
CHAPTER OUTLINE

13.1 Graph Terminology
13.2 Representations of Graphs
13.3 Graph Algorithms: Traversals
Investigate: Applying BFS and DFS—Shortest Path and Spanning Tree Algorithms
13.4 Graph Algorithms: Minimum Cost Paths and Minimal Spanning Trees
13.5 Graph ADTs
13.6 Implementation of Graph ADTs
Exercises

AAs suggested in Chapter 10 when we introduced the Tree ADT, a graph is a
more general instance of a tree. Indeed, we can say that a graph is the most
general of all the collections we have seen because unlike the other collec-

tions presented, graphs allow arbitrary relationships to exist among their elements.
As you might expect, graphs have many applications: from determining the

shortest flight time between a collection of cities, to identifying an activity graph for
the construction of a building, to identifying connections on a circuit board or
computer network.

This chapter provides an introduction to graphs, their representation as data
structures, and some important graph algorithms. The implementation of the
Graph ADT provides some new and interesting challenges.

649

13The Graph Abstract Data Type

650 ■ Chapter 13 The Graph Abstract Data Type

Edges in an
undirected graph are
bidirectional

Edges in a directed
graph are directional

■ 13.1 Graph Terminology

A graph G = (V, E) is an ordered pair of finite sets V and E, where V(G) is the set of
vertices in G, and E(G) is the set of edges in G. The edge connecting vertices vi and
vj is represented as (vi, vj). The number of vertices in G is given as |V| and the num-
ber of edges in G is given as |E|.

The edges in an undirected graph are bidirectional; therefore, they can be tra-
versed in both directions. Graph G1 shown in Figure 13.1 (a) is undirected; the edge
connecting vertices B and E allows you to traverse from B to E and from E to B. The
edges in a directed graph (also called a digraph) are unidirectional from the source
vertex to the destination vertex. Graph G2 shown in Figure 13.1 (b) allows traversal
from T to Z (note the direction of the arrow on the edge), but not from Z to T.
Similarly, you can travel from Z to R, but not from R to Z. Bidirectionality between
adjacent vertices in a digraph is achieved by providing a pair of edges. Digraph G3
shown in Figure 13.1 (c) allows the same connectivity as the undirected graph G1.
Note that this is easily accomplished by turning every undirected edge into a pair of
directed edges traveling in opposite directions. We will disallow a loop, also called a
self-edge, which is an edge from a vertex to itself.

A weighted graph associates a non-negative value with each edge. This weight
could represent, for example, the cost in time or money to traverse the edge, or the
distance between the adjacent vertices. Graph G4 shown in Figure 13.1 (d) has
weighted edges. The algorithms we will examine for weighted graphs assume that
the weights are non-negative.

A weighted graph
associates a non-
negative value with
each edge

E

(a) Graph G1—an undirected graph. (b) Graph G2—a directed graph.

(c) Graph G3—a directed
version of graph G1.

(d) Graph G4—an undirected graph
with weighted edges.

Figure 13.1 Sample undirected, directed, and weighted graphs.

A graph consists of a
collection of vertices
and edges that
connect vertices

13.1 Graph Terminology ■ 651

Note that vertex C in G1 is not connected to any other vertex and is therefore
unreachable from another vertex in the graph.

Two vertices are adjacent if they are connected by an edge. An edge (vi, vj) is
said to be incident on vertices vi and vj. The in-degree of a vertex is the number of
edges coming into it; the out-degree of a vertex is the number of edges leaving it. In
an undirected graph, a vertex’s in-degree and out-degree are the same, so we usu-
ally refer to the degree of a vertex, without the “in/out.” By contrast, the in- and out-
degree of a vertex in a digraph may be different. For example, in G1 the degree of B
is 3 and the degree of C is 0. In the directed graph G2, the in-degree of Z is 2 and
the out-degree is also 2, while the in-degree of R is 1 and the out-degree is 0.

A path in a graph is a sequence of adjacent vertices. The length of the path is
the number of edges it contains. In G1 there is a path from A to D of length 3. There
is no path from A to C. G2 has a path of length 2 from N to R. If the edges are
weighted, we talk about the cost of the path, which is the sum of the edge weights
in the path. In G4 there are two paths from D to B: {D, E, F, B} with a cost of 10, and
{D, E, A, B} with a cost of 6. A simple path is a path in which each vertex appears
only once. The path from A to D in G1 is an example, as is the path from A to F.

A cycle is a path that begins and ends with the same vertex. The path {A, B, E,
A} in G1 is an example. There are no other cycles in G1.

In G2 {T, Z, P, M} and {T, Z, R} are simple paths. Vertices {N, Z, P, M, N} form
a cycle. Note that there is no path from R to any other vertex in the graph, but R is
reachable from every other vertex.

Two vertices vi and vj in graph G are said to be connected if there is a path in
G from vi to vj. We also say that vj is reachable from vi. If G is undirected, this
implies that there is also a path from vj to vi and that vi is reachable from vj.

A connected graph, G, is one in which every vertex in G is reachable from (con-
nected to) every other vertex in G. A complete graph is a connected graph in which
each pair of vertices is connected by an edge. There are n (n – 1) / 2 edges in a com-
plete undirected graph and at most n (n – 1) edges in a complete directed graph.
Figure 13.2 shows some examples.

A subgraph of G is a graph containing some or all of the vertices and
edges from G. More formally, G� is a subgraph of G such that V(G�) ⊆ V(G) and
E(G�) ⊆ E(G). Figure 13.3 shows some examples.

(a) A connected graph. (b) A disconnected graph. (c) A complete graph.

Figure 13.2 Connected, disconnected, and complete graphs.

652 ■ Chapter 13 The Graph Abstract Data Type

SUMMING UP

A graph is a collection of vertices and edges connecting vertices. In an undirected
graph the edges are bidirectional, and in a directed graph the edges are directional
from source to destination vertex. The edges in a weighted graph have an associated
weight (cost).

CHECKPOINT

13.1 Give an example of the following:

a. A connected undirected graph containing five vertices

b. An unconnected digraph containing five vertices

c. A directed graph of five vertices containing a cycle

d. An undirected acyclic graph

13.2 Give two subgraphs for the following graph:

13.3 Provide the equivalent directed graph for graph G5.

A

C

(a) Graph G5. (b) Some subgraphs of G5.

Figure 13.3 A graph G5 and some of its subgraphs.

13.2 Representations of Graphs ■ 653

Adjacency matrix: a
|V| × |V| array of
integer

■ 13.2 Representations of Graphs

There are two common representations of graphs: adjacency matrices and adja-
cency lists. They have different space complexities, which has implications for the
time complexities of graph algorithms, as we will see later.

13.2.1 Adjacency Matrix Representation
The idea behind the adjacency matrix representation is very simple. An adjacency
matrix is a |V| × |V| array of integer. A matrix entry [i, j] is 1 if the graph contains
an edge (i, j), and is 0 otherwise. If the graph is undirected, the entry [j, i] will also
be 1 (recall that edges in an undirected graph are bidirectional). If the edges are
weighted, the [i, j] entry for an edge connecting vi to vj can be the weight of that
edge (in this case we might want to make the matrix an array of double). A special
value indicating that no edge exists must be selected for weighted graphs.

Figure 13.4 (a) shows an adjacency matrix of an undirected graph. Note that it
is symmetric around the diagonal. Figure 13.4 (b) shows the adjacency matrix of a
directed graph. Note that the adjacency matrix of a directed graph does not need to
be symmetric around the diagonal. Figure 13.4 (c) gives the adjacency matrix of a
weighted graph in which a value of 0 indicates no connection.

The space complexity of an adjacency matrix is always Θ(|V|2) because it main-
tains an entry for each possible edge.

13.2.2 Adjacency List Representation
If the graph is large and sparse (the number of actual edges in the graph is much
smaller than the number of possible edges), then the adjacency matrix representa-
tion is inefficient in its space usage (most of the entries are 0).

A
0
2
0
0
5
0

Z

N
1
0
0
0
0
0

(a) Adjacency matrix of an
undirected graph.

(b) Adjacency matrix of a
directed graph.

(c) Adjacency matrix of an
undirected weighted graph.

Figure 13.4 Adjacency matrices of undirected and directed graphs.

Adjacency matrix
space complexity:
Θ(|V|2)

654 ■ Chapter 13 The Graph Abstract Data Type

In this situation, we would prefer to store information about the edges that are
actually in the graph. Unlike an adjacency matrix, this is precisely what the
adjacency list representation allows us to do. As shown in Figure 13.5, each vertex
has an associated linked list of nodes, each of which stores information about an
adjacent vertex. If the edges are weighted, the nodes must store 〈vertex, weight〉
pairs.

We need a container of size Θ(|V|) to store the vertices, and there will be Θ(|E|)
elements in the adjacency lists for a total cost of max(Θ(|V|), Θ(|E|)). Of course,
what we save in space we give up in the time needed to traverse the adjacency lists
searching for a vertex—a lesson we learned in Chapter 3.

SUMMING UP

There are two common representations of graphs: adjacency matrices and adja-
cency lists. The adjacency matrix representation stores an entry for every possible
edge in a graph; thus, it has a space complexity of Θ(|V|2). The adjacency list stores
entries for edges actually in the graph; thus, its space complexity is max(Θ(|V|),
Θ(|E|)). The representation used has implications for some graph algorithms.

CHECKPOINT

13.4 Provide the adjacency list for graph G6.

13.5 Provide the adjacency matrix for graph G7.

Adjacency list: a |V|
array of linked lists

N

B

B

(a) Adjacency list of an
undirected graph.

(b) Adjacency list of a
directed graph.

(c) Adjacency list of a
directed weighted graph.

Figure 13.5 Adjacency lists of undirected and directed graphs.

Adjacency list space
complexity:
max(Θ(|V|), Θ(|E|))

13.3 Graph Algorithms: Traversals ■ 655

13.6 Explain why the space complexity for the adjacency matrix representation is
Θ(|V|2).

13.7 Explain why the space complexity for the adjacency list representation is Θ
max(Θ(|V|), Θ(|E|)).

■ 13.3 Graph Algorithms: Traversals

There are two general strategies for traversing (searching) a graph: depth first search
(DFS) and breadth first search (BFS).

13.3.1 Depth First Search
DFS behaves similarly to a preorder traversal of a binary tree. In the language of tree
traversals, descendants of a node are visited before the node’s siblings. It is the same
with graphs, except that in a graph we need to deal with the possibility of cycles.

As shown in the pseudocode for DFS, the algorithm is naturally recursive (as
with the preorder traversal for binary trees). The runtime stack stores vertices that
still need to be explored and guarantees that we go as deep in the graph as we can
(visiting a node’s descendants) before spreading out (visiting a node’s siblings).

// Perform a depth first search of a Graph g
// originating from Vertex v

Pseudocode: DFS (Graph g, Vertex v)
mark v as visited // don’t need to visit a vertex more than once!
for each Vertex w adjacent to v

if w has not been visited
DFS(w)

Next we discuss an aspect of DFS that we will see repeated in our coverage of
graph algorithms. An important difference between a tree and a graph is that a
graph can contain cycles and a tree cannot. This is important for graph algorithms
because we don’t want to visit a vertex more than once, and of course, we want to
avoid the embarrassment of getting caught in an infinite loop going round and
round the vertices in a cycle. The solution is somehow to mark a vertex as visited as
done in the first step of the pseudocode. A common solution is to use colors: white

Graph G6. Graph G7.

Depth first search:
visits descendants
before visiting
siblings

656 ■ Chapter 13 The Graph Abstract Data Type

indicates not yet visited and black indicates visited. It’s useful to have a third color
(gray) to indicate a state somewhere between visited and not visited. Figure 13.6
shows the order in which the vertices are visited and the vertices on the method call
stack as the graph is searched, starting with vertex A.

What is DFS’s time complexity? Since DFS follows available edges, intuition
tells us that the cost is tied to the number of edges in the graph. However, the under-
lying graph representation plays an important role here. If the graph is represented
as an adjacency matrix, step 2 of the pseudocode (for each Vertex w adjacent to v) has
a cost of Θ(|V|) since we need to examine every column in a row to see if the entry
corresponds to an adjacent vertex. We must do this for all |V| rows in the matrix,
giving a cost of Θ(|V|2) for DFS for the adjacency matrix representation.
Significantly, this is independent of the actual number of edges in the graph.

This highlights the advantage of the adjacency list representation for some
algorithms because an adjacency list contains only edges that are actually in the
graph. To get a feel for the difference, consider the adjacency entries for vertex F
shown in Figure 13.6. In the adjacency matrix representation you need to look at all
seven columns to determine which vertices are adjacent to F and which are not, but
in the adjacency list representation you need to examine only the one vertex to
which F is adjacent.

In the best case there are no edges and the cost is O(1) since the starting node
will have no adjacent vertices and the algorithm will quit. In the worst case, the
graph is fully connected and the cost is Θ(|V|2). In the absence of information about
the connectivity of a graph, the cost of DFS for a graph when stored as an adjacency
list is O(|V|2). (Note the use of big O here.)

13.3.2 Breadth First Search
BFS is similar to a level order traversal of a tree: it visits a node’s children before vis-
iting any of their children. In graph terms this translates to a visit pattern that

A C

B

D

F

E

G

A
0
1
1
0
0
0
0

B
1
0
1
1
1
0
0

C
1
1
0
0
0
0
0

D
0
1
0
0
0
1
1

E
0
1
0
0
0
0
0

F
0
0
0
1
0
0
0

A
B
C
D
E
F
G

G
0
0
0
1
0
0
0

B C
DA C E

B
D

B F G

A
B
C
D
E
F
G

A B

D

A
A

B
A
B

C
B
A
C

D
B
A
D

F
D
B
A
F

G
D
B
A
G

B
A

E
B
A
E

B
A

D
B
A

D
B
A

B
A _Astack bottom

DFS visit order

_

Figure 13.6 Contents of the queue during a depth first search.

DFS time complexity—
adjacency matrix:
Θ(|V|2)
adjacency list: O(|V|2)

Breadth first search:
visits children before
visiting grandchildren

13.3 Graph Algorithms: Traversals ■ 657

spreads out in waves from the start vertex; the first wave is one edge away from the
start vertex; the second wave is two edges away from the start vertex, and so on, as
shown in the top left of Figure 13.7.

As shown in the following pseudocode, BFS uses a queue to store vertices still
to be explored. This guarantees that those vertices that are enqueued first (those
nearest to the start vertex) will be visited before those enqueued later (those farther
from the start vertex). Figure 13.7 shows the contents of the queue as the graph is
searched starting from vertex A.

The cost of BFS is the same as DFS and for similar reasons.

// Perform a breadth first search of a Graph g
// originating from Vertex v

Pseudocode: BFS (Graph g, Vertex v) vertexQueue—a Queue of Vertices
mark v as visited
enqueue v in vertexQueue
while vertexQueue is not empty

let v be the element removed from the front of vertexQueue
for all Vertices w adjacent to v

if w has not been visited
enqueue w in vertexQueue
mark w as visited

_

 A
A B C
B C D E
C D E
D E F G
E F G
F G
G _

BFS visit order
queue
front

A C

B

D

F

E

G

A
0
1
1
0
0
0
0

B
1
0
1
1
1
0
0

C
1
1
0
0
0
0
0

D
0
1
0
0
0
1
1

E
0
1
0
0
0
0
0

F
0
0
0
1
0
0
0

A
B
C
D
E
F
G

G
0
0
0
1
0
0
0

B C
DA C E

B
D

B F G

A
B
C
D
E
F
G

A B

D

1

2

3

Figure 13.7 Contents of the queue during a breadth first search. The vertices grouped
by the dotted ovals represent their distance from the start vertex.

The time complexity
of BFS is the same as
DFS

658 ■ Chapter 13 The Graph Abstract Data Type

SUMMING UP

Depth first search (DFS) and breadth first search (BFS) are common graph traversal
algorithms that are similar to some tree traversal algorithms. The important differ-
ence is that DFS and BFS must deal with the possibility of a cycle in a graph. DFS is
similar to a preorder traversal of a tree: a vertex is visited, and then its descendants
are visited before its siblings are visited. DFS naturally uses a stack to store vertices
yet to be visited. BFS is similar to a level order traversal, visiting a node and all its
children before extending to grandchildren. BFS naturally uses a queue to store ver-
tices yet to be visited.

CHECKPOINT

13.8 Show the order in which the vertices in graph G8 would be visited using the
following:

a. DFS starting at vertex A

b. BFS starting at vertex A

13.9 Show the order in which the vertices in graph G9 would be visited using the
following:

a. DFS starting at vertex X

b. BFS starting at vertex X

INVESTIGATE Applying BFS and DFS—Shortest Path and

BFS and DFS are the basis for a number of important graph algorithms. In this
Investigate you develop two of those algorithms, shortest path and spanning tree,
while further investigating the similarities and differences between BFS and DFS,
and directed and undirected graphs.

Shortest Path Algorithm
As its name suggests, the shortest path algorithm finds the shortest path in a graph
between a source vertex and a destination vertex, as measured by the number of

E T

Graph G8. Graph G9.

Spanning Tree Algorithms

13.3 Graph Algorithms: Traversals ■ 659

edges in the path. A little thought about the behavior of BFS will tell you that it can
find the shortest path rather easily.

1. Enter the pseudocode for BFS into a text file or as comments in a file opened in
your IDE. You will gradually modify the pseudocode to provide the following
operation:

List shortestPath(Graph g, Vertex src, Vertex dest)
// Find a shortest path from src to dest in Graph g. Return an empty List if no path
// exists, or the vertices in the path from src to dest otherwise.

2. Produce the adjacency matrix or adjacency list for graph G10 in Figure 13.8.

3. Figure 13.8 shows the levels visited by BFS starting at vertex A. Provide sub-
scripts for the vertices showing the order in which they are visited by BFS,
assuming that adjacent vertices are visited in alphabetical order.

4. As you can see, if the destination is reachable from the source vertex, the algo-
rithm eventually finds the destination vertex. When should the modified BFS
algorithm stop searching? Make this change to the pseudocode.

5. Clearly, if successful, we will end up with a path from src to dest. As vertices are
visited, a path is built from src toward dest. We need to keep track of each ver-
tex’s predecessor in the path. This can easily be done by storing a pair
〈predecessor, v〉, where v is a new vertex found in some possible path to the des-
tination, and predecessor is v’s predecessor in that path. For example, we see A
has two adjacent vertices that could be on a path to E, so we would add them to
our collection as 〈A, F〉 and 〈A, B〉.
a. What kind of collection is appropriate to store these pairs? On what basis do

you decide what is appropriate?

b. Modify the algorithm to collect these pairs.

6. Apply your algorithm to the graph shown in Figure 13.8 looking for a path
from A to E. Be sure to show all vertex pairs collected.

7. In step 4 you determined when the search part of the algorithm should stop.
Assuming the destination vertex was found, we now need to reconstruct the
path from the source to the destination. The algorithm cannot know in advance

G

Graph G10.

Figure 13.8 The levels of vertices visited by BFS starting at vertex A.

660 ■ Chapter 13 The Graph Abstract Data Type

which pairs of adjacent vertices are in the path from the source to the destina-
tion, and the code trace you completed in step 6 will have revealed that some
vertex pairs may have been collected that are not in the path. How do we pull
out just the pairs on the path we want? The answer is pretty straightforward. We
will have arrived at the destination vertex from some other vertex, v, in the
graph, giving us a pair 〈v, destination〉 in our collection. For example, we might
have arrived at E from C, giving us a pair 〈C, E〉. What we need to do is to find
a pair in our collection that has v as the successor to some vertex w (that is, a
pair 〈w, v〉). We keep doing this until we get the pair 〈source, v〉. Really what we
are doing is tracing the path backward from the destination to the source.

a. Make this addition to the pseudocode so that a list is returned containing the
vertices in the path from the source to the destination vertex. For the graph
shown in Figure 13.8, this would be {A, B, C, E}.

b. How can we determine the length of this path?

c. Provide an argument for why your algorithm is correct. How is it guaranteed
to find the shortest path?

8. Create another graph and apply your pseudocode algorithm to it. If the result
isn’t correct, modify the pseudocode and reapply it to the graph. If any of your
pseudocoded instructions are not clear, rephrase them to better describe their
purpose.

9. What is the time complexity of this algorithm assuming the graph is repre-
sented using an adjacency matrix? An adjacency list?

10. Will this algorithm work for a directed graph? If so, explain why. If not, provide
a counter example.

11. Will this algorithm work for a weighted graph? If so, explain why. If not, pro-
vide a counter example.

12. Could you modify DFS to give a shortest path? If so, outline the changes. If not,
explain why not.

Spanning Tree Algorithm
A spanning tree of a graph G is a connected acyclic subgraph, G�, containing all the
vertices of G; that is, V(G�) = V(G). Since G� is connected and acyclic, it must con-
tain the minimum number of edges possible (|V| � 1). Figure 13.9 shows graph G10
from Figure 13.8 and four possible spanning trees for it.

As we have seen, DFS will visit all the vertices of a connected graph just once. If
we modify DFS to keep track of connected pairs of vertices, it will produce a span-
ning tree.

1. Enter the pseudocode for DFS into a text file or as comments in a file opened
in your IDE. You will gradually modify the pseudocode to provide the follow-
ing operation:

Graph spanningTree(Graph g, Vertex src)
// Return a spanning tree of g using src as the root of the tree. If the returned
// graph is empty, g is not connected.

13.3 Graph Algorithms: Traversals ■ 661

2. Apply the DFS algorithm to graph G10 and provide subscripts for the vertices
showing the order in which they are visited, assuming that adjacent vertices are
visited in alphabetical order.

a. Given that we want to identify a spanning tree for the graph, when should
the DFS algorithm stop searching? Make this change to the pseudocode.

3. If successful, we will visit all the vertices in the graph once. As vertices are vis-
ited, we need to keep track of each vertex’s predecessor. This can easily be done
with a pair 〈predecessor, v〉, where v is a newly visited vertex and predecessor is
v’s predecessor in the graph.

a. What kind of collection is appropriate to store these pairs? On what basis do
you decide what is appropriate?

b. Modify the algorithm to collect these pairs.

4. In step 2 we determined when the search part of the algorithm should stop.
Now we need to reconstruct the spanning tree. This can be done using the pairs
collected in step 3. Make this change to the algorithm. The graph created is
returned as the result of the method.

5. Create another graph and apply your pseudocode algorithm to it. If the result
isn’t correct, modify the pseudocode and reapply it to the graph. If any of your
pseudocoded instructions are not clear, rephrase them to better describe their
purpose.

6. What is the time complexity of this algorithm assuming the graph is repre-
sented using an adjacency matrix? An adjacency list?

7. Will this algorithm work for a directed graph? If so, explain why. If not, provide
a counter example.

A

B

CD

F

E

G

H

Graph G .10

Figure 13.9 Four possible spanning trees for graph G10 from Figure 13.8.

662 ■ Chapter 13 The Graph Abstract Data Type

8. Will this algorithm work for a weighted graph? If so, explain why. If not, pro-
vide a counter example.

9. Could you modify BFS to provide a spanning tree? If so, outline the changes. If
not, explain why not.

■ 13.4 Graph Algorithms: Minimum Cost Paths
and Minimal Spanning Trees

The shortest path and spanning tree algorithms you developed in the Investigate are
insufficient if the edges have different weights (costs) associated with them. In this
section we present a minimum cost path algorithm based on a solution developed
by E.W. Dijkstra1 and an algorithm for finding a minimal spanning tree based on a
solution credited to R.C. Prim.2 These algorithms use a greedy strategy to find their
solutions; that is, at each step, a greedy algorithm makes a locally optimal (greedy)
selection to produce a globally optimal solution.

13.4.1 Minimum Cost Paths
We want to find a minimum cost path in a weighted graph from a source vertex to
a destination vertex. As we did with our modified BFS algorithm for shortest path
in the Investigate, our approach here is to build a path gradually from the source
toward the destination one edge at a time. The important difference is that at each
step in extending the path we are building, we will always select the vertex whose
path length from the source vertex is the minimum of all paths seen so far (this is
the greedy selection part). We will store this information in a pair 〈Vertex,
minCostToVertex〉 where minCostToVertex is the total cost of a path from the source
vertex to Vertex. Since we always want to work from the minimum path seen so far,
we’ll keep our pairs in a priority queue using the minCostToVertex field to determine
priority. As shown in the pseudocode, we start with the src vertex, which has a
minCostToVertex of 0 (that is, the cost to get from the src vertex to src is 0).

// Return the cost of a minimal cost path in
// Graph g from Vertex src to dest

Pseudocode: Minimal Path(Graph g, Vertex src, Vertex dest)

priorityQueue—a priority queue holding 〈Vertex, minCostToVertex〉 pairs
verticesInSomePathToDest—a collection of vertices in some possible path from src to dest

place 〈src, 0〉 in priorityQueue
while priorityQueue is not empty

// get the least expensive path seen so far

Greedy algorithms
produce optimal
solutions by making
locally optimal selec-
tions

1E.W. Dijkstra, “A Note on Two Problems in Connection with Graphs,” Numerische Mathematik,
1(1959), pp. 269–271.

2R.C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell System Technical Journal,
36(1957), pp. 1389–1401.

13.4 Graph Algorithms: Minimum Cost Paths and Minimal Spanning Trees ■ 663

pair = the 〈vertex, minCostToVertex 〉 pair removed from priorityQueue
v = pair.vertex // extract the vertex field from pair
minCostToV = pair. minCostToVertex // extract the cost field from pair
if v == dest

return minCostToV // success; return cost from src to v

// haven’t found the target yet, so continue the search
add v to verticesInSomePathToDest
for each Vertex w adjacent to v

if w is not in verticesInSomePathToDest // avoid revisiting a visited vertex
let minCostToW be minCostToV + weight(v, w) // get total cost from src to w
add the pair 〈w, minCostToW〉 to priorityQueue

return failure // there is no path from src to dest

The annotated example shown in Figure 13.10 (next page) illustrates the algo-
rithm’s behavior and provides an intuitive sense for why it works. As you can see
from the example, the algorithm is actually building several possible paths. After
four steps, for example, we have {A, F} and {A, B} (look at the shaded vertices in the
graphs); after five steps we have {A, F}, and {A, B, C}; and after six steps there are
three possibilities under consideration: {A, F}, {A, B, D}, and {A, B, C}.

Since a path is always extended to the least cost adjacent vertex, every 〈Vertex,
minCostToVertex〉 pair pulled from the priority queue represents the minimal cost
of a path from src to Vertex. Consequently, when a pair is pulled from the priority
queue that has dest as its Vertex, the minimal cost of a path from src to dest has been
found and the algorithm can terminate.

13.4.2 Minimal Spanning Tree
From the Investigate you learned that a spanning tree of a graph G is a connected
acyclic subgraph containing all the vertices of G and the minimum number of edges
possible (|V| � 1). A minimal spanning tree (MST) of a weighted graph G is a
spanning tree with a minimum total path cost over all possible spanning trees of G.

The DFS-based approach taken in the Investigate to produce a spanning tree
will not produce a minimal spanning tree for a graph whose edges have different
weights (costs). However, just as we were able to modify the BFS algorithm to pro-
duce a spanning tree, we can base a minimal spanning tree algorithm on the ideas
behind the minimal path algorithm. The algorithm presented here is called Prim’s
algorithm. Like the minimal path algorithm, Prim’s algorithm follows a greedy
strategy.

The main idea behind Prim’s algorithm is quite simple and will look familiar to
you from the minimal path algorithm. As with the minimal path, we build our MST
incrementally using a greedy strategy to pick a least cost edge from a set of candidate
edges. Here is how it works. To find an MST for a weighted graph G, we start by
adding the source vertex, v, to the MST (this will be the root of the MST). The can-
didate edges are those edges (v, w) such that v is in our MST and w is not. So the
first edges to add to the candidate edges are those incident on the source vertex. At
each iteration of the main loop we choose the least cost edge (v, w) from the candi-
date edges. By adding (v, w) to our MST, we are extending it by one more least cost

664 ■ Chapter 13 The Graph Abstract Data Type

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

2 (A,�0)

Vertex: none

Priority Queue:

The search for a minimal cost path begins with the source
vertex, A, which has a distance of 0 from itself, so (A, 0) is
placed in Priority Queue.

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

Priority Queue:

(F,�2), (B, 3)

Vertex: A

The path is extended by selecting the smallest path seen
so far from Priority Queue. This is (A, 0). The vertex
removed from Priority Queue is marked as visited (it
becomes shaded). If they haven t already been visited, the
vertices adjacent to A are added to Priority Queue along
with their distance from the source vertex (A). From A we
can get to F with a cost of 2, and to B with a cost of 3.

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

Priority Queue:

Vertex: F

The path from A to F with a cost of 2 is the cheapest path
seen so far, so (F, 2) is removed from Priority Queue. F is
marked as visited. G is adjacent to F and hasn t been
visited yet, so (G, 6) is added to Priority Queue. Note that the
cost of 6 represents the total cost from A to G:
(A, F, 2) + (F, G, 4) => (A, G, 6)

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

Priority Queue:

(G, 6)

Vertex: B

The cheapest path in Priority Queue is (B, 3), which is
removed from Priority Queue. B is marked as visited. C and
D are adjacent to B and have not been visited, so we add
paths from A to D (D, 5) and A to C (C, 4) to Priority Queue.

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

Priority Queue:

(E, 12)

Vertex: C

2

2

2

2

(C, 4) was at the front of Priority Queue, so is removed and
C is marked as visited. Unvisited vertices D and E are
adjacent to C, however, since (D, 5) is already in Priority
Queue, it does not get added again. (E, 12) is added. Note
that B is also adjacent to C, but since B has already been
visited, it is ignored.

Vertex represents the vertex extracted from Priority Queue. The associated path cost
 is the minimum path cost from src to this Vertex.

Priority Queue holds (vertex, path cost) pairs and is ordered such that the pair with the
 lowest path cost has the highest priority (shown as boldface and underlined). It is assumed
 that duplicate pairs are not allowed, so (D, 5) and (D, 5) would not both appear in Priority
 Queue, but (D, 5) and (D, 8) could.

v A vertex in a possible path from src to dest.

(B,�3), (G, 6)

(C,�4), (D, 5)

(D,�5), (G, 6)

Figure 13.10 Annotated example of the minimal path algorithm searching for a path from A to E.

13.4 Graph Algorithms: Minimum Cost Paths and Minimal Spanning Trees ■ 665

A

B

CD

F

E

G

2 3

12
1

4

2
1

8

2

H

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

2

Priority Queue:

Vertex: H

(H, 9)

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

2

Priority Queue:

Vertex: G

(H, 8)

Priority Queue:

Vertex: G

(H, 9)

A

B

CD

F

E

G

2 3

12
1

4

2
1

8

2

H

Priority Queue:

Vertex: E

(G, 6) is removed from Priority Queue and G is marked as
visited. Unvisited vertex H is added to Priority Queue with
its total cost from the source vertex. (H, 8) represents the
path {A, F, G, H}. Vertices F and D are also adjacent to G,
but have been visited already, so are ignored.

(G, 7) is removed from Priority Queue. Again, since adjacent
vertex H is unvisited, it is added to Priority Queue with
its total cost from the source vertex following this different
path: (H, 9) = {A, B, D, G, H}.

(H, 8) is removed from Priority Queue. Unvisited adjacent
vertex E is added to Priority Queue (E, 9).

(E, 9) is removed from Priority Queue. Since E is the
destination vertex, the search is over and since (E, 9)
was the minimal path from Priority Queue, this must be
the minimal path to the destination vertex.

A

B

CD

F

E

G

H

2 3

12
1

4

2
1

8

Priority Queue:

Vertex: D

(G, 7)
2

(D, 5) was at the front of Priority Queue, so is removed and
D is marked as visited. Adjacent vertices B and C have
already been visited, so are ignored. Unvisited vertex G is
added to Priority Queue along with its total cost from the
source vertex. Note that this produces another path from
A to G. However, we will always select the least�cost path
from the Priority Queue, so the extra path does not affect
the algorithm s correctness.

The minimal path is {A, F, G, H, E} with a cost of 9.

(G,�6), (E, 12)

(G,�7), (E, 12)

(H,�8), (E, 12)

(E,�9), (E, 12)

(H,�9), (E, 12)

Figure 13.10 (continued) Annotated example of the minimal path algorithm searching for a path from A to E.

edge. With w added to our MST, we then add to the collection of candidate edges all
the edges (w, x) for which x is not in our MST. This process continues until either
there are no more candidate edges to examine or the number of edges in MST is
|V| –1, which you’ll recall is the minimum number of edges for a connected graph

666 ■ Chapter 13 The Graph Abstract Data Type

A

CD

E

G

2 3

12
1

4

4

1

8

2

4 BF

H

3

A

CD

E

G

2 3

12
1

4

4

1

8

2

4 BF

H

3

A

CD

E

G

2 3

12
1

4

4

1

8

2

4 BF

H

3

A

CD

E

G

2 3

12
1

4

4

1

8

2

4 BF

H

3

The source vertex, A, is added to the MST. Edges
incident on A become candidate edges on the
fringe of the MST being built.

MST: A

Candidate Edges:
(A,�F,�2), (A, H, 4),
(A, B, 3)

The least cost candidate edge (A, F, 2) is selected.
By definition it has one vertex (A) in the MST and
the other, F, not in the MST. F is added to the
MST and edges incident on F are added to the
candidate edges. Note this does not include
edge (F, A, 2) since F and A are already in the
MST.

MST: A, F

Candidate Edges:
(A,�B,�3), (A, H, 4),
(F, G, 4)

MST: A, F, B

Candidate Edges:

), (A, H, 4),
(F, G, 4), (B, D, 2)

The least cost candidate edge, (A, B, 3) is
selected and is added to the MST causing edges
(B, D, 2) and (B, C, 1) to be added to the
candidate edges.

MST: A, F, B, C

Candidate Edges:

), (A, H, 4),
(F, G, 4), (B, D, 2),
(C, E, 8)

Edge (B, C, 1) is selected from the pool of
candidate edges and is added to the MST.
This provides additional candidate edges
(C, D, 1) and (C, E, 8).

v A vertex / edge that is part of the MST.

w A vertex / edge in the collection of candidate edges.

x A vertex / edge in the graph that hasn t been seen yet.

(B,�C,�1

(C,�D,�1

Figure 13.11 Annotated example of Prim’s algorithm to find a minimal spanning tree.

with |V| vertices. If the main loop terminates and the number of edges in the MST
is less than |V| � 1, the graph is not connected and failure is returned.

Let’s look at a high level algorithm (appears after Figure 13.11) that succinctly
captures what has to be done. An annotated example is shown in Figure 13.11.

13.4 Graph Algorithms: Minimum Cost Paths and Minimal Spanning Trees ■ 667

A

CD

E

G

2 3

1
1

3

1

2

BF

H

(D, G, 2) is removed from the candidate edges
and is added to the MST. From vertex G, we add
(G, H, 4) to the candidate edges.

A

CD

E

G

2 3

1
1

4

3

1

8

2

4 BF

H

4

MST: A, F, B, C, D,
 G
Candidate Edges:

(F, G, 4), (C, E, 8),
(G, H, 4)

A

CD

E

G

2 3

1
1

4

3

1

8

2

4 BF

H

4

MST: A, F, B, C, D,
 G, H
Candidate Edges:

(F, G, 4), (C, E, 8),
(G, H, 4)

Edge (D, H, 3) is the least cost edge among
the candidate edges and is added to the MST.
From vertex H we add (H, E, 1) to the candidate
edges.

A

CD

E

G

2 3

1
1

4

3

1

8

2

4 BF

H

4

MST: A, F, B, C, D,
 G, H, E
Candidate Edges:

(C, E, 8), (G, H, 4)

Finally, edge (H, E, 1) is added to the MST. There
are now |V| vertices and |V| –1 edges in the MST,
so the construction is complete.

The MST with vertex A as its root.

A

CD

E

G

2 3

12
1

4

3

1

8

2

4 BF

H

4

MST: A, F, B, C, D

Candidate Edges:

(F, G, 4), (C, E, 8),

Edge (C, D, 1) is selected from the pool of
candidate edges and added to the MST. This
provides additional candidate edges (D, G, 2)
and (D, H, 3). Edge (B, D, 2) is the least cost
edge among the candidate edges, but since
both of its vertices are already in the MST, it
will be removed and ignored. The least cost
edge with one vertex not in the MST is (D, G, 2).

(B,�D,�2), (A, H, 4)

(D,�G,�2), (A, H, 4)

(D,�H,�3), (A, H, 4)

(H,�E,�1), (A, H, 4)

(A,�H,�4), (F, G, 4)

Figure 13.11 (continued) Annotated example of Prim's algorithm to find a minimal spanning tree

668 ■ Chapter 13 The Graph Abstract Data Type

// Identify a Minimal Spanning Tree for a weighted Graph g with Vertex v as its root.

Pseudocode: minimalSpanningTree (Graph g, Vertex v)
MST—a collection of edges (v, w) in the Minimal Spanning Tree; initially this
collection is empty
mstCost—the total cost of all edges in MST; initially 0
visitedVertices—a collection of all vertices that are in MST; initially this collection
stores a vertex from G that will be the root of the MST

allVerticesVisited = false
put the starting vertex v in visitedVertices
// while the MST is not complete and there are vertices to visit
while MST.size() < |V| – 1 and not allVerticesVisited

// select the least cost candidate edge
get the least cost edge (v, w) such that v is in visitedVertices
and w is not in visitedVertices

if no such edge exists then
allVerticesVisited is true

else
add (v, w) to MST
add the cost of edge (v, w) to mstCost
add w to visitedVertices
// loop invariant: MST contains the edges of a minimal spanning
// tree for all vertices from G that are in visitedVertices

if MST.size() != |V| – 1 then
return failure

return MST // success

SUMMING UP

A minimal cost path between two vertices in a weighted graph is the path with the
least total path cost over all possible paths between the vertices. The minimal path
algorithm uses a greedy strategy to find the minimal cost path. At each step, a greedy
algorithm makes locally optimal (greedy) selections to produce a globally optimal
solution. The minimal path algorithm builds a collection of possible paths to the
destination, extending these paths with the least cost edge available. The algorithm
terminates when a least cost edge to the destination vertex is added to a possible
path.

A minimal spanning tree (MST) is a spanning tree of a weighted graph that has
the least total cost over all possible spanning trees for the graph. Prim’s algorithm
finds a minimal spanning tree using a greedy strategy. Starting from a single vertex
in the graph, it keeps track of candidate edges (v, w) such that v is in the MST and
w is not. In adding w to the MST, the pool of candidate edges is extended by those
edges (w, x) incident on w for which x is not in the MST. The algorithm terminates
with success when there are |V| vertices and |V| � 1 edges in the MST.

13.5 Graph ADTs ■ 669

E
3

Graph G .11

CHECKPOINT

13.10 What makes a greedy algorithm greedy?

13.11 The minimal path algorithm works when there are multiple paths with dif-
ferent costs represented in PriorityQueue (〈H, 8〉 and 〈H, 9〉, for example).
Why does this not pose a problem for the algorithm?

13.12 Will you get the same MST for a graph no matter which vertex is the MST’s
starting point?

13.13 Apply the minimal path algorithm to graph G11 to find the cost of the mini-
mal path from A to G.

13.14 Apply the MST algorithms to graph G11 starting at vertex A.

■ 13.5 Graph ADTs

In this section we specify three related ADTs: Graph, WeightedGraph, and
BFSSearcher. In the next section we will look at their implementation.

13.5.1 The Graph ADT
When designing a graph we must decide what needs to be represented explicitly. For
example, do we need a type to represent vertices? What about edges?

The approach taken here is to represent vertices explicitly because we want to be
able to identify them via a label, and to represent edges implicitly via the vertices
they connect. This design decision is reflected in the Graph ADT, which specifies an
unweighted graph that could be directed or undirected. The ADT supports adding
and deleting vertices and edges, getting the number of vertices and edges in the
graph, and getting a list of the neighbors of a vertex.

It is in the addition and deletion of edges that directionality matters. As you
would expect, the operation description specifies that if the implementation is for a
directed graph, then addEdge(v1, v2) creates an edge from v1 to v2. If the graph is
undirected, there is also an edge from v2 to v1. This piece of otherwise obvious
information is offered because it will play a key role in making some implementa-
tion decisions in the next section.

670 ■ Chapter 13 The Graph Abstract Data Type

ADT Name: Graph

Description:
A Graph is a non-linear collection containing vertices and edges connecting vertices. This
ADT does not specify if the edges are directed, leaving that to an implementation. The edges
have no weights.

Invariants:
1. Empty graph: number of vertices is 0; number of edges is 0.
2. Self-loops are not allowed.

Attributes:
number of vertices: The number of vertices in the graph; number of vertices ≥ 0.
number of edges: The number of edges in the graph; 0 ≤ number of edges

≤ n (n – 1), where n is the number of vertices in the graph.

Operations:

Graph ()
pre-condition: none
responsibilities: initializes the graph attributes
post-condition: number of vertices is 0

number of edges is 0
returns: nothing

addVertex(Vertex v)
pre-condition: v is not already in the graph
responsibilities: insert a Vertex into this graph
post-condition: a Vertex is added to this graph

number of vertices is incremented by 1
exception: if Vertex v is already in this graph
returns: nothing

addEdge(Vertex v1 , Vertex v2)
pre-condition: v1 and v2 are Vertices in this graph and aren’t already connected

by an edge
responsibilities: connect Vertices v1 to v2; if this is an undirected graph, this edge

also connects v2 to v1
post-condition: an edge connecting v1 and v2 is added to this graph

number of edges is incremented by 1
exception: if v1 or v2 are not in the graph or are already connected by an

edge
returns: nothing

removeVertex (Vertex v)
pre-condition: v is a Vertex in this graph
responsibilities: remove Vertex v from this graph

13.5 Graph ADTs ■ 671

post-condition: Vertex v is removed from this graph
All edges incident on v are removed
number of vertices is decremented by 1
number of edges is decremented by degree(v)

exception: if v is not in this graph
returns: nothing

removeEdge (Vertex v1 , Vertex v2)
pre-condition: v1 and v2 are vertices in this graph and an edge exists from v1 to

v2
responsibilities: remove from this graph the edge connecting v1 to v2; if this is an

undirected graph, there is no longer an edge from v2 to v1
post-condition: the edge connecting v1 and v2 is removed from this graph

number of edges is decremented by 1
exception: if v1 or v2 are not in this graph, or if no edge from v1 to v2 exists
returns: nothing

getNeighbors (Vertex v)
pre-condition: v is a Vertex in this graph
responsibilities: get the neighbors of Vertex v from this graph
post-condition: the graph is unchanged
exception: if v is not in this graph
returns: a collection containing the Vertices incident on v

getNumberOfVertices()
pre-condition: none
responsibilities: get the number of vertices in this graph
post-condition: the graph is unchanged
returns: the number of vertices in this graph

getNumberOfEdges()
pre-condition: none
responsibilities: get the number of edges in this graph
post-condition: the graph is unchanged
returns: the number of edges in this graph

13.5.2 The WeightedGraph ADT
As described at the beginning of the chapter, a weighted graph is simply a graph
whose edges have weights. Consequently, the weighted graph specified in the
WeightedGraph ADT is shown as an extension of the Graph ADT. The only signif-
icant difference is the addition of operations to support edge weights. The presen-
tation of a weighted graph as an extension of a graph will be reflected in the
implementation described in the next section.

672 ■ Chapter 13 The Graph Abstract Data Type

13.5.3 The BFSSearcher ADT
Finally, the BFSSearcher ADT specifies a breadth first search utility tool. Its con-
structor takes a graph as an argument and supports operations to determine if a
path exists between two vertices in the graph, the length of that path (in edges), and
the vertices in the path. We use this tool in the test plans developed next.

ADT Name: WeightedGraph extends Graph

Description:
A WeightedGraph is a graph whose edges have non-negative weights.

Invariants:
1. Edge weights must be >= 0; the default edge weight is 1.0.

Operations:

addEdge(Vertex v1 , double w, Vertex v2)
pre-condition: v1 and v2 are Vertices in this graph and aren’t already connected

by an edge; w is >= 0
responsibilities: connect Vertices v1 to v2 with weight w; if this is an undirected

graph, this edge also connects v2 to v1
post-condition: an edge connecting v1 and v2 with weight w is added to this

graph
number of edges is incremented by 1

exception: if v1 or v2 are not in the graph, are already connected by an edge,
or w < 0

returns: nothing

getEdgeWeight(Vertex v1 , Vertex v2)
pre-condition: v1 and v2 are Vertices in this graph and are connected by an edge
responsibilities: get the weight of the edge connecting Vertices v1 to v2
post-condition: the graph is unchanged
exception: if v1 or v2 are not in the graph or are not connected by an edge
returns: the weight of the edge connecting v1 to v2

setEdgeWeight(Vertex v1 , double newWeight, Vertex v2)
pre-condition: v1 and v2 are Vertices in this graph and are connected by an edge;

newWeight is >= 0
responsibilities: set the weight of the edge connecting Vertices v1 to v2 to

newWeight
post-condition: the graph is unchanged
exception: if v1 or v2 are not in the graph, are not connected by an edge, or

newWeight < 0
returns: nothing

13.6 Implementation of Graph ADTs ■ 673

ADT Name: BFSSearcher

Description:
Performs searches on a given Graph using breadth first search.

Attributes:
graph: The graph to search.

Operations:

BFSSearcher (Graph g)
pre-condition: g is not null
responsibilities: constructor initializes the graph attributes
post-condition: set graph to g
exception: if g is null
returns: nothing

containsPath (Vertex v1, Vertex v2)
pre-condition: v1 and v2 are Vertices in graph
responsibilities: determine if there is a path from v1 to v2 in graph
post-condition: graph is unchanged
exception: if v1 or v2 are not in graph
returns: true if there is a path from v1 to v2 in graph; false otherwise

getPathLength (Vertex v1, Vertex v2)
pre-condition: v1 and v2 are Vertices in graph
responsibilities: determine the length of the path (in number of edges) from v1

to v2 in graph
post-condition: graph is unchanged
exception: if v1 or v2 are not in graph
returns: the length of the path from v1 to v2, 0 if there is no path

getPath (Vertex v1, Vertex v2)
pre-condition: v1 and v2 are Vertices in graph
responsibilities: get the vertices on the path from v1 to v2 in graph
post-condition: graph is unchanged
exception: if v1 or v2 are not in graph
returns: a collection containing the vertices on the path from v1 to v2,

null if there is no path

■ 13.6 Implementation of Graph ADTs

The Graph interface shown in Listing 13.1 reflects the graph specification in the
Graph ADT. Like the ADT, the interface is silent on whether or not an implement-
ing class is a directed or undirected graph. Directed, undirected, and weighted

How should graph
types be related?

674 ■ Chapter 13 The Graph Abstract Data Type

Listing 13.1 The Graph interface based on the Graph ADT.

1 package gray.adts.graph;
2
3 import java.util.List;
4
5 /**
6 * A graph G consists of a finite set of vertices, V, and edges,
7 * E. An edge in E connects two vertices in V.
8 *
9 * This interface makes no assumption about whether the graph

10 * is directed or undirected; implementing classes make that
11 * specialization. Edges are unweighted.
12 */
13 public interface Graph<T> {
14
15 /**
16 * Insert <tt>Vertex v</tt> into this graph.
17 * @param v The <tt>Vertex</tt> to add to the graph;
18 * can’t already be in the graph.
19 * @throws IllegalArgumentException if <tt>v</tt> is
20 * already in this graph.
21 */
22 void addVertex(Vertex<T> v);
23
24 /**
25 * Add an edge connecting vertex <tt>v1</tt> to
26 * <tt>v2</tt>. The edge must not already be in the
27 * graph. In an undirected graph, this edge is bidirectional.
28 * @param v1 The source vertex; must not be
29 * <tt>null</tt> and must be a vertex in this graph.
30 * param v2 The destination vertex; must not be
31 * <tt>null</tt> and must be a vertex in this graph.
32 * @throws IllegalArgumentException if <tt>v1</tt> or
33 * <tt>v2</tt> are <tt>null</tt>, are not in this
34 * graph, or if the edge already exists.
35 */
36 void addEdge(Vertex<T> v1 , Vertex<T> v2);
37
38 /**
39 * Remove vertex <tt>v</tt> and all edges incident on
40 * <tt>v</tt> from this graph.
41 * @param v The vertex to remove; must not be
42 * <tt>null</code and must be a vertex in this graph.
43 * @throws IllegalArgumentException if <tt>v1</tt> is

13.6 Implementation of Graph ADTs ■ 675

44 * <tt>null</tt> or is not in this graph.
45 */
46 void removeVertex(Vertex<T> v);
47
48 /**
49 * Remove the edge from <tt>v1</tt> to <tt>v2</tt>
50 * from this graph.
51 *
52 * @parm v1 The source vertex for the edge to remove; must
53 * not be <tt>null</tt> and must be a vertex in this
54 * graph.
55 * @param v2 The destination vertex for the edge to remove;
56 * must not be <tt>null</tt> and must be a vertex in this
57 * graph.
58 * @throws IllegalArgumentException if <tt>v1</tt> or
59 * <tt>v2</tt> are <tt>null</tt>, are not in this
60 * graph, or the edge doesn’t exist.
61 */
62 void removeEdge(Vertex<T> v1, Vertex<T> v2);
63
64
65 /**
66 * Get the neighbors of Vertex <tt>v</tt> in this graph.
67 * @param v Vertex The vertex whose neighbors we want; must
68 * not be <tt>null</tt> and must be a vertex in this
69 * graph.
70 * @return List The vertices incident on <tt>v</tt>.
71 * @throws IllegalArgumentException if <tt>v1</tt> is
72 * <tt>null</tt> or is not in this graph.
73 */
74 List< Vertex<T> > getNeighbors (Vertex<T> v);
75
76 /**
77 * Get the number of vertices in this graph.
78 * @return int The number of vertices in this graph.
79 */
80 int getNumberOfVertices();
81
82 /**
83 * Get the number of edges in this graph.
84 * @return int The number of edges in this graph.
85 */
86 int getNumberOfEdges();
87 }

graphs are clearly related so we would like to create an inheritance hierarchy of
classes that promotes code reuse through inheritance. But can a directed graph class
and an undirected graph class be directly related? Should a digraph be a subclass of
an undirected graph class, or vice versa? How do weighted graphs affect this design?

The discussion of graph ADTs in the last section gave a hint about how to relate
our graph classes. The deciding issue is how to handle the addition and deletion of
edges. The addEdge(v1, v2) operation will produce an edge from v1 to v2 in a
directed graph, and an edge from v2 to v1 in an undirected graph. With this in
mind, we will have AdjMatrixDiGraph implement the Graph interface for directed
graphs using an adjacency matrix to store the graph. To represent undirected graphs
we’ll have AdjMatrixGraph be a subclass of AdjMatrixDiGraph. When dealing with
edges, its methods will invoke their superclass (directed graph) counterparts, and
then will handle the bidirectionality of an undirected graph locally. We’ll do the
implementation shortly and you will see that this design makes the overridden
methods quite short, but we need to do some planning to make this work.
WeightedAdjMatrixGraph is a subclass of AdjMatrixGraph and will also implement
the WeightedGraph interface.

The UML class diagram shown in Figure 13.12 shows our hierarchy for the
adjacency matrix representations. The methods listed in a class are implemented in
that class or are overridden from an inherited class. Portions of these classes will be
presented here with emphasis on code reuse through inheritance. We’ll also look at
an implementation of the minimal path algorithm.

13.6.1 The AdjMatrixGraph Class: A Directed Graph
Implementation of the Graph Interface

The Graph ADT attributes are declared on lines 12 and 13 of Listing 13.2, and the
adjacency matrix, adjMatrix is declared on line 19. An array, vertices, of Vertex
references is declared on line 26. The ith entry in vertices corresponds to the ith
row and column of adjMatrix. These fields are declared protected to allow sub-
classes to access them directly.

Thinking ahead to our needs in the subclasses, int variables v1Pos and v2Pos
(line 32) are also protected. These integers will represent an entry in the adjacency
matrix and will be used by all methods (in this class and in subclasses) that access
an edge.

Method addEdge(v1, v2) (lines 46–72) creates a directed edge from v1 to v2.
It uses a utility method, getVertexIndexFor(), to get the index into the vertices
array for some Vertex. If either of the vertices is not found (lines 62–64) or if the
edge already exists (line 66), an exception is thrown. Otherwise, an entry is made
indicating a new edge (line 67). Remember, this implementation is for a directed
graph, so the method only establishes an edge from v1 to v2.

Method removeEdge(v1, v2) (lines 74–97) removes the edge from v1 to v2
and has the same structure as addEdge(). The only difference is that the adjMatrix
entry is cleared (line 93).

Method removeVertex(v) (lines 99–129) must not only remove the vertex from
the graph (lines 113–114), it must also remove all edges coming into or going out of
the vertex. This is accomplished by walking along the vertex’s row in the adjacency

676 ■ Chapter 13 The Graph Abstract Data Type

addEdge()

removeEdge()

removeVertex()

matrix looking for an edge from v to some other vertex. When such an edge is found,
it is cleared and numberOfEdges is decremented (lines 116–123). Similarly, we then
walk down the column for v (lines 124–127) looking for edges coming into v.

13.6 Implementation of Graph ADTs ■ 677

WeightedGraph<T>

{interface}

AdjMatrixGraph<T>

+addEdge(Vertex<T>, Vertex<T>):void
+removeVertex(Vertex<T>):void
+removeEdge(Vertex<T>, Vertex<T>):void

AdjMatrixDiGraph<T>

+addVertex(Vertex<T>):void
+addEdge(Vertex<T>, Vertex<T>):void
+removeVertex(Vertex<T>):void
+removeEdge(Vertex<T>, Vertex<T>):void
+getNeighbors(Vertex<T>):List<Vertex<T>>
+getNumberOfVertices():int
+getNumberOfEdges():int

WeightedAdjMatrixGraph<T>

+addEdge(Vertex<T>, Vertex<T>):void
+addEdge(Vertex<T>, double w, Vertex<T>):void
+setEdgeWeight(Vertex<T>, double w, Vertex<T>):void
+getEdgeWeight(Vertex<T>, Vertex<T>):double
+minimalPath(Vertex<T>, Vertex<T>):double

Graph<T>
{interface}

+addVertex(Vertex<T>):void
+addEdge(Vertex<T>,Vertex<T>):void
+removeVertex(Vertex<T>):void
+removeEdge(Vertex<T>,Vertex<T>):void
+getNeighbors(Vertex<T>):List<Vertex<T>>
+getNumberOfVertices():int
+getNumberOfEdges():int

+addEdge(Vertex<T>,double,Vertex<T>):void
+setEdgeWeight(Vertex(<T>,double,Vertex<T>):void
+getEdgeWeight(Vertex<T>,Vertex<T>):double

Figure 13.12 The graph hierarchy. The methods shown in a concrete class are either implemented in that class
or are overridden there to provide a specialization of the method’s behavior (UML class diagram).

678 ■ Chapter 13 The Graph Abstract Data Type

Listing 13.2 Portion of the AdjMatrixDiGraph class.

1 package gray.adts.graph;
2
3 import java.util.*;
4
5 /**
6 * An implementation of the <tt>Graph</tt> interface for a
7 * directed graph using an adjacency matrix to indicate the
8 * presence/absence of edges connecting vertices in the graph.
9 */

10 public class AdjMatrixDiGraph<T> implements Graph<T> {
11
12 protected int numberOfVertices;
13 protected int numberOfEdges;
14
15 /**
16 * adjMatrix[i][j] = 1; an edge exists FROM vertex i TO vertex j
17 * adjMatrix[i][j] = 0; NO edge exists from vertex i to vertex j
18 */
19 protected int[][] adjMatrix;
20
21 /**
22 * Stores the vertices that are part of this graph. There is no
23 * requirement that the vertices be in adjacent cells of the
24 * array; as vertices are deleted, some gaps may appear.
25 */
26 protected Vertex<T>[] vertices;
27
28 /**
29 * v1Pos and v2Pos represent a position in adjMatrix. This
30 * class and subclasses use it to access an edge.
31 */
32 protected int v1Pos, v2Pos;
33
34 protected static int SIZE = 10;
35
36 /**
37 * Constructor. Create an empty instance of a directed graph.
38 */
39 public AdjMatrixDiGraph() {
40 this.numberOfVertices = 0;
41 this.numberOfEdges = 0;
42 this.adjMatrix = new int[this.SIZE][this.SIZE];
43 this.vertices = new Vertex[this.SIZE];
44 }
45

46 /**
47 * Add an edge connecting vertex <tt>v1</tt> to
48 * <tt>v2</tt>. This edge must not already be in the graph.
49 * In an undirected graph, this edge is bidirectional.
50 * @param v1 the source vertex; must not be <tt>null</tt>
51 * and must be a vertex in this graph.
52 * @param v2 the destination vertex; must not be
53 * <tt>null</tt> and must be a vertex in this graph.
54 * @throws IllegalArgumentException if <tt>v1</tt> or
55 * <tt>v2</tt> are <tt>null</tt>, are not in this
56 * graph or if the edge already exists in the graph.
57 */
58 public void addEdge(Vertex<T> v1, Vertex<T> v2) {
59 v1Pos = getVerticesIndexFor(v1);
60 v2Pos = getVerticesIndexFor(v2);
61
62 if (v1Pos == -1 || v2Pos == -1) {
63 throw new IllegalArgumentException("vertex not found");
64 }
65 // avoid adding duplicate edges
66 if (this.adjMatrix[v1Pos][v2Pos] == 0) {
67 this.adjMatrix[v1Pos][v2Pos] = 1;
68 this.numberOfEdges++;
69 }
70 else throw new IllegalArgumentException("duplicate edge "
71 + v1 + " " + v2);
72 }
73
74 /**
75 * Remove the edge from <tt>v1</tt> to <tt>v2</tt> from
76 * this graph.
77 * @param v1 the source vertex of the edge to remove; must not
78 * be <tt>null</tt> and must be a vertex in this graph.
79 * @param v2 the destination vertex of the edge to remove; must
80 * not be <tt>null</tt> and must be a vertex in this graph.
81 * @throws IllegalArgumentException if <tt>v1</tt> or
82 * <tt>v2</tt> are <tt>null</tt>, are not in this
83 * graph, or the edge doesn’t exist.
84 */
85 public void removeEdge(Vertex<T> v1, Vertex<T> v2) {
86 v1Pos = getVerticesIndexFor(v1);
87 v2Pos = getVerticesIndexFor(v2);
88
89 if (v1Pos == -1 || v2Pos == -1) {
90 throw new IllegalArgumentException("vertex not found");
91 }
92 if (this.adjMatrix[v1Pos][v2Pos] == 1) {

13.6 Implementation of Graph ADTs ■ 679

93 this.adjMatrix[v1Pos][v2Pos] = 0;
94 this.numberOfEdges--;
95 }
96 else throw new IllegalArgumentException("edge not found");
97 }
98
99 /**

100 * Remove vertex <tt>v</tt> and all edges incident
101 * on <tt>v</tt> from this graph.
102 * @param v the vertex to remove; must not be
103 * <tt>null</tt> and must be a vertex in this graph.
104 * @throws IllegalArgumentException if <tt>v1</tt>
105 * is <tt>null</tt> or is not in this graph.
106 */
107 public void removeVertex(Vertex<T> v) {
108 int pos = getVerticesIndexFor(v);
109 if (pos == -1) {
110 throw new IllegalArgumentException("vertex not found");
111 }
112
113 this.numberOfVertices--;
114 this.vertices[pos] = null;
115
116 // now we need to go through the adjacency matrix and
117 // remove all edges incident on v. We do this by walking
118 // along the row and column for v in the adjacency matrix
119 for (int i = 0; i < vertices.length; i++) {
120 if (this.adjMatrix[pos][i] == 1) { // row check
121 this.adjMatrix[pos][i] = 0;
122 this.numberOfEdges--;
123 }
124 if (this.adjMatrix[i][pos] == 1) { // column check
125 this.adjMatrix[i][pos] = 0;
126 this.numberOfEdges--;
127 }
128 }
129 }
. . .

680 ■ Chapter 13 The Graph Abstract Data Type

Because we’ll revisit this issue shortly it is important to note that for each such edge
found, the edge is cleared and numberOfEdges is decremented.

The other methods in AdjMatrixDiGraph are not shown and can be found in
the source code on the book’s companion Web site.

13.6.2 The AdjMatrixGraph Class: A Subclass
of AdjMatrixDigraph

AdjMatrixGraph is the adjacency matrix implementation of an undirected graph.
As discussed earlier and shown in Figure 13.12, it is a subclass of
AdjMatrixDigraph. The complete class is shown in Listing 13.3. Here we continue
our focus on the use of inheritance and overridden methods.

Method addEdge(v1, v2) (lines 12–29) invokes its superclass counterpart to
make an entry for the edge from v1 to v2. If that operation is successful, variables
v1Pos and v2Pos hold the information needed to make the edge bidirectional (line
28). Only two lines of code—not bad! Note the comment on lines 26–27 explaining
our expectation about what executing the superclass method means.

Not surprisingly, method removeEdge(v1, v2) (lines 31–49) has the same
structure as addEdge(). Again, code reuse through inheritance (and some careful
design) has led to a compact implementation.

Finally, we look at removeVertex(v) (lines 51–69). When removing a vertex we
must remove all edges going into and coming out of the vertex. Method
removeVertex() in the directed graph AdjMatrixDiGraph does this by walking
along the row and down the column for the vertex’s entry in the adjacency matrix
zeroing out any entries storing 1. Unfortunately, in a directed graph, each of these
entries is treated as a separate edge, so attribute numberOfEdges is decremented
twice for each deleted edge in an undirected graph. The somewhat complicated code
in lines 67–68 corrects this problem by figuring that the actual number of edges that
should have been deleted is half of what AdjMatrixDiGraph thinks should be
deleted.3

13.6 Implementation of Graph ADTs ■ 681

addEdge()

removeEdge()

removeVertex()

3The Exercises have you consider a much simpler solution.

Listing 13.3 The AdjMatrixGraph class (a subclass of AdjMatrixDiGraph).

1 package gray.adts.graph;
2
3 /**
4 * Adjacency Matrix implementation of an undirected Graph.
5 */
6 public class AdjMatrixGraph<T> extends AdjMatrixDiGraph<T> {
7
8 public AdjMatrixGraph() {
9 super();

10 }
11
12 /**
13 * Add an edge connecting vertex <tt>v1</tt> to
14 * <tt>v2</tt>. This edge is bidirectional.
15 * @param v1 the source vertex; must not be <tt>null</tt>

16 * and must be a vertex in this graph.
17 * @param v2 the destination vertex; must not be
18 * <tt>null</tt> and must be a vertex in this graph.
19 * @throws IllegalArgumentException if <tt>v1</tt> or
20 * <tt>v2</tt> are <tt>null</tt> or are not in this
21 * graph.
22 */
23 public void addEdge(Vertex<T> v1, Vertex<T> v2) {
24 super.addEdge(v1, v2);
25
26 // if we get here, the superclass method completed
27 // successfully and we can set edge from v2 to v1
28 this.adjMatrix[v2Pos][v1Pos] = 1;
29 }
30
31 /**
32 * Remove the edge from <tt>v1</tt> to <tt>v2</tt>
33 * from this graph.
34 * @param v1 the source vertex for the edge to remove; must
35 * not be <tt>null</tt> and must be a vertex in this graph.
36 * @param v2 the destination vertex for the edge to remove;
37 * must not be <tt>null</tt> and must be a vertex in this
38 * graph.
39 * @throws IllegalArgumentException if <tt>v1</tt> or
40 * <tt>v2</tt> are <tt>null</tt> or are not in this
41 * graph.
42 */
43 public void removeEdge(Vertex<T> v1, Vertex<T> v2) {
44 super.removeEdge(v1, v2);
45
46 // if we get here, the superclass method completed
47 // successfully and we can clear edge from v2 to v1
48 this.adjMatrix[v2Pos][v1Pos] = 0;
49 }
50
51 /**
52 * Remove vertex <tt>v</tt> and all edges incident on
53 * <tt>v</tt> from this graph.
54 * @param v the vertex to remove; must not be <tt>null</tt>
55 * and must be a vertex in this graph.
56 * @throws IllegalArgumentException if <tt>v1</tt> is
57 * <tt>null</tt> or is not in this graph.
58 */
59 public void removeVertex(Vertex<T> v) {
60 int numEdges = super.numberOfEdges;
61 super.removeVertex(v);
62

682 ■ Chapter 13 The Graph Abstract Data Type

See removeEdge() in
adjMatrixDiGraph,
lines 74–97

See addEdge() in
adjMatrixDiGraph,
lines 46–72

13.6 Implementation of Graph ADTs ■ 683

13.6.3 The WeightedAdjMatrixGraph Class:
A Subclass of AdjMatrixGraph

Listing 13.4 gives the implementation of WeightedAdjMatrixGraph. As shown in
Figure 13.12 and in the class header (lines 13–14), the class extends class
AdjMatrixGraph and implements interface WeightedGraph. A quick look at the
code tells you that the bulk of the work is done in the superclass. Method
addEdge(v1, weight, v2) (lines 31–55), for example, simply invokes its superclass
counterpart, then if all goes well adding the edge, the method updates the weights
matrix (declared on line 24). The overloaded addEdge(v1, v2) method (lines
104–119) simply uses addEdge(v1, weight, v2) to create an edge using a default
edge weight.

63 // if we get here, the superclass method completed
64 // successfully and we can update the number of edges
65 // For edge (v1, v2), the superclass removeVertex() will
66 // decrement numberOfEdges twice.
67 super.numberOfEdges = numEdges - (numEdges -
68 super.numberOfEdges) / 2;
69 }
70 }

Listing 13.4 Part of the WeightedAdjMatrixGraph class.

1 package gray.adts.graph;
2
3 import java.util.*;
4
5 import gray.adts.priorityqueue.*;
6 import gray.adts.priorityqueue.PriorityQueue;
7 import gray.misc.*;
8
9 /**

10 * A weighted, undirected graph stored in an adjacency matrix.
11 * The weights must be >= 0.
12 */
13 public class WeightedAdjMatrixGraph<T> extends AdjMatrixGraph<T>
14 implements WeightedGraph<T> {
15 /**
16 * The default weight for an edge in a weighted graph.
17 */
18 public float DEFAULT_WEIGHT = 1.0;
19
20 /**

21 * Store weight edges. The adjacency matrix storing
22 * edges is in an ancestor class.
23 */
24 protected double[][] weights;
25
26 public WeightedAdjMatrixGraph() {
27 super();
28 weights = new double[super.SIZE][super.SIZE];
29 }
30
31 /**
32 * Add an edge connecting vertex <tt>v1</tt> to
33 * <tt>v2</tt>. In an undirected graph, this edge is
34 * bidirectional.
35 * @param v1 the source vertex; must not be <tt>null</tt>
36 * and must be a vertex in this graph.
37 * @param weight the weight of this edge; must be >= 0.0.
38 * @param v2 the destination vertex; must not be
39 * <tt>null</tt> and must be a vertex in this graph.
40 * @throws IllegalArgumentException if <tt>v1</tt> or
41 * <tt>v2</tt> are <tt>null</tt> or are not in this
42 * graph, or if <tt>weight</tt> is < 0.
43 */
44 public void addEdge(Vertex<T> v1, double weight,
45 Vertex<T> v2) {
46 if (weight < 0.0)
47 throw new IllegalArgumentException ("Edge weight " +
48 " must be >= 0.0");
49
50 super.addEdge(v1, v2);
51
52 // if we get here, method in superclass didn’t throw
53 // an exception and method preconditions are met
54 this.setEdgeWeight(v1, weight, v2);
55 }
56
57 /**
58 * Get the weight of the edge from <tt>v1</tt> to
59 * <tt>v2</tt>.
60 * @param v1 the source vertex; must not be
61 * <tt>null</tt> and must be a vertex in this graph.
62 * @param v2 the destination vertex; must not be
63 * <tt>null</tt> and must be a vertex in this graph.
64 * @return double the weight of the edge from <tt>v1</tt>
65 * to <tt>v2</tt>.
66 * @throws IllegalArgumentException if <tt>v1</tt> or
67 * <tt>v2</tt> are <tt>null</tt> or are not in this

684 ■ Chapter 13 The Graph Abstract Data Type

See addEdge() in
adjMatrixDiGraph,
lines 46–72

68 * graph.
69 */
70 public double getEdgeWeight(Vertex<T> v1, Vertex<T> v2) {
71 int v1Pos = super.getVerticesIndexFor(v1);
72 int v2Pos = super.getVerticesIndexFor(v2);
73 // if we get here, method in superclass didn’t throw
74 // an exception and method preconditions are met
75 return weights[v1Pos][v2Pos];
76 }
77
78 /**
79 * Reset the weight for the edge connecting vertex
80 * <tt>v1</tt> to <tt>v2</tt>.
81 * @param v1 the source vertex; must not be <tt>null</tt>
82 * and must be a vertex in this graph.
83 * @param newWeight the weight of this edge; must be >= 0.0.
84 * @param v2 the destination vertex; must not be
85 * <tt>null</tt> and must be a vertex in this graph.
86 * @throws IllegalArgumentException if <tt>v1</tt> or
87 * <tt>v2</tt> are <tt>null</tt> or are not in this
88 * graph, or if <tt>weight</tt> is < 0.
89 */
90 public void setEdgeWeight(Vertex<T> v1, double newWeight,
91 Vertex<T> v2) {
92 if (newWeight < 0.0)
93 throw new IllegalArgumentException ("Edge weight "
94 + "must be >= 0.0");
95 int v1Pos = super.getVerticesIndexFor(v1);
96 int v2Pos = super.getVerticesIndexFor(v2);
97 // if we get here, method in superclass didn’t throw an
98 // exception and method preconditions are met
99 weights[v1Pos][v2Pos] = newWeight;

100 weights[v2Pos][v1Pos] = newWeight;
101 }
102
103 // overloaded methods from AdjMatrixGraph
104 /**
105 * Add an edge connecting vertex <tt>v1</tt> to
106 * <tt>v2</tt>. The edge is bidirectional in an
107 * undirected graph. The default weight for an edge
108 * is <tt>DEFAULT_WEIGHT</tt>.
109 * @param v1 the source vertex; must not be <tt>null</tt>
110 * and must be a vertex in this graph.
111 * @param v2 the destination vertex; must not be
112 * <tt>null</tt> and must be a vertex in this graph.
113 * @throws IllegalArgumentException if <tt>v1</tt> or
114 * <tt>v2</tt> are <tt>null</tt> or are not in this

13.6 Implementation of Graph ADTs ■ 685

115 * graph.
116 */
117 public void addEdge(Vertex<T> v1, Vertex<T> v2) {
118 this.addEdge(v1, DEFAULT_WEIGHT, v2);
119 }
120
121 /**
122 * Find a minimal cost path from <tt>src</tt> to
123 * <tt>dest</tt> in this graph. Assumes edge weights
124 * are positive.
125 * @param src Vertex the first vertex in the path.
126 * @param dest Vertex the last vertex in the path.
127 * @return double the cost of the path or -1 if none is found.
128 */
129 public double minimalPath(Vertex<T> src, Vertex<T> dest) {
130 // keep track of which vertices have been visited already
131 ArrayList<Vertex<T>> visitedVertices =
132 new ArrayList<Vertex<T>> ();
133
134 // Comparator for the priority queue where the shortest
135 // paths found so far are stored.
136 final Comparator pathCostComparator = new Comparator() {
137 public int compare(Object o1, Object o2) {
138 Double i1 =
139 ((Tuple<Vertex<T>, Double>)o1).getSecondElement();
140 Double i2 =
141 ((Tuple<Vertex<T>, Double>)o2).getSecondElement();
142 return i1.compareTo(i2);
143 }
144
145 public boolean equals(Object obj) {
146 return false;
147 }
148 };
149
150 // Stores the shortest paths from the source vertex
151 // found so far. These are stored as tuples.
152 // The first field of the tuple is the terminating
153 // node in some shortest path starting from src
154 // The second field is the cost of that path
155 PriorityQueue<Tuple<Vertex<T>, Double>> pq
156 = new HeapPriorityQueue<Tuple<Vertex<T>,
157 Double>>(pathCostComparator);
158
159 Tuple<Vertex<T>, Double> pathTuple;
160

686 ■ Chapter 13 The Graph Abstract Data Type

161 // start with the source, which has a cost of 0 to
162 // get to itself
163 pq.enqueue(new Tuple(src, 0.0));
164
165 while (!pq.isEmpty()) {
166 // get cheapest path seen so far from src to some
167 // other vertex
168 pathTuple = pq.dequeue();
169
170 // extract the fields of the tuple so we can
171 // work with them
172 Vertex<T> v = pathTuple.getFirstElement();
173 double minCostToV = pathTuple.getSecondElement();
174
175 visitedVertices.add(v); // visit vertex v
176
177 // if v is the destination vertex, we are done
178 if (v.equals(dest)) {
179 return minCostToV;
180 }
181
182 // okay, not done yet; look at the vertices
183 // adjacent to v
184 ArrayList<Vertex<T>>
185 neighbors = (ArrayList<Vertex<T>>)getNeighbors(v);
186 while (!neighbors.isEmpty()) {
187 Vertex<T> w = neighbors.remove(0); // next neighbor
188
189 // if w hasn’t been visited already, add it to
190 // the priority queue
191 if (!visitedVertices.contains(w)) {
192 // get the total path cost from src to v
193 double minCostToW = minCostToV
194 + getEdgeWeight(v, w);
195 pathTuple =
196 new Tuple<Vertex<T>, Double>(w, minCostToW);
197 pq.enqueue(pathTuple);
198 }
199 }
200 }
201 // if the loop terminates naturally, we never found
202 // the destination vertex, so return failure
203 return -1;
204 }
205 }

13.6 Implementation of Graph ADTs ■ 687

An implementation for the minimal path algorithm pseudocoded in Section
13.4.1 is given in AdjMatrixWeightedGraph on lines 121–204). The implementa-
tion uses a new class, Tuple, which is like the Pair class developed in Chapter 2,
except Tuple supports storing a pair of elements of different types. The
PriorityQueue (lines 150–157) stores tuples consisting of a Vertex and the cost to
get to that vertex from the src vertex. This tuple corresponds to the 〈Vertex,
minCostToVertex〉 from the pseudocoded algorithm. The Comparator defined on
lines 134–148 is used by the PriorityQueue to compare the path cost field of Tuple
instances.

A Vertex is marked as visited by placing it in an array of visited vertices (see
lines 131–132, 175, and 191). The main work of the algorithm (lines 165–200) fol-
lows closely from the pseudocode.

SUMMING UP

The implementation of a hierarchy of graph classes makes careful use of inheritance
and the protected access modifier to maximize code reuse. The Graph interface
supports directed and undirected unweighted graphs and makes no assumptions
about the underlying representation of the graph. The AdjMatrixDiGraph class pro-
vides a directed graph implementation of Graph, using an adjacency matrix to rep-
resent the graph. Class AdjMatrixGraph extends AdjMatrixDiGraph to provide an
undirected graph. The methods in AdjMatrixGraph to create and remove edges
extend and use their superclass counterparts to create/remove the unidirectional
edge, and then finish the operation by creating/removing the reverse direction edge.
Class WeightedAdjMatrixGraph extends AdjMatrixGraph and implements inter-
face WeightedGraph to provide a weighted, undirected graph.
WeightedAdjMatrixGraph must override the addEdge() method it inherits to pro-
vide the edge a weight. All other inherited methods can be used as is.
WeightedAdjMatrixGraph adds several methods that deal with edge weights.

EXERCISES

Review

1. Describe the similarities and differences between a graph and a tree.

2. How is a directed graph different from an undirected graph? Draw an example
of each.

3. What does it mean for two vertices to be adjacent? Does it matter if the graph
is directed or not?

4. What might the weights in a weighted graph represent?

5. What is a simple path? How do you determine its length? How is a simple path
different from a cycle?

688 ■ Chapter 13 The Graph Abstract Data Type

Exercises ■ 689

Graph G12.

6. What does it mean to say a graph is connected? Is it possible for a graph to have
more than one connected component? If so, draw such a graph.

7. How many edges are there in a complete graph?

8. Briefly describe the similarities and differences between the adjacency matrix
and adjacency list representation of a graph. What are their space complexities?

9. How are the adjacency matrix and adjacency list representations different for
directed and undirected graphs?

10. If the graph is weighted, how does that affect an adjacency matrix representa-
tion? An adjacency list representation?

11. Briefly describe the difference between depth first and breadth first search of a
graph.

12. What does it mean to mark a vertex? Why would you need to do this?

13. Why is the time complexity of DFS guaranteed to be θ(|V|2) if the graph is rep-
resented as an adjacency matrix? How does this change if an adjacency list is
used?

14. Why is a stack a good collection to use for DFS? Why is a queue a good collec-
tion to use for BFS?

15. What is a spanning tree of a graph?

16. How can the DFS and BFS algorithms be modified to produce a spanning tree?

17. What is a greedy algorithm?

18. In what way is the minimal cost path algorithm greedy?

19. What is a minimal spanning tree?

20. How is the MST algorithm greedy?

21. The implementation presented in this chapter had an undirected graph as a
subclass of a directed graph. What are the implications of this when adding an
edge to a graph? If the inheritance were reversed so that a directed graph was a
subclass of an undirected class, what would the implications be for adding an
edge to a graph?

22. How is the Tuple class different from the Pair class?

Paper and Pencil

1. Show the order in which DFS and BFS would visit graph G12.

2. Apply the shortest path algorithm to find the shortest path from A to G.

3. Apply the spanning tree algorithm to graph G12.

690 ■ Chapter 13 The Graph Abstract Data Type

Graph G13.

2

4. Apply the minimal path algorithm to get the minimal cost path from B to H in
graph G13.

5. Show the minimal spanning tree found by the MST algorithm for graph G13
starting with vertex C.

Modifying the Code

1. How might the idea about the representation for graphs be used to represent
dense and sparse matrices?

2. Instead of decorating an edge with a weight (a double), David wants to use a
String. What changes have to be made to the interface to support this? What
changes need to be made to the internal representation of vertices and edges?

3. Instead of decorating an edge with just a weight (a double), Amir needs a
weight (a double) and a name (a String). What changes have to be made to the
interface to support this? What changes need to be made to the internal repre-
sentation of vertices and edges?

4. Instead of decorating an edge with just a weight (a double), Felice needs a
weight (a double representing distance), a route number (an int), and a name
(a String). What changes have to be made to the interface to support this?
What changes need to be made to the internal representation of vertices and
edges?

5. How would you redesign the graph interface so that you can accommodate
Gary, Amir, and Felice’s needs? (See the last three problems.) Provide the fol-
lowing:
a. A modified Graph interface
b. A test plan for the new feature
c. An implementation of one of the concrete classes
d. A short paper describing the changes that had to be made, a rationale for

your approach, and an evaluation of the difficulty of changing an existing
piece of code (consider such things as reading and understanding the exist-
ing code, identifying what needed to be changed, and so on)

6. Provide a non-recursive version of depthFirstSearch().

7. In her implementation, Yvonne mistakenly used a priority queue that allows
duplicates. That is, there could be two entries 〈D, 5〉. Will the minimal path
algorithm still work?

8. Method AdjMatrixDiGraph.removeVertex() tests to see if an entry represents
an edge (is equal to 1) and if so, clears it (sets it to 0). Would the method be
more efficient if it just walked through and cleared the appropriate row and col-
umn of the adjacency matrix? Would this work?

9. The implementation of AdjMatrixDiGraph has a few “opportunities for
improvement.” Make the following changes to the class:
a. Currently the maximum number of vertices is fixed at 10. There is no mech-

anism for the client to specify how many vertices to use, nor is it possible to
expand the size of the graph dynamically. Provide a constructor that takes a
positive integer as an argument (you may want to specify an upper bound on
the size, but be sure to document it) and creates a vertices array and an
adjMatrix two-dimensioned array for this number of vertices.

b. Provide support that will allow the dimensions of the graph to increase
dynamically if an attempt to add another vertex is made when the vertices
array is full. How much more difficult would it be to shrink the arrays if the
graph goes from being full and large to being much smaller?

c. The getFreeVertexPosition() and getVertexNumber() utility methods
return �1 to indicate failure. Provide meaningful symbolic constants
instead.

10. Traian is tired of getting exceptions when he tries to delete a vertex or edge that
isn’t in a graph or when he tries to add an edge to a graph and one or the other
of the vertices isn’t in it. He argues that if the class is going to throw an excep-
tion for these things, it ought to provide the programmer a way to check that a
vertex or edge is in a graph. That is, there ought to be something like
hasVertex(Vertex v) and hasEdge(Vertex v1, Vertex v2) predicate
methods. Add these methods to the ADT, provide test cases for them, and then
add them to the implementation.

11. The minimal path algorithm finds the cost of the least expensive path from the
source to the destination vertex (if such a path exists), but it doesn’t determine
which vertices are in that path. Modify the pseudocode to return an object that
consists of the vertices in the path from the source to the destination (in the
order they would be traversed while following the path), and the cost of the
path. Hint: Instead of storing vertices in verticesInSomePathToDest, store
vertex pairs where each pair represents an edge in a possible path to the desti-
nation.
a. What is the cost of your algorithm?
b. Modify the book’s implementation to include your additions.

12. Provide a test plan and implementation for the minimal spanning tree algo-
rithm.

Exercises ■ 691

