the 2-to-1 odds range will later help give
plausible ranges an intuitive interpretation (as a region on a log-normal
distribution). That interpretation will then help quantify how to combine
plausible ranges.

For the moment, I need only the idea that the plausible range contains
roughly 2/3 of the probability. With a further assumption of symmetry,
the plausible range 300...3000 cm? represents the following probabilities:

P(A < 300cm?) = 1/6;

P(300cm < A < 3000cm?) = 2/3;

P(A > 3000 cm?) = 1/6.

Here is the corresponding picture with width proportional to probability:
pr1/6 px2/3 px1/6

A | < 300cm? 300...3000cm? > 3000 cm?

For the height  and width w, after doing divide and conquer and us-
ing the similarity between A4 and letter paper, the plausible ranges are
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28...32cm and 19...21 cm respectively. Here are their probability inter-
pretations:

px1/6 p~2/3 px1/6
h| <28 28...32m > 32cm
px1/6 p=~2/3 px1/6
w| <19 19...21cm > 21cm

Computing the plausible range for the area requires a complete proba-
bilistic description of a plausible range. There is an answer to this ques-
tion that depends on the information available to the person giving the
range. But no one knows the exact recipe to deduce probabilities from the
complex, diffuse, seemingly contradictory information lodged in a human
mind.

The best that we can do for now is to guess a
reasonable and convenient probability dis-
tribution. I will use a log-normal distrib-
ution, meaning that the uncertainty in the
quantity’s logarithm has a normal (or Gauss- 28 32

ian) distribution. As an example, the figure

shows the probability distribution for the length of A4 length (after tak-
ing into account the similarity to letter paper). The shaded range is the
the so-called one-sigma range p—o to p+0. It contains 68% of the proba-
bility — a figure conveniently close to 2/3. So to convert a plausible range
to a log-normal distribution, use the lower and upper endpoints of the
plausible range as i — o to u + 0. The peak of the distribution — the most
likely value — occurs midway between the endpoints. Since ‘midway’ is
on a logarithmic scale, the midpoint is at V28 X 32cm or approximately
29.93 cm.

1 (cm)

The log-normal distribution supplies the missing information required
to combine plausible ranges. When adding independent quantities, you
add their means and their variances. So when multiplying independent
quantities, add the means and variances in the logarithmic space.

Here is the resulting recipe. Let the plausible range for & be I;...u; and
the plausible range for w be I,...u,. First compute the geometric mean
(midpoint) of each range:
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p1 = Vhuy;
U2 = \/lzuz.

The midpoint of the range for A = hw is the product of the two midpoints:

B= pape. (8.9)

To compute the plausible range, first compute the ratios measuring the
width of the ranges:

r=u/h;

Ty = Uy / lz.

These ratios measure the width of the ranges. The combined ratio — that
is, the ratio of endpoints for the combined plausible range — is

r = exp (\/(ln r1)? + (In rz)z).

For approximate range calculations, the following contour graphs often
provide enough accuracy:

T2 T2
A A

10—

After finding the range, choose the lower and upper endpoints ! and u to
make 1/l = r and VIu = y. In other words, the plausible range is

Problem 8.1 Deriving the ratio
Use Bayes theorem to confirm this method for combining plausible ranges.

Let’s check this method in a simple example where the width and height
ranges are 1...2m. What is the plausible range for the area? The naive
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approach of simply multiplying endpoints produces a plausible range of
1...4m? - a width of a factor of 4. However, this range is too pessimistic
and the correct range should be narrower. Using the log-normal distrib-
ution, the range spans a factor of

exp (\/2 X (In 2)2) ~ 2.67.

This span and the midpoint determine the range. The area midpoint is
the product of the width and height midpoints, each of which is V2m.
So the midpoint is 2m?. The correct endpoints of the plausible range are
therefore

2m? X VG
i .

or 1.23...327m?. In other words, I assign roughly a 1/6 probability
that the area is less than 1.23m? and roughly a 1/6 probability that it
is greater than 3.27m?2. Those conclusions seem reasonable when using
such uncertain knowledge of length and width.

Having checked that the method is reasonable, it is time to test it in the
original illustrative problem: the plausible area range for an A4 sheet. The
naive plausible range was 532...672cm?, and the correct plausible range
will be narrower. Indeed, the log-normal method gives the narrower area
range of 550...650 cm? with a best guess (most likely value) of 598 cm?.
How did we do? The true area is exactly 27* m? or 625cm? because — I
remembered only after doing this calculation! — An paper is constructed
to have one-half the area of A(n—1) paper, with A0 paper having an area
of 1m?2. The true area is only 5% larger than the best guess, suggesting
that we used accurate information about the length and width; and it falls
within the plausible range but not right at the center, suggesting that the
method for computing the plausible range is neither too daring nor too
conservative.

The analysis of combining ranges illustrates the two crucial points about
divide-and-conquer reasoning. First, the main benefit comes from subdi-
viding vague knowledge (such as the area itself) into pieces about which
our knowledge is accurate (the length and the width). Second, this ben-
efit swamps the small penalty in accuracy that results from combining
many quantities together.
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8.2.2 Gold or bills?

The next estimation example is dedicated to readers who forgot careers in
the financial industry for less lucrative careers in teaching and research.

Having broken into a bank vault, should we take the bills or the gold?

The answer depends partly on the ease and costs of fencing the loot
— an analysis beyond the scope of this book. Within our scope is the
following question: Which choice lets us carry out the most money? Our
carrying capacity is limited by weight and volume. For this analysis, let’s
assume that the more stringent limit comes from weight or mass. Then
the decision divides into two subproblems: the value per mass for US
bills and the value per mass for gold. In order to decide which to take,
we’ll compute both values per mass and their respective plausible ranges.

gold or bills?

/\

value/mass for $100 bill value/mass for gold
value Mpill value of 10z of gold m
$100 ?7? ?7? 1oz

Two leaves have defined values: the value of a bill and the mass of 10z (1
ounce) of gold. The two other leaves need divide-and-conquer estimates.
In the first round of analysis, make point estimates; then, in the second
round, account for the uncertainty by using the plausible-range method
of Section 8.2.

The value of gold is, I vaguely remember, around $800/0z. As a rough
check on the value — for example, should it be $80/0z or $8000/0z? —
here is a historical method. In 1945, at the end of World War 2, the
British empire had exhausted its resources while the United States be-
came the world’s leading economic power. The gold standard, which fell
apart during the depression, was accordingly reinstituted in terms of the
dollar: $35 would be the value of 10z of gold. Since then, inflation has
probably devalued the dollar by a factor of 10 or more, so gold should be
worth around $350/0z. My vague memory of $800/0z therefore seems
reasonable.
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For the bill, its mass breaks into density (p) times vol- mass

ume (V), and volume breaks into width (w) times height / \

(h) times thickness (t). To estimate the height and width,

I could lay down a ruler or just find any bill - all US bills  ° M

are the same size — and eyeball its dimensions. A $1 bill / \\
seems to be few inches high and 6in wide. In metric
units, those dimensions are i ~ 6cm and w ~ 15cm. [To
improve your judgment for sizes, first make guesses; then, if you feel un-
sure, check the guess using a ruler to check. With practice, your need for
the ruler will decrease and your confidence and accuracy will increase.]

w h t

The thickness, alas, is not easy to estimate by eye or with a ruler. Is
the thickness 1 mm or 0.1 mm or 0.0l mm? Having experience with such
small lengths, my eye does not not help much. My ruler is calibrated
in steps of 1mm, from which I see that a piece of paper is significantly
smaller than 1 mm, but I cannot easily see how much smaller.

An accurate divide-and-conquer estimate, we learned in Section 8.2, de-
pends on replacing a vaguely understood quantity with accurately known
quantities. Therefore to estimate the thickness accurately, I connect it to
familiar quantities. Bills are made from paper, a ubiquitous substance
(despite hype about the paperless office). Indeed, a ream of printer paper
is just around the corner. The thickness of the ream and the number of
sheets that it contains determines the thickness of one sheet:

tream

t= .
N ream

You might call this approach ‘multiply and conquer’. The general les-
son for accurate estimation is to magnify values much smaller than our
experience, and and to shrink values much bigger than our experience.

The magnification argument adds one level m

to the tree and replaces one leaf with two / \
leaves on the new level. Two of the five

leaf nodes are already estimated. A ream ° M

contains 500 sheets (Nyeam = 500) and has / \\

a thickness of roughly 2in or 5cm. h o w

t
What is the estimate for p, the density of a / \
bill?

tre am N ream
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The only missing leaf value is m
p, the density of a bill. Connect / \
this value to what you already

know such as the densities of

V
1 gcm*3
familiar substances. Bills are / \\

made of paper, whose density h W ¢

is hard to guess directly. How- 6cm  15cm

ever, paper is made of wood, / \

whose density is easy to guess! tream  Nream
5cm 500

Wood barely floats so its den-
sity is roughly that of water:
1gcm™3. Therefore the density of a bill is roughly 1gem™.

Now propagate the leaf values
upward. The thickness of a bill

m

g
is roughly 102 cm, so the vol- / \
p Vv

ume of a bill is roughly

- 3
V~6cmx15ecmx102cm 8™ Tem

A

3

h t
The mass is therefore 6cm 15V\ém 102 em
m~1cm3><1gcm_3~1g. /\
and the value per mass of an tgmm Ngsgm
$N bill is therefore $N/g. How em
simple!

To choose between the bills and gold, compare that value to the value
per mass of gold. Unfortunately the price of gold is usually quoted in
dollars per ounce rather than dollars per gram, so my vague memory of
$800/0z needs to be converted into metric units. One ounce is roughly
28 g; if the price of gold were $840/0z, the arithmetic is simple enough to
do mentally, and produces $30/g. An exact division produces the slightly
lower figure of $28/g. The result of this calculation is as follows: In the
bank vault, first collect all the $100 bills that we can carry. If we have
spare capacity, collect the $50 bills, the gold, and only then the $20 bills.

This order depends on the accuracy of the point estimates and would
change if the estimates are significantly inaccurate. But how accurate are
they? To analyze the accuracy, make plausible ranges for the leaf nodes
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and propagate them upward — thereby obtaining plausible ranges for the
value per mass of bills and gold.

Problem 8.2 Your plausible ranges

What are your plausible ranges for the five leaf quantities fream, Nream, W, i,
and p? Propagate them upward to get plausible ranges for the interior nodes
including for the root node .

Here are my ranges along with a few notes on how I estimated a few of

them:

1. thickness of a ream, tream: 4...6cm.

2. number of sheets in a ream, Nyeam: 500. I'm almost certain that I re-
member this value correctly, but to be certain I confirmed it by looking
at a label on a fresh ream.

3. width of a bill, w: 10...20cm. A reasonable length estimate seemed
to be 6in but I could give or take a couple inches. In metric units,
4...8in becomes (roughly) 10...20 cm.

4. height of a bill, i: 5...7 cm.

5. density of a bill, p: 0.8...1.2gecm™>. The argument for p = 1gem™ -

that a bill is made from paper and paper is made from wood — seems
reasonable. However, the many steps required to process wood into
paper may reduce or increase the density slightly.

Now propagate these ranges upward. The plausible range for the thick-
ness t becomes 0.8...1.2:1072 cm. The plausible range for the volume V
becomes 0.53...1.27cm®. The plausible range for the mass m becomes
0.50...1.30g. The plausible range for the value per mass is $79...189/g
(with a midpoint of $122/g).

The next estimate gold or bills?

is the value per / \
mass of gold. I

can be as accu-

value/mass for $100 bill value/mass for gold

rate as I want in / \ / \

converting from

value Mpill value of 1oz of gold m

ounces to grams. $100 0.50...1.30g $400. . . 900 27...30g
But I'll be lazy
and try to remember the value while including uncertainty to reflect the
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fallibility of memory; let’s say that loz = 27...30g. This range spans
only a factor of 1.1, but the value of an ounce of gold will have a wider
plausible range (except for those who often deal with financial markets).
My range is $400...900. The mass and value ranges combine to give
$14...32/g as the range for gold.

Here is a picture comparing the range for gold with the ranges for US
currency denominations:

gold

140———32

$10 bill

16 $20 bill 38 — $/g (log scale)
$50 bill

$100 bill
189

Looking at the locations of these ranges and overlaps among them, I am
confident that the $100 bills are worth more (per mass) than gold. I am
reasonably confident that $50 bills are worth more than gold, undecided
about $20 bills, and reasonably confident that $10 bills are worth less than
gold.
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8.2.3 Oil imports using plausible ranges

To confirm these lessons, examine the benefit of divide-and-conquer rea-
soning in the example from Section 1.4: estimating the annual US oil
imports. To quantify the benefit, I compare my plausible ranges before
and after using divide and conquer.

Before I use divide and conquer, I have almost no idea what the oil im-
ports are, and I am scared even to guess. To nudge me along, I imagine a
mugger demanding, “Your guess or your life!” In which case I counteroffer
with, ‘Can I give you a range instead of a number? I'd be surprised if the
annual imports are less than10” barrels/yr or more than 10'?barrels/yr.
The imaginary mugger, being my own creation, always accepts my offer.

Problem 8.3 Your range
What is your plausible range for the annual oil imports?

I need little prodding to narrow my plausible range using divide-and-
conquer reasoning. It required making several estimates:

Npeople: US population;

fear: cars per person;

I: average distance that a car is driven

m: average gas mileage;

V: volume of a barrel;

AU IS S

fother: factor to multiply auto consumption to include all other con-
sumption;

7. fimported: fraction of oil that is imported.

Problem 8.4 Your ranges
Give your plausible range for each quantity, i.e. the range for which you assign
a two-thirds probability that the true value lies within the range.

Here are my plausible ranges with a few notes of explanation:

1. Npeople: 290-310 million. I recently read in the newspaper that the
US population just reached the milestone of 300 million. How much
should I believe what I read in the paper? The media lie when it
serves the powerful, but I cannot find any reason to lie about the US
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population, so I trust the figure, and throw in a bit of uncertainty
to reflect the difficulties encountered in counting the population (e.g.
what about undocumented immigrants, who are unlikely to fill out
census forms?).

2. fear: 0.5-15.

3. I: 7-10°-20-10° mi. Some books assessing used cars consider a low-
mileage car to have less than 10* mi per year of age. So I guess that the
average is somewhat larger than 10*mi/yr. But I am not confident of
my recollection or the deduction, so my plausible range spans a factor
of 3.

4. m: 15-40miles/gallon;
5. V: 30-60 gallons;
6. fother: 1.5-3;

7. fimported: 0.3-0.8.

What is the resulting plausible range for the oil imports?

Now combine the ranges using the method we used for the area of a
sheet of A4 paper. That method produces the following plausible range:

1.0...3.1...9.6-10° barrels/year.

Compare this range to the range for the off-the-cuff guess 107 ... 10'? barrels/yr.
That range spanned a factor of 10° whereas the improved range spans a
mere factor of 10 — thanks to divide-and-conquer reasoning.
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Random walks

Random walks are everywhere. Do you remember the card game War?
How long does it last, on average? A molecule of neurotransmitter is
released from a vesicle. Eventually it binds to the synapse; then your leg
twitches. How long does the molecule take to arrive? On a winter day,
you stand outside wearing only a thin layer of clothing. Why do you feel
cold?

These physical situations are examples

of random walks — for example, a gas

molecule moving and colliding. The analy-

sis in this section is in three parts. First,

we figure out how random walks be-

have. Then we use that knowledge to

derive the diffusion equation, which is

a reusable idea (an abstraction). Finally,

we apply the diffusion equation to heat flows (keeping warm on a cold
day).

Behavior of regular walks

In a general random walk, the walker can move a variable distance and
in any direction. This general situation is complicated. Fortunately, the
essential features of the random walk do not depend on these compli-
cated details. Let’s simplify. The complexity arises from the generality
— namely, because the direction and the distance between collisions are
continuous. To simplify, lump the possible distances: Assume that the
particle can travel only a fixed distance between collisions. In addition,
lump the possible directions: Assume that the particle can travel only
along coordinate axes. Further specialize by analyzing the special case of
one-dimensional motion before going to the more general cases of two-
and three-dimensional motion.

In this lumped one-dimensional model, a particle starts at the origin and
moves along a line. At each tick it moves left or right with probability
1/2 in each direction. Here it is at x = 3:
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Let the position after n steps be x,, and the expected position after n steps
be (x,). The expected is position is the average of all its possible positions,
weighted by their probabilities. Because the random walk is unbiased —
motion in each direction is equally likely — the expected position cannot
change (that’s a symmetry argument).

(X)) = (xp-1) -

Therefore, (x), the first moment of the position, is an invariant. Alas, it
is not a fascinating invariant because it does not tell us anything that we
did not already understand.

Let’s try the next-most-complicated moment: the second moment (x?).
Its analysis is easiest in special cases. Suppose that, after wandering a
while, the particle has arrived at 7, i.e. x = 7. At the next tick it will be
at either x = 6 or x = 8. Its expected squared position — not its squared
expected position! — has become

(3 = % (62 + 82) = 50.

The expected squared position increased by 1.

Let’s check this pattern with a second example. Suppose that the particle
is at x = 10, so (x?) = 100. After one tick, the new expected squared
position is

() = %(92 +112) = 101.

Yet again (x?) has increased by 1! Based on those two examples, the
conclusion is that

<x31+1> = <x$z> +1.
In other words,
@2y =n.

Because each step takes the same time (the particle moves at constant
speed),

(x2) o t.
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The result that (x?) is proportional to time applies not only to the one-
dimensional random walk. Here’s an example in two dimensions. Sup-
pose that the particle’s position is (5,2), so (x?) = 29. After one step, it
has four equally likely positions:

(5,2)

(0,0)

Rather than compute the new expected squared distance using all four
positions, be lazy and just look at the two horizontal motions. The two
possibilities are (6,2) and (4,2). The expected squared distance is

&) = %(40 +20) = 30,

which is one more than the previous value of (x?). Since nothing is special
about horizontal motion compared to vertical motion — symmetry! — the
same result holds for vertical motion. So, averaging over the four possible
locations produces an expected squared distance of 30.

For two dimensions, the pattern is:
(xiﬂ) =%y +1.

No step in the analysis depended on being in only two dimensions. In
fancy words, the derivation and the result are invariant to change of di-
mensionality. In plain English, this result also works in three dimensions.

In a standard walk in a straight line, (x) « time. Note the single power
of x. The interesting quantity in a regular walk is not x itself, since it
can grow without limit and is not invariant, but the ratio x/t, which is
invariant to changes in t. This invariant is known as the speed.

In a random walk, where (x?) « t, the interesting quantity is (x?)/t. The
expected squared position is not invariant to changes in t. However,
the ratio (x?)/t is invariant. This invariant is, except for a dimensionless
constant, the diffusion constant and is often denoted D. It has dimensions
of L>T-1.

This qualitative difference between a random and a regular walk makes
intuitive sense. A random walker, for example a gas molecule or a very
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drunk person, moves back and forth, sometimes making progress in one
direction, and other times undoing that progress. So, in order to travel
the same distance, a random walker should require longer than a regu-
lar walker requires. The relation (x*)/t ~ D confirms and sharpens this
intuition. The time for a random walker to travel a distance [ is t ~ [>/D,
which grows quadratically rather than linearly with distance.

Diffusion equation

The preceding conclusion about random walks is sufficient to derive the
diffusion equation, which describes how charge (electrons) move in a
wire, how heat conducts through solid objects, and how gas molecules
travel. Imagine then a gas of particles with each particle doing a random
walk in one dimension. What is the equation that describes how the
concentration, or number density, varies with time?

Divide the one-dimensional world

into slices of width Ax, where Ax - |
is the mean free path. Then look
at the slices at x — Ax, x, and x + N(z — Azx) N(z) N(z + Axz)

Ax. In every time step, one-half
the molecules in each slice move
left, and one-half move right. So
the number of molecules in the
x slice changes from N(x) to

- —— - —

%(N(x — Ax) + N(x + Ax)).
The change in N is
AN = %(N(x — Ax) + N(x + Ax)) - N(x)
= %(N(x — Ax) — 2N(x) + N(x + Ax)).

This last relation can be rewritten as
AN ~ (N(x + Ax) = N(x)) — (N(x) = N(x + Ax)).
In terms of derivatives, it is

I*N
AN ~ (Ax)ZW.
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The slices are separated by a distance such that most of the molecules
travel from one piece to the neighboring piece in the time step 7. If 7 is
the time between collisions — the mean free time — then the distance is
the mean free path A. Thus

W e
T T ox2’
or
: 2N
N~D——-
ox2

where D ~ A2/t is a diffusion constant.

This partial-differential equation has interesting properties. The second
spatial derivative means that a linear spatial concentration gradient re-
mains unchanged. Its second derivative is zero so its time derivative
must be zero. Diffusion fights curvature — roughly speaking, the second
derivative — and does not try to change the gradient directly.

Keeping warm

One consequence of the diffusion equation is an analysis of how to keep
warm on a cold day. To quantify keeping warm, or feeling cold, we need
to calculate the heat flux: the energy flowing per unit area per unit time.
Start with the definition of flux. Flux (of anything) is defined as

stuff

flux of stuff = ——.
area X time

The flux depends on the density of stuff and on how fast the stuff travels:

flux of stuff =

stuff x speed
volume ~ “Pe%
For heat flux, the stuff is thermal energy. The specific heat ¢, is the
thermal energy per mass per temperature, ¢, T is the thermal energy per
mass, and pcpT is therefore the thermal energy per volume. The speed
is the ‘speed’ of diffusion. To diffuse a distance [ takes time t ~ I?/D,
making the speed I/t or D/I. The | in the denominator indicates that, as
expected, diffusion is slow over long distances. For heat diffusion, the
diffusion constant is denoted x and called the thermal diffusivity. So the
speed is I/x.
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Combine the thermal energy per volume with the diffusion speed:
K

thermal flux = pc,T X i

The product pcpx occurs so frequently that it is given
a name: the thermal conductivity K. The ratio T/I is

T
a lumped version of the temperature gradient AT/Ax. /

With those substitutions, the thermal flux is Ty
AT
F = KE -t Az L

With one side held at T; and the other at T, the tem-
perature gradient is (T, — T1)/Ax.

To estimate how much heat one loses on a cold day, we need to estimate
K = pcpx. To do so, put all the pieces together:

p~1lkgm3,
o ~10°Tkg ' K,

k~15-10°m?s7},

where we are guessing that k = v (because both x and v are diffusion
constants). Then

K = pcpx ~0.02Wm ™' K™\

Using this value we can estimate the heat loss on a cold day. Let’s say
that your skin is at T, = 30°C and the air outside is T1 = 0°C, making
AT =30K. A thin T-shirt may have thickness 2 mm, so

AT 30K
F=K— ~002Wm'K!x ———
Ax m 210 m

~300Wm™>.

Damn, we want a power rather than a power per area. Ah, flux is power
per area, so just multiply by a person’s surface area: roughly 2m tall and
0.5m wide, with a front and a back. So the surface area is about 2 m?2.
Thus, the power lost is

P~FA=300Wm™2x2m?=600W.

No wonder a winter day wearing only thin pants and shirt feels so cold:
600 W is large compared to human power levels. Sitting around, a person
produces 100 W of heat (the basal metabolic rate). When 600 W escapes,
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one is losing far more than the basal metabolic rate. Eventually, one’s
core body temperature falls. Then chemical reactions slow down. This
happens for two reasons. First, almost all reactions go slower at lower
temperature. Second, enzymes lose their optimized shape, so they be-
come less efficient. Eventually you die.

One solution is jogging to generate extra heat. That solution indicates
that the estimate of 600 W is plausible. Cycling hard, which generates
hundreds of watts of heat, is vigorous enough exercise to keep one warm,
even on a winter day in thin clothing.

Another simple solution, as parents repeat to their children: Dress warmly
by putting on thick layers. Let’s recalculate the power loss if you put on
a fleece that is 2cm thick. You could redo the whole calculation from
scratch, but it is simpler is to notice that the thickness has gone up by a
factor of 10 but nothing else changed. Because F oc 1/Ax, the flux and the
power drop by a factor of 10. So, wearing the fleece makes

P~60W.

That heat loss is smaller than the basal metabolic rate, which indicates
that one would not feel too cold. Indeed, when wearing a thick fleece,
only the exposed areas (hands and face) feel cold. Those regions are
exposed to the air, and are protected by only a thin layer of still air (the
boundary layer). Because a large Ax means a small heat flux, the moral
is (speaking as a parent): Listen to your parents and bundle up!
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Almost every physical process contains a spring! The first example of
that principle shows a surprising place for a spring: planetary orbits.

Why planets orbit in ellipses

For a planet moving around the sun (assumed to be infinitely massive),
the planet’s energy per mass is

E GM 1,

= =T 42, 9.1

m r 2 G-
where m is the mass of the planet, G is Newton’s constant, M is the mass
of the sun, r is the planet’s distance from the sun, and v is the planet’s
speed.

In polar coordinates, the kinetic energy per mass is planet

2 2
1, 1],(do dr
Zv—zlr (dt) +(dt . 9.2)
This energy contains two coordinates, which is one

too many for an easy solution. We can get rid of
a coordinate by incorporating a conservation law,
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angular momentum. The angular momentum per
mass is

ao
t=r—, 9.3
The angular momentum per mass ¢ allow us to eliminate the 0 coordinate
by rewriting the % term:

”2(‘2—?)2 _ f_j (9.4)
Therefore,
3 [2 (0)
and
2

~—_—————
————

Vet KE per mass

Because the gravitational force is central (toward the sun), the planet’s an-
gular momentum, when computed about the sun, is constant. Therefore,
the only variable in E/m is r. This energy per mass describes the motion
of a particle in one dimension (r). The first two terms are the potential
(the potential energy per mass); they are called the effective potential V.
The final term is the particle’s kinetic energy per mass.

Now let’s study the just the effective po- %

tential: I

GM 1
Vegg = ——2 4 =2 9.7)
7 212

\J
=

The first term is the actual gravitational
potential; the second term, which orig-
inated from the tangential motion, is called
the centrifugal potential. To understand
how they work together, let’s make a sketch. For almost any sketch, the
first tool to pull out is easy cases. Here, the easy cases are small and large
r. At small r, the centrifugal potential is the important term because its
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1/r* overwhelms the 1/r in the gravitational potential. At large r, the grav-
itational potential is the important term, because its 1/r approaches zZero
more slowly than does the 1/ % in the centrifugal potential. Therefore,

1/r>  (small r)
Vet o {—1/r (large 7) (©-8)

If this analysis and sketch look familiar, that’s because they are. The ef-
fective potential has the same form as the energy in hydrogen (Section 7.3
or r26-lumping-hydrogen.pdf); therefore, our conclusions about plan-
etary motion will generalize to hydrogen.

Imagine the planet orbiting in a circular
orbit. In that orbit, r remains constant
so dr/dt and d’r/dt> are both zero. For
that to be true, the particle must live \ 0
where the effective potential Vg is flat — i
in other words, at its minimum at r = 7.

Veff

o |
-

\J
3

circular orbit

Now perturb the orbit by kicking the
planet slightly outwards. That kick does
not change the angular momentum ¢,
because angular momentum depends on ;mm
the tangential velocity. But it gives the :
planet a nonzero radial velocity (dr/dt #
0). Thus, it now has r-coordinate kinetic
energy (the 0-coordinate kinetic energy
is taken care of by the centrifugal-potential
piece of the effective potential). The orbital radius r then varies between
the extremes where the r kinetic energy turns completely into effective-
potential energy. Those are the two points where the horizontal line inter-
sects the effective potential, and the corresponding radii are the minimum
and maximum orbital distances.

Veff

)

Tmax

\J
S
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But what shape is that orbit? Finding
the shape seemingly requires solving the
differential equation for r, using the con-
servation of angular momentum to find
d0/dt, and then integrating to find O(t).

1/

An alternative approach is to use the
observation that, near its minimum, the
effective potential is shaped like a parabola.
We can find that parabola by expanding V. in a Taylor series about the
minimum. To do so, first find the the minimum-energy radius ry (the
radius of the circular orbit). By setting dVeg/dr = 0, we find

52
= —. 9.9
=M 9.9)
The Taylor series about rq is
Ve 1 d?V,
Ves0) = Vo) + (= 10) 5= 5= ro)* =58 (9.10)

r=rp

The first term in the Taylor series is just a constant, so it has no effect on
the motion of the planet (forces depend on differences in energies, so a
constant offset has no effect). The second term vanishes because at the
minimum energy, i.e. where r = ry, the slope of Ve is zero. The third term
contains the interesting physics. To evaluate it, we first need to compute
the second derivative:

PV  GM

=-2— +3—. 9.11
dr? r3 rt ©-1D)
At r = ry, it becomes (after using rp = ?/GM)
d?V ot GM
= —. (9.12)
drz =Ty 7’8
Therefore, the Taylor approximation is
1
Vet = irrelevant constant + EG—];/I(r —10)% (9.13)
r

0

Compare this potential energy per mass to the potential energy (per mass)
for a mass on a spring,
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V= E%(x —a)?, (9.14)
where a is the spring’s equilibrium length. The spring and the planet
have the same form for the potential energy per mass. One needs only
the following mapping:

X e
a e ry. (9.15)
k/m e GM/rg.

Therefore, like the x coordinate for the mass on the spring, the planet’s
distance to the sun (the r coordinate) oscillates in simple harmonic motion!
For the mass on a spring, the angular frequency of oscillation is w = Vk/m.
Therefore, using the preceding mappings, we find that the planet’s radial
distance oscillates about rq with angular frequency

GM
Wperturb = 4 [ 3+ (9.16)
\ "o

The planet’s motion is therefore described by two frequencies. The first is
Wperturb, the just-computed oscillation frequency of the r coordinate. The
second is worbit, the oscillation frequency of the orbital motion around the
sun (the tangential frequency). Their dimensionless ratio Wperturb/@orbit
determines the shape of the orbit. Here are the orbit shapes marked with
the ratio wperturb/@orbit, With each orbit drawn against the unperturbed
circular orbit.

— SN
OO

The orbital frequency of the circular orbit is
v
Worbit = ——» (917)
o
where v is the orbital velocity (the tangential velocity). To solve for v/r,
equate the centripetal acceleration to the gravitational acceleration:
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2
- G—ZM (9.18)
o U
To manufacture v/rq on the left side, divide both sides by ry and take the
square root:

2 - % (9.19)
1o 7

~——

Worbit

This expression is also @perturb- Therefore, worbit = Wperturb-

This result explains the elliptical (Kepler) orbits. First,

the ratio is an integer, so the orbit is closed (compare the

orbit with the ratio 2.5) — as it should be. Second, the

ratio is 1, so the orbit’s center is slightly away from the

sun — as it should for a planetary orbit (the sun is at one

focus of the ellipse, not at the center). The surprising

conclusion of all the analysis is that a planetary orbit contains a spring;
once this fact is appreciated, a spring analysis allows us to understand
the complicated orbital motion without solving complicated differential
equations.

As a bonus, the effective potential has the same form as the energy in
hydrogen. Therefore, that energy also looks like a parabola near its min-
imum. The consequence is that a chemical bond acts like a spring (for
small extensions). This second application is not a mere coincidence.
Near a minimum, almost every function looks a parabola, so almost every
physical system contains a spring. Springs are everywhere!
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9.2 Musical tones

9.2.1 Wood blocks

Here is a home musical experiment that illustrates proportional reasoning
and springs. First construct, or ask a carpenter or a local lumber yard to
construct, two wood blocks made from the same larger wood plank. Mine
have these dimensions:

1. 30cm X 5cm X 1 cm; and

2. 30cm X 5cm X 2cm.

The blocks are identical except in their thickness: 2cm vs 1cm.

Now tap the thin block at the center while holding it lightly ]
toward the edge, and listen to the musical note. If you do the ||#hold
same experiment to the thick block, will the pitch (fundamental
frequency) be higher than, the same as, or lower than the pitch ||,
when you tapped the thin block?

You can answer this question in many ways. The first is to do
the experiment. It would be nice either to predict the result ||}
before doing the experiment or to explain and understand the
result after doing the experiment.

One argument is that the block is a resonant object, and the wavelength
of the sound depends on the thickness of the block. In that picture, the
thick block should have the longer wavelength and therefore the lower
frequency. A counterargument, based on a different model of how the
sound is made, is that the thick block is stiffer, so it vibrates faster. On the
other hand, the thick block is more massive, so it vibrates more slowly.
Perhaps these two effects — greater stiffness but greater mass — cancel each
other, leaving the frequency unchanged?

I'll do the experiment right now and tell you the result. The thick block
has a higher pitch. So the resonant-cavity model is probably wrong.
Instead, the stiffness probably more than overcomes the mass.

A spring model explains this result and even predicts the frequency ratio.
In the spring model, a wood block is made of wood atoms connected by
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chemical bonds, which are springs. As the block vibrates, it takes these
shapes (shown in a side view):

— —

The block is made of springs, and it acts like a big spring. The middle
position is the equilibrium position, when the block has zero potential
energy and maximum kinetic energy. The potential energy is stored in
stretching and compressing the bonds. Imagine deforming the block into
a shape like the first shape:

Each dot is a wood ‘atom’, and each gray line is a spring that models
the chemical bond between wood atoms. Deforming the block stretches
and compresses these bonds. These numerous individual springs com-
bine to make the block behave like a large spring. Because the block is
a big spring, the energy required to to produce a vertical deflection is
proportional to the square of the deflection:

E~kp, (9.20)

where v is the deflection, and k is the stiffness of the block.

Intuitively, the thicker the block, the stiffer it is (higher k). The spring
model will help us find how k depends on the thickness h. To do so,
imagine deflecting the thin and thick blocks by the same distance y, then
compare their stored energies Ein and Ewmick by forming their ratio

Ethick

—_— . 9.21

Ethin ( )
That ratio is

kinicky® _ Kinick

kthmy2 Khin

(9.22)

because y is the same for the thick and thin blocks. So, the ratio of stored
energies is also the ratio of stiffnesses.
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To find the stored energies, look at this picture of the blocks, with the
dotted line showing the neutral line (the line without compression or
extension):

The deflection hardly changes the lengths of the radial-direction bond
springs. However, the tangential springs (along the long length of the
block) get extended or compressed. Above the neutral line the springs
are extended. Below the neutral line, the springs are compressed. The
amount of extension is proportional to the distance from the neutral line.

Now study comparable bond springs in the thin and thick blocks. Each
spring in the thin block corresponds to a spring in the thick block that is
twice as far away from the neutral line. The spring in the thick block has
twice the extension (or compression) of its partner in the thin block. So
the spring in the thick block stores four times the energy of its partner
spring in the thin block. Furthermore, the thick block has twice as many
layers as does the thin black, so each spring in the thin block has two
partners, with identical extension, in the thick block. So the thick block
stores eight times the energy of the thin block (for the same deflection v).

Thus

Khick
kthin

_s. (9.23)

This factor of 8 results from multiplying the thickness by 2. In general,
stiffness is proportional to the cube of the thickness:

k o 1. (9.24)

Because the entire wood block acts like a spring, its oscillation frequency
is w = Vk/m. The mass ratio is caused by the thickness ratio:

Thick _ 5. (9.25)
Mihin

Because the stiffness ratio is 8, the frequency ratio is

@nick _ 8 _ 5 (9.26)
Wthin 2
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In general, m o« h so

. 3
Wi _ [ _ (9.27)
Wthin h

Frequency is proportional to thickness!
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9.2.2 Xylophone

Let’s check this analysis by looking at its consequences and comparing
with experimental data from a home experiment. My daughter got a toy
xylophone from her uncle. Its slats have these dimensions:

l
12.2cm
11.5
10.9
10.6
10.0

9.4
8.9
8.6

AW > O0OTTHEHTON

Our analysis of how frequency depends on thickness can explain this
pattern of how frequency depends on length. The method is to use di-
mensional analysis with proportional reasoning (scaling).

Rather than finding the frequency direction, I analyze the stiffness. The
mass is easy, so split that part off of the calculation of the frequency. The
block’s spring constant k depends on its material properties — here, the
Young’s modulus Y — and on its dimensions. So the variables are k, Y,
and length I, width w, and thickness (height) h.

How many independent dimensions are contained in those variables? How many
independent dimensionless groups can be formed from those variables?

These five variables are composed of two independent dimensions. These
dimensions could be length and force: Stiffness is force per length, and
Young’s modulus is force per area. Five variables based on two inde-
pendent dimensions form three independent dimensionless groups. The
goal is to find k, so I include k in only one group. That group contains
Y to divide out the dimensions of mass. Since Young’s modulus is force
per area, and stiffness is force per length, the ratio k/Yh is dimension-
less. The three lengths for the size of the block easily make two more
dimensionless groups: for example, 11/l and w/I. Then

k h w
v = f(T’T) (9.28)
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Guess the function f (except for a dimensionless constant).

What we know about stiffness versus thickness, along with proportional
reasoning, is enough to solve for f, except for a dimensionless constant.
Proportional reasoning helps determine the dependence on the dimen-
sionless group w/l. Imagine doubling the width w. Equivalently, I glue
together two identical blocks along the long, thin edge. When the new
block is bent, the individual blocks contains equal energy, so the new
block contains twice the energy of an original block. Therefore, doubling
the width doubles the stiffness; in symbols, k o« w. In the general form

k h w
vi = f(??)' (9.29)

w appears only in the group w/l, and k appears on the right in the first
power. So the general form simplifies to

kK w h
V=T f(T) (9.30)
To guess the new function f, I use what I know about stiffness versus
thickness, that k « 3. Therefore the left side, k/YHh, is proportional to K.

On the right side the only source of & is from f, which can play with i
but only via the ratio k/l. So

-t

Combining these deductions gives

ko w(h\® wh?
Vi~ T (7) =5 ©.32)
and
h 3
k ~ Yw(T) . (9.33)

The stiffness and mass determine the frequency. The mass is m = pwlh.

So
k Y h
~a= = .34
@ "m ‘/plz (9.34)
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As a quick check, this result is consistent with the earlier calculation that
frequency is proportional to thickness. And it contains a new result:
w o I72,

Problem 9.1 Effect of width
Is it physically plausible that the width w does not affect the frequency w?

Is this data consistent with the prediction that w o [72?

Before doing an extensive analysis, I check the easy
case of the octave. The lower and higher C notes d f

are a factor of 2 apart in frequency. If the scal- € 122 2616
ing prediction is correct, the respective slat lengths D 115 2936
should be a factor of V2 apart. The length ratio is E 109 3296
12.2/8.6 ~ 1.419, which is very close to V2. The gen- Fool06 3392
eral pattern is that fI*> should be invariant. To check, G 100 3920
here is the same table with frequencies, which are A 94 4400

B 89 4938

computed by assuming that the A above middle C is

at 440 Hz (concert A), and with a column for fI?: ¢ 86 5232

The proposed invariant is, experimentally, almost con-
stant.

Waves

Ocean covers most of the earth, and waves roam most of the ocean. Waves
also cross puddles and ponds. What makes them move, and what deter-
mines their speed? By applying and extending the techniques of approx-
imation, we analyze waves. For concreteness, this section refers mostly to
water waves but the results apply to any fluid.

Dispersion relations

The most organized way to study waves is to use dispersion relations.
A dispersion relation states what values of frequency and wavelength a
wave can have. Instead of the wavelength A, dispersion relations usually
connect frequency w, and wavenumber k, which is defined as 27t/A. This
preference has an basis in order-of-magnitude reasoning. Wavelength is
the the distance the wave travels in a full period, which is 2 radians of
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oscillation. Although 27t is dimensionless, it is not the ideal dimensionless
number, which is unity. In 1 radian of oscillation, the wave travels a
distance

A

= (9.35)

The bar notation, meaning ‘divide by 27’, is chosen by analogy with / and
. The one-radian forms such as /i are more useful for approximations
than the 2n-radian forms. The Bohr radius, in a form where the dimen-
sionless constant is unity, contains 7 rather than h. Most results with
waves are similarly simpler using A rather than A. A further refinement
is to use its inverse, the wavenumber k = 1/A. This choice, which has di-
mensions of inverse length, parallels the definition of angular frequency
w, which has dimensions of inverse time. A relation that connects w and
k is likely to be simpler than one connecting w and A, although either is
simpler than one connecting w and A.

The simplest dispersion relation describes electromagnetic waves in a vac-
uum. Their frequency and wavenumber are related by the dispersion
relation

w = ck, (9.36)

which states that waves travel at velocity w/k = ¢, independent of fre-
quency. Dispersion relations contain a vast amount of information about
waves. They contain, for example, how fast crests and troughs travel: the
phase velocity. They contain how fast wave packets travel: the group
velocity. They contain how these velocities depend on frequency: the
dispersion. And they contain the rate of energy loss: the attenuation.

Phase and group velocities

The usual question with a wave is how fast it travels. This question
has two answers, the phase velocity and the group velocity, and both
depend on the dispersion relation. To get a feel for how to use dispersion
relations (most of the chapter is about how to calculate them), we discuss
the simplest examples that illustrate these two velocities. These analyses
start with the general form of a traveling wave:

f(x,t) = cos(kx — wt), (9.37)
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where f is its amplitude.
0 1

Phase veloc-

ityisaneas- ¢ = ;: \/\/cos(kxwh)
ier idea than 0 1

group veloc-; _ ts: cos(kx — wty)
ity so, as an

example of
divide-and-conquer reasoning and of maximal laziness, study it first. The
phase, which is the argument of the cosine, is kx—wt. A crest occurs when
the phase is zero. In the top wave, a crest occurs when x = wt;/k. In the
bottom wave, a crest occurs when x = wt, /k. The difference

w

k

is the distance that the crest moved in time ¢, —t;. So the phase velocity,
which is the velocity of the crests, is

(ta —t) (9.38)

distance crest shifted @

Uph = (9.39)

time taken Tk
To check this result, check its dimensions: w provides inverse time and
1/k provides length, so w/k is a speed.

Group velocity is trickier. The word ‘group” suggests that the concept
involves more than one wave. Because two is the first whole number
larger than one, the simplest illustration uses two waves. Instead of being
a function relating w and k, the dispersion relation here is a list of allowed
(k, w) pairs. But that form is just a discrete approximation to an official
dispersion relation, complicated enough to illustrate group velocity and
simple enough to not create a forest of mathematics. So here are two
waves with almost the same wavenumber and frequency:

f1 = cos(kx — wt),

fo = cos((k + Ak)x — (w + Aw)t), (9.40)

where Ak and Aw are small changes in wavenumber and frequency, re-
spectively. Each wave has phase velocity vpn = w/k, as long as Ak and Aw
are tiny. The figure shows their sum.
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= + >

The point of the figure is that two cosines with almost the same spatial
frequency add to produce an envelope (thick line). The envelope itself
looks like a cosine. After waiting a while, each wave changes because of
the wt or (w + Aw)t terms in their phases. So the sum and its envelope
change to this:

A » X
+
B » X

:

The envelope moves, like the crests and troughs of any wave. It is a wave,
so it has a phase velocity, which motivates the following definition:

Group wvelocity is the phase velocity of the envelope. (9.41)

With this pictorial definition, you can compute group velocity for the
wave f1 + fo. As suggested in the figures, adding two cosines produces a
a slowly varying envelope times a rapidly oscillating inner function. This
trigonometric identity gives the details:

B-A A+B
cos(A + B) = 2cos ( ) X Cos ( ; ) . (9.42)
envelope inner

If A = B, then A - B = 0, which makes the envelope vary slowly. Apply
the identity to the sum:

fi + fo = cos(kx — wt) + cos((k + Ak)x — (w + Aw)t). (9.43)
——

A B

Then the envelope contains
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COS(B _A) = cos M . (9.44)
2 2
The envelope represents a wave with phase
Ak Aw

So it is a wave with wavenumber Ak/2 and frequency Aw/2. The enve-
lope’s phase velocity is the group velocity of f; + fo:

frequency  Aw/2  Aw

Y% = Wavenumber A2 ~ Ak (9.46)
In the limit where Ak — 0 and Aw — 0, the group velocity is
dw
Ug = W (947)

It is usually different from the phase velocity. A typical dispersion re-
lation, which appears several times in this chapter, is w o« k". Then
Uph = w/k = k"1 and vy oc nk"!. So their ratio is

v

v_g =n. (for a power-law relation) (9.48)

ph
Only when n = 1 are the two velocities equal. Now that we can find wave
velocities from dispersion relations, we return to the problem of finding
the dispersion relations.

Dimensional analysis

A dispersion relation usually emerges from solving a wave equation,
which is an unpleasant partial differential equation. For water waves,
a wave equation emerges after linearizing the equations of hydrodynam-
ics and neglecting viscosity. This procedure is mathematically involved,
particularly in handling the boundary conditions. Alternatively, you can
derive dispersion relations using dimensional analysis, then complete and
complement the derivation with physical arguments. Such methods usu-
ally cannot evaluate the dimensionless constants, but the beauty of study-
ing waves is that, as in most problems involving springs and oscillations,
most of these constants are unity.
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How do frequency and wavenumber connect? They have dimensions of
T~! and L7}, respectively, and cannot form a dimensionless group without
help. So include more variables. What physical properties of the system
determine wave behavior? Waves on the open ocean behave differently
from waves in a bathtub, perhaps because of the difference in the depth
of water h. The width of the tub or ocean could matter, but then the
problem becomes two-dimensional wave motion. In a first analysis, avoid
that complication and consider waves that move in only one dimension,
perpendicular to the width of the container. Then the width does not
matter.

To determine what other variables are important, use the principle that
waves are like springs, because every physical process contains a spring.
This blanket statement cannot be strictly correct. However, it is useful as
a broad generalization. To get a more precise idea of when this assump-
tion is useful, consider the characteristics of spring motion. First, springs
have an equilibrium position. If a system has an undisturbed, resting
state, consider looking for a spring. For example, for waves on the ocean,
the undisturbed state is a calm, flat ocean. For electromagnetic waves —
springs are not confined to mechanical systems — the resting state is an
empty vacuum with no radiation. Second, springs oscillate. In mechani-
cal systems, oscillation depends on inertia to carry the mass beyond the
equilibrium position. Equivalently, it depends on kinetic energy turning
into potential energy, and vice versa. Water waves store potential energy
in the disturbance of the surface and kinetic energy in the motion of the
water. Electromagnetic waves store energy in the electric and magnetic
fields. A magnetic field is generated by moving or spinning charges, so
the magnetic field is a reservoir of kinetic (motion) energy. An electric
field is generated by stationary charges and has an associated potential,
so the electric field is the reservoir of potential energy. With these identi-
fications, the electromagnetic field acts like a set of springs, one for each
radiation frequency. These examples are positive examples. A negative
example — a marble oozing its way through glycerin — illustrates that
springs are not always present. The marble moves so slowly that the ki-
netic energy of the corn syrup, and therefore its inertia, is miniscule and
irrelevant. This system has no reservoir of kinetic energy, for the kinetic
energy is merely dissipated, so it does not contain a spring.
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Waves have the necessary reservoirs
to act like springs. The surface of wa-
ter is flat in its lowest-energy state.
Deviations, also known as waves, are
opposed by a restoring force. Dis-
torting the surface is like stretching a
rubber sheet: Surface tension resists
the distortion. Distorting the surface
also requires raising the average wa-
ter level, a change that gravity resists.

The average height of the surface does
not change, but the average depth of
the water does. The higher column, under the crest, has more water
than the lower column, under the trough. So in averaging to find the
average depth, the higher column gets a slightly higher weighting. Thus
the average depth increases. This result is consistent with experience: It
takes energy to make waves.

The total restoring force includes gravity and surface tension so, in the
list of variables, include surface tension (y) and gravity (g).

In a wave, like in a spring, the restoring force fights inertia, represented
here by the fluid density. The gravitational piece of the restoring force
does not care about density: Gravity’s stronger pull on denser substances
is exactly balanced by their greater inertia. This exact cancellation is a re-
statement of the equivalence principle, on which Einstein based the theory
of general relativity [4, 5]. In pendulum motion, the mass of the bob drops
out of the final solution for the same reason. The surface-tension piece of
the restoring force, however, does not change when density changes. The
surface tension itself, the fluid property y, depends on density because it
depends on the spacing of atoms at the surface. That dependence affects
y. However, once you know y you can compute surface-tension forces
without knowing the density. Since p does not affect the surface-tension
force but affects the inertia, it affects the properties of waves in which
surface tension provides a restoring force. Therefore, include p in the list.
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To simplify the analysis, assume that the waves | Var Dim  What
do not lose energy. This choice excludes viscos- | o T™!  frequency
ity from the set of variables. To further simplify, k L' wavenumber
exclude the speed of sound. This approxima- g LT  gravity
tion means ignoring sound waves, and is valid h L depth
as long as the flow speeds are slow compared to p ML density
the speed of sound. The resulting ratio, y  MT™2  surface tension
flow speed
M= ————— (9.49)

~ sound speed’

is dimensionless and, because of its importance, is given a name: the
Mach number. Finally, assume that the wave amplitude & is small com-
pared to its wavelength and to the depth of the container. The table shows
the list of variables. Even with all these restrictions, which significantly
simplify the analysis, the results explain many phenomena in the world.

These six variables built from three fundamental dimensions produce
three dimensionless groups. One group is easy: the wavenumber k is an
inverse length and the depth # is a length, so

I, = k. (9.50)

This group is the dimensionless depth of the water: Il; < 1 means shal-
low and IT; > 1 means deep water. A second dimensionless group comes
from gravity. Gravity, represented by g, has the same dimensions as «?,

except for a factor of length. Dividing by wavenumber fixes this deficit:

(1)2

szg.

(9.51)
Without surface tension, Il; and I, are the only dimensionless groups,
and neither group contains density. This mathematical result has a physi-
cal basis. Without surface tension, the waves propagate because of gravity
alone. The equivalence principle says that gravity affects motion indepen-
dently of density. Therefore, density cannot — and does not — appear in
either group.

Now let surface tension back into the playpen of dimensionless groups.
It must belong in the third (and final) group Il3. Even knowing that y
belongs to I1; still leaves great freedom in choosing its form. The usual
pattern is to find the group and then interpret it, as we did for ITy and
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IT,. Another option is to begin with a physical interpretation and use the
interpretation to construct the group. Here you can construct I3 to mea-
sure the relative importance of surface-tension and gravitational forces.
Surface tension y has dimensions of force per length, so producing a force
requires multiplying by a length. The problem already has two lengths:
wavelength (represented via k) and depth. Which one should you use?
The wavelength probably always affects surface-tension forces, because
it determines the curvature of the surface. The depth, however, affects
surface-tension forces only when it becomes comparable to or smaller than
the wavelength, if even then. You can use both lengths to make y into a
force: for example, F ~ yvh/k. But the analysis is easier if you use only
one, in which case the wavelength is the preferable choice. So F, ~ y/k.
Gravitational force, also known as weight, is pg X volume. Following the
precedent of using only k to produce a length, the gravitational force is
Fy ~ pg/k>. The dimensionless group is then the ratio of surface-tension
to gravitational forces:

2
s A Ly L (9.52)
Fg  pg/k®  pg
This choice has, by construction, a useful physical interpretation, but
many other choices are possible. You can build a third group without
using gravity: for example, I3 = yk*/pw?. With this choice, @ appears
in two groups: I, and I13. So it will be hard to solve for it. The choice
made for P3, besides being physically useful, quarantines w in one group:
a useful choice since w is the goal.

Now use the groups to solve for frequency w as a function of wavenumber
k. You can instead solve for k as a function of w, but the formulas for
phase and group velocity are simpler with @ as a function of k. Only the
group I, contains w, so the general dimensionless solution is

I = f(ITy, IT3), (9.53)
or
2 k2
% - f(kh, Z—g). (9.54)
Then
yk?

2 = ok f(kh, —). 9.55
w” = gk- f( pg) (9.55)
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This relation is valid for waves in shallow or deep water (small or large
IT;); for waves propagated by gravity or by surface tension (small or large
I13); and for waves in between.

I
P9
A
104 4
Shallow water Deep water
Surface tension 102 + Surface tension
} } } —TT; = hk
10~4 1072 102 10*
-2 1
Shallow water 10 Deep water
Gravity Gravity
10747

The figure shows how the two groups I and I3 divide the world of
waves into four regions. We study each region in turn, and combine
the analyses to understand the whole world (of waves). The group II;
measures the depth of the water: Are the waves moving on a puddle or
an ocean? The group IT3 measures the relative contribution of surface
tension and gravity: Are the waves ripples or gravity waves?

The division into deep and shallow water (left and right sides) follows
from the interpretation of Il; = kh as dimensionless depth. The divi-
sion into surface-tension- and gravity-dominated waves (top and bottom
halves) is more subtle, but is a result of how I3 was constructed. As a
check, look at I'l;. Large g or small k result in the same consequence: small
I13. Therefore the physical consequence of longer wavelength (smaller k)
is similar to that of stronger gravity. So longer-wavelength waves are
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gravity waves. The large-I1; portion of the world (top half) is therefore
labeled with surface tension.

The next figure shows how wavelength and depth (instead of the dimen-
sionless groups) partition the world, and plots examples of different types
of waves.

wavelength (m)
A
- Tide

1007

Shallow water
Gravity waves

4 1

Storm wave at sea

10 7
Storm wave at shore Deep water
/ Gravity waves
} } t } » depth (m)
107 1072 10? 10*
T3 =1
. - =z T . 3
Ripple on thin puddle 10 Ripple on pond
Shallow-water Deep water
Ripples 10-4 Ripples

The thick dividing lines are based on the dimensionless groups Il = hk
and T1; = yk?/pg. Each region contains one or two examples of its kind
of waves. With ¢ =1000cms™ and p ~ 1gcm™, the border wavelength
between ripples and gravity waves is just over A ~ 1cm (the horizontal,
I13 = 1 dividing line).

The magic function f is still unknown to us. To determine its form and
to understand its consequences, study f in limiting cases. Like a jigsaw-
puzzle-solver, study first the corners of the world, where the physics is
simplest. Then connect the corner solutions to get solutions valid along
an edge, where the physics is the almost as simple as in a corner. Fi-
nally, crawl inward to assemble the complicated, complete solution. This
extended example illustrates divide-and-conquer reasoning, and using
limiting cases to choose pieces into which you break the problem.



9.3.4 Deep water

First study deep water, where kh >
1, as shaded in the map. Deep wa-
ter is defined as water sufficiently
deep that waves cannot feel the bot-
tom of the ocean. How deep do

waves’ feelers extend? The only length

scale in the waves is the wavelength,
A = 27nt/k. The feelers therefore ex-
tend to a depth d ~ 1/k (as always,
neglect constants, such as 2m). This
educated guess has a justification
in Laplace’s equation, which is the
spatial part of the wave equation.
Suppose that the waves are periodic

Shallow water
Surface tension

2
n35ﬁ
P9

10* T+

1021
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Deep water
Surface tension

Shallow water
Gravity

1072 1

1074+

+ — TTy = hk
10% 104

Deep water
Gravity

in the x direction, and z measures depth below the surface, as shown in

this figure:

Then, Laplace’s equation becomes

&2({) 82(p
etz 0

(9.56)

where ¢ is the velocity potential. The d°¢/dy? term vanishes because

nothing varies along the width (the y direction).
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It’s not important what exactly ¢ is. You can find out more about it in
an excellent fluid-mechanics textbook, Fluid Dynamics for Physicists [6];
Lamb’s Hydrodynamics [14]is a classic but difficult. For this argument, all
that matters is that ¢» measures the effect of the wave and that ¢ satisfies
Laplace’s equation. The wave is periodic in the x direction, with a form
such as sinkx. Take

¢ ~ Z(z) sinkx. (9.57)

The function Z(z) measures how the wave decays with depth.

The second derivative in x brings out two factors of k, and a minus sign:

¢

= = -K¢. 9.58

o0x2 ¢ ©-58)
In order that this ¢ satisfy Laplace’s equation, the z-derivative term must
contribute +k*¢. Therefore,

a0)

— =K, 9.59

= = K9 959
so Z(z) ~ e***. The physically possible solution — the one that does not
blow up exponentially at the bottom of the ocean — is Z(z) ~ e™*. There-
fore, relative to the effect of the wave at the surface, the effect of the wave
at the bottom of the ocean is ~ ™. When kh > 1, the bottom might as
well be on the moon because it has no effect. The dimensionless factor kh
— it must be dimensionless to sit alone in an exponent — compares water

depth with feeler depth d ~ 1/k:

water depth 1

feeler depth ~ 1/k ik, (9.60)

which is the dimensionless group IT;.

In deep water, where the bottom is hidden from the waves, the water
depth h does not affect their propagation, so h disappears from the list
of relevant variables. When h goes, so does I1; = kh. There is one caveat.
If ITy is the only group that contains k, then you cannot blithely discard
IT; just because you no longer care about h. If you did, you would be
discarding k and h, and make it impossible to find a dispersion relation
(which connects w and k). Fortunately, k appears in I3 = yk*/pg as well
as in I'l;. So in deep water it is safe to discard I1;. This argument for the
irrelevance of h is a physical argument. It has a mathematical equivalent
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in the language of dimensionless groups and functions. Because / has
dimensions, the statement that ‘% is large’ is meaningless. The question is,
‘large compared to what length?” With 1/k as the standard of comparison
the meaningless ‘h is large” statement becomes ‘kh is large.” The product
kh is the dimensionless group I1;. Mathematically, you are assuming that
the function f(kh, yk*/pg) has a limit as kh — 0.

Without IT;, the general dispersion relation simplifies to

P8

This relation describes the deep-water edge of the world of waves. The
edge has two corners, labeled by whether gravity or surface tension pro-
vides the restoring force. Although the form of fgeep is unknown, it is a
simpler function than the original f, a function of two variables. To deter-
mine the form of feep, continue the process of dividing and conquering:
Partition deep-water waves into its two limiting cases, gravity waves and
ripples.

2
@ = gk faeep (&) (9.61)

Gravity waves on deep water

Of the two extremes, gravity waves

. M =-—
are the more common. They in- E
clude wakes generated by ships and wtr
most waves generated by wind. So
L. Shallow water Deep water
specialize to the corner of the wave Surfce tension | Surface tension

world where water is deep and grav-
ity is strong. With gravity much

. + + + + T = hk
stronger than surface tension, the 10 102 102 10t
dimensionless group Il; = yk*/pg
limits to 0. Since I3 is the product challow water 10721 R

Gravity Gravity

of several factors, you can achieve
the limit in several ways:

1. Increase g (which is downstairs)
by moving to Jupiter.

2. Reduce y (which is upstairs) by dumping soap on the water.

3. Reduce k (which is upstairs) by studying waves with a huge wave-
length.
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In this limit, the general deep-water dispersion relation simplifies to
w® = fdeep(o)gk = Clgk/ (9.62)

where fgeep(0) is an as-yet-unknown constant, C;. The use of fyeep(0) as-
sumes that feep(¥) has a limit as x — 0. The slab argument, which follows
shortly, shows that it does. For now, in order to make progress, assume
that it has a limit. The constant remains unknown to the lazy methods of
dimensional analysis, because the methods sacrifice evaluation of dimen-
sionless constants to gain comprehension of physics. Usually assume that
such constants are unity. In this case, we get lucky: An honest calculation
produces C; =1 and

w? = 1xgk, (9.63)

where the red 1x indicates that it is obtained from honest physics.

Such results from dimensional analysis seem like rabbits jumping from a
hat. The dispersion relation is correct, but your gut may grumble about
this magical derivation and ask, ‘But why is the result true?” A physical
model of the forces or energies that drive the waves explains the origin
of the dispersion relation. The first step is to understand the mechanism:
How does gravity make the water level rise and fall? Taking a hint from
the Watergate investigators,’ we follow the water. The water in the crest
does not move into the trough. Rather, the water in the crest, being
higher, creates a pressure underneath it higher than that of the water in
the trough, as shown in this figure:

z—§&

X Flow J_

P>~Po+pg(z+§&) P<~Po+pg(z—E&)

1 When the reporters Woodward and Bernstein [2]were investigating criminal coverups during
the Nixon administration, they received help from the mysterious ‘Deep Throat’, whose
valuable advice was to ‘follow the money.
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The higher pressure forces water underneath the crest to flow toward
the trough, making the water level there rise. Like a swing sliding past
equilibrium, the surface overshoots the equilibrium level to produce a
new crest and the cycle repeats.

The next step is to quantify the model by estimating sizes, forces, speeds,
and energies. In Section 7.1 we analyzed a messy mortality curve by
replacing it with a more tractable shape: a rectangle. The method of
lumping worked there, so try it again. ‘A method is a trick I use twice.”
—George Polya. Water just underneath the surface moves quickly because
of the pressure gradient. Farther down, it moves more slowly. Deep down
it does not move at all. Replace this smooth falloff with a step function:
Pretend that water down to a certain depth moves as a block, while deeper
water stays still:

Ay ~ 2K

Higher Lower

pressure pressure

1/k

1/k

How deep should this slab of water extend? By the Laplace-equation
argument, the pressure variation falls off exponentially with depth, with
length scale 1/k. So assume that the slab has a similar length scale, that
it has depth 1/k. What choice do you have? On an infinitely deep ocean,
the only length scale is 1/k. How long should the slab be? Its length
should be roughly the peak-to-trough distance of the wave because the
surface height changes significantly over that distance. This distance is
1/k. Actually, it is 7/k (one-half of a period), but ignore constants. All
the constants combine into a giant constant at the end, which dimensional
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analysis cannot determine anyway, so discard it now! The slab’s width w
is arbitrary and cancels by the end of any analysis.

So the slab of water has depth 1/k, length 1/k, and width w. Estimate the
forces acting on it by estimating the pressure gradients. Across the width
of the slab (the y direction), the water surface is level, so the pressure is
constant along the width. Into the depths (the z direction), the pressure
varies because of gravity — the pgh term from hydrostatics — but that
variation is just sufficient to prevent the slab from sinking. We care about
only the pressure difference across the length, the direction that the wave
moves. This pressure difference depends on the height of the crest, & and
is Ap ~ pgé. This pressure difference acts on a cross-section with area
A ~ w/k to produce a force

F~ w/k x pg& = pgwélk. (9.64)
S~ ——
area Ap

The slab has mass

m=px w/k*, (9.65)
volume

so the force produces an acceleration

wé w
ftat ~ %/ ‘;(—2 - gék. (9.66)
force mass

The factor of g says that the gravity produces the acceleration. Full grav-
itational acceleration is reduced by the dimensionless factor £k, which is
roughly the slope of the waves.

The acceleration of the slab determines the acceleration of the surface. If
the slab moves a distance x, it sweeps out a volume of water V' ~ xA. This
water moves under the trough, and forces the surface upward a distance
V/Aop. Because Ayp ~ A (both are ~ w/k), the surface moves the same
distance x that the slab moves. Therefore, the slab’s acceleration agap
equals the acceleration a of the surface:

a ~ agap ~ Ek. (9.67)
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This equivalence of slab and surface acceleration does not hold in shallow
water, where the bottom at depth & cuts off the slab before 1/k; that story
is told in Section 9.3.12.

The slab argument is supposed to justify the deep-water dispersion re-
lation derived by dimensional analysis. That relation contains frequency
whereas acceleration relation does not. So massage it until w appears.
The acceleration relation contains 2 and &, whereas the dispersion rela-
tion does not. An alternative expression for the acceleration might make
the acceleration relation more like the dispersion relation. With luck the
expression will contain @?, thereby producing the hoped-for «? as a
bonus, it will contain & to cancel the & in the acceleration relation.

In simple harmonic motion (springs!), acceleration is a ~ w?&, where & is
the amplitude. In waves, which behave like springs, a is given by the same
expression. Here’s why. In time 7 ~ 1/w, the surface moves a distance
d~¢&, s0a/w?~ & and a ~ w?*E. With this replacement, the acceleration
relation becomes

w*E ~ gék, (9.68)
N——

or
w? = 1xgk, (9.69)

which is the longed-for dispersion relation with the correct dimensionless
constant in red.

An exact calculation confirms the usual hope that the missing dimension-
less constants are close to unity, or are unity. This fortune suggests that
the procedures for choosing how to measure the lengths were reasonable.
The derivation depended on two choices:

1. Replacing an exponentially falling variation in velocity potential by a
step function with size equal to the length scale of the exponential
decay.

2. Taking the length of the slab to be 1/k instead of 7/k. This choice uses
only 1 radian of the cycle as the characteristic length, instead of using
a half cycle or 7 radians. Since 1 is a more natural dimensionless
number than 7 is, choosing 1 radian rather than 7 or 27 radians often
improves approximations.
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Both approximations are usually accurate in order-of-magnitude calcula-
tions. Rarely, however, you will get caught by a factor of (27)®, and wish
that you had used a full cycle instead of only 1 radian.

w

1/k \ 7/

The derivation that resulted in the dispersion relation analyzed the motion
of the slab using forces. Another derivation of it uses energy by balancing
kinetic and potential energy. To make a wavy surface requires energy, as
shown in the figure. The crest rises a characteristic height £ above the
zero of potential, which is the level surface. The volume of water moved
upward is Ew/k. So the potential energy is

PEgravity ~ pEw/k Xg& ~ pgwé? k. (9.70)
———

The kinetic energy is contained in the sideways motion of the slab and in
the upward motion of the water pushed by the slab. The slab and surface
move at the same speed; they also have the same acceleration. So the
sideways and upward motions contribute similar energies. If you ignore
constants such as 2, you do not need to compute the energy contributed by
both motions and can do the simpler computation, which is the sideways
motion. The surface moves a distance & in a time 1/w, so its velocity is
w&. The slab has the same speed (except for constants) as the surface, so
the slab’s kinetic energy is

KEgeep ~ pw/Il> X @& ~ pa?E*w/k2. (9.71)
—_——
Mslab UZ

This energy balances the potential energy

pa* &/ ~ pgwé? k. 9.72)
~———— ———
KE PE

Canceling the factor pwé? (in red) common to both energies leaves
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w? ~ gk. (9.73)

The energy method agrees with the force method, as it should, because
energy can be derived from force by integration. The energy derivation
gives an interpretation of the dimensionless group Il,:

kinetic energy in slab w?

~

gravitational potential energy g (9.74)

The gravity-wave dispersion relation w? = gk is equivalent to I, ~ 1, or to
the assertion that kinetic and gravitational potential energy are compara-
ble in wave motion. This rough equality is no surprise because waves are
like springs. In spring motion, kinetic and potential energies have equal
averages, a consequence of the virial theorem.

The dispersion relation was derived in three ways: by dimensional analy-
sis, energy, and force. Using multiple methods increases our confidence
not only in the result but also in the methods. ‘I have said it thrice: What
I tell you three times is true.’

—Lewis Carroll, Hunting of the Snark.

We gain confidence in the methods of dimensional analysis and in the
slab model for waves. If we study nonlinear waves, for example, where
the wave height is no longer infinitesimal, we can use the same techniques
along with the slab model with more confidence.

With reasonable confidence in the dispersion relation, it’s time study its
consequences: the phase and group velocities. The crests move at the
phase velocity: vpn = w/k. For deep-water gravity waves, this velocity
becomes

Uph = \/%, (9.75)

or, using the dispersion relation to replace k by w,
oo = 5. (9.76)
w
Let’s check upstairs and downstairs. Who knows where w belongs, but g

drives the waves so it should and does live upstairs.

In an infinite, single-frequency wave train, the crests and troughs move
at the phase speed. However, a finite wave train contains a mixture of
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frequencies, and the various frequencies move at different speeds as given
by
g
==, 9.77
Uph © ( )

Deep water is dispersive. Dispersion makes a finite wave train travel with
the group velocity, given by v, = dw/dk, as explained in Section 9.3.2. The
group velocity is

_d 1 Jg 1
Ug = ﬁ\/g_k = E\/; = Evph. (978)

So the group velocity is one-half of the phase velocity, as the result for
power-law dispersion relation predicts. Within a wave train, the crests
move at the phase velocity, twice the group velocity, shrinking and grow-
ing to fit under the slower-moving envelope.

An everyday consequence is that ship wakes trail the ship. A ship moving
with velocity v creates gravity waves with vpn, = v. The waves combine
to produce wave trains that propagate forward with the group velocity,
which is only vpn/2 = v/2. From the ship’s point of view, these gravity
waves travel backward. In fact, they form a wedge, and the opening angle
of the wedge depends on the one-half that arises from the exponent.

Surfing

Let’s apply the dispersion relation to surfing. Following one winter storm
reported in the Los Angeles Times — the kind of storm that brings cries of
‘Surf’s up!” — waves arrived at Los Angeles beaches roughly every 18s.
How fast were the storm winds that generated the waves? Wind pushes
the crests as long as they move more slowly than the wind. After a long-
enough push, the crests move with nearly the wind speed. Therefore
the phase velocity of the waves is an accurate approximation to the wind
speed.

The phase velocity is g/w. In terms of the wave period T, this velocity is
vpn = §T/2m, so

8 T
—_—— ——
10ms™2x 18
Uwind ~ Uph ~ ms > . 30ms . (9.79)

2X3
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In units more familiar to Americans, this wind speed is 60 mph, which is
a strong storm: about 10 on the Beaufort wind scale (‘whole gale/storm’).
The wavelength is given by

A =0T ~30ms™! x 185 ~ 500 m. (9.80)

On the open ocean, the crests are separated by half a kilometer. Near
shore they bunch up because they feel the bottom; this bunching is a
consequence of the shallow-water dispersion relation, the topic of Sec-
tion 9.3.13.

In this same storm, the waves arrived at 17s intervals the following day:
a small decrease in the period. Before racing for the equations, first check
that this decrease in period is reasonable. This precaution is a sanity
check. If the theory is wrong about a physical effect as fundamental
as a sign — whether the period should decrease or increase — then it
neglects important physics. The storm winds generate waves of different
wavelengths and periods, and the different wavelengths sort themselves
during the trip from the far ocean to Los Angeles. Group and phase
velocity are proportional to 1/w, which is proportional to the period. So
longer-period waves move faster, and the 18s waves should arrive before
the 17s waves. They did! The decline in the interval allows us to calculate
the distance to the storm. In their long journey, the 18 s waves raced 1 day
ahead of the 17s waves. The ratio of their group velocities is

velocity(18s waves) 18 1

velocity(17s waves) 17 17 ©81)

so the race must have lasted roughly t ~ 17days ~ 1.5-10°s. The wave
train moves at the group velocity, vy = vpp/2 ~ 15ms™, so the storm
distance was d ~ tvg ~ 2-10*km, or roughly halfway around the world,
an amazingly long and dissipation-free journey.
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9.3.7 Speedboating

Our next application of the dispersion relation is to speedboating: How
fast can a boat travel? We exclude hydroplaning boats from our analysis
(even though some speedboats can hydroplane). Longer boats generally
move faster than shorter boats, so it is likely that the length of the boat, /,
determines the top speed. The density of water might matter. However,
v (the speed), p, and I cannot form a dimensionless group. So look for
another variable. Viscosity is irrelevant because the Reynolds number for
boat travel is gigantic. Even for a small boat of length 5m, creeping along

at2ms7!,

500 cm X 200 cm s~
102 cm?s1

~107. (9.82)

At such a huge Reynolds number, the flow is turbulent and nearly in-
dependent of viscosity (Section 6.3.1). Surface tension is also irrelevant,
because boats are much longer than a ripple wavelength (roughly 1cm).
The search for new variables is not meeting with success. Perhaps gravity
is relevant. The four variables v, p, g, and /, build from three dimensions,
produce one dimensionless group: v?/gl, also called the Froude number:

Fr=—. (9.83)

The critical Froude number, which determines the maximum boat speed,
is a dimensionless constant. As usual, we assume that the constant is
unity. Then the maximum boating speed is:
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o~ v3l (9.84)

A rabbit has jumped out of our hat. What physical mechanism justi-
fies this dimensional-analysis result? Follow the waves as a boat plows
through water. The moving boat generates waves (the wake), and it rides
on one of those waves. Take the bow wave: It is a gravity wave with

Uph ~ Uboat- Because vih = w?/k?, the dispersion relation tells us that

> g
Vpout ™ Zor -9 (9.85)
where 1 = 1/k = A/2m. So the wavelength of the waves is roughly o7 __ /g.

The other length in this problem is the boat length; so the Froude number
has this interpretation:

F Uf,oat/ 8§ wavelength of bow wave
T = ~

l length of boat

(9.86)

Why is Fr ~ 1 the critical number, the assumption in finding the maxi-
mum boat speed? Interesting and often difficult physics occurs when a
dimensionless number is near unity. In this case, the physics is as fol-
lows. The wave height changes significantly in a distance A; if the boat’s
length [ is comparable to A, then the boat rides on its own wave and tilts
upward. Tilting upward, it presents a large cross-section to the water,
and the drag becomes huge. [Catamarans and hydrofoils skim the water,
so this kind of drag does not limit their speed. The hydrofoil makes a
much quicker trip across the English channel than the ferry makes, even
though the hydrofoil is much shorter.] So the top speed is given by

Upoat ~ Vg1 (9.87)

For a small motorboat, with length [ ~ 5m, this speed is roughly 7ms™!,
or 15mph. Boats (for example police boats) do go faster than the nominal
top speed, but it takes plenty of power to fight the drag, which is why
police boats have huge engines.

The Froude number in surprising places. It determines, for example,
the speed at which an animal’s gait changes from a walk to a trot or, for
animals that do not trot, to a run. In Section 9.3.7 it determines maximum
boating speed. The Froude number is a ratio of potential energy to kinetic
energy, as massaging the Froude number shows:
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2 mo? kinetic energy

Fr (9.88)

- gl ~ mgl ~ potential energy’
Here the massage technique was multiplication by unity (in red). In this
example, the length [ is a horizontal length, so gl is not a gravitational
energy, but it has a similar structure and in other examples often has an
easy interpretation as gravitational energy.

Walking

In the Froude number for walking speed, I is leg length, and gl is a
potential energy. For a human with leg length | ~ 1m, the condition
Fr ~ 1 implies that v ~ 3ms™ or 6mph. This speed is a rough estimate
for the top speed for a race walker. The world record for men’s race
walking was once held by Bernado Segura of Mexico. He walked 20 km
in 1h:17m:25.6s, for a speed of 4.31ms™".

This example concludes the study of gravity waves on deep water, which
is one corner of the world of waves.

Ripples on deep water

For small wavelengths (large k), sur-

face tension rather than gravity pro- e
vides the restoring force. This choice 10ty
brings us to the shaded corner of
. . Shallow water Deep water
the figure. If surface tension rather Surface tension 1 | Surface tension

than gravity provides the restoring
force, then g vanishes from the final

1) = hk

dispersion relation. How to get rid 1o e 102 10"
of ¢ and find the new dispersion re-
lation? You could follow the same shallow waer 10721 Pecp water

Gravity Gravity

pattern as for gravity waves (Sec-
tion 9.3.5). In that situation, the sur-
face tension y was irrelevant, so we
discarded the group IT; = yk?/pg.
Here, with g irrelevant you might try the same trick: I3 contains g so
discard it. In that argument lies infanticide, because it also throws out the
physical effect that determines the restoring force, namely surface tension.
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To retrieve the baby from the bathwater, you cannot throw out yk?/pg di-
rectly. Instead you have to choose the form of the dimensionless function
faeep in so that only gravity vanishes from the dispersion relation.

The deep-water dispersion relation contains one power of g in front. The
argument of fqeep also contains one power of g, in the denominator. If
fdeep has the form fyeep(x) ~ x, then ¢ cancels. With this choice, the
dispersion relation is

SRS 9.89)

P
Again the dimensionless constant from exact calculation (in red) is unity,
which we would have assumed anyway. Let’s reuse the slab argument to
derive this relation.

In the slab picture, replace gravitational by surface-tension energy, and
again balance potential and kinetic energies. The surface of the water is
like a rubber sheet. A wave disturbs the surface and stretches the sheet.
This stretching creates area AA and therefore requires energy yAA. So to
estimate the energy, estimate the extra area that a wave of amplitude &
and wavenumber k creates. The extra area depends on the extra length
in a sine wave compared to a flat line. The typical slope in the sine
wave &sinkx is Ek. Instead of integrating to find the arc length, you can
approximate the curve as a straight line with slope &k:

0 ~ slope ~ &£k
lo~1/k

Relative to the level line, the tilted line is longer by a factor 1 + (&k)>.

As before, imagine a piece of a wave, with characteristic length 1/k in the
x direction and width w in the y direction. The extra area is

A~ wlk x (k)7 ~ wé?k. (9.90)
—— ——
level area  fractional increase

The potential energy stored in this extra surface is
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PEripple ~ YAA ~ ywé?k. (9.91)

The kinetic energy in the slab is the same as it is for gravity waves, which
is:

KE ~ pa®&*w/K>. (9.92)

Balancing the energies

pa)2£2w/k2 ~ ywéZk, (9.93)
~—— —— N——
KE PE
gives
w* ~ Yk /p. (9.94)

This dispersion relation agrees with the result from dimensional analysis.
For deep-water gravity waves, we used both energy and force arguments
to re-derive the dispersion relation. For ripples, we worked out the en-
ergy argument, and you are invited to work out the corresponding force
argument.

The energy calculation completes the interpretations of the three dimen-
sionless groups. Two are already done: IT; is the dimensionless depth
and I, is ratio of kinetic energy to gravitational potential energy. We
constructed Il as a group that compares the effects of surface tension
and gravity. Using the potential energy for gravity waves and for ripples,
the comparison becomes more precise:

potential energy in a ripple

> potential energy in a gravity wave
ywé?k
~ pgwE/k
vk
3

(9.95)

Alternatively, IT; compares yk?/p with ¢

k2
I, = g/ P (9.96)
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This form of IT; may seem like a trivial revision of yk?/pg. However, it
suggests an interpretation of surface tension: that surface tension acts like
an effective gravitational field with strength

surface tension = 7/k2/ P, (997)

In a balloon, the surface tension of the rubber implies a higher pres-
sure inside than outside. Similarly in wave the water skin implies a
higher pressure underneath the crest, which is curved like a balloon;
and a lower pressure under the trough, which is curved opposite to a
balloon. This pressure difference is just what a gravitational field with
strength gsurface tension Would produce. This trick of effective gravity, which
we used for the buoyant force on a falling marble (Section 6.3.2), is now
promoted to a method (a trick used twice).

So replace g in the gravity-wave potential energy with this effective g to
get the ripple potential energy:

—yk?
pqweljk SR ek (9.98)
———— ———
PE(gravity wave) PE(ripple)

The left side becomes the right side after making the substitution above
the arrow. The same replacement in the gravity-wave dispersion relation
produces the ripple dispersion relation:

k2 k3
sl 2V
p

The interpretation of surface tension as effective gravity is useful when we
combine our solutions for gravity waves and for ripples, in Section 9.3.11
and Section 9.3.16. Surface tension and gravity are symmetric: We could
have reversed the analysis and interpreted gravity as effective surface
tension. However, gravity is the more familiar force, so we use effective
gravity rather than effective surface tension.

w* = gk (9.99)

With the dispersion relation you can harvest the phase and group veloc-
ities. The phase velocity is

k
s (9.100)

p

=g
|

Uph =

and the group velocity is
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Jw 3
05 = S = Sopn. (9.101)

The factor of 3/2 is a consequence of the form of the dispersion relation:
w o k¥/%; for gravity waves, @ o« k'/2, and the corresponding factor is 1/2.
In contrast to deep-water waves, a train of ripples moves faster than the
phase velocity. So, ripples steam ahead of a boat, whereas gravity waves
trail behind.

Typical ripples

Let’s work out speeds for typical ripples, such as the ripples from drop-
ping a pebble into a pond. From observation, these ripples have wave-
length A ~ 1cm, and therefore wavenumber k = 2n/A ~ 6cm™. The
surface tension of water (?7?) is y ~ 0.07] m~2. So the phase velocity is
Y k 12
—_——
07]m™2x !
Uph = 0.0 ]n; 6?Sm ~21cms. (9.102)
10°kgm
————
p

According to relation between phase and group velocities, the group ve-
locity is 50 percent larger than the phase velocity: vy ~ 30cms™. This
wavelength of 1cm is roughly the longest wavelength that still qualifies
as a ripple, as shown in an earlier figure repeated here:
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wavelength (m)
A
+ Tide
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Gravity waves
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Storm wave at sea
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Storm wave at shore Deep water
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} } t } » depth (m)
107t 1072 10? 10
M3 =1
. - — ; 3
Ripple on thin puddle . 10 Ripple on pond
Shallow-water Deep water
Ripples 10-44 Ripples

The third dimensionless group, which distinguishes ripples from gravity
waves, has value
Y e
—_——— ——
_ Yk 007Jm?x36-10°m™>
P8 10°kgm™>x10ms
_— —
P g

I, ~26. (9.103)

With a slightly smaller k, the value of I'l; would slide into the gray zone
Il3 = 1. If k were yet smaller, the waves would be gravity waves. Other
ripples, with a larger k, have a shorter wavelength, and therefore move
faster: 21 cms™! is roughly the minimum phase velocity for ripples. This
minimum speed explains why we see mostly A ~ 1cm ripples when we
drop a pebble in a pond. The pebble excites ripples of various wave-
lengths; the shorter ones propagate faster and the 1cm ones straggle, so
we see the stragglers clearly, without admixture of other ripples.

9.3.11 Combining ripples and gravity waves on deep water
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With two corners assembled — grav-

ity waves and ripples in deep wa- e

ter — you can connect the corners to oty

form the deep-water edge. The dis-

persion relations, for convenience re- Surace fonsion el ety

stated here, are

» | &k gravity waves;
@ = {yk"’/p, ripples. 0 10s)

! — ! 1Ty = hk
104 1072 10% 10*

With a little courage, you can com-
bine the relations in these two ex-
treme regimes to produce a disper-
sion relation valid for gravity waves,
for ripples, and for waves in between.

—~2 L
Shallow water 10 Deep water
Gravity Gravity

10741

Both functional forms came from the same physical argument of balanc-
ing kinetic and potential energies. The difference was the source of the
potential energy: gravity or surface tension. On the top half of the world
of waves, surface tension dominates gravity; on the bottom half, gravity
dominates surface tension. Perhaps in the intermediate region, the two
contributions to the potential energy simply add. If so, the combination
dispersion relation is the sum of the two extremes:

w* = gk + )/k3/p. (9.105)
This result is exact (which is why we used an equality). When in doubt,
try the simplest solution.

You can increase your confidence in this result by using the effective
gravity produced by surface tension. The two sources of gravity — real
and effective — simply add, to make
vk
Qtotal = § T Gsurface tension = § T+ ? (9106)
Replace g by giota in @? = gk reproduces the deep-water dispersion rela-
tion:

2 vk 3
W = g+7 k=gk+yk’/p. (9.107)

This dispersion relation tells us wave speeds for all wavelengths or wavenum-
bers. The phase velocity is
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(9.108)

Let’s check upstairs and downstairs. Surface tension and gravity drive
the waves, so y and g should be upstairs. Inertia slows the waves, so p
should be downstairs. The phase velocity passes these tests.

As a function of wavenumber, the two terms in the square root compete to
increase the speed. The surface-tension term wins at high wavenumber;
the gravity term wins at low wavenumber. So there is an intermediate,
minimum-speed wavenumber, ky, which we can estimate by balancing the
surface tension and gravity contributions:

k
% - % _ (9.109)

This computation is an example of order-of-magnitude minimization. The
minimum-speed wavenumber is

ko~ |28 (9.110)
4

Interestingly, 1/ko is the maximum size of raindrops. At this wavenumber
Il3 = 1: These waves lie just on the border between ripples and gravity

waves. Their phase speed is

2g  (4yg\"*
% ’/ko (p) . (9.111)

In water, the critical wavenumber is ky ~ 4cm™!, so the critical wavelength
is Ag ~ 1.5 cm; the speed is

vo ~23cms L. (9.112)

We derived the speed dishonestly. Instead of using the maximum-minimum
methods of calculus, we balanced the two contributions. A calculus de-
rivation confirms the minimum phase velocity. A tedious calculus calcu-
lation shows that the minimum group velocity is

vy ~ 17.7cms™. (9.113)

[If you try to reproduce this calculation, be careful because the minimum
group velocity is not the group velocity at k.]
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Let’s do the minimizations honestly. The calculation is not too messy if it’s
done with good formula hygiene plus a useful diagram, and the proper
method is useful in many physical maximum-minimum problems. We
illustrate the methods by finding the minimum of the phase velocity. That
equation contains constants — p, ¥, and g — which carry through all the
differentiations. To simplify the manipulations, choose a convenient set
of units in which

The analysis of waves uses three basic dimensions: mass, length, and
time. Choosing three constants equal to unity uses up all the freedom. It
is equivalent to choosing a canonical mass, length, and time, and thereby
making all quantities dimensionless. Don’t worry: The constants will
return at the end of the minimization.

In addition to constants, the phase velocity also contains a square root.
As a first step in formula hygiene, minimize instead v}zjh. In the convenient
unit system, it is
2 ko 9.115
Upp = = (9.115)
This minimization does not need calculus, even to do it exactly. The two
terms are both positive, so you can use the arithmetic-mean—geometric-
mean inequality (affectionately known as AM-GM) for k and 1/k. The
inequality states that, for positive 2 and b,

(a+b)/2> Vab, (9.116)
R , N——
AM GM

with equality when a = b.
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The figure shows a geometric proof of this
inequality. You are invited to convince your-
self that the figure is a proof. With a = k atb Vab
and b = 1/k the geometric mean is unity, so
the arithmetic mean is > 1. Therefore

k+ % >2, (9.117) ¢ O

with equality when k = 1/k, namely when
k = 1. At this wavenumber the phase ve-
locity is V2. Still in this unit system, the
dispersion relation is

and the group velocity is

Vg = %VW +k, (9.119)
which is
13k +1
Ug = ) Gk (9.120)

At k = 1 the group velocity is also V2: These borderline waves have equal
phase and group velocity. This equality is reasonable. In the gravity-
wave regime, the phase velocity is greater than the group velocity. In the
ripple regime, the phase velocity is less than the group velocity. So they
must be equal somewhere in the intermediate regime.

To convert k = 1 back to normal units, multiply it by unity in the form
of a convenient product of p, y, and g (which are each equal to 1 for
the moment). How do you make a length from p, y, and g? The form
of the result says that /pg/y has units of L™!. So k = 1 really means
k = 1x4/pg/y, which is the same as the order-of-magnitude minimization.
This exact calculation shows that the missing dimensionless constant is 1.

The minimum group velocity is more complicated than the minimum
phase velocity because it requires yet another derivative. Again, remove
the square root and minimize vé. The derivative is
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d 9k*+6k>+1  (3k* +1)(3k* + 6k* — 1)

ok KB+k (k3 + k)2
~—————

2
Ug

(9.121)

Equating this derivative to zero gives 3k*+6k?>—1 = 0, which is a quadratic
in k?, and has positive solution

ki = /-1 + v/4/3 ~ 0.393. (9.122)

At this k, the group velocity is

vg(ky) ~ 1.086. (9.123)
In more usual units, this minimum velocity is
y 1/4
v 1.086(?57) . (9.124)

With the density and surface tension of water, the minimum group ve-
locity is 17.7cms™!, as claimed previously.

After dropping a pebble in a pond, you see a still circle surrounding
the drop point. Then the circle expands at the minimum group velocity
given. Without a handy pond, try the experiment in your kitchen sink:
Fill it with water and drop in a coin or a marble. The existence of a
minimum phase velocity, is useful for bugs that walk on water. If they
move slower than 23cms™, they generate no waves, which reduces the
energy cost of walking.

9.3.12 Shallow water
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In shallow water, the height h, ab-

sent in the deep-water calculations, T

returns to complicate the set of rel- U

evant variables. We are now in the

shaded region of the figure. This Fer N | Sarbuts venron

extra length scale gives too much
freedom. Dimensional analysis alone

} } } —»TT; = hk
cannot deduce the shallow-water form -4 10-2 102 10°
of the magic function f in the dis-
persion relation. The slab argument challow water 10721 Decp water

Gravity Gravity

can do the job, but it needs a few
modifications for the new physical
situation.

10741

In deep water the slab has depth

1/k. In shallow water, however, where h <« 1/k, the bottom of the ocean
arrives before that depth. So the shallow-water slab has depth h. Its
length is still 1/k, and its width is still w. Because the depth changed,
the argument about how the water flows is slightly different. In deep
water, where the slab has depth equal to length, the slab and surface
move the same distance. In shallow water, with a slab thinner by hk,
the surface moves more slowly than the slab because less water is being
moved around. It moves more slowly by the factor hk. With wave height
& and frequency w, the surface moves with velocity w, so the slab moves
(sideways) with velocity vgjap ~ Ew/hk. The kinetic energy in the water is
contained mostly in the slab, because the upward motion is much slower
than the slab motion. This energy is

pwész

I<Eshallow ~ PWh/k X (Ew/hk)Z ~ (9125)

~ _ N———— hk3
mass 02

This energy balances the potential energy, a computation we do for the
two limiting cases: ripples and gravity waves.

9.3.13 Gravity waves on shallow water
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We first specialize to gravity waves
— the shaded region in the figure — NE
where water is shallow and wave- oty
lengths are long. These conditions

include tidal waves,waves generated Surace fonsion el Sarta temson
by undersea earthquakes, and waves
approaching a beach. For gravity
waves, the potential energy is 10+ 102 107 100

M =hk

2
PE pgwé /k (9126) Shallow water 107 T Deep water
Gravity Gravity

This energy came from the distor-
tion of the surface, and it is the same -
in shallow water (as long as the wave

amplitude is small compared with the depth and wavelength). [The dom-
inant force (gravity or surface tension) determines the potential energy.
As we see when we study shallow-water ripples, in Section 9.3.15, the
water depth determines the kinetic energy.]

Balancing this energy against the kinetic energy gives:

wEw?
pw ~ pgwel[k. (9.127)
— ———
KE PE
So
w? = 1xghk>. (9.128)

Once again, the correct, honestly calculated dimensionless constant (in
red) is unity. So, for gravity waves on shallow water, the function f has
the form

k2
fshallow(kh, 7/_) = kh. (9129)
Pg

Since w o k!, the group and phase velocities are equal and independent
of frequency:

w
Uph = ? = ﬂgh,

5 (9.130)
Ug = ﬁ = \/g]/l
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Shallow water is nondispersive: All frequencies move at the same velocity,
so pulses composed of various frequencies propagate without smearing.

Tidal waves

Undersea earthquakes illustrate the danger in such unity. If an earthquake
strikes off the coast of Chile, dropping the seafloor, it generates a shallow-
water wave. This wave travels without distortion to Japan. The wave

speed is v ~ V4000 m X 10ms—2 ~ 200ms~": The wave can cross a 10* km
ocean in half a day. As it approaches shore, where the depth decreases,
the wave slows, grows in amplitude, and becomes a large, destructive
wave hitting land.

Ripples on shallow water

Ripples on shallow water — the shaded
region in the figure — are rare. They E
occur when raindrops land in a shal- 107
low rain puddle, one whose depth

is less than 1 mm. Even then, only el | Surface vnsion
the longest-wavelength ripples, where
A ~ 1lcam, can feel the bottom of

the puddle (the requirement for the w0+ 10> e o=
wave to be a shallow-water wave).
The potential energy of the surface T e et
is given by Gravity Graviy
PErippie ~ YAA ~ ywék. (9.131) .

Although that formula applied to deep water, the water depth does not
affect the potential energy, so we can use the same formula for shallow
water.

The dominant force — here, surface tension — determines the potential
energy. Balancing the potential energy and the kinetic energy gives:
pwde? w .
e ky(kcf) . (9.132)
~————— ~——
KE PE
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o2 (9.133)
The phase velocity is

e
vpn = I = \/%, (9.134)

and the group velocity is vg = 20,y (the form of the dispersion relation is
@ o k?). For h ~ 1mm, this speed is

” (0.07Nm—1 X102 m x 3.6-10° m™2

1/2
~16cms™t. (9.135)
lOkg m3 )

Combining ripples and gravity waves on shallow water

This result finishes the last two cor-

ners of the world of waves: shallow- "=

water ripples and gravity waves. Con- 10'7

nect the corners to make an edge

by studying general shallow-water e el S

waves. This region of the world of
waves is shaded in the figure. You
can combine the dispersion relations 1+ 102 107 107
for ripples with that for gravity waves
using two equivalent methods. Ei- shallow water 1021 Decp water
ther add the two extreme-case dis- e e
persion relations or use the effective
gravitational field in the gravity-wave
dispersion relation. Either method
produces

M = hk

Hi2
W ~ 12 (gh + VT) (9.136)

9.3.17 Combining deep- and shallow-water gravity waves
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Now examine the gravity-wave edge
of the world, shaded in the figure. D
The deep- and shallow-water dis- 10ty
persion relations are:

Shallow water Deep water
Surface tension | 1y | Surface tension

1, deep water;

2 _
W = gkx {hk, shallow water:

M =hk

To interpolate between the two regimes,~ o2 e o
requires a function f(hk) that asymp-
totes to 1 as hk — oo and to hk as 021

Shallow water Deep water

hk — 0. Arguments based on guess- Gty Gravity
ing functional forms have an hon-
ored history in physics. Planck de-
rived the blackbody spectrum by in-
terpolating between the high- and low-frequency limits of what was known
at the time. We are not deriving quantum mechanics, but the principle
is the same: In new areas, whether new to you or new to everyone, you
need a bit of courage. One simple interpolating function is tanh k. Then
the one true gravity wave dispersion relation is:

w* = gktanh hk. (9.138)

This educated guess is plausible because tanh ik falls off exponentially as
h — oo, in agreement with the argument based on Laplace’s equation. In
fact, this guess is correct.

9.3.18 Deep- and shallow-water ripples
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We now examine the final edge: rip-

ples in shallow and deep water, as T

shown in the figure. In Section 9.3.17, 1011

tanh kh interpolated between hk and

1 as hk went from 0 to oo (as the St | ety

water went from shallow to deep).
Probably the same trick works for
ripples, because the Laplace-equation 1+ 102 107 100
argument, which justified the tanh kh,
does not depend on the restoring shallow waer 1024 Decp water
force. The relevant dispersion re- e e
lations:

- {yk3/p, if kh > 1,

M =hk

10741

yhit/p, if kh < {0-139)

If we factor out yk>/p, the necessary transformation becomes clear:

, VR {1, if k> 1;
W= —X A
p hk, if kh < 1.

This ripple result looks similar to the gravity-wave result, so make the
same replacement:

{1, if kh > 1,

hk, ifkh<1,

(9.140)

becomes tanh kh. (9.141)
Then you get the general ripple dispersion relation:
i
W = V? tanh kh. (9.142)

This dispersion relation does not have much practical interest because,
at the cost of greater complexity than the deep-water ripple dispersion
relation, it adds coverage of only a rare case: ripples on ponds. We include
it for completeness, to visit all four edges of the world, in preparation for
the grand combination coming up next.

Combining all the analyses
Now we can replace g with giota1, to find the One True Dispersion Relation:

w? = (gk+ yk3/p) tanh kh. (9.143)
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5 8 2
Shallow water Rinpl Deep water
Ripples ;p;p < Ripples
5 yhk* w? =Y tanhkh . yK3
WS =— ) w? ==
[ P
6 9 3
shallow water Vi deep water
hk? 2 y< 3
w? =2 (gh+y ) w 7(gk+ o )tunhkh w2:9k+yk
P p
4 7 1

Shallow water s Deep water

. Gravity waves h
Gravity waves 5 K tanhkh Gravity waves
w? = gh.kZ W~ —gktan w? = gk

Each box in the figure represents a special case. The numbers next to the
boxes mark the order in which we studied that limit. In the final step
(9), we combined all the analyses into the superbox in the center, which
contains the dispersion relation for all waves: gravity waves or ripples,
shallow water or deep water. The arrows show how we combined smaller,
more specialized corner boxes into the more general edge boxes (double
ruled), and the edge regions into the universal center box (triple ruled).

In summary, we studied water waves by investigating dispersion rela-
tions. We mapped the world of waves, explored the corners and then
the edges, and assembled the pieces to form an understanding of the
complex, complete solution. The whole puzzle, solved, is shown in the
figure. Considering limiting cases and stitching them together makes the
analysis tractable and comprehensible.

9.3.20 What you have learned

1. Phase and group velocities. Phase velocity says how fast crests in a single
wave move. In a packet of waves (several waves added together),
group velocity is the phase velocity of the envelope.

2. Discretize. A complicated functional relationship, such as a dispersion
relation, is easier to understand in a discrete limit: for example, one
that allows only two (w, k) combinations. This lumping helped explain
the meaning of group velocity.



229

3. Four regimes. The four regimes of wave behavior are characterized by
two dimensionless groups: a dimensionless depth and a dimension-
less ratio of surface tension to gravitational energy.

4. Look for springs. Look for springs when a problem has kinetic- and
potential-energy reservoirs and energy oscillates between them. A key
characteristic of spring motion is overshoot: The system must zoom
past the equilibrium configuration of zero potential energy.

5. Most missing constants are unity. In analyses of waves and springs,
the missing dimensionless constants are usually unity. This fortunate
result comes from the virial theorem, which says that the average
potential and kinetic energies are equal for a F « r force (a spring
force). So balancing the two energies is exact in this case.

6. Minimum speed. Objects moving below a certain speed (in deep water)
generate no waves. This minimum speed is the result of cooperation
between gravity and surface tension. Gravity keeps long-wavelength
waves moving quickly. Surface tension keeps short-wavelength waves
moving quickly.

7. Shallow-water gravity waves are non-dispersive. Gravity waves on shallow

water (which includes tidal waves on oceans!) travel at speed /g,
independent of wavelength.

8. Froude number. The Froude number, a ratio of kinetic to potential
energy, determines the maximum speed of speedboats and of walking.

9.4 Precession of planetary orbits

Problem 9.2 AM-GM

Prove the arithmetic mean-geometric mean inequality by J L
another method than the circle in the text. Use AM-GM

for the following problem normally done with calculus.
You start with a unit square, cut equal squares from each
corner, then fold the flaps upwards to make a half-open
box. How large should the squares be in order to maxi-

mize its volume?

Problem 9.3 Impossible

How can tidal waves on the ocean (typical depth ~ 4 km) be considered shallow
water?
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Problem 9.4 Oven dish

Partly fill a rectangular glass oven dish with water and play with the waves.
Give the dish a slight slap and watch the wave go back and forth. How does
the wave speed time vary with depth of water? Does your data agree with the
theory in this chapter?

Problem 9.5 Minimum-wave speed

Take a toothpick and move it through a pan of water. By experiment, find the
speed at which no waves are generated. How well does it agree with the theory
in this chapter?

Problem 9.6 Kelvin wedge
Show that the opening angle in a ship wake is 2sin~!(1/3).

Problem 9.7 Semitones

Estimate 1.5!4

using semitones and compare with the exact value.
Problem 9.8 Blackbody temperature of the earth

The earth’s surface temperature is mostly due to solar radiation.

The solar flux S ~ 1350 Wm~2 is the amount of solar energy reaching the top of
the earth’s atmosphere. But that energy is spread over the surface of a sphere,
so S/4 is the relevant flux for calculating the surface temperature. Some of that
energy is reflected back to space by clouds or ocean before it can heat the ground,
so the heating flux is slightly lower than S/4. A useful estimate is S’ ~ 250 Wm™2.

Look up the Stefan-Boltzmann law (or see Problem 5.13) and use it to find the
blackbody temperature of the earth.

Your value should be close to room temperature but enough colder to make you
wonder about the discrepancy. Why is the actual average surface temperature
warmer than the value calculated in this problem?

Problem 9.9 Xylophone notes
If you double the width, thickness, and length of a xylophone slat, what do you
do to the frequency of the note that it makes?
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Long-lasting learning

The theme of this book is how to understand new fields, whether the field
is known generally but is new to you; or the field is new to everyone. In
either case, certain ways of thinking promote understanding and long-
term learning. This afterword illustrates these ways by using an example
that has appeared twice in the book — the volume of a pyramid.

Remember nothing!

The volume is proportional to the height, because of the drilling-core
argument. So V o h. But a dimensionally correct expression for the
volume needs two additional lengths. They can come only from b%. So

V ~ bh?.

But what is the constant? It turns out to be 1/3.

Connect to other problems
Is that 3 in the denominator new information to remember? No! That
piece of information also connects to other problems.

First, you can derive it by using special cases, which is the subject of
Section 6.1.

Second, 3 is also the dimensionality of space. That fact is not a coin-
cidence. Consider the simpler but analogous problem of the area of a
triangle. Its area is

1
A= §bh'

The area has a similar form as the volume of the pyramid: A constant
times a factor related to the base times the height. In two dimensions the
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constant is 1/2. So the 1/3 is likely to arise from the dimensionality of
space.

That analysis makes the 3 easy to remember and thereby the whole for-
mula for the volume.

But there are two follow-up questions. The first is: Why does the dimen-
sionality of space matter? The special-cases argument explains it because
you need pyramids for each direction of space (I say no more for the
moment until we do the special-cases argument in lecture!).

The second follow-up question is: Does the 3 occur in other problems
and for the same reason? A related place is the volume of a sphere

V= 1.

3
The ancient Greeks showed that the 3 in the 4/3 is the same 3 as in the
pyramid volume. To explain their picture, I'll use method to find the area
of a circle then use it to find the volume of a sphere.

Divide a circle into many pie wedges. To find its area,
cut somewhere on the circumference and unroll it into this
shape:

AARANAAMA

Each pie wedge is almost a triangle, so its area is bh/2, where the height
h is approximately r. The sum of all the bases is the circumference 2nr,

so A =2mr X r/2 = mr?.

Now do the same procedure with a sphere: Divide it into small pieces
that are almost pyramids, then unfold it. The unfolded sphere has a base
area of 4712, which is the surface area of the sphere. So the volume of all
the mini pyramids is

V= ! x height X basearea = %nrg’.
3 | e e 3

r 4mr?

Voila! So, if you remember the volume of a sphere — and most of us have
had it etched into our minds during our schooling — then you know that
the volume of a pyramid contains a factor of 3 in the denominator.
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Percolation model

The moral of the preceding examples is to build connections. A physical
illustration of this process is percolation. Imagine how oil diffuses through
rock. The rock has pores through which oil moves from zone to zone.
However, many pores are blocked by mineral deposits. How does the oil
percolate through that kind of rock?

That question has led to an extensive mathemat-
ics research on the following idealized model.
Imagine an infinite two-dimensional lattice. Now
add bonds between neighbors (horizontal or ver-
tical, not diagonal) with probability ppond. The
figure shows an example of a finite subsection of
a percolation lattice where ppong = 0.4. Its largest
cluster — the largest set of points connected to :
each other — is marked in red, and contains 13% cluster = 11%
of the points. p =040

{ .
!

.

Here is what happens as ppond increases from 0.40 to 0.50 to 0.55 to 0.60:

YL
.

fisHESEL

cluster = 11% cluster = 70% cluster = 92%
p = 0.40 p =0.50 p=0.55 P =0.60

The largest cluster occupies more and more of the lattice.

For an infinite lattice, a similar question is: What 1 —
is the probability p. of finding an infinite con-
nected sublattice? That probability is zero until Poo
Prond reaches a critical probability p.. The critical
probability depends on the topology (what kind of
lattice and how many dimensions) — for the two- 0
dimensional square lattice, p. = 1/2 — but its exis-
tence is independent of topology. When pyond > pe,

the probability of a finding an infinite lattice be-
comes nonzero and eventually reaches 1.0.

Pbond
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An analogy to learning is that each lattice point (each dot) is a fact or
formula, and each bond links two facts. For long-lasting learning, you
want the facts to support each other via their connections. Let’s say
that you want the facts to become part of an infinite and therefore self-
supporting lattice. However, if your textbooks or way of learning means
that you just add more dots — learn just more facts — then you decrease
Prond, SO you decrease the chance of an infinite clusters. If the analogy
is more exact than I think it is, you might even eliminate infinite clusters
altogether.

The opposite approach is to ensure that, with each fact, you create links
to facts that you already know. In the percolation model, you add bonds
between the dots in order to increase ppond. A famous English writer gave
the same advice about life that I am giving about learning:

Only connect! That was the whole of her sermon...Live in frag-
ments no longer! [E. M. Forster, Howard’s End]

The ways of reasoning presented in this book offer some ways to build
those connections. Bon voyage as you learn and discover new ideas and
the links between them!
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