Section 7.1: Simplifying and Manipulating Trig Expressions

1. Let $x = 7\cot \theta$. Evaluate $\sin \theta$ in terms of x.

2. Use $x = 4\sin\theta$ to express $\frac{7x^2}{\sqrt{16-x^2}}$ as a trigonometric function without radicals. Assume θ is an acute angle.

3. Factor and use identities to simplify completely: $\frac{\tan^4 x - \sec^4 x}{\sec^2 x + \tan^2 x}$

4. Multiply and use identities to reduce the number of terms in your final answer: $(1 + \tan x)^2$

* 5. Let $x = 6\cot \theta$. Write $\sin \theta$ in terms of x.

* 6. Use $x = 3\tan \theta$. Write $\frac{6x}{\sqrt{9 + x^2}}$ as a trigonometric function without radicals. Assume θ is an acute angle.

7. Use identities to factor and simplify:
$$\frac{\csc^4 x - \cot^4 x}{\csc^2 x + \cot^2 x}$$

* 8. Use an identity to rewrite
$$1 + \cos x - 2 \sin^2 x$$
 in terms of one trig function and then factor the expression.

Section 7.1: Proving Trig Identities

Prove the following identities by working each side independently. Show every step!

1.
$$(\cos x + \sin x)(1 - \sin x \cos x) = \cos^3 x + \sin^3 x$$

$$2. \cot x + \csc x = \frac{\sin x}{1 - \cos x}$$

$$3. \ \frac{1+\sin t}{\cos t} + \frac{\cos t}{1+\sin t} = 2\sec t$$

*4.
$$\frac{\sec t + 1}{\tan t} = \frac{\tan t}{\sec t - 1}$$

5.
$$\frac{\cot A + \tan A}{\sec A + \csc A} = \frac{1}{\sin A + \cos A}$$

6.
$$\sec^4 x - \tan^2 x = \tan^4 x + \sec^2 x$$

Section 7.2: Sum/Difference Identities

1. Let the coordinates on the unit circle of the standard angle α be (3/5, 4/5) and let $\cos \beta$ be 1/6 with the terminal side of β in quadrant IV. Evaluate $\cos(\alpha + \beta)$ exactly.

* 2. Suppose $\sin \alpha = -3/11$ with α a third quadrant angle, and $\cos \beta = 1/5$, with β a first quadrant angle. Evaluate $\cos(\alpha + \beta)$ exactly.

3. Let $\tan \gamma = 2/5$ with γ a first quadrant angle. Evaluate $\sin (\gamma - 90^\circ)$ exactly. Use any method you wish.

* 4. Suppose $\sin \alpha = 3/7$ with α a second quadrant angle, and $\cos \beta = 1/8$, with β a first quadrant angle. Evaluate $\sin(\alpha + \beta)$ exactly.

5. Evaluate $\cos \beta$ and $\sin \left(\frac{\pi}{2} - \beta \right)$ exactly if $\sin \beta > 0$ and $\tan \beta = -15/4$.

* 6. $\sin(\tan^{-1}(6/7) + \cos^{-1}(-1/3))$

7. Rewrite $\sin 23^{\circ} \cos 22^{\circ} + \cos 23^{\circ} \sin 22^{\circ}$ as a trig function of a single angle and then evaluate exactly.

Section 7.3: Double Angle Identities

1. Let $\sin \delta = 5/8$, where the terminal side of δ is in quadrant II. Evaluate $\sin 2\delta$.

2. Evaluate $\sin(2x)$ exactly, if $\cos x = 8/9$ with $3\pi/2 < x < 2\pi$

3. Prove: $\tan x + \cot x = 2 \csc (2x)$

4. Prove: $\frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = \frac{2 - \sin 2x}{2}$

Half Angle Identities

1. Use a half angle formula to evaluate $\cos{(11\pi/12)}$ exactly.

2. Evaluate cos (15°) exactly. Use any method you wish.

3. Evaluate $\sin(112.5^\circ)$ exactly.

* 4. $\cos \alpha = \frac{1}{4}$ and $\alpha \in (270^{\circ}, 360^{\circ})$ a. Evaluate $\cos (\alpha/2)$

b. Evaluate $\sin (\alpha/2)$

More Problems

#1 of this dept. handout http://mathdepartment.us/departmentHandouts/math122
/problems_using_trig_identities

Simplifying Trig Expressions http://mathdepartment.us/departmentHandouts/math122/simplifying_trig_expressions